University of
< Reading

Discussion on the ideal of program-
correctness by Tony Hoare

Article

Published Version

Josephs, M. B., Jones, C., Jackson, M., Turner, A., Holcombe,
M., Sharman, G., Luo, Z. H., Lloyd, M., Haworth, G. M.
ORCID: https://orcid.org/0000-0001-9896-1448, Tully, C. and
Crocker, D. (2007) Discussion on the ideal of program-
correctness by Tony Hoare. Computer Journal, 50 (3). pp. 261-
268. ISSN 0010-4620 doi:
https://doi.org/10.1093/comijnl/bxI079 Available at
https://centaur.reading.ac.uk/15296/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1093/comjnl/bxI079

Publisher: Oxford University Press

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur



http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

University of
< Reading
CentAUR

Central Archive at the University of Reading

Reading’s research outputs online



The Ideal of Program Correctness

Third Computer Journal Lecture

Tony HoARrE

Discussion on The Ideal of Program
Correctness by Tony Hoare

9. GUY HAWORTH

School of Systems Engineering, University of Reading, UK.
Email: g.haworth@reading.ac.uk

Fom

Yo ot

(i) What examples are there of achievements in showing

Program Correctness? Are any of these in a non-
discrete domain?

(I asked the speaker this after the meeting. He men-
tioned work done on the Ariane software system
after the loss of a satellite. Since this software used
floating-point numbers, we classify this as not being
in a discrete domain.)

(ii) What are the leading methods and tools for Program

Verification today?

,50.3 (2007)

. 254 —260, 26|- 268
it 269-273

—— S

(iii) Tt seems that if program P is to be formally verified

from specification S, then S (as well as P) are
expressed in a formal language.

Working back, it seems that any formal verification
must start with a formal statement in a formal
language.

Therefore, all formal verification is done in a “formal
world’ of formal statements and formal verification
methods.

Since the room here is in two. parts, let us designate that
side of the room with Leading Computer Scientists in
as ‘the formal world’.

However, requirements for systems are originally
expressed using informal, natural languages, such as
English.

These languages are flexible and therefore have their
ambiguities and dangers.

Further, at some point, there is a ‘last’ expression of
requirements in natural language and a ‘first’
expression in a formal language.

It would seem impossible to do better than to have the
translation of the one to the other signed off by a
domain expert as no formal verification is possible.
Is this a fair assessment of the situation?

Discussion on The Ideal of Program
Correctness: Responses from Tony
Hoare

TO GUY HAWORTH

(i) The answers to these questions may be found in a
‘roadmap’ document being assembled at http://
apg.csl.sri.com/vsr/private/verified-
software-roadmap-2006/0Overview

(i1) See the website referenced above, or www.qpq.org/

modules

(iif) Your assessment of the situation is very fair.



