
An Introduction to Reversible Latches

J. E. RICE*

Department of Mathematics & Computer Science, University of Lethbridge, Lethbridge, AB, Canada

*Corresponding author: j.rice@uleth.ca

Reversible logic has been suggested as one solution to the problem of power consumption in today’s

electronic devices. This paper addresses the issue of designing reversible latches and provides an

overview and analysis of some proposed designs.

Keywords: Boolean logic circuits; reversible logic; sequential circuits

Received 11 April 2007; revised 1 October 2007

1. INTRODUCTION

Many of us have likely experienced the frustration of one’s

cell phone battery dying, or running low on battery power

for your laptop when there is no plug-in available. Electronic

devices have become portable, and are intended to be

taken everywhere. The problem is that there is not always a

source of electricity available, and so the demand for

devices that use less power, so that batteries last longer, is

quickly growing. Some researchers believe that the well-

known Moore’s law is at an end due to the inability for us

to deal with the power-requirements of future chips [1]. For

decades now the electronics industry has been able to

produce devices that are smaller, faster and use less power

year after year. Now, however, we may have hit a brick

wall, and incremental improvements will bring only small

advances.

An entirely new paradigm may provide the solution. The

use of reversible logic in building chips may provide a

solution. As stated by Frank [2],

. . . computers based mainly on reversible logic

operations can reuse a fraction of the signal energy that

theoretically can approach arbitrarily near to 100% as

the quality of the hardware is improved. . .

He and many other researchers believe that we are coming

close to having technologies that will support reversible

computing, and that reversible devices will have far lower

power requirements than do traditional devices. Additionally,

a most prominent application of reversible logic lies in

quantum computers, and in fact reversible logic has been

called “quantum computing’s practical cousin” [3]. As

Thapliyal et al. describe, a quantum computer will be

viewed as a quantum network composed of quantum logic

gates [4]. Each gate will be designed to perform some elemen-

tary operation on quantum systems called qubits. Each qubit

represents an elementary unit of information that can be

thought of as corresponding to the traditional bit values of 0

and 1. These operations must be unitary, and any unitary oper-

ation is reversible. However, traditional designs for arithmetic

operations such as addition and multiplication make heavy use

of irreversible logic gates such as AND and OR. Thus,

quantum arithmetic must be built from reversible logical

components.

The idea of reversible computing was discussed many

years ago by Landauer [5] and Bennett [6], and further

refined by Toffoli [7]. Recent work has focused heavily on

synthesis techniques for reversible logic. Partly because

fan-outs are not permitted in reversible logic circuits, the

synthesis process for reversible logic differs significantly

from that of traditional irreversible logic. Research in this

area is following many directions, some of which are detailed

in [8–15], and implementations have been suggested by

[16–19], to name a few. There is, however, little mention of

sequential logic in a reversible context, and it is this area

that this work addresses.

We first address the issues that some researchers raise

regarding the notion of sequential logic in a reversible

context. For instance, it can be argued that the very model

of quantum computing is so different from that of traditional

computing that the state machine model upon which sequen-

tial circuits have been based will be made obsolete. Another

problem that has been raised is that in quantum computation

models data are stored in qubits, for which there is no

known method of implementing feedback. There are,

however, other possible models that reversible logic can be

based upon, although we leave that particular investigation

for other work. To further refute the claim that sequential

THE COMPUTER JOURNAL, Vol. 51 No. 6, 2008

The Author 2008. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

Advance Access publication on January 17, 2008 doi:10.1093/comjnl/bxm116

reversible networks are not possible, we refer to Frank’s

2005 paper entitled ‘Approaching the Physical Limits of

Computing’. In this work Frank states that

The true requirement that must be imposed on the logical

functionality of a reversible logic gate is simply this:

that for each distinct operation that the gate can be

directed to perform, no two initial logical states . . . that

can possibly arise in the normal course of the machine’s

operation . . . can be transformed to the same final

state [1].

Given this, Frank goes on to describe a number of possible gate

behaviours, including reversible SET and conditional rever-

sible SET gates. The latter of these requires knowledge of the

initial condition of the state, much like a traditional latch.

Thus we argue that it is not the concept of a reversible sequen-

tial network that is in question, but simply the implementation;

that is, the target technology. At this juncture implementing

technologies for reversible logic are still in the realm of the

unknown, and so we choose not to limit ourselves to those

few suggestions that have been proposed in this area.

It may indeed be the case that the future models of comput-

ing evolve to be very different from the traditional state

machine-based models that we rely upon today; however,

we believe that even if this is the case then during an industry

switch from traditional computing models to new models a

transition period will be necessary. Work such as this may

fill in the gaps in our knowledge and provide a smoother

transition during such a period.

The small amount of previous work in the area of synthesis

for sequential reversible logic includes [4, 20–24]. Many of

these papers suggest designs for reversible memory elements,

and in some cases the design investigated is that of a basic

latch, as in this paper. In this work, we review and analyse

the simplest of the proposed designs, the SR latch.

2. BACKGROUND

2.1. Reversible logic

We first present some basic concepts underlying the idea of

reversible logic. According to Shende et al., the following

definition holds.

DEFINITION 2.1. A gate is reversible if the (Boolean)

function it computes is bijective [13].

In other words, a function is reversible if there is a

one-to-one and on-to mapping from the inputs to the outputs

(and vice versa) of the function. At the very least, a reversible

function must have the same number of inputs as it does

outputs. For instance, the traditional NOT gate is reversible,

but the traditional AND gate is not, as shown in Table 1.

We can see how the NOT gate is bijective; for each value

of x there is a unique value for x̄ and every value of x̄

results from applying the function to x. However, the AND

gate is not bijective as there are two values for yz that result

in the same output, and so it is not injective and cannot be

bijective.

There are, however, a variety of possibilities for Boolean

reversible functions, even limiting ourselves to a few inputs

(e.g. three). Table 2 lists the behaviour of each of the most

commonly used reversible gates. The behaviour describes

how each input becomes transformed to produce the outputs

when the gate is applied. The swap and Not gates are the

very simplest, with the Feynman, Toffoli and Fredkin in

essence extending these basic gates to incorporate additional

inputs. This work concentrates primarily on latches designed

from Fredkin and Toffoli gates, and the symbols used for

these gates are shown in Fig. 1. The inputs and outputs in

Fig. 1 are labelled in such a way to provide a reminder of

the behaviour of the gates. Thus in Fig. 1(A), we see that

the topmost signal passes through the gate unchanged, as indi-

cated by the fact that it is labelled as x on both sides of the gate.

The same holds true for the next signal, y, while the third

signal is affected by the gate as described by the equation

given on the right side of the gate. For instance, if the input

values for x, y and z are 110 then the output values will be

x, y, xy � z or 111 after the Toffoli gate is applied.

TABLE 1. The truth tables for the

traditional NOT and AND gates.

x x̄ y z y . z

0 1 0 0 0

1 0 0 1 0

1 0 0

1 1 1

TABLE 2. The behaviour of a selection of

more commonly used reversible logic gates.

Gate Behaviour

Not (x)! (x � 1)

Feynman (x, y)! (x, x � y)

Toffoli (x, y, z)! (x, y, xy � z)

swap (x, y)! (y, x)

Fredkin (x, y, z)! (x, z, y) iff x ¼ 1

FIGURE 1. (A) The symbol for the Toffoli gate. (B) The symbol for

the Fredkin gate.

REVERSIBLE LATCHES 701

THE COMPUTER JOURNAL, Vol. 51 No. 6, 2008

2.2. Latches

The current model of computing is based on the concept of a

state machine. Such a machine exhibits different behaviours

depending on the value of its current state. Thus, some struc-

ture is required to keep track of this state. The basic building

block used in today’s computer is the flip-flop, which them-

selves are built out of latches. There are a variety of types of

latches, but the basic type upon which other designs are

generally modified is the Set-Reset, or SR latch. A SR latch

allows the outputs, labelled Qþ and Qþ, to either be ‘set’, in

which case the next state values are Qþ ¼ 1 and Qþ ¼ 0 or

‘reset’, in which case Qþ ¼ 0 and Qþ ¼ 1. The primary

inputs of such a structure are S (set) and R (reset). A

diagram illustrating a NOR-gate implementation of a SR

latch is given in Fig. 2(A).

A variety of reversible latches have been introduced in pre-

vious work. This paper examines the behaviour of the latches

presented in [22]. These reversible latches have been designed

to emulate a traditional SR latch. The behaviour of the SR

latch is characterized by the truth table given in Table 3.

2.3. Previous work

A number of researchers including Toffoli [7] and Frank [1]

discuss the potential for sequential reversible logic, but do

not present any structures for its realization. Fredkin and

Toffoli [25] appear to be the first to suggest a conservative

logic sequential element in the form of a JK̄ flip-flop,

and Picton [23] suggests a reversible SR latch. He uses the

basic Fredkin gate to build this latch, as shown in Fig. 2(B).

This work also concentrates on the use of a basic memory

element such as the SR latch, as it is the traditional

building block for the clocked flip-flop structures that are

our eventual goal.

3. REVERSIBLE LATCHES

In this work we will introduce, characterize and analyse the

behaviour of two reversible latch designs: the Toffoli-based

latch shown in Fig. 3(A) and the Fredkin-based latch shown

in Fig. 3(B). As noted in the section above, Picton was the

first to introduce a reversible latch based on Fredkin gates.

However, if we examine the illustration of his latch in Fig. 2

we see that, like the traditional latch, the design requires

fan-out from the signals for Qþ and Qþ. The problem with

Picton’s model is that the concept of reversible logic is predi-

cated on the fact that not only can one not allow the destruc-

tion of data (e.g. a signal value), as in the situation with the

traditional AND gate, but one can not allow the arbitrary

creation of data. This means that fan-out is not permitted.

However, the problem can be corrected by making use of

one of the garbage outputs, and in fact the design in Fig. 3

(B) does exactly this.

Thapliyal, Srinivas and Zwolinski [4] have also published

work in the area of sequential reversible logic, and have intro-

duced their own constructions of basic memory elements such

as flip-flops. However, their designs are ultimately different

from those presented in this work, although possibly useful

for comparison purposes.

3.1. The Fredkin-based SR latch

The Fredkin-based SR latch was developed by using Picton’s

original latch as a reference, and addressing the problem

of fan-out in his design. As indicated above, the solution

suggested here is to make use of one of the unused outputs

of the Fredkin gate for one of these purposes. The modified

design is as shown in Fig. 3(A). Table 4 shows that this

design does, in fact, satisfy the requirements for the behaviour

of a SR latch. There are 16 possible starting values of the

FIGURE 2. The SR latch (A) built from traditional logic gates and

(B) built from two Fredkin gates as designed by Picton [23].

TABLE 3. The next state

values for the SR latch.

Inputs

S R

Next state

Qþ Qþ

0 0 Q Q̄

0 1 0 1

1 0 1 0

1 1 not permitted

FIGURE 3. (A) SR latch based on Toffoli gates. (B) SR latach based

on Fredkin gates.

702 J. E. RICE

THE COMPUTER JOURNAL, Vol. 51 No. 6, 2008

inputs to the Fredkin latch, as shown in Table 4. For some

input combinations there may be a delay while the gates

process the initial values, then the new values are propagated

back to the inputs and another processing step must take place.

Additionally, some input combinations will cause the latch to

oscillate between two non-meaningful states. We are most

interested in ascertaining that the latch carries out the beha-

viour detailed in the characteristic table of the SR latch

(Table 3).

Let us first examine what occurs when S and R are both set

to 0. What should happen is that the current state of the latch

(that is, the current values for Q and Q̄) is reflected in the next

state (that is, the values for Qþ and Qþ). It appears that this

does occur for all possible initial values of Q and Q̄ if we

simply look at the values after gate processing for Qþ and

Qþ. Actually, due to the nature of the Fredkin gate, Qþ will

always reflect the unchanged value of Q, and similarly for Q̄

and Qþ. It is more important to look at the new input

values, as this tells us whether the latch will be stable at its

current values, or if the values will change after the next

gate processing step. We see in lines 1 and 2 of Table 4 that

the new input values for Q and Q̄ are the same as the original

values, and this tells us two things: that the latch will be stable,

or remain unchanged after the next processing step, and that

the behaviour is correct in that the current values of Q and

Q̄ are stored unchanged in the latch. However, in lines 0 and

3 we see that the new input values for Q and Q̄ are not the

same as the original values. In fact, if the latch somehow

gets into a non-meaningful state where Q ¼ Q̄ and we set

S ¼ R ¼ 0 the latch will oscillate between QQ̄ ¼ 00 and

QQ̄ ¼ 11. This does not strictly match the description in the

characteristic table, but we assume that this will not matter

since the latch should never be in this type of non-meaningful

state.

Lines 4–7 of the table allow us to verify the correct ‘reset’

behaviour for the latch; that is, when SR ¼ 01 the latch should

have values of QþQþ ¼ 01, and Table 4 shows that this does

happen, eventually, for all possible initial values of Q and Q̄.

Similarly lines 8–11 verify the ‘set’ behaviour of the latch.

Lines 12–15 are not particularly useful in that they show

what will occur when S and R are both set to 1, which is in

fact, a combination that should not be permitted.

In general, however, Table 4 shows that for all ‘permitted’

combinations for S and R and all meaningful initial values of

Q and Q̄ the latch will eventually reach the desired stable state.

3.2. The Toffoli-based SR latch

One approach to determining reversible memory elements is

to take existing memory elements, built from traditional

logic, and replace the traditional components with reversible

components. For instance, the NOR gate may be used in the

design of the SR latch, as is shown in Fig. 2(A). The NOR

gate is clearly not reversible; one problem is that there is

only one output and two inputs. Table 5(A) shows one possible

way to create a reversible equivalent of the NOR gate’s beha-

viour. Note that for our use of this gate we will always set the z

input to 0, and so we have shown the four inputs with z ¼ 0 at

the top of the truth table. Since we now have a reversible NOR

gate we can create a reversible latch out of it, as shown in

Fig. 4(A). However we have, again run into the problem of

fan-out, and so Fig. 4(B) shows a reversible latch based on

the reversible NOR gate without fan-out. The reversible

latch shown in Fig. 4 is perfectly acceptable, however, it

turns out that a small modification to the reversible NOR

gate—inverting the x and y inputs—will turn it into a

Toffoli gate, and so the Toffoli-based latch shown in

Fig. 3(A) is, in fact, the equivalent of this ‘revnor’-based latch.

Having thus shown the development of the Toffoli-based

SR latch we will now turn to verifying its behaviour. As for

TABLE 4. Behaviour of the Toffoli-based SR latch.

Initial

values

After gate

processing

New input

values

SR 11 QQ SþRþ g1 g2 QþQþ SR 11 QQ

0 00 11 00 00 11 00 00 11 11

1 00 11 01 00 01 01 00 11 01

2 00 11 10 01 10 10 00 11 10

3 00 11 11 11 00 11 00 11 00

4 01 11 00 01 11 00 01 11 11

5 01 11 01 11 01 01 01 11 01

6 01 11 10 01 11 10 01 11 11

7 01 11 11 11 01 11 01 11 01

8 10 11 00 10 11 00 10 11 11

9 10 11 01 10 11 01 10 11 11

10 10 11 10 11 10 10 10 11 10

11 10 11 11 11 10 11 10 11 10

12 11 11 00 11 11 00 11 11 11

13 11 11 01 11 11 01 11 11 11

14 11 11 10 11 11 10 11 11 11

15 11 11 11 11 11 11 11 11 11

TABLE 5. Truth tables for (A) the traditional,

irreversible NOR gate, and (B) a reversible equivalent.

xy xþ y xyz xy (xþ y)� z

00 1 000 00 1

01 0 010 01 0

10 0 100 10 0

11 0 110 11 0

001 00 0

011 01 1

101 10 1

111 11 1

REVERSIBLE LATCHES 703

THE COMPUTER JOURNAL, Vol. 51 No. 6, 2008

the Fredkin-based latch, there are 16 possible combinations.

These are shown in Table 6. The reader will note that the

ordering in which the inputs are given does not match that

of Table 4, and that is because negated input values for S

and R are required. The ordering shown for each of Tables 4

and 6 gives results for keeping the latch unchanged in lines

0–3, the reset operation in lines 4–7, and the reset operation

in lines 8–11. We can see that the behaviour for the Toffoli

latch does match that of the Fredkin latch as well as meeting

the requirements for a SR latch. As we saw for the Fredkin

latch, some input combinations result in the desired behaviour

immediately after the gates process the inputs, while others

require an additional gate-processing step before the desired

behaviour is seen. Again, some input combinations cause the

latch to oscillate between two non-meaningful states as we

see in lines 0 and 3.

3.3. A short comparison of the Fredkin and
Toffoli designs

Given that we have three possible reversible designs for a SR

latch, how might one choose between them? Two criteria

come to mind in making a selection: (1) behaviour and (2)

speed.

3.3.1. Behaviour comparison

All three of the suggested latches behave in similar ways:

† the latches store values of QQ̄ ¼ 01 and QQ̄ ¼ 10, but

become unstable if required to store non-meaningful

values such as QQ̄ ¼ 00 or QQ̄ ¼ 11,

† the latches will all reset or set the latch appropriately

for any given starting values for Q and Q̄, and

† the latches will all result in some stable but non-

meaningful state when S ¼ R ¼ 1.

The only difference is that when S ¼ R ¼ 1 the resulting

values for Qþ and Qþ are 11 for the Toffoli latch and 00 for

both the revnor-based latch and the Fredkin latch.

3.3.2. Timing comparison

As indicated above, there is in some cases a delay before the

desired results become evident. For instance, for the input

combination SRQQ̄ ¼ 0100, the immediate result for the

Fredkin latch is that QþQþ is set to 00. However, after the

new output values are propagated back to the inputs and an

additional gate processing step takes place, then the desired

values of QþQþ ¼ 01 are seen.

Interestingly enough, it turns out that both the Toffoli and

the Fredkin-based latches behave in very similar ways; that

is, an extra step of processing is required for the same starting

values for S, R, Q and Q̄. The revnor-based latch also requires

additional processing steps, but for differing starting values.

However, the number of combinations requiring additional

processing steps is the same.

In general, there are two combinations when setting the

latch which will require additional delay, and two combi-

nations when resetting the latch. This would have to be

factored in to any clocked design, such as a flip-flop, that

was to be built from these latches.

3.3.3. Overall comparison

The behaviour comparison suggests very little to choose from

amongst the three latches.

In terms of design, factors which impact area would include

the number of gates required and the number of garbage lines.

The revnor-based latch in Fig. 4(B) requires two gates and two

garbage lines, as does the Toffoli-based design in Fig. 3(A)

and the Fredkin-based design in Fig. 3(B).

As discussed above, each design has appropriate behaviour,

the only difference being the state achieved when the values

for S and R are both set to 1. This information may be of

use to a designer who has need of this type of behaviour

FIGURE 4. (A) A reversible latch based on the reversible NOR gate,

and (B) the same latch with fan-out removed.

TABLE 6. Behaviour of the Toffoli-based SR latch.

Initial values After gate processing New input values

SR 11 QQ S̄þR̄þ g1 g2 QþQþ SR 11 QQ̄

0 11 11 00 11 11 00 00 11 11

1 11 11 01 11 01 01 00 11 01

2 11 11 10 11 10 10 00 11 10

3 11 11 11 11 00 11 00 11 00

4 10 11 00 10 11 00 10 11 11

5 10 11 01 10 01 01 10 11 01

6 10 11 10 10 11 10 10 11 11

7 10 11 11 10 01 11 10 11 01

8 01 11 00 01 11 00 01 11 11

9 01 11 01 01 11 01 01 11 11

10 01 11 10 01 10 10 01 11 10

11 01 11 11 01 10 11 01 11 10

12 00 11 00 00 11 00 00 11 11

13 00 11 01 00 11 01 00 11 11

14 00 11 10 00 11 10 00 11 11

15 00 11 11 00 11 11 00 11 11

704 J. E. RICE

THE COMPUTER JOURNAL, Vol. 51 No. 6, 2008

but, in general, does not give us any concrete choice between

the latch designs.

The timing comparisons suggest that there may be reasons

to choose one latch over another. Each latch requires an

additional step processing certain inputs, but the inputs requir-

ing extra processing time differ amongst the latches. Again,

in general usage where all possible input combinations are

equally likely, this is not particularly useful, but for specific

designs a designer should, and could, with this information,

choose the latch that will require the least number of proces-

sing steps for the input combinations most likely to be used.

In general, we cannot state that one of our designs is always

a better choice than the others, but we can provide information

that for particular applications may suggest the choice of one

design over the other two.

3.4. Less successful latch designs

It has been suggested that to avoid fan-out, instead of modify-

ing the Picton latch in Fig. 2 as we have done in this work,

use of additional gates to provide the fan-out could be used.

Fig. 5 shows this design. This is certainly an option,

however, this would introduce an additional set of gates and

thus additional processing delay.

4. OTHER CONSIDERATIONS WITH

REVERSIBLE LATCHES

The concept of reversible logic implies, in its very name, that

the function described by the logic gates can be applied in

reverse. This is clearly true for the NOR gate and the other

reversible gates described in Table 2; whether the signals on

the left side or the right side of the gates are considered

‘inputs’, the functionality of the gate is well defined and can

be operated or ‘driven’ in either direction. However, in

traditional logic this is not the case; gates and circuits

operate in one direction, with possible feedback in the case

of sequential logic. Thus there are two questions to consider

with the reversible latch designs presented in this work: are

they truly reversible, and if so is it possible to characterize

their behaviour when driven in reverse?

To answer the first question we refer to Toffoli’s report [7],

in which he states

By definition, a finite automaton is reversible if its

transition function is invertible. Thus in order to realize

a finite automaton by means of a reversible sequential

network, it will be sufficient to take its transition

function, construct a reversible realization of it, and use

this as the combinational part of the desired sequential

network.

In examining the combinational part of our sequential design,

we should point out that the most commonly used reversible

gates exhibit the following characteristic: if X is a particular

combination of input values, and f is the function carried out

by the gate, then

f ð f ðIÞÞ ¼ I:

However, this characteristic is not a requirement for a

reversible gate, and indeed our SR latch designs do not have

this behaviour. However, for all input values on either the

left- or right-hand of the latch designs (i.e. being driven for-

wards or in reverse) both designs show the characteristics

required of reversible gates: they are surjective (onto) and

injective (1 to 1).

So, since both of our designs behave as SR latches when

driven from left to right, and both satisfy certain character-

istics that make the structures reversible, can we then use

either latch as a (SR) latch when driving them from right to

left (in reverse)? If this is the case then this suggests an oppor-

tunity that no other work has identified: the opportunity to

design circuits whose behaviour will be known whether

driven from left to right or right to left. In effect, we may be

able to design one circuit that can carry out two actions: one

when driven in one direction and one when driven in reverse.

4.1. Fredkin latch

Since we have two different proposals for latch structures we

will examine each design separately. In the Fredkin latch,

when operating the latch in reverse, or ‘driving’ it from right

to left we can control inputs Qþ, Sþ, Qþ and Rþ while g1

and g2 are connected to Q and Q̄. Thus the goal is to have

some way to set, reset and hold the latch as described in

Table 3 using only these inputs to control the latch.

There are a number of possibilities to consider, but using the

forward behaviour of the latch as a model it seems reasonable

to consider holding two of the inputs at fixed values and

operate with the other two controlling the latch. For instance,

we could hold Qþ and Qþ at fixed values and operate with Sþ

and Rþ controlling the latch, or hold Sþ and Rþ at fixed values

and use Qþ and Qþ to control the latch. If we fix QþQþ each

at 1 then the resulting values are as shown in Table 7.
FIGURE 5. An alternate solution to the fan-out problem in Picton’s

latch.

REVERSIBLE LATCHES 705

THE COMPUTER JOURNAL, Vol. 51 No. 6, 2008

To distinguish between the two left-hand inputs labelled with

inputs values of 1 in Fig. 3 we refer to the top input as 1a and

the bottom input as 1b. All other inputs are referred to by the

labels used in Fig. 3.

As in previous tables, Table 7 gives the initial input values

and the values that will result immediately after gate proces-

sing, as well as the new input values that will result after Q

and Q̄ have had a chance to propagate back to the inputs.

Unfortunately our intermediate output values are not all that

useful, as we can see that whatever initial values g1 and g2

may have had will always be overwritten by the values we

set on Qþ and Qþ. Thus lines 3, 7, 11 and 15 show the beha-

viours that will actually take place when the values stabilize.

What we see is that fixing Qþ and Qþ at 11 forces a swap

of g1 with Sþ and of g2 with Rþ, resulting in 1a reflecting

the value(s) put on Sþ and 1b reflecting the value(s) put on

Rþ. This behaviour does not match that of a SR latch;

however, there are other latches to consider. The D latch, for

instance, is characterized by the behaviour shown in

Table 8. The behaviour shown above is very similar to that

of the D latch, with the notable difference being that we

control our latch with two inputs while the traditional D

latch only has one. Traditionally, however, the D latch is

constructed from a SR latch for which there is only one

input; S is connected to the unmodified input signal while R

is connected to that same signal inverted as shown in Fig. 6.

Thus the Fredkin-based SR latch could in fact be used as a

D latch when functioning in reverse. In fact, there are other

configurations in which the proposed SR latch structure

could be useful when used in reverse. For instance, if we set

QþQþ ¼ 00 then we get S ¼ Sþ and R ¼ Rþ, or if we set

Sþ ¼ Rþ ¼ 11 then we get behaviour as shown in Table 9.

Obviously Table 9 does not show all possible starting combi-

nations for Qþ, Qþ, g1 and g2, but since the values for Q and Q̄

will always get propagated around to g1 and g2 respectively,

the initial values for g1 and g2 get overwritten and thus do

not affect the final values.

We can take this analysis in another direction and instead

look at the equations for the outputs of each of the gates. If

the inputs for a Fredkin gate are labelled x, y and z, and the

outputs are labelled x0, y0 and z0, then the outputs can be

characterized (using traditional, irreversible AND and OR

gates) as follows:

x0 ¼ x

y0 ¼ �xyþ xz

z0 ¼ xyþ �xz

Thus in our Fredkin latch we have

�Q ¼ Qþ

1a ¼ ðQþÞg1 þ QþSþ

S ¼ Qþg1 þ ðQþÞS
þ

TABLE 7. An example of driving the Fredkin-based latch

backwards with Qþ and Qþ both fixed at 1.

Initial

values

After gate

processing

New input

values

SþRþ QþQþ g1 g2 1a1bSR SþRþ QþQþ g1 g2

0 00 11 00 0000 00 11 11

1 00 11 01 0001 00 11 11

2 00 11 10 0010 00 11 11

3 00 11 11 0011 00 11 11

4 01 11 00 0100 01 11 11

5 01 11 01 0101 01 11 11

6 01 11 10 0110 01 11 11

7 01 11 11 0111 01 11 11

8 10 11 00 1000 10 11 11

9 10 11 01 1001 10 11 11

10 10 11 10 1001 10 11 11

11 10 11 11 1011 10 11 11

12 11 11 00 1100 11 11 11

13 11 11 01 1101 11 11 11

14 11 11 10 1110 11 11 11

15 11 11 11 1111 11 11 11

TABLE 8. The

characteristic table

for a D latch.

D QþQþ

0 01

1 10

FIGURE 6. Constructing a D latch from a SR latch.

TABLE 9. The reverse behaviour

of the Fredkin SR latch when Sþ

and Rþ are fixed at 1.

QþQþ g1 g2 1a1bSR

00 – – 0011

01 – – 1101

10 – – 1110

11 – – 1111

706 J. E. RICE

THE COMPUTER JOURNAL, Vol. 51 No. 6, 2008

and

Q ¼ Qþ

1b ¼ ðQþÞg2 þ QþRþ

R ¼ Qþg2 þ ðQþÞR
þ:

Since we know that g1 ¼ Qþ and g2 ¼ Qþ we can use this to

derive Table 10, which completely characterizes the behaviour

of the Fredkin-based SR latch when operated in reverse.

4.2. Toffoli latch

We can carry out a similar investigation with the Toffoli

latch. Table 11 shows the behaviour that occurs if we set

both Qþ and Qþ to 1 and drive the latch in reverse. As

shown in Table 11 one option for the reverse behaviour of

the Toffoli latch, again we have the situation where Qþ Qþ

overwrite any initial values on g1 and g2, and so lines 3, 7,

11 and 15 show the behaviour when the latch stabilizes to

its final values.

As for the Fredkin latch, we do not have the exact behaviour

of a SR latch. The choice of fixing Qþ and Qþ to 1 in the

Fredkin latch was made in order to force a swap to occur;

however, the Toffoli latch has a very different behaviour,

and so a more general characterization is probably more

useful. Assuming that the inputs of the Toffoli gate are

labelled x, y and z and the outputs are labelled x0, y0 and z0

then we have

x0 ¼ x

y0 ¼ y

z0 ¼ xy� z:

For the Toffoli-based latch, then we have

Q ¼ Qþ

S ¼ Sþ

1a ¼ QþSþ � g1

and

Q ¼ Qþ

R ¼ Rþ

1b ¼ QþRþ � g2:

Given that we know g1 ¼ Qþ and g2 ¼ Qþ we can thus

derive the characterization given in Table 12.

5. COMPARISON TO OTHER WORK

We briefly comment on how our designs compare to those

presented in the other literature on this topic.

As mentioned in Section 3, Picton suggested the use of two

Fredkin gates to build a SR latch, and in fact, we suggest a

design in Fig. 5 that introduces two extra gates to remove

the fan-out problem from Picton’s latch. Many comparisons

are often based on numbers of gates and/or on garbage lines

TABLE 11. An example of driving the Toffoli-based latch

backwards with Qþ and Qþ both fixed at 1.

Initial values

After gate

processing New input values

SþRþ QþQþ g1 g2 1a1bSR SþRþ QþQþ g1 g2

0 00 11 00 0000 00 11 11

1 00 11 01 0100 00 11 11

2 00 11 10 1000 00 11 11

3 00 11 11 1100 00 11 11

4 01 11 00 0101 01 11 11

5 01 11 01 0001 01 11 11

6 01 11 10 1101 01 11 11

7 01 11 11 1001 01 11 11

8 10 11 00 1010 10 11 11

9 10 11 01 1110 10 11 11

10 10 11 10 0010 10 11 11

11 10 11 11 0110 10 11 11

12 11 11 00 1111 11 11 11

13 11 11 01 1011 11 11 11

14 11 11 10 0111 11 11 11

15 11 11 11 0011 11 11 11

TABLE 10. A complete characterization

of the reverse behaviour of the Fredkin-

based SR latch.

QþQþ 1a 1b S R

00 0 0 Sþ Rþ

01 Sþ 1 0 0

10 1 Rþ Sþ Rþ

11 Sþ Rþ 1 1

TABLE 12. The complete characterization

of the reverse behaviour of the Toffoli-based

SR latch.

QþQþ 1a 1b

00 0 0

01 1 Rþ

10 Sþ 1

11 Sþ Rþ

REVERSIBLE LATCHES 707

THE COMPUTER JOURNAL, Vol. 51 No. 6, 2008

required. Clearly in this case the design in Fig. 5 compares

poorly to Picton’s latch, requiring an extra two gates and an

extra two garbage lines. Our other designs, in Figs. 3 and

4(B), however, require the same number of gates and the

same number of lines as do Picton’s latch, and additionally

do not have the fan-out problem inherent to Picton’s design.

Chuang and Wang also suggest latch designs in [20]: a D

latch, JK latch and a T latch. They go on to then use these

designs in the development of more sophisticated sequential

building blocks. The pros and cons of these various types of

latches can be considered separately from the question of

reversibility; however, in general, we note that Chuang and

Wang’s designs require 4 gates for the more complex latch

(JK latch) and 2 gates for the simpler latches (T and D

latches). Their designs in general need only one garbage line

for all latches, but do not incorporate both Q and Q̄ as do

our designs (which may be considered a pro or a con, depend-

ing on the needs of the designer). Given that both T and D

latches generally have only a single controlling input, these

can be easily simulated with our SR latch designs. We have

not yet investigated designs for JK latches, and so cannot

compare our work to this design.

The other work which suggests designs for sequential build-

ing blocks is [4]. These authors present designs for a variety

of flip-flops, but do not address the simpler latch structure,

and thus comparisons do not give useful information.

As with many areas of research it is difficult to state that

any one design is the best for all possible purposes. Rather

in this work we have attempted to choose a simple, if not

the simplest, design for a sequential building block and

analyse its behaviour in various reversible implementations.

This has given us two-fold results; confidence in the designs,

as well as further possibilities for uses of these designs that

were previously unconsidered, as described in Section 4.

6. CONCLUSION AND FUTURE WORK

This paper introduces the details behind two proposed revers-

ible SR latch designs: one design based on the Fredkin gate

and one design based on the Toffoli gate. Both of these

designs are verified to behave correctly as compared to the

traditional, irreversible SR latch and a short comparison is

made. We find that the designs are very similar in behaviour,

and little can be found to choose between them.

A major part of this paper introduces a novel idea; that of

designing circuits that can be operated or driven, both

forwards and in reverse, AND that can compute different

functions in each of these directions. In relation to this idea

the reverse behaviour of the Toffoli and Fredkin SR latch

designs are characterized. We find that one of our structures

has similar behaviour to that of a D latch when driven in

reverse. This opens up the possibility of designing a circuit

that can carry out two separate actions: we can design for

one action to be performed when the circuit is driven

forward, and a different action to be performed when the

circuit is driven in reverse.

This suggests the possibility of an entirely new direction for

this work: how can we design reversible gates that can lever-

age this possibility for dual functionality, and then how do we

go about designing circuits that have the desired functionality

using the same structures? One possibility is to design building

blocks with known forwards and reverse behaviours, and to

build reversible circuits entirely from such building blocks.

However, this is an area that will require a great deal more

research. Future work will consider these ideas as well as

continuing to characterize the behaviour of other proposed

reversible latches.

ACKNOWLEDGEMENT

The author would like to acknowledge the support of the Natural

Sciences and Engineering Research Council of Canada

(NSERC). She would also like to thank Dr. D. M. Miller

for his discussions on this topic.

REFERENCES

[1] Frank, M.P. (2005) Approaching the Physical Limits of

Computing. Proc. Int. Symp. Multiple-Valued Logic (ISMVL),

Calgary, Alberta, May 18–21, pp. 168–187. IEEE Computer

Society, Los Alamitos, CA.

[2] Frank, M.P. (2005) Introduction to Reversible Computing:

Motivation, Progress, and Challenges. Proc. 2nd Conf.

Computing Frontiers, Ischia, Italy, May 4–6, pp. 385–390.

ACM Inc., New York, NY.

[3] Frank, M.P. Reversible Computing: Quantum Computing’s

Practical Cousin. Lecture Notes and Abstract for Talk given

at Simons Conference Lecture, Stony Brook, NY, May 2003.

www.cise.ufl.edu/research/revcomp/Simons.

[4] Thapliyal, H., Srinivas, M.B. and Zwolinski, M. (2005) A

Beginning in the Reversible Logic Synthesis of Sequential

Circuits. Proc. Military and Aerospace Programmable Logic

Devices (MAPLD) Int. Conf., Washington, DC, September

7–9, submission no. 1012 (online proceedings). NASA Office

of Logic Design, Washington DC.

[5] Landauer, R. (1961) Irreversibility and heat generation in the

computing process. IBM J. Res. Dev., 5, 183–191.

[6] Bennett, C.H. (1973) Logical reversibility of computation. IBM

J. Res. Dev., 6, 525–532.

[7] Toffoli, T. (1980) Reversible Computing. Technical Report

MIT/LCS/TM No. 151, MIT.

[8] Perkowski, M. et al. (2001) A General Decomposition

for Reversible Logic. Proc. Int. Workshop on Methods

and Representations (RM), Starkville, Mississippi, August

10–11, pp. 119–138. RM Workshop, Starkville, MS.

708 J. E. RICE

THE COMPUTER JOURNAL, Vol. 51 No. 6, 2008

[9] Agrawal, A. and Jha, N.K. (2004) Synthesis of Reversible

Logic. Proc. Design, Automation and Test in Europe Conf.

and Exhibition (DATE), Paris, France, February 16–20,

pp. 1384–1385. IEEE Computer Society, Los Alamitos, CA.

[10] Miller, D.M., Dueck, G.W. and Maslov, D. (2004) A Synthesis

Method for MVL Reversible Logic. Proc. 34th Int. Sympos.

Multiple-Valued Logic (ISMVL), Toronto, Canada, May

19–22, pp. 74–80. IEEE Computer Society, Los Alamitos, CA.

[11] Miller, D.M., Maslov, D. and Dueck, G.W. (2003) A

Transformation Based Algorithm for Reversible Logic

Synthesis. Proc. 40th Design Automation Conf. (DAC),

Anaheim, CA, June 2–6, pp. 318–323. ACM Inc.,

New York, NY.

[12] Maslov, D. and Dueck, G.W. (2004) Reversible cascades with

minimal garbage. IEEE Trans. Comput. Aided Des., 23,

1497–1509.

[13] Shende, V.V., Prasad, A.K., Markov, I.L. and Hayes, J.P. (2002)

Reversible Logic Circuit Synthesis. IEEE/ACM Int. Conf.

Computer Aided Design (ICCAD), San Jose, CA, November

10–14, pp. 353–360. IEEE, Piscataway, NJ.

[14] Kerntopf, P. (2004) A New Heuristic Algorithm for Reversible

Logic Synthesis. Proc. Design Automation Conf. (DAC), San

Diego, CA, June 7–11, pp. 834–837. ACM Inc., New York, NY.

[15] Mishchenko, A. and Perkowski, M. (2002) Logic Synthesis of

Reversible Wave Cascades. Proc. Int. Workshop on Logic

Synthesis, New Orleans, USA, June 4–7, pp. 197–202. IWLS

Workshop, New Orleans, LA.

[16] Ye, Y. and Roy, K. (1996) Energy recovery circuits using

reversible and partially reversible logic. IEEE Trans. Circuits

Syst., 43, 769–778.

[17] Forsberg, E. (2005) The Electron Waveguide Y-Branch Switch:

a Review and Arguments for its Use as a Base for Reversible

Logic. Proc. 2nd Conf. Computing Frontiers, Ischia, Italy,

May 4–6, pp. 404–406. ACM Inc., New York, NY.

[18] Henzler, S., Nirschl, T., Eireiner, M., Amirante, E.

and Schmitt-Landsiedel, D. (2005) Making Adiabatic Circuits

Attractive for Todays VLSI Industry by Multimode

Operation-adiabatic mode circuits. Proc. 2nd Conf.

Computing Frontiers, Ischia, Italy, May 4–6, pp. 414–420.

ACM Inc., New York, NY.

[19] Kim, S. and Chae, S.-I. (2005) Implementation of a Simple 8-bit

Microprocessor with Reversible Energy Recovery Logic. Proc.

2nd Conf. Computing Frontiers, Ischia, Italy, May 4–6,

pp. 421– 426. ACM Inc., New York, NY.

[20] Chuang, M.-L. and Wang, C.-Y. (2006) Reversible Logic

Designs for Sequential Elements. Proc. 13th Workshop on

Synthesis And System Integration of Mixed Information

Technologies (SASIMI), Nagoya, Japan, April 3–4, pp. 127–

133. SASIMI Workshop, Nagoya, Japan.

[21] Rice, J.E. (2006) An Analysis of Several Proposals for

Reversible Latches. Proc. 2nd Int. Joint Conf. Computer,

Information, and Systems Sciences and Engineering (CISSE),

e-conference, December 4–14, CDROM 1 paper no. 548.

Springer, Heidelberg, Germany.

[22] Rice, J.E. (2006) A New Look at Reversible Memory Elements.

Proc. Int. Symp. Circuits and Systems (ISCAS), Kos, Greece,

May 21–24, pp. 1243–1256. IEEE, Piscataway, NJ.

[23] Picton, P. (1996) Multi-valued sequential logic design using

Fredkin gates. Multiple-Valued Logic, 1, 241–251.

[24] Patra, P. (1995) Asymptotically Zero Power in Reversible

Sequential Machines. Technical Report CS-TR-94-14,

Department of Computing Sciences, University of Texas at Austin.

[25] Fredkin, E. and Toffoli, T. (1982) Conservative logic.

Int. J. Theor. Phys., 21, 219–253.

REVERSIBLE LATCHES 709

THE COMPUTER JOURNAL, Vol. 51 No. 6, 2008

