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Abstract

We outline some of Chris Wallace’s contributions to pseudo-random
number generation. In particular, we consider his recent idea for gen-
erating normally distributed variates without relying on a source of
uniform random numbers, and compare it with more conventional
methods for generating normal random numbers. Implementations
of Wallace’s idea can be very fast (approximately as fast as good uni-
form generators). We discuss the statistical quality of the output, and
mention how certain pitfalls can be avoided.

1 Introduction

In many simulation, graphics, simulated-annealing, cryptographic and Monte
Carlo/Las Vegas programs, a substantial fraction of the time is used in gen-
erating pseudo-random numbers from the uniform, normal or other distribu-
tions, so methods of generating such numbers have received much attention.
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This paper is dedicated to the memory of Chris Wallace, and our in-
tention is to outline Wallace’s substantial contribution to several aspects of
random number generation, both in hardware and software.

In §2 we consider hardware random number generators (RNGs), and in
§3 we mention (software) uniform RNGs. In §4 we consider “conventional”
normal random number generators, and in §5 we consider Wallace’s new
“maximum entropy” idea for normal RNGs that do not depend in an essen-
tial way on a source of uniform RNGs. This idea is aesthetically appealing
(why bother to generate uniform random numbers just in order to transform
them by some time-consuming process into normal random numbers?) and
has the potential to give extremely fast normal RNGs.

2 Hardware RNGs

In some cryptographic applications it is important for the numbers to be gen-
uinely random, in the sense of being unpredictable, and not merely “pseudo-
random”, in the sense of passing various statistical tests. For example, this
is the case when generating “one-time pads”, or when constructing ran-
dom primes whose products are to be made public for use with the Rivest,
Shamir and Adleman “RSA” public-key cryptosystem [34], or when con-
structing exponents to be used in the Diffie-Hellman key exchange protocol
or the El Gamal public-key cryptosystem [27].

Wallace in [37] described a simple hardware device that could provide
a stream of unpredictable 32-bit numbers at a rate of 64 Mbit/sec, using a
4 MHz clock. The device was connected to the memory-mapped I/O bus
of a multiprocessor computer, and appeared to a software process as a sin-
gle 32-bit word of memory whose content was different (and unpredictable)
every time it was read. Technology has advanced since 1990 so an implemen-
tation using similar ideas could now use a much faster clock. This could, for
example, be used in the implementation of Rabin’s “everlasting encryption”
scheme [4, 5, 26, 32], which depends on the availability of a high-volume
stream of random and unpredictable bits.

3 Uniform RNGs

In [36], Wallace considered several ways of obtaining uniform pseudo-random
number generators with period close to 264 on machines with 32-bit words.
There are many ways to accomplish this [7, 13, 21, 23, 25], but most of them
require a large amount of state information. This can be a problem if several
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independent streams of random numbers are required simultaneously. With
Wallace’s proposal, only two 32-bit words of state information are required.

4 Conventional Normal RNGs

Most popular algorithms for generating normally distributed pseudo-random
numbers are based on some variant of the rejection method, pioneered by von
Neumann [29]. More recent references are [1, 6, 12, 14, 20, 22]. Wallace [35]
contributed some elegant and efficient generators of this class.

Rejection methods for normally distributed pseudo-random numbers re-
quire on average some number U > 1 of uniformly distributed numbers per
normally distributed number. Thus, they can not be faster than the uniform
random number generator, and are typically several times slower. Rejection
methods for the normal distribution usually (though not always [6, 14])
involve the computation of functions such as log, sin, cos, which is slow
compared to the time required to generate a uniform pseudo-random num-
ber. Leva [22, Table 1] compared several of the better methods and found
that they are at least five times slower than a fast uniform generator on the
same machine.

5 Maximum Entropy Normal RNGs

Wallace [38] revolutionised normal random number generation by his discov-
ery of a class of methods that do not depend in an essential way on uniform
generators. Similar ideas can be used to generate pseudo-random numbers
with some other distributions. In Wallace’s paper [38] the uniform, Gaussian
(normal) and exponential distributions are considered as maximum-entropy
distributions subject to the following constraints:

Uniform: 0 ≤ x ≤ 1

Gaussian: E(x2) = 1

Exponential: E(x) = 1, x ≥ 0.

The idea of a maximum-entropy distribution is most easily seen in the
discrete case of N possibilities with probabilities p1, . . . , pN . Subject to the
constraints pj ≥ 0 and

∑

pj = 1, the uniform distribution p1 = · · · = pN =
1/N maximises the entropy S = −

∑

pj log pj. This can be proved using La-
grange multipliers. Similarly, the continuous distribution on [0, 1] that max-
imises −

∫

1

0
f(x) log f(x)dx is the uniform distribution, and the continuous
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distribution on (−∞,+∞) that maximises −
∫

+∞

−∞
f(x) log f(x)dx subject

to
∫

+∞

−∞
x2f(x)dx = 1 is the Gaussian distribution. These statements can

be proved using the calculus of variations. For the reader unfamiliar with
Bayesian and maximum entropy methods, a good introduction is Jaynes [17].
An annotated bibliography is available at [18].

In the following we restrict our attention to the Gaussian case, since that
is where Wallace’s idea gives the most significant speedup over conventional
methods. For example, Wallace’s own implementation FastNorm is reported
in [38, §5] to be only 13 percent slower than a generalised Fibonacci uniform
random number generator on a RISC workstation.

Wallace proposed his method in a Technical Report in 1994, and a revi-
sion of this Report appeared two years later [38] along with an implemen-
tation fastnorm. Some changes in the implementation were made in 1998,
resulting in an improved implementation fastnorm2 [39]. There is a more
recent and probably better implementation fastnorm3 [41], but it was not
available when our tests were performed, so we restrict our comments to
fastnorm2.

Wallace [38] describes two implementations – one using integer arith-
metic, and the other using floating-point arithmetic. On the workstation
that he tested it on, the integer version was faster, but this might not be
true on more recent machines with faster floating-point hardware.

Traditional normal RNGs are inefficient on vector processors. In 1993 the
author compared various normal RNGs on vector processors and concluded
that careful implementations of old methods such as the 1958 Polar method
of Box, Muller and Marsaglia (see Knuth [21, Algorithm P]) and the 1959
Box-Muller method [21, 28] were faster than more recent methods [22] on
vector processors produced by companies such as Cray, Fujitsu, and NEC:
see [8, 30]. When Wallace’s maximum-entropy idea appeared, it was clear
that the landscape had changed, although the published implementation
fastnorm was not intended to be efficient on vector processors. Thus, the
author implemented an efficient vectorised version rann4 [9, 10] of Wallace’s
maximum-entropy idea. rann4 and a more recent implementation rannw [11]
are more than three times faster than the methods previously thought to be
the most efficient on vector processors.

5.1 Wallace’s fastnorm algorithm

Many uniform random number generators generate one or more new uniform
variables from a set of previously-generated uniform variables. Wallace’s
idea is to apply the same principle to normal random number generators.

4



Given a set of normally distributed random variables, we can generate a new
set of normally distributed random variables by applying a linear transfor-
mation that respects the “maximum entropy” constraint. This avoids the
time-consuming conversion of uniform to normal variables that is required
in conventional normal random number generators (see §4).

The key idea is: if x is an n-vector of independent, identically distributed
N(0, 1) random variables x1, . . . , xn, and Q is any n×n orthogonal matrix,
then y = Qx is another n-vector of independent, identically distributed
N(0, 1) random variables. (Of course, the components yi of y are dependent
on the components xj of x.) To prove the claim, observe that the component
xj has probability density (2/π)−1/2 exp(−x2j/2), so the vector x has proba-

bility density (2/π)−n/2 exp(−r2/2), where r = ‖x‖2. This density depends
only on r, the distance of x from the origin. However, since Q is orthogonal,
‖y‖2 = ‖Qx‖2 = ‖x‖2 = r.

Suppose that the n-vector x is a pool of n pseudo-random numbers that
(we hope) are independent and normally distributed. We can generate a
new pool y = Qx by applying an orthogonal transformation Q. However,
several problems arise.

5.2 Undesirable correlations

yi is correlated with xj. In fact, yi = qi,jxj + · · · , so E(yixj) = E(qi,jx
2
j) =

qi,j. This problem can be overcome by applying several different orthogonal
tranformations Q1, Q2, . . . with a random choice of signs, so when averaged
over all transformations E(qi,j) ≈ 0.

5.3 Cost of transformations

It is too expensive to apply a general n× n orthogonal transformation Q to
produce n new random numbers. This would involve of order n multiplica-
tions (and a similar number of additions) per random number generated. To
overcome this problem, we can take Q to have a special form, e.g. in rann4
we use a product of plane rotations of the form

R(θ) =

[

cos θ sin θ
− sin θ cos θ

]

,

where θ varies, but is held constant within each inner loop. We do not need
to compute trigonometric functions, since sin θ = 2t/(1 + t2) and cos θ =
(1 − t2)/(1 + t2), where t = tan(θ/2) varies; the angle θ is defined only for
mathematical convenience and is never computed.
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In his implementation fastnorm, Wallace preferred to use 4×4 orthogonal
matrices A1, A2, A3, A4, where

A1 =
1

2









1 1 −1 1
1 −1 1 1
1 −1 −1 −1

−1 −1 −1 1









,

and A2, A3, A4 are similar. The advantage (on a machine with slow floating-
point multiplication) is that multiplication of a 4-vector by A1 requires only
seven additions and one division by two (for details see [38, §2.1]).

The inner loop of the implementation is similar to the inner loop for the
popular “generalised Fibonacci” uniform random number generators [3, 7,
15, 16, 21, 23, 31, 33]. Wallace’s implementation of fastnorm on a RISC
workstation is about as fast as a good uniform random number generator
on the same workstation.

5.4 Mixing

As Wallace observes [38, §2.2], it is desirable that any value in the pool
should eventually contribute to every value in the pools formed after sev-
eral passes. In other words, the transformation from one pool to the next
should be strongly “mixing”. In our experience this is a tricky aspect of the
implementation of generators based on Wallace’s idea – several attempts
which appeared plausible did not produce acceptable random numbers (af-
ter transformation to uniform variates they failed various statistical tests in
Marsaglia’s Diehard package [24]).

In fastnorm, Wallace ensures mixing by regarding the pool of 1024 val-
ues as a 256 × 4 matrix which is (implicitly) transposed at each pass; an
additional ad hoc permutation is applied by stepping some row indices with
an odd stride (mod 256). For details see [38, §2.2].

In rann4 we effectively apply permutations of the form π1(j) = αj +
γ mod n, π2(j) = βj + δ mod n, where gcd(α, n) = gcd(β, n) = 1. Since n
is a power of 2, any odd α and β can be chosen. For details see [9, §3].

Although the mixing transformations used in fastnorm and rann4 appear
satisfactory, they seem ad hoc and there is little helpful theory here – all we
can do is apply empirical tests.

5.5 Chi-squared correction

Because Q is orthogonal, ‖Qx‖2 = ‖x‖2, so the sum of squares of numbers
in a pool remains constant. This is unsatisfactory, because if x1, . . . , xn were
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independent samples from the normal N(0, 1) distribution, we would expect
∑

1≤i≤n x
2
i to have a chi-squared distribution χ2

ν , where ν = n is the pool
size.

To overcome this defect, Wallace suggests that one pseudo-random num-
ber from each pool should not be returned to the user, but should be used to
approximate a random sample S from the χ2

ν distribution. A scaling factor
can be introduced to ensure that the sum of squares of the ν values in the
pool (of which ν − 1 are returned to the user) is S. If the routine is written
to provide random numbers with mean µ and variance σ2, then scaling by
S1/2 can be done at the same time as scaling by σ, so it is essentially free.

There are several approximations to the χ2
ν distribution for large ν. For

example, the one used in rann4 is

2χ2
ν ≃

(

x+
√
2ν − 1

)2
,

where x is N(0, 1). It would not be much more expensive to use the (more
accurate) Wilson-Hilferty approximation [43]

χ2
ν ≃ ν

(

(

2

9ν

)1/2

x +

(

1− 2

9ν

)

)3

.

Even better is

χ2
ν ≃ A(x2 − 1) + (2(ν −A2))1/2 x + ν ,

where

A = 2
√
ν sin

(

1

3
arcsin

1√
ν

)

=
2

3
+O

(

1

ν

)

satisfies the cubic equation A3−3νA+2ν = 0. We can assume that ν is large
(ν = 1024 in fastnorm; ν depends on the size of the buffer provided by the
user in rann4/rannw), so all of these approximations are sufficiently accu-
rate. A slow but exact χ2

ν algorithm, such as that of Ahrens and Dieter [2],
is not required.

In the above approximations to χ2
ν , the variable x was supposed to have

a normal distribution. If only n − 1 values are returned to the user from a
pool of n values, the remaining (scaled) value x can be used to approximate
χ2
ν for the next pool. This is a point where the implementations of fastnorm

and fastnorm2 differ. In fastnorm, x is taken from the current pool, but in
fastnorm2 it is taken from the previous pool. The choice used in fastnorm
is undesirable because a large value of x, and hence a large scaling factor
from the χ2

ν approximation, is correlated with a small sum of squares of
the remaining values in the pool (since the sum of squares including x is
invariant).
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5.6 More subtle correlations

In §5.2 we saw how, by using several orthogonal transformations, we could
ensure that E(yixj) ≈ 0. However, more subtle correlations persist. Con-
sider the simplified model

[

y1
y2

]

= R(θ)

[

x1
x2

]

,

where R(θ) is a plane rotation as above, and θ is distributed uniformly in
[0, 2π). We write c = cos θ, s = sin θ. Thus y1 = cx1+sx2, y2 = −sx1+ cx2.
Suppose that x1 and x2 are independent and normally distributed, with zero
mean and unit variance. Then

E(x21y
2
1) = E(c2)E(x41) + E(s2)E(x21x

2
2) = 2 6= E(x21)E(y21) .

In fastnorm/fastnorm2 and rann4/rannw, similar effects occur, although the
undesirable correlations are small and they occur between well-separated
outputs (the separations are of the order of the pool size) because of the
permutations used to provide mixing (cf §5.4).

5.7 Other finite pool size effects

Chris Wallace [40] has observed a phenomenon that, like the one discussed
in §5.6, becomes less significant as the pool size increases, but never disap-
pears entirely for any finite pool size n.

Consider a rare event such as the occurrence of a large normal variate x
that is expected to occur say once in every 10n samples, i.e. once in every
10 pools. The “energy” x2 is distributed over only a small number (four) of
variables in the next pool. Thus we can expect one or more of these variables
to be unusually large. Although the distribution of values considered over
many pools is correct, it is more likely that rare events will occur in adjacent
pools.

It is possible to devise statistical tests that detect this behaviour and/or
the correlations described in §5.6. However, we have not obtained any sta-
tistically significant results with a sample size of less than 104n.

Clearly, one way to reduce (though not eliminate) the significance of
such effects is to increase the pool size (easy for rann4/rannw). Another
way is to discard some of the numbers produced by the random number
generator – e.g. we could use every third value, or the values in every third
pool. This has an obvious effect on the speed of the generator, but because
the underlying algorithm is so fast we can afford to do it and still have a
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random number generator that is faster than more conventional generators
(cf §4).

5.8 Use of uniform RNGs

Although normal generators based on the maximum entropy idea do not
use uniform random numbers in any essential way, it is convenient to use
a uniform RNG for purposes such as initialisation, selection of orthogonal
transformations, etc. The advantage of the maximum entropy methods is
that the number U of uniform distributed numbers required per normally
distributed number is very small (of the order of 1/n for pool size n), whereas
for rejection methods U > 1.

If we choose a uniform random number generator with known long pe-
riod, and use it at least once for each pool of normal random numbers (e.g.
to select from a set of possible orthogonal transformations), then it is easy
to guarantee that the period of the normal random number generator is at
least as great as that of the uniform random number generator. Thus, al-
though any use of a uniform random number generator might be considered
contrary to the spirit of the maximum entropy method, it does have the
practical benefit of guaranteeing a long period. If (as is certainly possible)
we avoided using a uniform generator except perhaps for initialisation, then
we could not guarantee a long period, although a short period would be
extremely unlikely, since it would require an implausible coincidence in the
initialisation.

5.9 Summary

Although care needs to be taken in the implementation of normal random
number generators like fastnorm, and the end-user should be aware of the
small but unavoidable defects discussed in §§5.6-5.7, these generators have
such a performance advantage over more conventional generators that they
can not be ignored in applications where the speed of generation of pseudo-
random numbers is critical.
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