
c© The Author 2005. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oupjournals.org

doi:10.1093/comjnl/bxh000

Implications of Electronics

Technology Trends to Algorithm

Design

Daniel Greenfield and Simon Moore

Computer Laboratory, University of Cambridge, United Kingdom

Email: daniel.greenfield@cl.cam.ac.uk

Scaling of electronics technology has brought us to a pivotal point in the design of

computational devices. Technology scaling favours transistors over wires which has

led us into an era where communication takes more time and consumes more power

than the computation itself. This technology driver inevitably pushes us toward

a communication-centric approach to algorithm design. To assess the efficiency

of an algorithm we will need to be able to predict data movement both in time

and space. We demonstrate that algorithms exhibit fractal like communication

behaviour which is likely to help with such an analysis. Moreover, successfully

exploiting these fractal properties will allow us to reduce communication, thereby

increasing performance and power efficiency.

Keywords: CMP, communication complexity, algorithms, fractal structure, temporal
interconnect, networks-on-chip, Rent’s rule, tera-scale

Received 10 Oct 2008; revised 10 Oct 2008; accepted 10 Oct 2008

1. INTRODUCTION

For many decades, electronics technology has brought
us ever faster scalar processors. Recently this trend has
almost stopped; we are now offered more processors
each with similar scalar performance to the previous
generation. As we enter this manycore era, there
are many people looking again at parallel algorithm
design. Traditionally parallel computing has focused
very heavily on keeping the compute engines busy. We
argue in this paper that in the near future the efficiency
of communication will become far more important. As
a consequence, computational complexity will become
a second order effect, so we must look more seriously at
the complexity of communication for algorithms.

This work is based on an earlier work [17]: The Next
Resource War: Computation vs. Communication, in
SLIP ’08: Proceedings of the 2008 international work-
shop on System level interconnect prediction, c© ACM,
2008. http://doi.acm.org/10.1145/1353610.1353627

2. TECHNOLOGY DRIVER

Since the birth of the microprocessor in the early
1970s, industry has exploited the exponential increase

A preliminary version of this paper was presented at

the BCS08 Visions of Computer Science Conference, held on

September 22-24, 2008.

in transistor density (predicted by Moore’s law) to
integrate more elaborate processors and memory on-
chip (often in the form of caches). During this period,
chip sizes have changed little, often with commodity
parts being around 10mm on a side, and more expensive
parts around 20mm on a side. Prior to 1970, greater
integration reduced the across-system wire lengths, but
with the advent of the microprocessor, this scaling
parameter stopped. Initially this scaling issue was
insignificant, but the last 35 years (or so) of scaling
transistors from 10,000nm (Intel 4004) to 45nm (current
Intel and AMD processors) has changed all this.

In the next section we look at wire scaling in a
little more detail and at some of the implications
from a technology perspective. Then we look at the
interconnectedness of algorithms and their implications
for the era of massively multicore Chip Multiprocessors
(CMPs).

2.1. Wire scaling

Driving a signal along an across-chip wire has become
more complicated. As geometries have shrunk, so has
the width of the wire. But we still tend to drive
a wire in a DC manner, and the RC time constant
has not improved much because a shrink of l results
in R increasing by a factor l and C decreasing by a

The Computer Journal Vol. 00 No. 0, 2008

2 D.L. Greenfield, S.W. Moore

Wire driven from one end

Buffered wire

Pipelined wire

Network-on-chip

FIGURE 1. Evolution from simple wires to networks-on-
chip

factor l with the net effect that little changes (to a first
approximation). For old technologies it was sensible to
drive an across-chip wire from one end using a buffer
which was not much bigger than other logic gates.
Whilst logic gates have shrunk, buffers have not scaled
well since RC is little changed.

As clock frequencies have risen, so has the demand
for wire bandwidth which is limited by the RC time
constant. This has resulted in across-chip wires being
broken into smaller segments with buffers inserted in
between. If a wire is broken into two segments then the
RC time constant reduces by a factor of four so the new
combined wire delay is half what it was plus the delay
through the extra buffer (see Figure 1). The next step
is to pipeline the wire to allow more than one data item
to be in flight without risk of inter-symbol interference.

In the early days of the microprocessor, clock
frequencies were sufficiently low that performing an
off-chip memory access completed in a single clock
cycle. Today an off-chip memory access takes 100s of
processor clock cycles. Moreover, the power consumed
by computation is now dwarfed by the power needed
for communication [6]. Table 1 illustrates that in
just the few years between 130nm and 45nm CMOS,
the communication power requirements have shot up
in proportion to the power consumed by arithmetic
operations. The power required to send 32-bits of

TABLE 1. Comparing trends in power consumption,
adapted from Dally [6]

technology node 130nm CMOS 45nm CMOS

transfer 32b across-chip 20 ALU ops 57 ALU ops

transfer 32b off-chip 260 ALU ops 1300 ALU ops

data off-chip is equivalent to 1300 32-bit arithmetic
operations with a memory access being even greater.

2.2. Toward networks-on-chip

Even on-chip the power needed to communicate across-
chip is worrying, particularly now that power is
becoming the performance limiter. This leads us to our
first observation:

Communication rather than computation now limits

performance.

Another wiring issue comes from the complexity
of the interconnectedness of the circuits. Rent’s
rule [12] predicts a slow but exponential increase
in the complexity of the interconnect and this has
been observed in the increased numbers of layers of
metalisation.

As a consequence of Rent’s rule, and the silicon
area and power of global wiring, increased effort is
being placed on managing wires. In particular, there
is a great deal of academic and industrial activity
looking at networks-on-chip (NoCs), see Figure 1. NoCs
are able to manage (schedule and reuse) this precious
global wiring resource. At first, the level of control
overhead seems excessive, but this turns out to not
be the case [2]. By replacing the complex of long
interconnects with virtual interconnects running over
a regular structure of shorter links, NoCs can reduce
the Rent’s rule exponent for wiring at the top-level.
However, we showed that Rent’s rule is still expected to
hold for the new virtual wires themselves, transforming
into a bandwidth-version of Rent’s rule [7].

2.3. Communication off-chip

We noted (see Table 1) that communication power
off-chip is not scaling with transistor performance.
Figure 2 shows the estimated growth for total chip
I/O bandwidth based on ITRS predicted figures [11]
for pin-count in their cost-performance balance and the
predicted bandwidth growth of high-speed pins. We
note that after 2017 the growth changes to a more
conservative trend as manufacturable solutions for these
are not currently known. A range of Rent’s bandwidth-
exponents can be estimated for the years up to 2017,
yielding exponents between 0.57 to 0.67, depending on
pin-count growth rates.

We should note that these numbers may not account
for the power and thermal constraints that are also

The Computer Journal Vol. 00 No. 0, 2008

Implications of Electronics Technology Trends to Algorithm Design 3

 1

 10

 100

 2008 2010 2012 2014 2016 2018 2020 2022

R
el

at
iv

e
I/O

 B
an

dw
id

th

Year

Predicted I/O Bandwidth (ITRS 2007)

Upper Rent’s exponent = 0.67
Lower Rent’s exponent = 0.57

BW at upper pin count
BW at lower pin count

upper fit
lower fit

FIGURE 2. Predicted I/O Bandwidth

present on the system that may prevent pin counts and
pin bandwidth from growing as fast as this. Also, the
size of I/O pads and drivers do not tend to change
much with each process generation, so the exponential
growth in pin count may have other costly repercussions
for die size. Optical off-chip communication may help
improve available bandwidth, though it is currently
unclear what technology will be manufacturable. On-
chip power might be usefully reduced by having an
external optical power supply (i.e. an external source)
and only modulating the photons on-chip. It is unclear
just how effective such an approach would be since the
technologies are immature, but it is unlikely to be a
panacea.

3. LOCALITY OF DATA

Currently we use cache memories to keep state being
worked on close to the processor. The concept is an
old one and was summed up well by A.W. Burks, H.H.
Goldstine and J von Neumann in their Preliminary

Discussion of the Logical Design of an Electronic

Computing Instrument (1945):

“Ideally one would desire an indefinitely large

memory capacity such that any particular word

would be immediately available. We are forced to

recognise the possibility of constructing a hierarchy

of memories, each of which has greater capacity than

the preceding but which is less quickly accessible.”

Caches currently rely on simple statistical properties
of data access patterns. Cache hit and miss rates have
been very thoroughly studied, and yet their effectiveness
is far from perfect. For example, Figure 3 shows
the level 2 cache utilisation for a typical modern
microprocessor. The utilisation metric refers to cache
lines which are still holding “live” data, i.e. data that
will be accessed again before the cache line is flushed
from the cache. One can see that for many benchmarks

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

C
ac

h
e

U
ti

li
sa

ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

FIGURE 3. Level 2 cache utilisation (data kindly
provided by James Srinivasan)

over 80% of the cache is holding “dead” data, i.e. data
that will never be looked at again.

The L2 cache is the primary mechanism for reducing
off-chip data movement. It is also a very large structure
(30% to 50% of the chip area) so it’s surprising that it
is used so inefficiently.

The trend toward increased communication power in
relation to computational power, and the ineffectiveness
of caches, leads us to the observation that:

We must undertake more computation to reduce

communication.

Since simple statistical properties are insufficient,
we will need greater understanding of algorithms and
data structures to better manage data movement in
systems. One approach is the use of software based
prefetching [3] to reduce cache misses. This can be
extended by running a dynamic helper thread which
uses speculative computation techniques to predict
what data needs to be prefetched quite some time
in the future [13, 21]. It is interesting that these
techniques undertake substantially more computation
to improve communication scheduling, but they do not
reduce the amount of communication and often result
in extra communication fetching extra instructions
and miss speculated data. None-the-less, it is an
interesting to note that the increase in computation to
improve the scheduling of communication does improve
performance.

4. EXTERNAL COMMUNICATION

CONSTRAINTS

Caches try to keep data local and on-chip, but as was
seen in the previous section, cache miss rates exhibit
diminishing returns for increases in cache size. As

The Computer Journal Vol. 00 No. 0, 2008

4 D.L. Greenfield, S.W. Moore

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 2008 2010 2012 2014 2016 2018 2020 2022

R
el

at
iv

e
I/O

 B
an

dw
id

th
 p

er
 C

or
e

Year

Predicted I/O Bandwidth per Core (ITRS 2007 at 1.4x cores / gen)

BW/core at upper pin count
BW/core at lower pin count

FIGURE 4. Predicted I/O Bandwidth per Core

these cache misses lead to external memory I/O, the
demand for external memory bandwidth per core may
not readily be decreased by increasing cache size alone
without exploiting local communication with other
cores. Unfortunately, even as the number of cores
increases, technology scaling also imposes important
limitations on the volume of communication with
external memory.

From the predicted I/O bandwidth (Figure 2)
we can derive the external memory bandwidth per
core (Figure 4), available on average to each core,
assuming the number of cores doubles every two process
generations, which the ITRS deems more representative
of current power-limited design trends. We observe
the exponential drop in available bandwidth that
can impose a significant bottleneck in performance.
This shows that cores cannot feed their bandwidth
from external I/O and instead communication from
other cores on-chip is required to make up the
shortfall. We also note that this external bandwidth
has considerably larger communication latencies and
consumes more power than on-chip communication.
Thus, algorithms must exploit communication locality
between cores/threads so as to avoid communicating
off-chip. These trends are considerably more marked if
we allow a doubling of cores every process generation,
as normal process scaling permits, instead of every two
process generations.

There are interesting implications for systems and
software programming. The notion that if we had
hundreds of cores that we would merely run hundreds
of separate applications is not sensible, even if users
wanted to do so, because their external communication
needs would be unlikely to scale.

Algorithms which assume simple independent data-
parallel operations distributed across cores also effec-
tively operate like entirely separate cores that need their
own allocation of I/O bandwidth. While a lot of focus

in parallelism so far has been on finding or specifying
independence between data, especially in loops, and
exploiting this as data-level parallelism, we see that
this strategy may not be scalable to large numbers
of cores due to these external I/O constraints. In
traditional multicore architectures, external memory is
effectively employed as a large communication crossbar.
Indeed, by using such an approach, many algorithms
can be factored into simple data-parallel operations
with external memory taking care of communication
complexities. For example, each computation stage of
the Fast Fourier Transform is independent and data-
parallel, however the communication between stages is
complex and (external) memory is often used to act
as the communication medium. Similar approaches
are used for matrix operations and many other algo-
rithms. This factoring of algorithms into batch jobs
of independent computation which are glued together
by (external) interdependent memory operations is not
scalable. Instead, to achieve scalability and locality, we
believe fine-grain local computation and communication
between cores is required.

Stream processing goes part-way to addressing this
by factoring stream-processing stages into cores with
explicit communication between them. That is, their
interdependence is explicitly mapped into a linear (one
dimensional) or near-linear inter-core communication
graph. However, with a growing number of cores, this
block level partitioning only goes so far. Additional
techniques are needed for further utilisation of cores
with efficient inter-core communication.

For loops, software pipelining [18, 14] is an
approach that essentially takes the dependency graph of
operations in a loop and distributes them across cores
to form a pipeline across multiple tiles. It is an effective
technique for fine-grain parallelism.

Affine Partitioning [15, 16] is another approach that
partitions algorithms with affine dependencies, typically
within nested loops. It does so by converting the affine
dependency structure into a set of linear equations
and finding provably minimal communication solutions.
The solution results in an instruction sequence in space
(across a mesh of tiles) and in time (by cycle count) with
a set of communication patterns. Software pipelining
can then further extend the parallelisation.

Not all parallelisation approaches, however, result
in partitionings with better internal versus external
communication utilisation. Thread Level Speculation
(TLS) [20] techniques on loops rely on very high
independence between blocks of loop iterations for
speedup, and thus appear very close to data-parallel
in nature. They then allow for some interdependencies
by aborting and restarting threads upon encountering
dependency conflicts, with obvious penalties. Thus
when operating on large datasets, such TLS techniques
may also be significantly limited by external I/O
bandwidth.

The Computer Journal Vol. 00 No. 0, 2008

Implications of Electronics Technology Trends to Algorithm Design 5

As external bandwidth, power and latency con-
straints motivate us to further exploit internal band-
width, we envision that many more techniques will be
developed for interdependent fine-grain communication
and parallelism.

5. VIEWS OF COMMUNICATION

In this section we look at several different abstractions
of interconnect, starting with the virtual interconnect
of the NoC, and moving onto temporal and spatio-
temporal extensions.

5.1. NoC — Virtual Interconnect

Just as logic placement tries to minimize delay and
congestion, especially for critical paths, so too will
mapping of software to cores on-chip. In fact, similar
to how random placement of logic would result in
untenable wiring, so too would random mapping of
software result in unacceptable communication costs.
Thus, exploiting locality is essential for software
running on a CMP, supporting the emergence of
Rentian behaviour. We note an important difference to
traditional Rent’s behaviour — the Rent’s bandwidth-

exponent is dependent on the software application that
is running, as well as the logical topology of the NoC
connecting cores. Indeed, Rentian behaviour cannot
emerge unless the software, the NoC topology and
the mapping process allow it — but for scalability
reasons, we believe that this behaviour will emerge.
Indeed, recent work by Heirman et al. [10], using the
SPLASH-2 parallel benchmark, has demonstrated that
such Rentian statistics can emerge on a CMP system
of 16 to 64 cores, even though the communication
is implicit through the cache-coherence mechanism of
shared memory.

We already demonstrated some uses for a Rent’s
rule approach — first by predicting the scaling
requirements of NoC, and then by generating a hop-
length distribution [7] — the equivalent of a wire-
length distribution. We focused on characterising and
comparing routing approaches for fault-tolerance. We
noted that the probability of a packet reaching its
destination depends not just on the routing algorithm,
and the reliability of the router, but also how far it
needs to travel — the greater the distance, the greater
the chance of encountering a fault. This gave us some
interesting insights into fault-tolerant design. We also
used the distribution to compare the congestion impact
of handling a fault under two different schemes. We
expect many more uses of hop-length distributions,
such as for power, delay and perhaps even critical path
estimation, all aiding in the evaluation and design of
NoC.

5.2. Temporal Interconnect

It is sometimes helpful to take a step back and re-
examine familiar objects with a new perspective. Using
our communication-centric focus, we note that data
doesn’t just traverse space, it also traverses time. An
application merely utilises memory to transport data
from one moment in time to another. So we observe
that:

Memory serves as a form of temporal interconnect,

linking sources with destinations.

We note that at one extreme, register files act like
wires, since they typically connect a fixed source to
fixed destination(s). However, at another extreme,
memory can be used as a look-up table (LUT), replacing
entire functions. Both extremes can be united by the
view of memory acting more like a high-radix switch,
routing multiple sources to multiple destinations. Thus
what may seem like fundamentally different concepts —
memory and NoC, may not be so different after all.

Temporal communication has many similarities to
spatial communication. The greater the distance of
communication, the greater the cost, as storing values
takes up resources (and energy) for how ever long
it is needed. We note that memory is divided into
multiple tiers of service, with different area, power
and performance penalties, of register-file, L1/L2/L3
cache, external memory and even virtual memory.
Communication is automatically routed between these
tiers using statistical techniques to minimize costs, and
when there is too much congestion in one tier, it
overflows into the next tier. Indeed, the properties of
this traffic are so important that most on-chip area
is currently taken up by memory — our temporal
interconnect.

5.3. Spatio-Temporal Interconnect

We observe that once we start viewing memory as an
additional interconnect, or as another form of network:

We can take the separate concepts of NoC and

memory and unite them into a single spatio-

temporal view of interconnect.

We believe that this intuition allows us to see
new ways of doing things, or leveraging analytical
tools in one domain for the other. For example, it
may be beneficial to relieve local temporal congestion
by routing data spatially, depending on neighbouring
temporal congestion. In the spatio-temporal domain
we expect to see a trade-off between temporal locality
and spatial locality. As a very simple example, looking
at Figure 5, if we take computation that naturally has
a 2D graph embedding among a chain of processors (on
the left), and restrict it to only a 1D embedding, then
the local spatio-temporal communication is replaced by
longer temporal-only links.

The Computer Journal Vol. 00 No. 0, 2008

6 D.L. Greenfield, S.W. Moore

FIGURE 5. Simple example illustrating the trade-off
between spatial and temporal locality. A graph is mapped
to four processors on the left (grey), and one layer of its
communication is mapped to a single processor on the right
(black). The spatio-temporal distances are clearly affected
by the mapping.

It may even be possible to develop analytical tools
for deciding how much area to allocate to memories
versus NoC for power or performance concerns. We
believe that being able to predict the properties of such
spatio-temporal communication, and exploiting it, will
be important as we scale to massively multicore CMPs.

6. COMMUNICATION CONSTRAINTS IN

SOFTWARE

Chip MultiProcessors (CMPs) are a somewhat different
domain to traditional multi-chip multiprocessors due
to their relatively much greater on-chip bandwidth
and lower latencies of communication between cores,
enabling fine-grain parallelism to be exploited across the
tiles. We have seen the introduction of many such multi-
core solutions already. This trend will only continue and
it has been argued that we may even expect CMPs with
over a thousand simple cores at the 30nm technology
node [1].

In this section we examine the complexity of
communication in software, noting some self-similar
behaviour, and explore what this might mean in the
massively multicore CMP era.

6.1. Communication vs Computation

The on-chip position of where computation is performed
and data is located can no longer be ignored in the
multi-core domain. The particular physical embedding
of computation and data, and their physical locality to
one another, can directly impact the time and energy
taken due to communication.

As a simple example, let us consider the traversal
of a balanced binary tree data-structure. This is
illustrated in the top half of Figure 6. We ordinarily
think of its traversal as taking time O (log n). Let
us suppose that the binary tree data structure is too
large to fit on one processor tile, and so overflows to
a 2D neighbourhood of on-chip tiles, represented in
the bottom half of the figure. For simplicity we will
also assume that each leaf node is equally likely to be
accessed, and the communication time is proportional
to traversal distance. If each tile can perform the

FIGURE 6. Physically embedding a binary tree onto a
chip affects traversal costs

traversal computation, then we don’t need to go back
and forth with the root node and an embedding
maximally employing locality leads at best to O (

√
n),

whilst a random embedding leads to O (
√

n log n). We
can do even better, on average, if the access patterns
are not uniform by trading off the physical locality of
frequent accesses to those of infrequent ones.

What is important to note here is the large
asymptotic gap between the traditional computational
complexity of O (log n) which implicitly assumes an
O (1) communication cost, to the considerably larger
O (

√
n) that is optimal for a two dimensional embedding

with communication costs factored.

6.2. Fractal Dimensionality

It is interesting to examine the communication char-
acteristics of software, and in particular, whether or
not software exhibits self-similar or fractal behaviour
[8]. Prior work by Concas et al. [5] investigated
whether the relationships of objects was fractal. In such
a view, nodes represent classes, and edges represent
their object-oriented relationships. They analysed sev-
eral large object-oriented Java projects, showed fractal
scaling behaviour and measured the dimensionality.
However, we are more interested in the actual commu-
nication between instructions/functions/blocks, rather
than the programmer’s view of object relationships.

We can take x86 instruction traces from benchmarks
to generate dynamic data dependency graphs. The
edges in such graphs correspond to communication of
operands from one instruction to another. We can then
do a box-counting analysis similar to the technique by
Concas et al. [5], where we tile the graph with boxes
of maximum length l, and then count the number of
boxes. For example, in a 3-D mesh, the number of
nodes inside each box will tend to grow by the cube,
and so the number of boxes will tend to shrink by l3.

The Computer Journal Vol. 00 No. 0, 2008

Implications of Electronics Technology Trends to Algorithm Design 7

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1 2 3 4 5 6 7 8

Lo
g2

(N
um

B
ox

es
)

Log2(BoxSize)

Box Counting Measure: gsmdec

slope=-2.4267

Dynamic Data Dependency Graph
Linear fit

FIGURE 7. Box-counting measure of a GSM-decoder
benchmark exhibits a power-law relationship between box-
size and box-count. This indicates that the dynamic
data-dependency graph for this algorithm exhibits fractal
communication with a dimensionality, equal to its slope, of
approximately 2.4.

For fractal graphs we would expect to see linearity, on a
log-log plot, across a continuum of box lengths, whereas
if we look at random graphs such as of the Erdös-
Rènyi variety, their slopes exhibit a rapidly accelerating
decrease in box-counts with box-length.

By extracting graphs from x86 instruction traces of
benchmarks, we have shown that many indeed exhibit
fractal communication. Looking at Figure 7 we see
an example of this behaviour for the GSM-decoder

benchmark. The slope here indicates a communication
dimensionality of approximately 2.4.

We note that the fractal behaviour of communication
holds across multiple levels of abstraction — whether
between instructions, functions or higher assemblies
of code. Thus, in a CMP setting, we believe
that regardless of the level of instruction mapping,
communication between cores will probably also involve
fractal communication patterns. The fractal properties
of these graphs, impose constraints on the nature of
the complexity of communication and locality that
we can expect. Prior work has shown that Rent’s
rule emerges when higher dimensional graphs are
embedded into lower dimensional surfaces, and that
the Rent’s exponent can also be directly related to
the dimensionality [19]. As we enter the massively
multicore CMP era, we expect that the VLSI
community’s work in modelling equivalent constraints
and self-similarity with Rent’s rule, may be leveraged
in characterising communication in software as well.

6.3. Reducing Complexity

It is quite easy to increase the quantity and complexity
of communication by the insertion of new links, or by

mapping communicating blocks to disparate regions.
However, it is an altogether more difficult task to
reduce these. We acknowledge that the connectivity
within current software does not specifically optimise
for communication so there is considerable room for
improvement from such automated tools. Nonetheless
it is encouraging that even without optimisation,
communication exhibits fractal locality.

Compression, of course, is one technique to reduce the
quantity of communication, but typically at the cost of
latency. Increased intelligence in NoC or the memory
hierarchy may improve the utilisation of communication
resources. Then there are techniques that involve
modifying the program itself. Given the much greater
costs of communication versus computation, we also
believe that we can trade communication within
software for more computation, also within software.
One idea is to replicate the computation in SW if
the cost of replication is less than communicating the
results. Transformations may also exist that reduce
effective dimensionality, or that may be applied to
reduce the degree of high-degree nodes, for example,
by building virtual Steiner trees.

In our fractal-dimensional analysis of the tiff2bw

benchmark, which converts images to black and white,
we expected each pixel calculation to be independent
of the others, and thus have a relatively simple
communication structure. We were surprised to find
very high-degree nodes, which further investigation
revealed to be due to lookup-tables (LUTs) being used
to speed up computation. In adapting this for a scalable
CMP implementation, we would expect that either the
LUT would be replicated across the cores, or that
computation would replace the LUT instead.

We also note that mapping can be used to alleviate
the impact of communication complexity in some parts
of the graph — by having highly-interconnected parts
mapped within a single core, thus utilising the much
higher-radix routing of memory compared to that of
spatial routing. This, however, comes at the expense of
parallelism.

6.4. Length Distributions

We believe that the fractal dimensionality of software
imposes constraints on the minimum achievable Rent’s
exponent and of the length distributions. We have
already suggested a Rentian model for NoC spatial
locality, but we have also argued that there are trade-
offs between spatial and temporal locality. So let us
return to examining temporal locality.

If temporal communication is expensive, then there
are possibly some incentives for it to be minimised
— might we expect some statistical similarities for
temporal distributions as we do for spatial ones?
There are some indications that the distribution
of interconnections may roughly follow a power-law
distribution. Recent work by Hartstein et al. [9], has

The Computer Journal Vol. 00 No. 0, 2008

8 D.L. Greenfield, S.W. Moore

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16 18

Lo
g2

(F
re

qu
en

cy
)

Log2(Distance)

Temporal Distance Distribution: ls

Program Accesses

FIGURE 8. Temporal distance distribution of a trace
for the Unix command ls, seems to exhibit approximately
power-law behaviour.

observed such a distribution for cache-line accesses.
Caches exhibit a long-observed but unsatisfactorily
explained scaling law, where doubling the cache size
reduces the cache misses by roughly

√
2. Hartstein

et al., derived analytical cache models and showed
that this scaling behaviour appears under a power-
law distribution, and is directly related to the power-
law exponent. Of course, in the VLSI domain, we
are more familiar with approximate power-law length
distributions as being a feature of Rentian behaviour
— could implicit temporal constraints be producing this
behaviour?

Although Hartstein et al. [9], examined the
distribution for cache-lines, their view involves address-
locality as well as temporal locality. We were primarily
interested in the more-fundamental communication
graph requirements of instructions, whereas theirs
relates to a particular embedding and clustering in
address-space. Thus, using the same traces as
in Section 6.2, and with instruction count as a
measure of distance, we looked at the distribution
of temporal distances for a suite of benchmarks.
Temporal distances were measured independent of the
means of communication — be they via register files,
stacks, caches, or external memory. Interestingly,
we found that many benchmarks exhibited evidence
of approximately power-law behaviour. Even the
innocuous Unix command ls seems to do so, as seen
by its frequency-length relationship on a log-log scale
(Figure 8).

7. CONCLUSION

With the growing costs of communication compared
to computation we believe that the complexity of
communication for an algorithm will become a far more
accurate predictor of performance than computational

complexity. As a consequence, we see a trend
toward more intelligent, managed use of communication
resources.

At a computer architecture level we see the
use of Networks-on-Chip (NoCs), which transform
physical interconnections between cores into virtual
ones. Nonetheless, communication requirements will
grow in this virtual domain. It is important, then,
to understand and characterise how these virtual
interconnects are used. In a CMP setting, such
interconnect is due to the communication of software
between multiple cores, and external memory. Due to
the slower growth rate of external I/O and its higher
latency and energy costs, keeping communication on-
chip is critical to power and performance. To this
end, we observe that some parallelisation techniques
utilise internal communication whereas others merely
exacerbate the problem. The limits of such internal
communication are thus worth exploring.

By looking at the graphs of communication between
instructions, we demonstrated that dynamic data-
dependency graphs can exhibit fractal behaviour. This
self-similar communication lends credence to the idea
that Rentian statistics may hold for software running
on massively multicore CMP.

We also introduced the concept of temporal
communication whereby memory serves as a temporal
switch routing data from one moment in time to
another. Thus our separate views of NoC and
memory can be unified into one of spatio-temporal
routing. We found that many benchmark algorithms
exhibited an approximately power-law distribution of
temporal distances, further lending credence to fractal
behaviour and also suggesting a possible Rentian-like
characterisation.

We thus believe that the considerable work done in
the VLSI domain to characterise and predict inter-
connect, might be leveraged to help understand and
predict spatio-temporal communication in massively
multicore CMPs. Indeed, we envision that with the
growing dominance of communication-concerns, inter-
connect prediction naturally evolves into system-level
prediction.

ACKNOWLEDGEMENTS

This work was funded in part by a grant from EPSRC
(EP/D036895) and a studentship from the Gates
Cambridge Trust.

REFERENCES

[1] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Ger-
bis, P. Husbands, K. Keutzer, D.A. Patterson,
W.L Plishker, J. Shalf, S.W. Williams, and K.A. Yelick.
The landscape of parallel computing research: A
view from Berkeley. Technical Report UCB/EECS-
2006-183, EECS Department, University of California,
Berkeley, December 18 2006.

The Computer Journal Vol. 00 No. 0, 2008

Implications of Electronics Technology Trends to Algorithm Design 9

[2] A. Banerjee, R.D. Mullins and S.W. Moore. A
Power and Energy Exploration of Network-on-Chip
Architectures. In proceedings of the First International
Symposium on Networks-on-Chips, May 2007.

[3] D. Callahan, K. Kennedy and A. Porterfield. Software
prefetching. In proceedings of the Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ACM, 1991

[4] P. Christie and D. Stroobandt. The interpretation and
application of Rent’s rule. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, , 8(6):639–648,
Dec. 2000.

[5] G. Concas, M. F. Locci, M. Marchesi, S. Pinna, and
I. Turnu. Fractal dimension in software networks. EPL
(Europhysics Letters), 76(6):1221–1227, 2006.

[6] W.J. Dally. Computer architecture is all about
interconnect. HPCA Panel, February 2002.

[7] D. Greenfield, A. Banerjee, J.G. Lee and S.W. Moore.
Implications of Rent’s rule for NoC design and its fault-
tolerance, In proceedings of the First International
Symposium on Networks-on-Chips, May 2007.

[8] D. Greenfield and S.W. Moore. Brief Announcement:
Fractal communication in software data dependency
graphs, In proceedings of the Twentieth Annual Sym-
posium on Parallelism in Algorithms and Architectures
(SPAA), June 2008.

[9] A. Hartstein, V. Srinivasan, T.R. Puzak, and P.G.
Emma. Cache miss behaviour: is it sqrt 2? In
proceedings of the 3rd Conference on Computing
frontiers (CF06), pages 313–320, New York, NY, USA,
2006. ACM.

[10] W. Heirman, J. Dambre, D. Strooband, and J. Camp-
enhout. Rent’s rule and parallel programs: Character-
ising network traffic behaviour. In SLIP, pages 87–94,
2008.

[11] ITRS. International technology roadmap for semi-
conductors — 2007 edition: Assembly and packaging.
Technical report, 2007.

[12] B.S. Landman and R.L. Russo. On a pin versus block
relationship for partitions of logic graphs. IEEE Trans.
Comput., 20(12):1469–1479, Dec. 1971.

[13] J. Lu, et al. Dynamic helper threaded prefetching
on the Sun UltraSPARC/spl reg/CMP processor,
In proceedings of 38th IEEE/ACM International
Symposium on Microarchitecture (MICRO-38), 2005.

[14] F. Li, M. Kandemir, and I. Kolcu. Exploiting
software pipelining for network-on-chip architectures.
In proceedings of the IEEE Computer Society Annual
Symposium on Emerging VLSI Technologies and
Architectures, 2006., 2-3 March 2006.

[15] S.-W. Liao, Z. Du, G. Wu, and G.-Y. Lueh. A code
generation algorithm for affine partitioning framework.
In proceedings of the 11th International Conference on
Parallel and Distributed Systems, volume 2, pages 17–
21, 20-22 July 2005.

[16] A.W. Lim, G.I. Cheong, and M.S. Lam. An
affine partitioning algorithm to maximize parallelism
and minimize communication. In proceedings of
International Conference on Supercomputing, pages
228–237, 1999.

[17] S.W. Moore and D. Greenfield. The Next Resource
War: Computation vs. Communication. In proceedings

of the International Workshop on System Level
Interconnect Prediction (SLIP08), pages 81–86, 2008.

[18] G. Ottoni, R. Rangan, A. Stoler, and D.I. August.
Automatic thread extraction with decoupled soft-
ware pipelining. In proceedings of the 38th
IEEE/ACM International Symposium on Microarchi-
tecture (MICRO-38), 2005.

[19] H.M. Ozaktas. Paradigms of connectivity for
computer circuits and networks. Optical Engineering,
31(7):1563–1567, 1992.

[20] J.G. Steffan, J.G. Steffan, and T.C. Mowry. The poten-
tial for using thread-level data speculation to facili-
tate automatic parallelization. In T.C. Mowry, editor,
Proceedings of the Fourth International Symposium on
High-Performance Computer Architecture, pages 2–13,
1998.

[21] W. Zhang, D.M. Tullsen and B. Calder. Accelerat-
ing and Adapting Precomputation Threads for Efficient
Prefetching, In proceedings of the IEEE 13th Inter-
national Symposium on High Performance Computer
Architecture, pages 85-95, 2007.

The Computer Journal Vol. 00 No. 0, 2008

