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Enumerating proofs of positive formulae

Gilles Dowek∗and Ying Jiang†

Abstract

We provide a semi-grammatical description of the set of normal proofs of positive formulae in
minimal predicate logic, i.e. a grammar that generates a set of schemes, from each of which we can
produce a finite number of normal proofs. This method is complete in the sense that each normal
proof-term of the formula is produced by some scheme generated by the grammar. As a corollary, we
get a similar description of the set of normal proofs of positive formulae for a large class of theories
including simple type theory and System F.

1 Introduction

A simple way to establish that provability in a logic is decidable is to develop a proof-search method,
enumerating all the potential proofs of a given formula, and to prove that the search tree of this method
is finite. In this case, when a formula is provable, we can even conclude that it has a finite number of
proofs. This is typically the situation in some formulations of classical propositional sequent calculus [1].

In some other cases, typically in some formulations of intuitionistic or minimal propositional sequent
calculus, the search tree is infinite but regular, i.e. it has only a finite number of distinct sub-trees [1].
In such a situation, provability is still decidable, but the sets of proofs may be infinite. Nevertheless, we
can describe it with a context-free grammar.

In contrast to Kleene’s result, Zaionc has proved that the set of normal proof-terms of a given
formula in minimal propositional logic (i.e. the set of normal terms of a given type in simply typed
lambda-calculus) is not a context-free language [2]. This result is a consequence of the undecidability of
definability in simply typed lambda-calculus [3] (see also [4] for a minimal example) and it explains why
previous grammatical descriptions of the set of normal terms of a given type had required an infinite
number of symbols [5, 6, 7, 8].

The reason of this discrepancy between Kleene’s and Zaionc’s results is that the former applies to a
notion of sequent whose left hand side is a set and the latter to one whose left hand side is a list. When
using sets, there is no way to distinguish proof-terms such as λα : P λβ : P α and λα : P λβ : P β.
These two proof-terms should be written in the same way using the schematic notation λα : P λα : P α.

Using this idea, Takahashi, Akama, and Hirokawa [5] as well as Broda and Damas [9, 10] have shown
that if we use such a schematic language for proof-terms, where identical hypotheses are referred to
by the same name, the set of proof-terms of a given formula in minimal propositional logic becomes a
context-free language. Moreover, each schematic proof-term of this context-free language corresponds
to a finite number of genuine proof-terms. For instance, the schematic proof-term λα : P λα : P α
corresponds to two proof-terms: λα : P λβ : P α and λα : P λβ : P β. More generally, each variable
occurrence of a schematic proof-term may be replaced by a variable chosen in a finite set, yielding a
finite number of proof-terms.

When such a grammar exists, we say that we have a semi-grammatical description of the set of
proof-terms of a given formula. More precisely, a semi-grammatical description of a set is formed with
a context-free grammar and an algorithm generating a finite number of elements of the set from each
element of the language defined by the grammar.

In [11], we have given a new decidability proof for the fragment of minimal predicate logic where
all quantifiers are positive and obtained, as a corollary, the decidability of type inhabitation for positive
types in System F. The motivation for studying the positive fragment of minimal logic is twofold. First,
in the classical case, it is well-known that the undecidability comes from the negative quantifiers and that
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∆, α : A1 → ... → An → P ⊢ t1 : A1 ... ∆, α : A1 → ... → An → P ⊢ tn : An
L →

∆, α : A1 → ... → An → P ⊢ (α t1 ... tn) : P

if P is atomic.
∆ ⊢ t : A

R∀
∆ ⊢ λx t : ∀x A

if x is not free in ∆.
∆, α : A ⊢ t : B

R →
∆ ⊢ λα t : A → B

Figure 1: The system LJ+: a sequent calculus for positive sequents

Γ∗↓ ⊢ A1 ... Γ∗↓ ⊢ An
L →

Γ ⊢ P

where
Γ = Γ1, [Γ2, [...Γi−1, [Γi, A1 → ... → An → P ]Vi−1

...]V2
]V1

,
Γ∗ = ([...[[Γ1]V1

,Γ2]V2
, ...Γi−1]Vi−1

,Γi, A1 → ... → An → P ),
and P is atomic and has no free variable in V1 ∪ V2 ∪ ... ∪ Vi−1.

[Γ]V ↓ ⊢ A
R∀

Γ ⊢ ∀x A

where V is the set of all variables bound in ∀x A.

(Γ, A)↓ ⊢ B
R →

Γ ⊢ A → B

Figure 2: The system LJB: a sequent calculus with brackets

the positive fragment is decidable. The positive fragment, both for classical and minimal predicate logics,
appears to be a large natural decidable fragment. Secondly, in System F, the datatypes are expressed as
positive types. For instance, the type of unary natural numbers is encoded as ∀X (X → (X → X) → X)
and that of binary numbers as ∀X (X → (X → X) → (X → X) → X). However, some positive types,
such as ∀X (X → ((X → X) → X) → X), are not datatypes. Nevertheless, we may want to describe
the sets of normal terms of such types, because they are used in higher-order abstract syntax or as the
input type of the algorithm, extracted from the constructive proof of the completeness theorem [12].

The algorithm defined in [11] consists in building a regular search tree, based on a careful handling
of variable names with a system of brackets. In this paper, we extend the result and give a semi-
grammatical description for the set of β-normal η-long proof-terms of a given formula in the positive
fragment of minimal predicate logic.

First, as the search-tree introduced in [11] is regular, we can define a grammar enumerating the
schematic proof-terms. Then, we give an algorithm to generate a finite set of terms corresponding to a
given scheme. This algorithm is more complex than that for the propositional case, because the types
may be modified when a variable is replaced by another. The method obtained in this way is complete
in the sense that each normal proof-term of the formula is produced from some scheme generated by
the grammar. Finally, this semi-grammatical description of normal proof-terms of positive formulae also
applies to several theories such as simple type theory and System F.

2 The systems LJ+ and LJB

Leaving a more complete description to [11], we briefly recall, in this section, the notion of positive for-
mula, the sequent calculi LJ+ and LJB. We also introduce a notion of proof-term to represent derivations
in each of these calculi. The proof-terms of LJ+ are usual lambda-terms and are just called proof-terms,
while the proof-terms of LJB are called schemes.
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2.1 Positive formulae

Minimal predicate logic is the fragment of predicate logic with a single connector→ and a single quantifier
∀. Terms and formulas are defined as usual. A context is a finite multiset of formulae and a sequent
Γ ⊢ A is a pair formed with a context Γ and a formula A.

A formula in minimal predicate logic is said to be positive if all its universal quantifier occurrences
are positive. More precisely, the set of positive and negative formulae and positive sequents in minimal
predicate logic are defined by induction as follows.

Definition 2.1 (Positive and negative formulae)

• An atomic formula is positive and negative.

• A formula of the form A → B is positive (resp. negative) if A is negative (resp. positive) and B
is positive (resp. negative).

• A formula of the form ∀x A is positive if A is positive.

As pointed out in [11], a negative formula has the form A1 → ... → An → P , where P is an atomic
formula and A1, ..., An are positive formulae.

Definition 2.2 (Positive sequents) A sequent A1, ..., An ⊢ B is positive if A1, ..., An are negative
and B is positive.

2.2 LJ+: a sequent calculus for positive sequents

We use a cut-free sequent calculus for positive sequents in minimal predicate logic. This sequent calculus
contains the usual right rule for the universal quantifier, but no left rule for this quantifier is needed
because all sequents are positive. It contains also the usual right rule for the implication. But the left
rule for implication

∆, A → B ⊢ A ∆, A → B,B ⊢ C
∆, A → B ⊢ C

and the axiom rule

∆, A ⊢ A

are replaced by a more restricted, but equivalent, rule

∆, A1 → ... → An → P ⊢ A1 ... ∆, A1 → ... → An → P ⊢ An

∆, A1 → ... → An → P ⊢ P

where P is an atomic formula.
In order to associate lambda-terms to proofs, we must associate proof variables to formulae in con-

texts. A context with named formulae is a finite multiset of pairs, each of them formed with a proof
variable and a formula, in such a way that each proof variables occurs at most once. A sequent with
named formulae ∆ ⊢ A is a pair formed with a context ∆ with named formulae and a formula A. These
proof variables are distinguished from the usual term variables of predicate logic.

The rules of the system LJ+, equipped with proof-terms, are depicted in Figure 1. Notice that all
these proof-terms are β-normal η-long. Ignoring these proof-terms, it yields the original presentation of
LJ+ given in [11]. When ∆ ⊢ t : A is derivable, we also say that t is a proof-term of the sequent ∆ ⊢ A.

2.3 LJB: a sequent calculus with brackets

Search trees in LJ+ are not always finite or even regular. For instance, the search tree of the formula
((P → Q) → Q) → Q is infinite and that of the formula ((∀x (P (x) → Q)) → Q) → Q is not even
regular. To prove the decidability of the positive fragment of minimal predicate logic, we have introduced
in [11] another sequent calculus called LJB.

In LJ+, to apply the R∀ rule to the sequent Γ ⊢ ∀x A, we have to rename the variable x either in
∀x A or in Γ so that the variable released by the rule does not appear in the context. In LJB, instead of
renaming the variable x, we bind it in the context Γ with brackets and obtain the sequent [Γ]x ⊢ A. In
fact, for technical reasons, we bind in Γ, not only the variable x, but also all the bound variables of A.

Definition 2.3 (LJB-contexts and items) LJB-contexts and items are mutually inductively defined
as follows.
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L →
B → Q,P (y) → Q,P (y) ⊢ P (y) ||

L →
B → Q, [P (y) → Q,P (y)]y , P (y) → Q,P (y) ⊢ P (y) ||

B → Q, [P (y) → Q,P (y)]y ⊢ (P (y) → Q) → P (y) → Q
R∀

B → Q, [P (y) → Q,P (y)]y , P (y) → Q,P (y) ⊢ B
L →

B → Q, [P (y) → Q,P (y)]y , P (y) → Q,P (y) ⊢ Q
R →

B → Q, [P (y) → Q,P (y)]y ⊢ (P (y) → Q) → P (y) → Q
R∀

B → Q,P (y) → Q,P (y) ⊢ B
L →

B → Q,P (y) → Q,P (y) ⊢ Q
R →,R∀

B → Q ⊢ B
L →

B → Q ⊢ Q
R →

⊢ (B → Q) → Q

Figure 3: An example of search tree in LJB.

Γ∗↓ ⊢ π1 : A1 ... Γ∗↓ ⊢ πn : An
L →

Γ ⊢ (α π1 ... πn) : P

where
Γ = Γ1, [Γ2, [...Γi−1, [Γi, A1 → ... → An → P ]Vi−1

...]V2
]V1

,
Γ∗ = ([...[[Γ1]V1

,Γ2]V2
, ...Γi−1]Vi−1

,Γi, A1 → ... → An → P ),
P is atomic and has no free variable in V1 ∪ V2 ∪ ... ∪ Vi−1,
and α is the canonical variable of type A1 → ... → An → P .

[Γ]V ↓ ⊢ π : A
R∀

Γ ⊢ λx π : ∀x A

where V is the set of all variables bound in ∀x A.

(Γ, A)↓ ⊢ π : B
R →

Γ ⊢ λα : A π : A → B

where α is the canonical variable of type A.

Figure 4: The system LJB with schemes.

• A LJB-context Γ is a finite multiset of items {I1, ..., In}.

• An item I is either a formula or an expression of the form [Γ]V where V is a set of variables and
Γ a LJB-context.

In the item [Γ]V , the variables of V are bound by the symbol [ ].
A LJB-sequent Γ ⊢ A is a pair formed by a LJB-context Γ and a formula A.
The system LJB is formed by two sets of rules: the usual deduction rules and additional transfor-

mation rules dealing with bracket manipulation. The transformation rules form a terminating rewrite
system: the first rule allows to replace an item of the form [I,Γ]V by the two items I and [Γ]V provided
no free variable of I is in V ; the second one allows to remove trivial items; the third rule to replace two
identical items by one.

Definition 2.4 (Cleaning LJB-contexts) The cleaning rules are

[I,Γ]V −→ I, [Γ]V , if FV (I) ∩ V = ∅

[ ]V −→ ∅

II −→ I

where I is an item and Γ a LJB-context.

Instead of proving the confluence of the rewrite system of Definition 2.4, we fix an arbitrary strategy
and define the normal form Γ↓ of a context Γ as the normal form relative to this strategy. We may, for
instance, proceed as follows. If Γ = ∅ then we let Γ↓ = ∅. Otherwise, we choose an item I in Γ and
let Γ′ = Γ \ {I}. Then, we normalize the item I and the LJB-context Γ′ recursively. We let Γ↓ = Γ′↓
if I↓ is an element of Γ′↓ and Γ↓ = I↓,Γ′↓ otherwise. To normalize an item I, we need to consider the
two following cases. If I is a formula, then we let I↓ = I. If it has the form [∆]V , we first normalize
recursively ∆, then we let ∆1 be the part of ∆↓ formed with the elements that have a free variable in
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sΓ⊢P −→ (α sΓ∗↓⊢A1
... sΓ∗↓⊢An

)

where
Γ = Γ1, [Γ2, [...Γi−1, [Γi, A1 → ... → An → P ]Vi−1

...]V2
]V1

,
Γ∗ = ([...[[Γ1]V1

,Γ2]V2
, ...Γi−1]Vi−1

,Γi, A1 → ... → An → P ),
P is atomic and has no free variable in V1 ∪ V2 ∪ ... ∪ Vi−1,
and α is the canonical variable of type A1 → ... → An → P .

sΓ⊢∀x A −→ λx s[Γ]V ↓⊢A

where V is the set of all variables bound in ∀x A.

sΓ⊢A→B −→ λα : A s(Γ,A)↓⊢B

where α is the canonical variable of type A.

Figure 5: The scheme grammar.

V and let ∆2 = ∆↓ \ ∆1. Finally, we let I↓ = ∆2 if [∆1]V is an element of ∆2 and I↓ = [∆1]V ,∆2

otherwise.
The deduction rules apply to LJB-sequents with normalized contexts with respect to the cleanning

rules and where the bound variables are named differently and differently from the free variables. It is
easy to check that these properties are preserved by the rules. Moreover, in LJB we deal with formulae,
not formulae modulo α-equivalence.

The rules of the system LJB are depicted in Figure 2. In the L → rule, brackets are moved from
some items of the LJB-context to others, bringing the formula A1 → ... → An → P inside brackets to
the surface, so that it can be used. For instance the LJB-sequent Q(x), [Q(x) → P ]x ⊢ P is transformed
(bottom-up) into [Q(x)]x, Q(x) → P ⊢ Q(x). The crucial point is that the two occurrences of x in Q(x)
and Q(x) → P that are separated in the first LJB-sequent remain separated.

The main interest of the system LJB is that, as illustrated in the Example 2.3, the search tree in LJB
of any positive formula is regular. This property is a consequence of the following proposition proved in
[11] (Proposition 4.5).

Proposition 2.1 Let A be a positive formula. There exists a finite set S of sequents such that all the
sequents occurring in a LJB-proof of the sequent ⊢ A are in S.

Example: Let A = (B → Q) → Q where B = ∀y ((P (y) → Q) → (P (y) → Q)). The search tree of the
sequent ⊢ A is given in Figure 3.

Notice that when trying to prove the sequent B → Q,P (y) → Q,P (y) ⊢ Q we may apply the L →
rule either with the proposition B → Q or with the proposition P (y) → Q, yielding two branches in
the search tree. The same holds with the sequent B → Q, [P (y) → Q,P (y)]y, P (y) → Q,P (y) ⊢ Q.
Notice also that the search tree is infinite and regular. We have cut the infinite branch when the sequent
B → Q, [P (y) → Q,P (y)]y ⊢ (P (y) → Q) → P (y) → Q appeared for the second time.

2.4 Schemes

Now we introduce schemes, that are the proof-terms for the system LJB. Unlike what we did for LJ+,
we do not assign names to hypotheses in LJB. Instead, we choose a canonical proof variable for each
such formula. The rules of LJB with schemes are depicted in Figure 4.

3 A grammar to enumerate schemes

In this section, we prove that, although it may be infinite, the set of schemes of a given normalized
LJB-sequent may be described by a context-free grammar.

Definition 3.1 (Scheme grammar) Let Γ ⊢ A be a normalized LJB-sequent and S be the finite set of
sequents that may occur in a derivation of Γ ⊢ A. To each sequent S of S, we associate a non-terminal
symbol sS and set up the rules displayed in Figure 5.
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The grammar generating the schemes of the type A given in Example 2.3 and a scheme generated by
this grammar are detailed in the example below.
Example: The grammar generating the schemes of the type A = (B → Q) → Q where B = ∀y ((P (y) →
Q) → (P (y) → Q)) is

S → λα (α λyλβλγ (β γ))
S → λα (α λyλβλγ (α λy S1))
S1 → λβλγ (β γ)
S1 → λβλγ (α λy S1)

where S is the non-terminal associated to the sequent ⊢ A, S1 that associated to B → Q, [P (y) →
Q,P (y)]y ⊢ (P (y) → Q) → P (y) → Q, α is the canonical variable of type B → Q, β that of type
P (y) → Q and γ that of type P (y).

A scheme generated by the grammar is

λα (α λyλβ λγ (α λyλβ λγ (β γ)))

Proposition 3.1 (Soundness) Let Γ ⊢ A be a normalized LJB-sequent. Then for any scheme π gen-
erated in sΓ⊢A, we have Γ ⊢ π : A.

Proof. By induction on the derivation of π in the grammar. ✷

Proposition 3.2 (Completeness) Let Γ ⊢ A be a normalized LJB-sequent. Then each scheme π such
that Γ ⊢ π : A is generated in sΓ⊢A.

Proof. By induction on the derivation of Γ ⊢ π : A in the system LJB with schemes. ✷

4 Generating proof-terms

Now we are ready to provide a term enumeration algorithm through the grammatical scheme enumeration
algorithm described in the previous section. In this endeavor, we will define a function H, which, roughly
speaking, associates a finite set of terms to a scheme, in such a way that t is a proof-term if and only if
there exists a scheme π such that t ∈ H(π). To define this function H, we need a function G handling
context cleaning. When defining the function G, the only non trivial case is that of the rule II −→ I,
which is handled in turn by another function F .

Definitions 4.1 and 4.2 below extend the usual notion of α-equivalence for formulae to sequents of
LJ+ and LJB, and will be useful in the rest of the section.

Definition 4.1 (α-equivalence of sequents) Two sequents Γ ⊢ A and Γ′ ⊢ A′ are said to be α-
equivalent if there exists a variable renaming σ of term variables (i.e. an injective substitution mapping
variables to variables) such that Γ′ is α-equivalent to σΓ and A′ is α-equivalent to σA.

For instance, the sequents P (x) ⊢ P (x) and P (y) ⊢ P (y) are α-equivalent. The intuition is that the
variables free in Γ and A are considered as implicitly bound by the symbol ⊢ in the sequent Γ ⊢ A.

We also extend the notion of α-equivalence to sequents of LJ+ with named formulae as follows.

Definition 4.2 (α-equivalence of sequents with named formulae) Two sequents Γ ⊢ A and Γ′ ⊢
A′ are said to be α-equivalent if there exists a variable renaming σ of term and proof variables such that
Γ′ is α-equivalent to σΓ and A′ is α-equivalent to σA.

For instance, the sequents α : P (x) ⊢ P (x) and β : P (y) ⊢ P (y) are α-equivalent.

Definition 4.3 (Fresh α-variant and flattening) Let Γ ⊢ A be a normalized LJB-sequent, a fresh
α-variant Γ′ ⊢ A′ of Γ ⊢ A is an LJB-sequent, which is α-equivalent to Γ ⊢ A and where all bound
variables are named differently.

A LJ+-sequent ∆ ⊢ B is said to be a flattening of a normalized LJB-sequent Γ ⊢ A, if it is obtained
by erasing all the brackets in a fresh α-variant of Γ ⊢ A and naming all the formulae in Γ with distinct
proof variables.
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Example: A flattening of the LJB-sequent [P (x), P (x) → Q]x, [P (x), P (x) → Q]x ⊢ Q is the LJ+-sequent
α1 : P (x1), β1 : (P (x1) → Q), α2 : P (x2), β2 : (P (x2) → Q) ⊢ Q.

Remark that two flattenings of the same LJB-sequent are α-equivalent LJ+-sequents.

Definition 4.4 (Partial duplication) Let Σ ⊢ A be a sequent of LJ+. A sequent ∆ ⊢ B of LJ+ is
said to be a partial duplication of Σ ⊢ A if there exist two substitutions σ1 and σ2 of term-variables with
the same domain, renaming the variables of their domain with fresh and distinct variables such that for
each variable γ : C of Σ, ∆ contains either the variable γ1 : σ1C or the variable γ2 : σ2C or both, and B
is either σ1A or σ2A.

Example: If the sequent Σ ⊢ A is
α : (Px → Q), β : Px ⊢ Q

and σ1 = σ2 = id, then one partial duplication is the sequent

α1 : (Px → Q), β1 : Px, α2 : (Px → Q), β2 : Px ⊢ Q

If the sequent Σ ⊢ A is
α : (Px → Q), β : Px ⊢ Q

but σ1 = x1/x and σ2 = x2/x, then one partial duplication is the sequent

α1 : (Px1 → Q), β1 : Px1, α2 : (Px2 → Q), β2 : Px2 ⊢ Q

If the sequent Σ ⊢ A is
α : (Px → Q), β : Px ⊢ Px

and σ1 = x1/x and σ2 = x2/x, then one partial duplication is the sequent

α1 : (Px1 → Q), β1 : Px1, α2 : (Px2 → Q), β2 : Px2 ⊢ Px1

Definition 4.5 (The function F) Let Σ ⊢ A be a sequent of LJ+ and ∆ ⊢ B a partial duplication of
this sequent obtained with the substitutions σ1 and σ2.

LJ+

∆ ⊢ B F(u)

Σ ⊢ A u

✻

Let u be a proof-term of Σ ⊢ A. We define, by induction on the structure of u, a finite set F∆⊢B
Σ⊢A (u)

of proof-terms of ∆ ⊢ B.

• If u = (α u1 ... un), then A is atomic. Let C1 → ... → Cn → A be the type of α. For i ∈ {1, 2}, if
∆ contains a variable αi : σiC1 → ... → σiCn → σiA and σiA = B, then we take all terms of the
form (αi u

′
1 ... u′

n) where u′
1 is an element of F∆⊢σiC1

Σ⊢C1
(u1), ..., u

′
n is an element of F∆⊢σiCn

Σ⊢Cn
(un),

otherwise we take no term with head variable αi.

• If u = λx u1, then A has the form ∀x A1 and B has the form ∀x B1, where B1 is either σ1A1 or
σ2A1, we take all terms of the form λx u′

1 where u′
1 is an element of F∆⊢B1

Σ⊢A1
(u1).

• If u = λα u1, then A has the form A1 → A2 and B has the form B1 → B2, where B1 is either
σ1A1 or σ2A1 and B2 is either σ1A2 or σ2A2, we take all terms of the form λα′ u′

1 with u′
1 an

element of F∆,α′:B1⊢B2

Σ,α:A1⊢A2
(u1).
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Example: If the sequent Σ ⊢ A is
α : (Px → Q), β : Px ⊢ Q

σ1 = σ2 = id and one partial duplication is the sequent

α1 : (Px → Q), β1 : Px, α2 : (Px → Q), β2 : Px ⊢ Q

then
F∆⊢Q

Σ⊢Q ((α β)) = {(α1 β1), (α1 β2), (α2 β1), (α2 β2)}

If the sequent Σ ⊢ A is
α : (Px → Q), β : Px ⊢ Q

σ1 = x1/x and σ2 = x2/x and one partial duplication is the sequent

α1 : (Px1 → Q), β1 : Px1, α2 : (Px2 → Q), β2 : Px2 ⊢ Q

then
F∆⊢Q

Σ⊢Q ((α β)) = {(α1 β1), (α2 β2)}

Notice that, after having chosen α1, in the first case, we obtain

F∆⊢Px
Σ⊢Px (β) = {β1, β2}

while in the second, we obtain
F∆⊢Px1

Σ⊢Px (β) = {β1}

Our relatively liberal notion of partial duplication allows the “pathological” example where the set
F∆⊢B

Σ⊢A (u) is empty: if the sequent Σ ⊢ A is

α : (Px → Q), β : Px ⊢ Q

and σ1 = x1/x and σ2 = x2/x, then one partial duplication is the sequent

α1 : (Px1 → Q), β2 : Px2 ⊢ Q

and F∆⊢B
Σ⊢A ((α β)) = ∅.

Proposition 4.1 (Soundness) Let ∆ ⊢ B be a partial duplication of Σ ⊢ A. If u is a proof of Σ ⊢ A,
and t ∈ F∆⊢B

Σ⊢A (u), then t is a proof of ∆ ⊢ B.

Proof. By induction on the structure of u. ✷

Proposition 4.2 (Completeness) Let ∆ ⊢ B be a partial duplication of Σ ⊢ A. If t is a proof of
∆ ⊢ B then there exists a proof u, of the same height as t, of Σ ⊢ A such that t ∈ F∆⊢B

Σ⊢A (u).

Proof. By induction on the structure of t. The term u is obtained by replacing each variable of the
form σ1x or σ2x by x. ✷

Definition 4.6 (The function G) Let Γ ⊢ A be a normalized LJB-sequent and Γ↓ ⊢ A its normal
form. Let ∆ ⊢ B be a flattening of Γ ⊢ A and ∆′ ⊢ B′ a flattening of Γ↓ ⊢ A.

LJB LJ+

Γ ⊢ A
flattening ✲ ∆ ⊢ B G(u)

Γ↓ ⊢ A
❄ flattening ✲ ∆′ ⊢ B′ u

✻

For any proof-term u of ∆′ ⊢ B′, we construct a set G∆⊢B
∆′⊢B′(u) of proof-terms of ∆ ⊢ B by induction

on the length of the reduction from Γ to Γ↓.
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• If Γ↓ = Γ, then ∆′ ⊢ B′ and ∆ ⊢ B are α-equivalent, thus there exists a renaming σ of the free
variables of ∆ and B such that ∆ is α-equivalent to σ∆′ and B is α-equivalent to σB′. We take
G∆⊢B
∆′⊢B′(u) = {σu}.

• If Γ rewrites to Γ1 in one cleaning step and then Γ1 rewrites to Γ↓, then let ∆1 ⊢ B1 be a flattening
of Γ1 ⊢ A and let S = G∆1⊢B1

∆′⊢B′ (u). Now consider the rule used to reduce Γ to Γ1. If this rule
is [ ]V → ∅ or [Γ, I]V → [Γ]V , I then ∆ ⊢ B and ∆1 ⊢ B1 are α-equivalent, thus there exists
a renaming σ of the free variables of ∆ and B such that ∆ is α-equivalent to σ∆1 and B is α-
equivalent to σB1. We take G∆⊢B

∆′⊢B′(u) = {σt | t ∈ S}. If this rule is II → I then ∆ ⊢ B is a
partial duplication of ∆1 ⊢ B1. We take G∆⊢B

∆′⊢B′(u) =
⋃

t∈S F∆⊢B
∆1⊢B1

(t).

Example: The sequent
[P (x), P (x) → Q]x, [P (x), P (x) → Q]x ⊢ Q

normalizes to
[P (x), P (x) → Q]x ⊢ Q

A flattening of the first sequent is ∆ ⊢ Q where ∆ is the context

α1 : P (x1), β1 : (P (x1) → Q), α2 : P (x2), β2 : (P (x2) → Q)

and a flattening of the second one is the sequent ∆′ ⊢ Q where ∆′ is the context

α : P (x), β : (P (x) → Q)

Then
G∆⊢Q
∆′⊢Q((α β)) = {(β1 α1), (β2 α2)}

Proposition 4.3 (Soundness) Let Γ ⊢ A be a normalized LJB-sequent and Γ↓ ⊢ A its normal form.
Let ∆ ⊢ B be a flattening of Γ ⊢ A and ∆′ ⊢ B′ a flattening of Γ↓ ⊢ A. Let u be a proof-term of ∆′ ⊢ B′

and t ∈ G∆⊢B
∆′⊢B′(u). Then t is a proof-term of ∆ ⊢ B.

Proof. By induction on the length of the reduction from Γ to Γ↓, using Proposition 4.1 for the case
of the rule II −→ I. ✷

Proposition 4.4 (Completeness) Let Γ ⊢ A be a normalized LJB-sequent and Γ↓ ⊢ A its normal
form. Let ∆ ⊢ B be a flattening of Γ ⊢ A and ∆′ ⊢ B′ a flattening of Γ↓ ⊢ A. If t is a proof of ∆ ⊢ B,
then there exists a proof u, of the same height as t, of ∆′ ⊢ B′ such that t ∈ G∆⊢B

∆′⊢B′(u).

Proof. By induction on the length of the reduction from Γ to Γ↓, using Proposition 4.2 for the case
of the rule II −→ I. ✷

Definition 4.7 (The function H) Let Γ ⊢ A be a normalized LJB-sequent and ∆ ⊢ B a flattening of
Γ ⊢ A.

LJB LJ+

Γ ⊢ A
flattening ✲ ∆ ⊢ B

π ✲ H(π)

Let π be a scheme of the sequent Γ ⊢ A, we associate to π a set H∆⊢B
Γ⊢A (π) of proof-terms of type

∆ ⊢ B in LJ+ by induction on the structure of π.

• If π = (α π1 . . . πn), then let A1 → . . . → An → A be the type of α. Select the occurrences of the
formula A1 → . . . → An → A in Γ, such that the rule L → can be applied to this occurrence, and
for all i, the scheme πi has type Γ∗↓ ⊢ Ai where Γ∗↓ is the context obtained by applying L → to
this occurrence. For each selected occurrence, let α′ : B1 → . . . → Bn → B be the corresponding
declaration in ∆. The sequent ∆ ⊢ B is also a flattening of Γ∗ ⊢ A and the sequent ∆ ⊢ Bi

is one of Γ∗ ⊢ Ai. Consider a flattening ∆′ ⊢ B′
i of Γ∗↓ ⊢ Ai, set up Si = H

∆′⊢B′

i

Γ∗↓⊢Ai
(πi) and

S′
i =

⋃
t∈Si

G∆⊢Bi

∆′⊢B′

i

(t). The set H∆⊢B
Γ⊢A (π) contains the terms of the form (α′ t1 ... tn) for some

α′ : B1 → . . . → Bn → B in ∆ corresponding to a selected occurrence and ti ∈ S′
i.

9



• If π = λx π1, then A = ∀x A1, B = ∀y B1 and π1 is a scheme of [Γ]V ↓ ⊢ A1. The sequent ∆ ⊢ B1

is a flattening of [Γ]V ⊢ A1. Let ∆′ ⊢ B′
1 be a flattening of [Γ]V ↓ ⊢ A1, set up S = H

∆′⊢B′

1

[Γ]V ↓⊢A1

(π1)

and S′ =
⋃

t∈S G∆⊢B1

∆′⊢B′

1

(t). The set H∆⊢B
Γ⊢A (π) is the set of the terms of the form λy t for t in S′.

• If π = λα : A1 π1, then A = A1 → A2 and B = B1 → B2 and π1 is a scheme of (Γ, A1)↓ ⊢ A2. The
sequent ∆, α′ : B1 ⊢ B2 is a flattening of Γ, A1 ⊢ A2. Let ∆′ ⊢ B′

2 be a flattening of (Γ, A1)↓ ⊢ A2,

set up S = H
∆′⊢B′

2

(Γ,A1)↓⊢A2

(π1) and S′ =
⋃

t∈S G∆,α′:B1⊢B2

∆′⊢B′

2

(t). The set H∆⊢B
Γ⊢A (π) is the set of the terms

of the form λα′ : B1 t for t in S′.

Example: Continuing the Example 2.3, let

π = λα (α λyλβ λγ (α λyλβ λγ (β γ)))

The set H⊢A
⊢A(π) contains the two terms

λα (α λy1λβ1λγ1 (α λy2λβ2λγ2 (β1 γ1)))
λα (α λy1λβ1λγ1 (α λy2λβ2λγ2 (β2 γ2)))

where α : B → Q, β1 : P (y1) → Q, γ1 : P (y1), β2 : P (y2) → Q, γ2 : P (y2).

Proposition 4.5 (Soundness) Let Γ ⊢ A be a normalized LJB-sequent and ∆ ⊢ B be a sequent of
LJ+ that is a flattening of Γ ⊢ A. Then for each scheme π of Γ ⊢ A, every proof-term in H∆⊢B

Γ⊢A (π) is a
proof-term of ∆ ⊢ B.

Proof. By induction on the height of π, using Proposition 4.3 for context cleaning. ✷

Proposition 4.6 (Completeness) Let Γ ⊢ A be a normalized LJB-sequent and ∆ ⊢ B a sequent of
LJ+ such that ∆ ⊢ B is a flattening of Γ ⊢ A. Then for each proof-term t of ∆ ⊢ B, there exists a
scheme π of Γ ⊢ A such that t ∈ H∆⊢B

Γ⊢A (π).

Proof. By induction on the structure of t.

• If t = (α′ t1 ... tn), then the variable α′ : B1 → ... → Bn → B is declared in ∆ and ti is a proof-term
of ∆ ⊢ Bi. The variable α′ corresponds to an occurrence of a formula A1 → ... → An → A in Γ
and Γ has the form Γ1, [Γ2, [...Γi−1, [Γi, A1 → ... → An → A]Vi−1

...]V2
]V1

. As ∆ ⊢ B is a flattening
of Γ ⊢ A and this occurrence of A1 → ... → An → A corresponds to B1 → ... → Bn → B, A has
no free variable in V1 ∪ V2 ∪ ... ∪ Vi−1. Thus, the sequent ∆ ⊢ B is also a flattening of Γ∗ ⊢ A and
∆ ⊢ Bi is a flattening of Γ∗ ⊢ Ai.

Let ∆′ ⊢ B′
i be a flattening of Γ∗↓ ⊢ Ai. By Proposition 4.4, there exists a proof-term ui of

∆′ ⊢ B′
i of the same height as ti such that ti ∈ G∆⊢Bi

∆′⊢B′

i

(ui). By induction hypothesis, for each

i ∈ {1, . . . , n}, there exists scheme πi of Γ∗↓ ⊢ Ai such that ui ∈ H
∆′⊢B′

i

Γ∗↓⊢Ai
(πi). So, if α is the

canonical variable of type A1 → ... → An → A, then (α π1 ... πn) is a scheme of Γ ⊢ A and
(α′ t1 ... tn) ∈ H∆⊢B

Γ⊢A (α π1 ... πn).

• If t = λy t1, then B = ∀y B1, A = ∀x A1 and t1 is a proof-term of ∆ ⊢ B1 that is a flattening of
[Γ]V ⊢ A1. Let ∆

′ ⊢ B′
1 be a flattening of [Γ]V ↓ ⊢ A1. By Proposition 4.4, there exists a proof-term

u1 of ∆′ ⊢ B′
1 of the same height as t1 such that t1 ∈ G∆⊢B1

∆′⊢B′

1

(u1). By induction hypothesis, there

exists a scheme π1 of [Γ]V ↓ ⊢ A1 such that u1 ∈ H
∆′⊢B′

1

[Γ]V ↓⊢A1

(π1). This implies λy t1 ∈ H∆⊢B
Γ⊢A (λx π1).

• If t = λα′ : B1 t1, then B = B1 → B2, A = A1 → A2 and t1 is a proof-term of ∆, B1 ⊢ B2 that
is a flattening of Γ, A1 ⊢ A2. Let ∆′ ⊢ B′

2 be a flattening of (Γ, A1)↓ ⊢ A2. By Proposition 4.4,

there exists a proof-term u1 of ∆′ ⊢ B′
2 of the same height as t1 such that t1 ∈ G∆,B1⊢B2

∆′⊢B′

2

(u1). By

induction hypothesis, there exists a scheme π1 of (Γ, A1)↓ ⊢ A2 such that u1 ∈ H
∆′⊢B′

2

(Γ,A1)↓⊢A2

(π1).

Let α be the canonical variable of type A1, we have λα′ t1 ∈ H∆⊢B
Γ⊢A (λα π1). ✷

Theorem 4.1 Let A be a formula. Then t is a proof-term of ⊢ A in LJ+ if and only if there exists a
scheme π generated by the grammar given in Definition 3.1 such that t ∈ H⊢A

⊢A(π).

Proof. From Propositions 3.1, 3.2, 4.5, and 4.6. ✷
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L →
B → X,Y → X,Y ⊢ Y ||

B → X,Y → X,Y ⊢ X
R →

B → X,Y → X,Y ⊢ B
L →

B → X,Y → X,Y ⊢ X
R →

B → X ⊢ B
L →

B → X ⊢ X
R →, R∀

⊢ ∀X∀Y ((B → X) → X)

Figure 6: A search tree in System F.

5 Enumerating normal terms of a positive type in System F

As remarked in [11], to each positive type T of System F, we can associate a formula Φ(T ) in predicate
logic with a single unary predicate ε.

Φ(X) = ε(X)

Φ(T → U) = Φ(T ) → Φ(U)

Φ(∀X T ) = ∀X Φ(T )

and the normal terms of type T in System F are exactly the proof-terms of Φ(T ) in predicate logic.
Thus, the enumeration algorithm described in the previous sections applies immediately to System F.
The examples below (where we write X for ε(X)) illustrate the algorithm.
Example: Let A = ∀X((∀Y ((Y → X) → (Y → X)) → X) → X). Let α : ∀Y ((Y → X) → (Y → X)) →
X, β : Y → X and γ : Y . Let S = S⊢A and S1 = SB→X,[Y→X,Y ]Y ⊢(Y→X)→Y →X . The scheme grammar
is given by

S → λX λα (α λY λβ λγ (β γ))
S → λX λα (α λY λβ λγ (α λY S1))
S1 → λβ λγ (β γ)
S1 → λβ λγ (α λY S1)

It is easy to check that the scheme below is generated by the grammar

λX λα (α λY λβ λγ (α λY λβ λγ (β γ)))

And this scheme generates in turn two proof-terms:

λX λα (α λY1 λβ1 λγ1 (α λY2 λβ2 λγ2 (β1 γ1)))
λX λα (α λY1 λβ1 λγ1 (α λY2 λβ2 λγ2 (β2 γ2)))

where α : B → X , β1 : Y1 → X , γ1 : Y1, β2 : Y2 → X , γ2 : Y2.
More generally, one scheme of depth n generated by this grammar, yields n− 1 proof-terms of type

A.
Example: Consider now the prenex form of the formula of the previous example. Let A = ∀X∀Y ((B →
X) → X) where B = (Y → X) → (Y → X). The search tree of A is given in Figure 6.

Let α : ((Y → X) → (Y → X)) → X, β : Y → X and γ : Y . Let S = S⊢A and S1 = SB→X,Y →X,Y ⊢X .
The corresponding scheme grammar is given by

S → λX λY λα (α λβ λγ S1)
S1 → (β γ)
S1 → (α λβ λγ S1)

It is easy to check that the scheme below is generated by the grammar

λX λY λα (α λβ λγ (α λβ λγ (β γ)))

And this scheme generates in turn four proof-terms

λX λY λα (α λβ1 λγ1 (α λβ2 λγ2 (β1 γ1)))
λX λY λα (α λβ1 λγ1 (α λβ2 λγ2 (β1 γ2)))
λX λY λα (α λβ1 λγ1 (α λβ2 λγ2 (β2 γ1)))
λX λY λα (α λβ1 λγ1 (α λβ2 λγ2 (β2 γ2)))

where α : B → X , β1 : Y → X , γ1 : Y , β2 : Y → X , γ2 : Y .
More generally, one scheme of depth n generated by this grammar, yields (n− 1)2 proof-terms.
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Conclusion

Once more, the complexity of predicate logic comes from the negative quantifiers: when they are removed,
not only the logic becomes decidable, but also the proofs have a simple structure.

The usual interpretations of proofs as terms are based on formulations of deduction where contexts
are multisets or lists. The schemes are the counterpart to these terms when contexts are sets. Their
structure is even simpler than that of terms and their interest may go beyond the proof enumeration
problem.
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