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(i) What examples are there of achievements in showing

Program Correctness? Are any of these in a non-
discrete domain?

(I asked the speaker this after the meeting. He men-
tioned work done on the Ariane software system
after the loss of a satellite. Since this software used
floating-point numbers, we classify this as not being
in a discrete domain.)

(ii) What are the leading methods and tools for Program

Verification today?
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(iii) Tt seems that if program P is to be formally verified

from specification S, then S (as well as P) are
expressed in a formal language.

Working back, it seems that any formal verification
must start with a formal statement in a formal
language.

Therefore, all formal verification is done in a “formal
world’ of formal statements and formal verification
methods.

Since the room here is in two. parts, let us designate that
side of the room with Leading Computer Scientists in
as ‘the formal world’.

However, requirements for systems are originally
expressed using informal, natural languages, such as
English.

These languages are flexible and therefore have their
ambiguities and dangers.

Further, at some point, there is a ‘last’ expression of
requirements in natural language and a ‘first’
expression in a formal language.

It would seem impossible to do better than to have the
translation of the one to the other signed off by a
domain expert as no formal verification is possible.
Is this a fair assessment of the situation?
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(i) The answers to these questions may be found in a
‘roadmap’ document being assembled at http://
apg.csl.sri.com/vsr/private/verified-
software-roadmap-2006/0Overview

(i1) See the website referenced above, or www.qpq.org/

modules

(iif) Your assessment of the situation is very fair.



