
Snap-Stabilizing Depth-First Search on
Arbitrary Networks�

Alain Cournier, Stéphane Devismes, Franck Petit, and Vincent Villain

LaRIA, CNRS FRE 2733,
Université de Picardie Jules Verne, Amiens (France)

Abstract. A snap-stabilizing protocol, starting from any arbitrary ini-
tial configuration, always behaves according to its specification. In this
paper, we present a snap-stabilizing depth-first search wave protocol for
arbitrary rooted networks. In this protocol, a wave of computation is
initiated by the root. In this wave, all the processors are sequentially
visited in depth-first search order. After the end of the visit, the root
eventually detects the termination of the process. Furthermore, our pro-
tocol is proven assuming an unfair daemon, i.e., assuming the weakest
scheduling assumption.

keywords: Distributed systems, fault-tolerance, stabilization, depth-
first search.

1 Introduction

A distributed system is a network where processors execute local computations
according to their state and the messages from their neighbors. In such systems,
a wave protocol [1] is a protocol where at least one processor (called initiator)
initiates cycles of computations (also called wave). At the ending of each cycle,
each initiator is abled to determine a result depending on both the terminal
configuration and the history of the cycle’s computation.

In an arbitrary rooted network, a Depth-First Search (DFS) wave is initiated
by the root. In this wave, all the processors are sequentially visited in depth-first
search order. This scheme has many applications in distributed systems. For exam-
ple, the solution of this problem can be used to solve mutual exclusion, spanning
tree computation, constraint programming, routing, or synchronization.

The concept of self -stabilization [2] is the most general technique to design
a system to tolerate arbitrary transient faults. A self-stabilizing system, regarless
of the initial states of the processors and messages initialy in the links, is guaran-
teed to converge to the intented behavior in finite time. Snap-stabilization was
introduced in [3]. A snap-stabilizing protocol guaranteed that it always behaves
according to its specification. In other words, a snap-stabilizing protocol is also a

� The full version is available at www.laria.u-picardie.fr/∼devismes/tr2004-9.ps

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 267–282, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

268 A. Cournier et al.

self-stabilizing protocol which stabilizes in 0 step. Obviously, a snap-stabilizing
protocol is optimal in stabilization time.

Related Works. There exists several (non self-stabilizing) distributed algorithms
solving this problem, e.g., [4, 5]. In the area of self-stabilizing systems, a silent
algorithm (i.e., using this algorithm, the system converges to a fix point) which
computes a DFS spanning tree for arbitrary rooted networks is given in [6].
Several self-stabilizing (but not snap-stabilizing) wave algorithms based on the
depth-first token circulation (DFTC) have been proposed for arbitrary rooted
networks. The first one was proposed in [7]. It requires O(log(N) + log(∆)) bits
per processors where N is the number of processors and ∆ the degree of the
network. Subsequently, several other self-stabilizing protocols were proposed,
e.g., [8, 9, 10]. All these papers attempted to reduce the memory requirement
to O(log(∆)) bits per processor. The algorithm proposed in [8] offers the best
space complexity. All these above solutions [8, 7, 9, 10] have a stabilization time in
O(N×D) rounds where D is the diameter of the network. The solution proposed
in [11] stabilizes in O(N) rounds using O(log(N) + log(∆)) bits per processor.
Until now, this is the best solution (for arbitrary networks) in term of trade-off
between time and space complexities. The correctness of the above algorithms
is proven assuming a (weakly) fair daemon. Roughly speaking, a daemon is
considered as an adversary which tries to prevent the protocol to behave as
expected, and fairness means that the daemon cannot prevent forever a processor
to execute an enabled action. The first snap-stabilizing DFTC has been proposed
in [12] for tree networks. In arbitrary networks, a universal transformer providing
a snap-stabilizing version of any (neither self- nor snap-) protocol is given in
[13]. Obviously, combining this protocol with any DFTC algorithm, we obtain a
snap-stabilizing DFTC algorithm for arbitrary networks. However, the resulting
protocol works assuming a weakly fair daemon only. Indeed, it generates an
infinite number of snapshots, independently of the token progress. Therefore,
the number of steps per wave cannot be bounded.

Contributions. In this paper, we present the first snap-stabilizing depth-first
search wave protocol for arbitrary rooted networks assuming an unfair daemon,
i.e., assuming the weakest scheduling assumption. Indeed, using our protocol,
the execution of a DFS wave is bounded by O(N2) steps. The protocol does not
use any pre-computed spanning tree but requires identities on processors. The
snap-stabilizing property guarantees that as soon as the protocol is initiated by
the root, every processor of the network will be visited in DFS order. After the
end of the visit, the root eventually detects the termination of the process.

Outline of the paper. The rest of the paper is organized as follows: in Section
2, we describe the distributed systems and the model in which our protocol
is written. Moreover, in the same section, we give a formal statement of the
Depth-First Search Wave Protocol solved in this paper. In Section 3, we present
the Depth-First Search Wave Protocol. In the following section (Section 4), we
give the proof of snap-stabilization of the protocol and some complexity results.
Finally, we make concluding remarks in Section 5.

Snap-Stabilizing Depth-First Search on Arbitrary Networks 269

2 Preliminaries

Distributed System. We consider a distributed system as an undirected connected
graph G = (V , E) where V is a set of processors (|V | = N) and E is the set of
bidirectional communication links. We consider networks which are asynchronous
and rooted, i.e., among the processors, we distinguish a particular processor called
root. We denote the root processor by r. A communication link (p, q) exists if
and only if p and q are neighbors. Every processor p can distinguish all its links.
To simplify the presentation, we refer to a link (p, q) of a processor p by the label
q. We assume that the labels of p, stored in the set Neigp

1, are locally ordered
by ≺p. We assume that Neigp is a constant, Neigp is shown as an input from the
system. Moreover, we assume that the network is identified, i.e., every processor
has exactly one identity which is unique in the network. We denote the identity
of a processor p by Idp. We assume that Idp is a constant. Idp is also shown as
an input from the system.

Computational Model. In the computation model that we use, each processor
executes the same program except r. We consider the local shared memory model
of communication. The program of every processor consists of a set of shared
variables (henceforth, referred to as variables) and a finite set of actions. A
processor can only write to its own variables, and read its own variables and
variables owned by the neighboring processors. Each action is constituted as
follows:

< label > :: < guard > → < statement > .

The guard of an action in the program of p is a boolean expression involving the
variables of p and its neighbors. The statement of an action of p updates one
or more variables of p. An action can be executed only if its guard is satisfied.
We assume that the actions are atomically executed, meaning, the evaluation
of a guard and the execution of the corresponding statement of an action, if
executed, are done in one atomic step.

The state of a processor is defined by the value of its variables. The state of
a system is the product of the states of all processors (∈ V). We will refer to
the state of a processor and system as a (local) state and (global) configuration,
respectively. Let C, the set of all possible configurations of the system. An action
A is said to be enabled in γ ∈ C at p if the guard of A is true at p in γ. A
processor p is said to be enabled in γ (γ ∈ C) if there exists an enabled action A
in the program of p in γ.

Let a distributed protocol P be a collection of binary transition relations
denoted by �→, on C. A computation of a protocol P is a maximal sequence of
configurations e = (γ0,γ1,...,γi,γi+1,...), such that for i ≥ 0, γi �→ γi+1 (called a
step) if γi+1 exists, else γi is a terminal configuration. Maximality means that
the sequence is either finite (and no action of P is enabled in the terminal
configuration) or infinite. All computations considered in this paper are assumed
to be maximal. The set of all possible computations of P is denoted as E .

1 Every variable or constant X of a processor p will be noted Xp.

270 A. Cournier et al.

We consider that any processor p executed a disabling action in the compu-
tation step γi �→ γi+1 if p was enabled in γi and not enabled in γi+1, but did
not execute any action between these two configurations. (The disabling action
represents the following situation: at least one neighbor of p changes its state
between γi and γi+1, and this change effectively made the guard of all actions
of p false.)

In a step of computation, first, all processors check the guards of their actions.
Then, some enabled processors are chosen by a daemon. Finally, the “elected”
processors execute one or more of theirs enabled actions. There exists several
kinds of daemon. Here, we assume a distributed daemon, i.e., during a computa-
tion step, if one or more processors are enabled, the daemon chooses at least one
(possibly more) of these enabled processors to execute an action. Furthermore, a
daemon can be weakly fair, i.e., if a processor p is continuously enabled, p will be
eventually chosen by the daemon to execute an action. If the daemon is unfair,
it can forever prevent a processor to execute an action except if it is the only
enabled processor.

In order to compute the time complexity, we use the definition of round
[14]. This definition captures the execution rate of the slowest processor in any
computation. Given a computation e (e ∈ E), the first round of e (let us call it
e′) is the minimal prefix of e containing the execution of one action (an action
of the protocol or the disabling action) of every enabled processor from the first
configuration. Let e′′ be the suffix of e such that e = e′e′′. The second round of e
is the first round of e′′, and so on. We say that a round is finite if it is constituted
of a finite number of steps.

Snap-stabilizing Systems. The concept of snap-stabilization was introduced in
[3]. In this paper, we restrict this concept to the wave protocols only.

Definition 1 (Snap-stabilization for Wave Protocols). Let T be a task,
and SPT a specification of T . A wave protocol P is snap-stabilizing for the
specification SPT if and only if:

1. At least one processor (called initiator) eventually executes a particular ac-
tion of P (called initialization action).

2. The result obtained with P from this initialization action always satisfies
SPT .

Theorem 1. Let T be a task and SPT be a specification of T . Let P be a
protocol such that, assuming a weakly fair daemon, P is self-stabilizing for SPT .
If, for every execution of P assuming an unfair daemon, each round is finite,
then P is also self-stabilizing for SPT assuming an unfair daemon.

Proof. Let e be an execution of P assuming an unfair daemon. By assumption,
every round of e is finite. Then, as every round of e is finite, each enabled
processor (in e) executes an action (either a disabling action or an action of P)
in a finite number of steps. In particular, every continuously enabled processor
executes an action of P in a finite number of steps. So, e is also an execution of

Snap-Stabilizing Depth-First Search on Arbitrary Networks 271

P assuming a weakly fair daemon. Since P is self-stabilizing for SPT assuming
a weakly fair daemon, e stabilizes to SPT . Hence, P is self-stabilizing for SPT
even if the daemon is unfair. �

Specification of the Depth-First Search Wave Protocol. Before giving the speci-
fication of the Depth-First Search Wave Protocol, we propose some definitions.

Definition 2 (Path). The sequence of processors p1, ..., pk (∀i ∈ [1... k], pi ∈
V) is a path of G = (V , E) if ∀i ∈ [1...k − 1], (pi, pi+1) ∈ E. The path p1, ...,
pk is referred to as an elementary path if ∀i, j such that 1 ≤ i < j ≤ k, pi �= pj.
The processors p1 and pk are termed as initial and final extremities, respectively.

Definition 3 (First Path). For each elementary path of G from the root, P
= (p1=r), ..., pi, ...,pk, we associate a word l1, ..., li, lk−1 (noted word(P))
where, ∀i ∈ [1...k − 1], pi is linked to pi+1 by the edge labelled li on pi. Let ≺lex

be a lexicographical order over these words. For each processor p, we define the
set of all elementary paths from r to p. The path of this set with the minimal
associated word by ≺lex is called the first path of p (noted fp(p)).

Using this notion, we can define the first DFS order:

Definition 4 (First DFS Order). Let p, q ∈ V such that p �= q. We can
define the first DFS order ≺dfs as follows: p ≺dfs q if and only if word(fp(p))
≺lex word(fp(q)).

Specification 1 (fDFS Wave). Let V isited be a predicate. A finite computa-
tion e ∈ E is called a fDFS wave (i.e., first DFS wave) if and only if the following
tree conditions are true:

1. r initiates the fDFS wave by initializing the set of processors satisfying Vis-
ited with r.

2. During a fDFS wave, the other processors are sequentially included in the
set of processors satisfying Visited following the first DFS order.

3. r eventually detects the ending of a fDFS wave and if r detects the ending of
a fDFS wave then ∀p ∈ V , p satisfies Visited.

Remark 1. In order to prove that our protocol is snap-stabilizing for Specifica-
tion 1, we must show that every execution of the protocol satisfies these both
conditions:

1. r eventually initiates a fDFS wave.
2. From any configuration where r has initiated a fDFS wave, the system always

satisfies Specification 1.

3 Algorithm

In this section, we present a DFS wave protocol referred to as Algorithm
snapDFS (see Algorithms 1. and 2.). We first present the normal behavior.
We then explain the method of error correction.

272 A. Cournier et al.

Algorithm 1. Algorithm snapDFS for p = r
Input: Neigp: set of neighbors (locally ordered); Idp: identity of p;
Constant: Parp = ⊥;
Variables: Sp ∈ Neigp ∪ {idle, done}; V isitedp: set of identities;
Macros:
Nextp = (q = min≺p{q′ ∈ Neigp :: (Idq′ /∈ V isitedp)}) if q exists,

done otherwise;
ChildV isitedp = V isitedSp if (Sp /∈ {idle, done}), ∅ otherwise;
Predicates:
Forward(p) ≡ (Sp = idle)
Backward(p) ≡ (∃q ∈ Neigp :: (Sp = q) ∧ (Parq = p) ∧ (Sq = done))
Clean(p) ≡ (Sp = done)
SetError(p) ≡ (Sp 	= idle) ∧ [(Idp /∈ V isitedp)

∨ (∃q ∈ Neigp :: (Sp = q) ∧ (Idq ∈ V isitedp))]
Error(p) ≡ SetError(p)
ChildError(p) ≡ (∃q ∈ Neigp :: (Sp = q) ∧ (Parq = p) ∧ (Sq 	= idle)

∧ ¬(V isitedp � V isitedq))
LockedF (p) ≡ (∃q ∈ Neigp :: (Sq 	= idle))
LockedB(p) ≡ [∃q ∈ Neigp :: (Idq /∈ ChildV isitedp) ∧ (Sq 	= idle)] ∨ Error(p)

∨ ChildError(p)
Actions:
F :: Forward(p) ∧ ¬LockedF (p) → V isitedp := {Idp}; Sp := Nextp;
B :: Backward(p) ∧ ¬LockedB(p) → V isitedp := ChildV isitedp; Sp := Nextp;
C :: Clean(p) ∨ Error(p) → Sp := idle;

Normal Behavior. From a normal configuration, we distinguish two phases in
our protocol: the visiting phase where the protocol visits all the processors in
the first DFS order and the cleaning phase which cleans the trace of the visiting
phase so that the root is eventually ready to initiate a new visiting phase. These
both phases work in parallel. In its normal behavior, Algorithm snapDFS uses
three variables for each processor p:

1. Sp designates the successor of p in the visiting phase, i.e., if there exists q ∈
Neigp such that Sp = q, then q (resp. p) is said to be a successor of p (resp.
a predecessor of q),

2. V isitedp is the set of processors which have been visited during the visiting
phase,

3. Parp designates the processor which has pointed out p as one of its successors
during the visiting phase (as r has no predecessor, Parr is the constant ⊥).

Consider the configurations where [(Sr = idle) ∧ (∀p ∈ Neigr , Sp = idle)
∧ (∀q ∈ V \ (Neigr ∪ {r}), Sq ∈ {idle, done})]. We refer to these configurations
as normal initial configurations. In these configurations, every processor q �= r
such that Sq = done is enabled to perform its cleaning phase (see Predicate
Clean(p)). Processor q performs its cleaning phase by executing Action C, i.e.,
it assigns idle to Sq. Moreover, in this configuration, the root (r) is enabled to
initiate a visiting phase (Action F). Processor r can initiate a visiting phase
by initializing V isitedr with its identity (Idr) and pointing out (with Sr) its

Snap-Stabilizing Depth-First Search on Arbitrary Networks 273

minimal neighbor in the local order ≺r (see Macro Nextr). In the worst case,
every processor q, such that Sq = done, executes its cleaning phase, after, r is
the only enabled processor and initiates a visiting phase. From this point on, r
is the only visited processor.

When a processor p �= r such that Sp = idle is pointed out with Sq by
a neighboring processor q, then p waits until all its neighbors p′, such that
Sp′ = done and Idp′ /∈ PredV isitedp (here, V isitedq), execute their cleaning
phase. After, p can execute Action F . Then, p also designates q with Parp and
assigns PredV isitedp ∪ {Idp} (here, V isitedq ∪ {Idp}) to V isitedp. Informally,
the V isited set of the last visited processor contains the identities of all the
visited processors. Finally, p chooses a new successor, if any. For this earlier
task, two cases are possible (see Macro Nextp):

1. ∀ p′ ∈ Neigp, Idp′ ∈ V isitedp, i.e., all neighbors of p have been visited; the
visiting phase from p is now terminated, so, Sp is set to done,

2. otherwise, p chooses as a successor the minimal processor by ≺p in {p′ :: p′ ∈
Neigp ∧ Idp′ /∈ V isitedp} and p is now in the visiting phase.

In both cases, p is now considered as visited.
When q is the successor of p and Sq = done, p knows that the visiting phase

from q is terminated. Thus, p must continue the visiting phase using another
neighboring processor which is still not visited, if any: p executes Action B and
it assigns ChildV isitedp to V isitedp. Hence, it knows exactly which processors
have been visited and it can designate another successor, if any, as in Action F
(see Macro Nextp). Processor q is, now, enabled to execute its cleaning phase
(Action C).

Finally, Sr = done means that the visiting phase is terminated for all the
processors and so, r can execute its cleaning phase. Thus, the system eventually
reaches a normal initial configuration again.

Error Correction. First, from the normal behavior, we can remark that, if p �= r
is in the visiting phase and the visiting phase from p is still not terminated,
then p must have a predecessor and must designate it with its variable Parp,
i.e., each processor p �= r must satisfy: (Sp /∈ {idle, done}) ⇒ (∃q ∈ Neigp ::
Sq = p ∧ Parp = q). The predicate NoRealParent(p) allows to determine if
this condition is not satisfied by p. Then, during the normal behavior, each
processor maintains properties based on the value of its V isited set and that of
its predecessors, if any. Thus, in any configuration, p must respect the following
conditions (see Action F):

1. (Sp �= idle) ⇒ (Idp ∈ V isitedp) because when p is visited, it includes its
identity in its V isited set.

2. (Sp ∈ Neigp) ⇒ (IdSp
/∈ V isitedp), i.e., p must not point out a previously

visited processor.
3. ((p �= r) ∧ (Sp �= idle) ∧ (∃q ∈ Neigp :: (Sq = p) ∧ (Parp = q))) ⇒

(V isitedq � V isitedp) because while p �= r is in the visiting phase, V isitedp

must strictly include the V isited set of its parent.

274 A. Cournier et al.

Algorithm 2. Algorithm snapDFS for p �= r

Input: Neigp: set of neighbors (locally ordered); Idp: identity of p;
Variables: Sp ∈ Neigp ∪ {idle, done}; V isitedp: set of identities; Parp ∈ Neigp;
Macros:
Nextp = (q = min≺p{q′ ∈ Neigp :: (Idq′ /∈ V isitedp)}) if q exists,

done otherwise;
Predp = {q ∈ Neigp :: (Sq = p)};
PredV isitedp = V isitedq if (∃! q ∈ Neigp :: (Sq = p)), ∅ otherwise;
ChildV isitedp = V isitedSp if (Sp /∈ {idle, done}), ∅ otherwise;
Predicates:
Forward(p) ≡ (Sp = idle) ∧ (∃q ∈ Neigp :: (Sq = p))
Backward(p) ≡ (∃q ∈ Neigp :: (Sp = q) ∧ (Parq = p) ∧ (Sq = done))
Clean(p) ≡ (Sp = done) ∧ (SParp 	= p)
NoRealParent(p) ≡ (Sp /∈ {idle, done}) ∧ ¬(∃q ∈ Neigp :: (Sq = p) ∧ (Parp = q))
SetError(p) ≡ (Sp 	= idle) ∧ [(Idp /∈V isitedp)

∨ (∃q∈Neigp :: (Sp=q) ∧ (Idq∈V isitedp))
∨ (∃q∈Neigp :: (Sq=p) ∧ (Parp=q) ∧ ¬(V isitedq�V isitedp))]

Error(p) ≡ NoRealParent(p) ∨ SetError(p)
ChildError(p) ≡ (∃q ∈ Neigp :: (Sp = q) ∧ (Parq = p) ∧ (Sq 	= idle)

∧ ¬(V isitedp � V isitedq))
LockedF (p) ≡ (|Predp|	=1) ∨ (∃q∈Neigp :: (Idq /∈PredV isitedp) ∧ (Sq 	=idle))

∨ (Idp ∈ PredV isitedp)
LockedB(p) ≡ (|Predp|	=1) ∨ (∃q∈Neigp::(Idq /∈ChildV isitedp)∧(Sq 	=idle))

∨ Error(p) ∨ ChildError(p)
Actions:
F :: Forward(p) ∧ ¬LockedF (p) → V isitedp := PredV isitedp∪{Idp};

Sp := Nextp; Parp := (q∈Predp);
B :: Backward(p) ∧ ¬LockedB(p) → V isitedp := ChildV isitedp; Sp := Nextp;
C :: Clean(p) ∨ Error(p) → Sp := idle;

If one of these conditions is not satisfied by p, p satisfies SetError(p). So,
Algorithm snapDFS detects if p is in an abnormal state, i.e., (((p �= r) ∧
NoRealParent(p)) ∨ SetError(p)) with the predicate Error(p). In the rest of
the paper, we call abnormal processor a processor p satisfying Error(p). If p is an
abnormal processor, then we must correct p and all the processors visited from
p. We simply correct p by setting Sp to idle (Action C). So, if, before p executes
Action C, there exists a processor q such that (Sp = q ∧ Parq = p ∧ Sq /∈ {idle,
done} ∧ ¬Error(q)), then after p executes Action C, q becomes an abnormal
processor too (replacing p). These corrections are propagated until the visiting
phase from p is completely corrected. However, during these corrections, the vis-
iting phase from p can progress by the execution of Actions F and B. But, we
can remark that the V isited set of the last processor of a visiting phase grows
by the execution of Actions F and B and the last processor of a visiting phase
can only extend the propagation using processors which are not in its V isited
set. Thus, the visiting phase from an abnormal processor cannot run indefinitely.
Hence, we will see later that the visiting phase from an abnormal processor will
be eventually corrected.

Snap-Stabilizing Depth-First Search on Arbitrary Networks 275

Finally, we focus on the different ways to stop (or slow down) the propagation
of the erroneous behaviors. Actions F and B allow a processor p to execute its
visiting phase. However, by observing its state and that of its neighbors, p can
detect some fuzzy behaviors and stop them: that is the goal of the predicates
LockedF (p) and LockedB(p) in Actions F and B, respectively. A processor p
is locked (i.e., p cannot execute Action B or Action F) when it satisfies at least
one of the five following conditions:

1. p has several predecessors.
2. p is an abnormal processor.
3. p has a successor q such that ((Sq �=idle)∧(Parq=p)∧¬(V isitedp�V isitedq)),

i.e., q is abnormal.
4. p (Sp = idle) is designated as a successor by q but Idp is in V isitedq, i.e., q

is abnormal.
5. some non-visited neighbors q of p are not cleaned, i.e., Sq �= idle (also used

in a normal behavior).

4 Correctness and Complexity Analysis

4.1 Basic Definitions and Properties

Let p ∈ V . p is pre-clean if and only if (Clean(p) ∨ (Sp = done ∧ Error(p))).
We recall that p is abnormal if and only if it satisfies Error(p). A processor p is
linked to a processor q if and only if (Sp = q) ∧ (Parq = p) ∧ ¬SetError(q) ∧
(Sq �= idle). In this case p is called the parent of q and q the child of p. We can
also remark that Sp (resp. Parq) guarantees that q (resp. p) is the only child
(resp. parent) of p (resp. q). As Parr =⊥, obviously, r never has any parent.

A linked path of G is a path P = p1, ..., pk such that Sp1 /∈ {idle, done} and
∀ i, 1 ≤ i ≤ k−1, pi is linked to pi+1. We will note IE(P) the initial extremity of
P (i.e., p1) and FE(P) the final extremity of P (i.e., pk). Moreover, the length of
P (noted length(P)) is equal to k. Obviously, in any configuration, every linked
path of G is elementary. So, from now on and until the end of the paper, we only
consider maximal non-empty linked paths. The next lemma gives an important
property of such linked paths.

Lemma 1. Every linked path P satisfies V isitedFE(P) ⊇ {Idp :: p ∈ P ∧ p �=
IE(P)}.

We call abnormal linked path, a linked path P satisfying Error(IE(P)). Re-
spectively, we call normal linked path, every linked path which is not abnormal.
Obviously, a normal linked path P satisfies IE(P) = r.

Lemma 2. A normal linked path P satisfies V isitedFE(P) ⊇ {Idp :: p ∈ P}.

Now, we introduce the notion of future of a linked path. We call future of a linked
path P the evolution of P during a computation. In particular, the immediate
future of P is the transformation supported by P after a step. Note that, after a

276 A. Cournier et al.

step, P may disappear. Thus, by convention, we denote by DeadP the fact that
P has disappeared after a step.

Definition 5 (Immediate Future of a Linked Path). Let γi �→ γi+1 be a
step. Let P be a linked path in γi. We call F (P) the immediate future of P in
γi+1 and we define it as follows.

1. If there exists a linked path P ′ in γi+1 which satisfies one of the following
conditions: (a) P ∩ P ′ �= ∅, or (b) in γi, SFE(P) = IE(P ′) and IE(P ′)
executes Action F in γi �→ γi+1 then F (P) = P ′,

2. else, F (P) = DeadP .

By convention, we state F (DeadP) = DeadP .

Figure 1 depicts two types of immediate future. Consider first Configurations i
and ii. Configuration i contains one linked path only: P = r, 1, 2. Moreover,
Processor 3 has Action F enabled in i and executes it in i �→ ii (i.e., 3 hooks
on to P). Thus, the step i �→ ii illustrates the case 1.(a) of Definition 5: in this
execution, F (P) = r, 1, 2, 3. Configuration iii also contains one linked path
only: P ′ = 1. Then, in iii, Processor 1 has Action C enabled and Processor 2
has Action F enabled. These two processors execute C and F respectively in
iii �→ iv (1 unhooks from P ′ and 2 hooks on to P ′). So, we obtain Configuration
iv which illustrates the case 1.(b) of Definition 5: in this execution, F (P ′) = 2.
Note that if only Processor 1 executes Action C from iii, P ′ disappears, i.e.,
F (P ′) = DeadP .

idle

Visited

1

{1,2}

Id

Par

S

r {r}

1 {r,1} 2 {r,3}

3 {3,4}

{3,4}4

1

r {r}

{r,1} 2 {r,1,2}

3 {3,4}

{3,4}4

{r}r

{r,1}1 2 {r,1,2}

3{r,1,2,3}

{3,4}4

r {r}

1{r,1} 2 {r,1,2}

3 {3,4}

{3,4}4

ii

iii iv

i

Fig. 1. Instances of Immediate Futures

Definition 6 (Future of a Linked Path). Let e ∈ E. Let γi ∈ e. We define
F k(P) (k ∈ �), the future of P in e after k steps of computation from γi, as
follows:

Snap-Stabilizing Depth-First Search on Arbitrary Networks 277

1. F 0(P) = P ,
2. F 1(P) = F (P) (immediate future of P),
3. F k(P) = F k−1(F (P)) (future of P after k steps of computation), if k > 1.

The following remarks and lemmas give some properties of linked paths and
their futures.

Remark 2. Let γi �→ γi+1 be a step. Let P be a linked path in γi. ∀p ∈ V , p
hooks on to P in γi �→ γi+1 if and only if p executes Action F in γi �→ γi+1 and
p = FE(F (P)) in γi+1. As Parr is a constant equal to ⊥, r cannot hook on to
any linked path.

Remark 3. Let γi �→ γi+1 be a step such that there exists a linked path P in γi.
A processor p unhooks from P in γi �→ γi+1 in the three following cases only:

1. P is an abnormal linked path, IE(P) = p and p executes Action C,
2. Sp = done and its parent in P executes Action B (p �= r),
3. p = r, its child q satisfies Sq = done, and r sets Sr to done by executing

Action B. In this case, q is also unhooked from P (Case 2.); moreover, since
r never has any parent, IE(P) = r and setting Sr to done involves that P
disappears, i.e., F (P) = DeadP .

The following lemma allows us to claim that, during a computation, the identities
of processors which hook on to a linked path P and its future are included into
the V isited set of the final extremity of the future of P . By checking Actions B
and F of Algorithms 1. and 2., this lemma is easy to verify:

Lemma 3. Let P be a linked path. While F k(P) �= DeadP (with k ∈ �),
V isitedFE(F k(P)) contains exactly V isitedFE(P) union the identities of every
processor which hooks on to P and its future until F k(P).

By checking Action F of Algorithms 1. and 2., follows:

Lemma 4. For all linked path P , ∀ p ∈ V such that Idp ∈ V isitedFE(P), p
cannot hook on to P .

By Lemmas 3 and 4, we deduce the next lemma.

Lemma 5. For all linked path P , if p ∈ V hooks on to P , then p cannot hook
on to F k(P), ∀k ∈ �+.

In the rest of the paper, we study the evolution of the paths. So, a lot of results
concern P and F k(P) with k ∈ �. From now on, when there is no ambiguity,
we replace “P and F k(P), ∀k ∈ �” by P only.

4.2 Proof Assuming a Weakly Fair Daemon

Now, we assume a weakly fair daemon. Under this assumption, the number of
steps of any round is finite. So, as we have defined the future of a linked path

278 A. Cournier et al.

in terms of steps, we can also evaluate the future of a linked path in terms of
rounds. Let e ∈ E . Let P be a linked path in γi (∈ e). We note FK

R (P) the future
of P , in e, after K rounds from γi.

We now show that the network contains no abnormal linked path in at most N
rounds, i.e., every abnormal path P of the initial configuration satisfies FN

R (P)
= DeadP .

Theorem 2. The system contains no abnormal linked path in at most N rounds.

Sketch of Proof. It is easy to see that the number of abnormal linked paths
cannot increase. Moreover, if Action C is enabled at p, then it remains enabled
until p executes it. So, let P be an abnormal linked path. As the daemon is
weakly fair, after each round, at least one processor unhooks from P (while P
exists). By Lemmas 1, 4 and 5 and Remark 2, the number of processors which
can hook on to P is at most N − length(P). So, in the worst case, N rounds are
necessary to unhook the processors of P and those which will hook on. Thus,
FN

R (P) = DeadP . �

The following lemmas and theorems allow to prove that r eventually executes
Action F .

Lemma 6. For every normal linked path P , the future of P is DeadP after at
most 2N − 2 actions on it.

Proof. Let e ∈ E . Let γi ∈ e. Assume that there exists a normal linked path P
in γi. First, we can remark that the future of P is either a normal linked path
or DeadP . Moreover, obviously, each action on P is either Action F or Action
B. By Lemmas 4 and 5, only processors p such that Idp /∈ V isitedFE(P) (in
γi) can hook on to P at most one during the execution. By Lemma 2, in the
worst case, the number of processors which hook on to P during the execution is
N − length(P). Then, after N − 2 processors unhooked from P (i.e., length(P)
+ (N − length(P)) − 2 actions B on P), P satisfies length(P) = 2. In this
case, only one action can be executed on P : the parent of FE(P) (i.e., IE(P))
can execute Action B. Now, by Lemma 3, V isitedFE(P) = {Idq :: q ∈ V }.
So, by executing Action B, IE(P) sets SIE(P) to done (NextIE(P)). Thus, as
explained in Remark 3, P disappears. Hence, in the worst case, the future of
P is DeadP after N − length(P) + (N − 2) + 1 actions which is maximal if
initialy length(P) = 1, i.e., 2N − 2 actions. �

If there exists no abnormal linked path, we can remark that, after at most one
round, there always exists at least one continuously enabled action on the normal
linked path. Thus, by Lemma 6 follows:

Lemma 7. Let P be a normal linked path. If there exists no abnormal linked
path, F 2N−1

R (P) = DeadP .

Theorem 2 and Lemma 7 prove the following theorem.

Snap-Stabilizing Depth-First Search on Arbitrary Networks 279

Theorem 3. For all normal linked path P , F 3N−1
R (P) = DeadP .

Theorem 4. From any initial configuration, r executes Action F after at most
3N rounds.

Proof. By Theorems 2 and 3, from any initial configuration, the system needs
at most 3N − 1 rounds to reach a configuration γi satisfying ∀p ∈ V , Sp ∈ {idle,
done}. In γi, ∀p ∈ V such that Sp = done, we have, SParp

�= p. So, every p has
Action C continuously enabled. As the daemon is weakly fair, after one round,
∀p ∈ V , Sp = idle. Thus, r is the only enabled processor and Action F is the
only enabled action of r. Hence, from any initial configuration, the root executes
Action F after at most 3N rounds. �

From the explanation provided in Section 3, it is easy to verify that when the
system starts from a configuration where ∀p ∈ V , Sp = idle (let us call it the idle
configuration) it performs a traversal of the network according to Specification
1. Now, if the system starts from an arbitrary configuration, then it can contain
some pre-clean processors and abnormal linked paths. We can remark that the
pre-clean processors and the abnormal linked paths can only slow down the
progression of the normal linked path. But the system keeps even so a normal
behavior because the normal linked path progresses in the same way than if it
starts from a idle configuration. So, the normal linked path eventually visits
all the processors in the first DFS order and, after, r eventually detects the
termination of the wave when r sets Sr to done (because ∀p ∈ V , Idp ∈ V isitedr).
Hence:

Theorem 5. From any configuration where r executes Action F , the execution
satisfies Specification 1.

From Remark 1, Theorems 4 and 5, follows:

Theorem 6. Algorithm snapDFS is snap-stabilizing for Specification 1 with a
weakly fair daemon.

4.3 Proof Assuming an Unfair Daemon

From now on, we do not make any fairness assumption. The two next lemmas
allow to prove that, in any execution of Algorithm snapDFS, each round is
finite.

Lemma 8. The future of an abnormal linked path P is DeadP after at most
2N − 1 actions on it.

Proof. The reasonning is similar to the proof of Lemma 6. �

Lemma 9. Every round of Algorithm snapDFS has a finite number of steps.

Proof. Let e ∈ E . Assume that a round R of e has an infinite number of steps.
Let γR be the first configuration of R.

280 A. Cournier et al.

First, assume that some abnormal linked paths of γR never disappear. So,
the system eventually reaches a configuration γi ∈ R in which there exists only
abnormal linked paths which never disappear. Now, as every abnormal linked
path disappears after a finite number of actions on it (see Lemma 8), there
exists a configuration γj (j ≥ i) from which no action will be executed on
these abnormal linked paths. Then, every pre-clean processor is clean after one
Action C and a normal linked path can only generate a finite number of pre-
clean processors. Indeed, the pre-clean processors generated by the normal linked
path has belong to it before and, until the normal linked path disappears, only a
finite number of processors can hook on to it (see Lemma 5). Then, the pre-clean
processors cannot prevent forever actions to be executed on a normal linked
path. Now, by Lemma 6, every normal linked path disappears after a finite
number of steps. So, the root processor executes Action F infinitively often to
create normal linked paths. But, if r executes Action F , then, by Theorem 5, r
creates a new normal linked path P and every processor (�= r) eventually hooks
on to P during the execution (in particular, the processors of abnormal linked
paths). Now, a processor p can hook on to P if Sp = idle (see Remark 2 and
Predicate Forward(p)). Thus, P is eventually locked because the processors of
the abnormal linked paths never hook on to it. So, r cannot execute Action F
infinitively often, a contradiction. Thus, there exists a step γj′ �→ γj′+1 with
j′ ≥ j in which at least one action is executed on an abnormal linked path, a
contradiction. Hence, the abnormal linked paths eventually disappear.

So, there exists a configuration γk in which there exists no abnormal linked
path. From this configuration, there always exists at most one linked path, the
normal linked path. Assume that there exists no normal linked path in γk. Then,
after a finite number of steps, r executes Action F and creates a normal linked
path P (in the worst case, after O(N) Actions C, every pre-clean processor
becomes idle and r is the only enabled processor). As explained above, the pre-
clean processors cannot prevent forever actions to be executed on P . By Lemma
6, the future of P is DeadP after a finite number of actions on it. Now, by
Theorem 5, before disappearing, every processor hooks on to it by executing
Action F . So, Round R is eventually done, a contradiction. Finally, if there
exists a normal linked path P ′ in γk, by a similar reasonning, after a finite
number of steps, the future of P ′ is DeadP ′ and we retrieve the previous case, a
contradiction.

Hence, after a finite number of steps, every enabled processor of γR has
executed one action. �

By Theorems 1 and 6, and Lemma 9, the following theorem holds.

Theorem 7. Algorithm snapDFS is snap-stabilizing for Specification 1 even if
the daemon is unfair.

4.4 Complexity Analysis

Space Complexity. By checking Algorithms 1. and 2., follows:

Snap-Stabilizing Depth-First Search on Arbitrary Networks 281

Lemma 10. The space requirement of Algorithm snapDFS is O(N × log(N)
+ log(∆)) bits per processor.

Time Complexity.

Lemma 11. From any initial configuration, r executes Action F in O(N2)
steps.

Proof. In the initial configuration, the system can contain O(N) pre-clean pro-
cessors and O(N) linked paths. Then, every linked path can generate O(N) pre-
clean processors. Indeed, the pre-clean processors generated by a linked path has
belong to it before and, until a linked path disappears, every processor can hook
on to it at most once (see Lemma 5). Finally, every pre-clean processor cleans
it by executing Action C. And, every linked path disappears after O(N) actions
on it (see Lemmas 6 and 8). Hence, in the worst case, after O(N2) steps, r is
the only enabled processor and executes Action F in the next step. �
The following lemma can be deduced from Lemma 11.

Lemma 12. From any initial configuration, a complete fDFS wave is executed
in O(N2) steps.

By Lemma 7, and Theorems 2 and 4, we can deduce the following result.

Lemma 13. From any initial configuration, a complete fDFS wave is executed
in at most 5N − 1 rounds.

5 Conclusion

We presented a snap-stabilizing depth-first search wave protocol for arbitrary
rooted networks. The protocol does not use any pre-computed spanning tree but
requires identities on processors. The snap-stabilizing property guarantees that
as soon as the root initiates the protocol, every processor of the network will
be visited in DFS order. After the end of the visit, the root eventually detects
the termination of the process. Furthermore, as our protocol is snap-stabilizing,
by definition, it is also a self-stabilizing protocol which stabilizes in 0 round
(resp. 0 step). Obviously, our protocol is optimal in stabilization time. We also
showed that the proposed protocol works correctly assuming an unfair daemon,
i.e., assuming the weakest scheduling assumption. Finally, note that our protocol
executes a complete traversal of the network in O(N) rounds and O(N2) steps,
respectively. The memory requirement of our solution is O(N×log(N) + log(∆))
bits per processor. In a future work, we would like to design a snap-stabilizing
DFS wave protocol (for arbitrary rooted networks) with a memory requirement
independent of N .

Acknowledgements. We would like to thank the anonymous referees for their
suggestions and contructives comments on the earlier version of the paper. Their
suggestions have greatly enhanced the readability of the paper.

282 A. Cournier et al.

References

1. Tel, G.: Introduction to distributed algorithms. Cambridge University Press (Sec-
ond edition 2001)

2. Dijkstra, E.: Self stabilizing systems in spite of distributed control. Communica-
tions of the Association of the Computing Machinery 17 (1974) 643–644

3. Bui, A., Datta, A., Petit, F., Villain, V.: State-optimal snap-stabilizing PIF in
tree networks. In: Proceedings of the Forth Workshop on Self-Stabilizing Systems,
IEEE Computer Society Press (1999) 78–85

4. Awerbuch, B.: A new distributed depth-first-search algorithm. Information Pro-
cessing Letters 20 (1985) 147–150

5. Cheung, T.: Graph traversal techniques and maximum flow problem in distributed
computation. IEEE Transactions on Software Engineering SE-9(4) (1983) 504–
512

6. Collin, Z., Dolev, S.: Self-stabilizing depth-first search. Information Processing
Letters 49(6) (1994) 297–301

7. Huang, S., Chen, N.: Self-stabilizing depth-first token circulation on networks.
Distributed Computing 7 (1993) 61–66

8. Datta, A., Johnen, C., Petit, F., Villain, V.: Self-stabilizing depth-first token
circulation in arbitrary rooted networks. Distributed Computing 13(4) (2000)
207–218

9. Johnen, C., Beauquier, J.: Space-efficient distributed self-stabilizing depth-first
token circulation. In: Proceedings of the Second Workshop on Self-Stabilizing
Systems. (1995) 4.1–4.15

10. Petit, F., Villain, V.: Color optimal self-stabilizing depth-first token circulation. In:
I-SPAN’97, Third International Symposium on Parallel Architectures, Algorithms
and Networks Proceedings, IEEE Computer Society Press (1997) 317–323

11. Petit, F.: Fast self-stabilizing depth-first token circulation. In: Proceedings of
the Fifth Workshop on Self-Stabilizing Systems, Lisbonne (Portugal), LNCS 2194
(October 2001) 200–215

12. Petit, F., Villain, V.: Time and space optimality of distributed depth-first token
circulation algorithms. In: Proceedings of DIMACS Workshop on Distributed Data
and Structures, Carleton University Press (1999) 91–106

13. Cournier, A., Datta, A., Petit, F., Villain, V.: Enabling snap-stabilization. In:
23th International Conference on Distributed Computing Systems (ICDCS 2003).
(2003) 12–19

14. Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election.
IEEE Transactions on Parallel and Distributed Systems 8 (1997) 424–440

	Introduction
	Preliminaries
	Algorithm
	Correctness and Complexity Analysis
	Basic Definitions and Properties
	Proof Assuming a Weakly Fair Daemon
	Proof Assuming an Unfair Daemon
	Complexity Analysis

	Conclusion
	References

