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Vector field tomography is a field that has received considerable attention in recent decades. It deals
with the problem of the determination of a vector field from non-invasive integral data. These data are
modelled by the vectorial Radon transform. Previous attempts at solving this reconstruction problem
showed that tomographic data alone are insufficient for determining a 2D band-limited vector field
completely and uniquely. This paper describes a method that allows one to recover both components of
a 2D vector field based only on integral data, by solving a system of linear equations. We carry out the
analysis in the digital domain and we take advantage of the redundancy in the projection data, since
these may be viewed as weighted sums of the local vector field’s Cartesian components. The potential

of the introduced method is demonstrated by presenting examples of vector field reconstruction.
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1. INTRODUCTION

In recent years Hough transform [1] and the related Radon
transform [2] have received much attention. Theoretical ideas
found in Radon’s early work apply in conventional tomographic
reconstruction, very common in medical imaging [3]. Functions
that are reconstructed by using traditional tomography are scalar
functions describing, e.g. absorption or scattering properties.
However, over the last few decades there has been a growing
demand for similar techniques that would perform tomographic
reconstruction of a vector field, rather than a scalar one, when
having integral information. The problem of recovering a vector
field from its line integrals has generally been regarded as
an under-determined problem. This seems to be clear from
the fact that a scalar function is determined uniquely from
its Radon transform, whereas a vector field requires two (in
2D) or three (in 3D) component functions to be determined.
Several applications of vector field tomography have been
considered in the literature. These include: blood flow imaging
[4, 5]; fluid mesoscale velocity imaging in ocean acoustic
tomography [6–8]; fluid-flow imaging [9–16]; electric field
imaging in Kerr materials [17–19]; imaging of the component of
the gradient of the refractive index field, which is transversal to

the beam, in Schlieren tomography [14]; velocity field imaging
of heavy particles in plasma physics [20]; density imaging in
supersonic expansions and flames in beam deflection optical
tomography [21]; non-destructive stress distribution imaging of
transparent specimens in photoelasticity [22, 23]; determination
of temperature distributions and velocity vector fields in
furnaces [24]; and magnetic field imaging in Tokamak in
polarimetric tomography [25].

Using the physics of the applications mentioned above, it can
be shown that, in each case, the acquired measurements reduce
to an integral transform of the investigated vector field along
integration lines, the vectorial Radon transform. When we try to
investigate planar vector fields in bounded domains, two classes
of the vectorial Radon transform that model the tomographic
measurements, arise, depending on the interaction between the
obtained measurements and the investigated vector field. The
first type of the line integral transform J1 is

J1 =
∫

L

f̄(x, y) · ŝ ds =
∫

L

f‖ ds, (1)

where f̄(x, y) is the planar vector field under investigation, ŝ
is the unit vector along the integration (measurement) line L,
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ds is an element of path length along this line, · is the symbol
for dot product and f‖ is the component of f̄(x, y) along L.
From equation (1) we may deduce that only the component of
f̄(x, y) along line L is observed in this type of measurement
(longitudinal measurements). The second class of line integral
transforms J2 is used to model tomographic measurements that
collect information from the component of the investigated
vector field perpendicular to the measurement line (transversal
measurements):

J2 =
∫

L

f̄(x, y) · ρ̂ ds =
∫

L

f⊥ ds. (2)

Here ρ̂ is the unit vector perpendicular to the line of integrationL

and f⊥ is the component of f̄(x, y) transverse to L. The integral
transforms of equations (1) and (2) (which are the two types of
vectorial Radon transform for planar vector fields) are a natural
generalization of the classical Radon transform to vector fields.

During the short history of 2D vector field tomography, many
investigators attempted to solve the reconstruction problem
[13, 14, 22, 26] , but the result has always been the same:
only one component of the vector field could be recovered
from the tomographic measurements. The component that
could be recovered was either the curl-free (irrotational) part
or the divergence-free (solenoidal) part, depending on the
physical principle of the measurements, namely the relation
between the obtained set of measurements and the investigated
vector field. One possible solution to this problem would
be to collect data using both types of relation between
the measurements and the examined vector field for every
application. Indeed, such an amount of information would
be sufficient to allow the full reconstruction of the vector
field as Braun and Hauck demonstrated in [14]. Unfortunately,
there are only very few specialized applications (mainly
in optics), where it is physically realizable to have all
these measurements available. Moreover, as Norton showed
in [13], we may have a full reconstruction based only
on longitudinal measurements, as long as, apart from the
longitudinal measurements, supplementary information about
the vector field, especially boundary conditions and a priori
information about the source distribution, is available as well.
In addition, Rouseff and Winters showed in [27] that a 2D
vector field reconstruction based on boundary data is possible
for scattering geometries. However, the model they used for the
available scattering measurements is different from the integral
transforms of equations (1) and (2).

All the conclusions concerning 2D vector field tomography
described above were drawn from work that was carried out in
the continuous domain. In this paper we consider the problem
in the digital domain and consider only band-limited fields. We
wish to reconstruct the field in specific sampling points arranged
in a grid, finite in number. Then, there is a lot of redundancy in
the data. Although the available measurements are projections
of one component of the field (along or perpendicular to the
direction of the tracing line), we may use many line orientations

passing through every point and then view their recordings as
weighted sums of the local vector field’s Cartesian components.
We may then exploit the redundancy in the data to recover
the vector field at all sampling points of the 2D domain. The
extension to 3D is straightforward, limited only by the number
of simultaneous linear equations one can solve.

This paper is organized as follows. In Section 2 we present
our methodology. In Section 3 we define the way we sample
the parametric space. In Section 4 we present an example
application, where a static electric field is reconstructed from
voltage measurements only on the boundary of the field.
This example is chosen because from Coulomb’s law we can
compute exactly the ground truth and thus evaluate the proposed
methodology. In Section 5 we examine the effect of noise on
the reconstruction of the vector field. We conclude in Section 6.

2. THE PROPOSED METHODOLOGY

The whole treatment in this section is performed in the digital
domain. The bounded 2D domain, within which we want to
recover the vector field, is divided into tiles of finite size. The
values of the components of the vector field in every such tile
are the values of the components of the field at the centre of
this tile, namely the sampling point. Hence, our formulation of
the vector field reconstruction problem is in terms of Cartesian
vector components required at these sampling points of the 2D
domain.

In order to achieve the full vector field recovery, we exploit
the redundancy in the integral data, since these data may be
viewed as weighted versions of the local vector field’s Cartesian
components. The line-integral data are obtained from a finite
number of points, that reside on the boundary of the 2D domain,
where measurements are made. These points are assumed to
be the locations of ideal point sensors. The solution to the
reconstruction problem is based only on the projection data
along lines defined by the finite number of measurement points.

The ultimate objective of this analysis is to recover both
components of the vector field at every sampling point of the
bounded 2D domain by solving a system of linear equations.
In this study, in order to form this system of linear equations,
we assume that a pair of sensors measures only the integral
of the component of the vector field along the line defined by
these sensors. Hence, the integral transform that models the
process of data acquisition is given by equation (1). By using
all available line-integrals, we obtain the required system of
linear equations, the solution of which is expected to give all
the components of the vector field at all sampling points of
the 2D domain. Since we have two unknowns per sampling
point of the 2D space, namely the components (fx, fy) of the
vector field, the number of the available equations has to be
selected so that the number of equations exceeds the number of
the unknowns. By solving then the system of equations in the
least-squares error sense, we expect to achieve robustness in the
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solution. Such a constraint may be easily satisfied. As a gross
estimate, we may assume that if we sample the space by N ×N

grid points, where we wish to estimate the field, and assume the
4N sampling points on the perimeter to represent the sensors,
we can form (4N)!/[(4N − 2)!2!] equations by considering
all possible combinations of the sensors in pairs. We have 2N2

unknowns and 2N(4N −1) = 8N2 −2N equations, a far larger
number of equations than unknowns.

Next, we must translate into the digital domain the integration
expressed by equation (1) in the continuous domain. The
integrals of the vector field along the tracing lines have to be
expressed in terms of the components of the field at the sampling
points of the 2D grid. To do that we follow the methodology used
in [28–30] for the calculation of the trace transform.

Let us assume that we have the digitized square 2D domain
shown in Fig. 1 and we wish to recover vector field f̄(x, y) at the
centre of every tile of this space. The origin of the axes of the
coordinate system is chosen to be at the centre of the domain.
The length of each side of the square domain is taken to be equal
to 2U . The size of the tiles with which we sample the 2D domain
is P × P , so that 2U/P is an integer. Then the total number
of tiles of the digitized domain is 4U 2/P 2(= 2U/P × 2U/P )

and the overall number of the unknowns is X ≡ 8U 2/P 2,
since we have two unknown components per tile of the 2D
space. Moreover, we assume that there are ideal point sensors
that reside on predetermined and regularly placed positions
along the border of this domain. These positions are the middle
points of the boundary edges of all boundary tiles. Hence, 8U/P

(= 4 × 2U/P ) sensors, in total, are located along the boundary
of the domain of Fig. 1.

Let us consider a line segment AB between two such sensors,
chosen arbitrarily, crossing this domain as shown in Fig. 1.
Next, we show how the available line-integral measurement Ji

y

U

U

Q

A

B

P

P

x

−U

−U

FIGURE 1. A line segment between two boundary sensors that reside
at points A and B. The angle between the line segment and the positive
direction of the x-axis is w. The size of the tiles, with which we sample
the 2D space, is P × P . Point Q is the foot of the normal from the
origin of the axes to the line segment.

between A and B, which is described by equation (1), gives rise
to a linear equation. The known coordinates of points A and B

are (xA, yA) and (xB, yB), respectively. Therefore, the equation
of line AB is

y = λx + β, (3)

where

λ ≡ yB − yA

xB − xA

and β ≡ yA − yB − yA

xB − xA

xA. (4)

The unit vector ŝ along the line (and with direction from A to
B) is

ŝ = cos wx̂ + sin wŷ, (5)

where w = arctan λ is the angle between the line and the
positive direction of the x-axis (Fig. 1). The next step is to
perform a sampling of the line segment. The starting point of
this sampling will be the foot of the normal of this line from the
origin of the axes (point Q in Fig. 1). The coordinates of the
starting point Q for the calculations along the line are

xQ = − β

(λ + 1/λ)
, yQ = −1

λ
xQ. (6)

The sampling along the line section will be performed on either
side of Q and we assume that the sampling step is �s. The
maximum number of sampling intervals that we can fit in this
line section is determined by the intersection points between the
line and the border of the 2D domain. The distances between the
starting point Q and intersection points A and B are dA and dB ,
respectively. Consequently, the numbers lA and lB of �s, that
we may fit in the line segment between the foot of the normal
Q and the boundary points A and B, respectively, are

lA =
⌊

dA

�s

⌋
, lB =

⌊
dB

�s

⌋
, (7)

where � � is the symbol for the floor operator. Therefore, the
sampling points we shall consider along the line segment will
have the coordinates

xl = xQ + lxinc, yl = yQ + lyinc for l ∈ [−lA, lB], (8)

where the increments xinc and yinc of the coordinates, between
successive sampling points, are given by

xinc = �s cos w, yinc = �s sin w. (9)

The total number of sampling points along the line segment is
lA + lB + 1.

After having worked out the coordinates of the sampling
points of the line, we must assign them values from the vector
field. We use nearest neighbour interpolation for that. Hence, we
need to determine for each sampling point of the line, the tile the
centre point of which is its nearest neighbour. For this purpose,
we use the integer coordinates (i, j) with i, j = 1, . . . , 2U/P ,
of each tile of the 2D domain, as shown in Fig. 2.

The Computer Journal, Vol. 54 No. 9, 2011

Downloaded from https://academic.oup.com/comjnl/article-abstract/54/9/1491/357913
by Nottingham Trent University user
on 15 March 2018



1494 M. Petrou and A. Giannakidis

−UP

−U

y

U

U

Q

A

B

x

(1,1)(2,1) 

(1,2)

(1,3)

(3,1) (4,1)

P

Δs

FIGURE 2. The integer coordinates (i, j) with i, j = 1, . . . , 2U/P

of the tiles of the 2D domain. Also shown is an example of sampling a
line segment with sampling step �s.

Then tile (i, j), which corresponds to a sampling point
(xl, yl), is identified by using the formulae

i =
⌈

xl + U

P

⌉
, j =

⌈
yl + U

P

⌉
, (10)

where 	 
 is the ceiling operator.
The next step is to form the equation that corresponds to the

line-integral measurement Ji between sensors at points A and
B. This may be achieved by considering the sampling points
of segment AB as the centres of linear segments of length �s,
apart from the sampling points with l = −lA and l = lB , which
are special cases. Along each segment of length �s, the vector
field is assumed constant, equal to the assigned value of the
vector field at the corresponding sampling point of the line. We
may, then, convert the integral of equation (1) into a sum by
projecting the value of the field at each sampling point of the
line onto the vector that represents the direction of the line:

Ji =
lB−1∑

l=−lA+1

f̄l · �s + f̄lA · ŝ�A + f̄lB · ŝ�B. (11)

Here f̄l = (fx l, fy l
), f̄lA = (fx lA, fy lA

) and f̄lB = (fx lB, fy lB
)

are the (unknown) assigned vector field values at the sampling
points l, lA and lB , respectively, �s = �s ŝ = �s(cos wx̂ +
sin wŷ), and

�A = �s

2
+ dlA, �B = �s

2
+ dlB, (12)

where dlA is the distance between the sampling point with
l = −lA and the boundary point A, and dlB is the distance
between the sampling point with l = lB and the boundary point
B. In order to obtain the system of linear equations, the solution
of which will give the components of the unknown vector field
f̄(x, y) at all sampling points of the 2D domain, we repeat the

procedure described above for all possible pairs of boundary
point sensors. Under the assumption that there are 2U/P ideal
point sensors on each side of the boundary of the domain of
Fig. 1, and since line-integral data obtained from pairs of sensors
on the same side of the boundary of the square are not useful,
the number of equations is

G ≡ 24U 2

P 2

[
= 2U

P

(
3 × 2U

P
+ 2 × 2U

P
+ 1 × 2U

P

)]
.

Here we have taken care that each line segment AB is counted
only once.

To summarize, our formulation of the vector field
reconstruction problem may be written as

g = Cx, (13)

where g ∈ R
G×1 is the vector that contains the available

projection measurements wrapped into a vector, x ∈ R
X×1 is the

set of the components of the vector field to be reconstructed at all
sampling points of the 2D digitized domain written as a vector
and C ∈ R

G×X is the system matrix containing the weight
factors between each of the components of the vector field at
every reconstruction point and each of the corresponding tracing
line orientations from the set of measurements. System matrix
C is obtained from the analysis described above. Moreover, it is
G > X, in accordance with our intention to take advantage of
the redundancy in the line-integral data, and, therefore, we have
to deal with an over-determined system of linear equations.

3. UNIFORM RADON DOMAIN SAMPLING

The reconstruction method described in the previous section
is based on linear algebra. This approach expresses the
tomographic vector field reconstruction problem in terms of a
system of linear equations. However, there is a duality between
the Radon transform scheme and this matrix formalism.
Hence, solving the above described system of linear equations
is equivalent to inverting the vectorial Radon transform.
According to the theory of the Radon transform [3], a necessary
requirement for producing accurate reconstructions is to sample
uniformly the Radon domain parameter space, defined by the
length of the normal to the tracing line ρ and the angle θ this
normal forms with the positive x-axis (see Fig. 3).

Placing our sensors, however, uniformly along the border of
the reconstruction grid does not produce a uniform sampling
of the parameter space. Instead, we must follow [28–30] and
uniformly sample parameters ρ and θ . From the values of these
parameters, then the locations of the sensors along the boundary
of the domain should be determined. Therefore, we sample the
parameters ρ and θ with the steps �ρ and �θ , respectively:

ρr = r�ρ, r = 0, 1, . . . , R − 1, (14)

θt = t�θ, t = 0, 1, . . . , T − 1, (15)
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x

ρ

θ

y

FIGURE 3. The two parameters ρ and θ used to define a tracing line.
These variables are the coordinates of the Radon domain.

where R and T are the total number of samples used for the
parameters ρ and θ , respectively. It is a common practice in such
cases to consider angle θ in the range [0, π ] while ρ is allowed
to take positive and negative values, with the negative values
corresponding to lines with θ > π . This convention is used
in order to take into consideration the direction of the scanning

line. In our problem, however, each line is considered only once,
as direction does not matter. Thus, we allow the parameter θ to
range between 0 and 2π , while ρ ranges between 0 and ρmax,
where ρmax is half the maximum diagonal of the 2D domain we
consider. We consider all possible pairs of values of these two
parameters. Each pair (ρl, θl) with l = 1, . . . , RT describes a
tracing line with the following equation:

ρl = x cos θl + y sin θl, l = 1, . . . , RT . (16)

This tracing line corresponds to a line-integral measurement
or, equivalently, to a linear equation of the required system of
equations. In order to obtain the boundary positions, where the
two sensors that will collect this measurement need to be placed,
we must find the points where this line intersects the domain
boundaries. If we assume that we have the same rectangle of
interest of Fig. 1, as in Section 2, the borders are segments of the
lines x = ±U and y = ±U . Therefore, for tracing lines, that are
not parallel to either the x or the y-axis, the four intersection
points (U, y1), (−U, y2), (x1, U) and (x2, −U), between the
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at (19, −19), (−16, 21), (24, 11.5) and (−19, −40): (a) the recovered vector field; (b) the electric field as computed from Coulomb’s law; (c)
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considered measurement line and the lines x = ±U , y = ±U ,
have to be obtained as follows:

y1 = ρl

sin θl

− U cot θl, (17)

y2 = ρl

sin θl

+ U cot θl, (18)

x1 = ρl

cos θl

− U tan θl, (19)

x2 = ρl

cos θl

+ U tan θl. (20)

Out of the estimated four numbers y1, y2, x1 and x2, we select
the two of them with the absolute value less than U . There will
always exist two such numbers for tracing lines that lie within
the rectangle of interest. These two numbers identify the two
of the four pairs (U, y1), (−U, y2), (x1, U) and (x2, −U) that
give the coordinates of the two intersection points between the
tracing line (ρl, θl) and the border of the domain of interest,
where the two ideal sensors should reside. For tracing lines that
are parallel to the x-axis, i.e. lines with θl = π/2 or 3π/2, the
equation of the line is y = ±ρl and the two intersection points
are (U, ±ρl) and (−U, ±ρl), respectively. Likewise, for tracing

lines that are parallel to the y-axis, i.e. lines with θl = 0 or π ,
the equation of the line is x = ±ρl and the two intersection
points are (±ρl, U) and (±ρl, −U), respectively.

Having found the coordinates where the ideal sensors should
be placed, the system of linear equations is formed in a way
similar to the one presented in Section 2.

As a consequence of the necessity of uniform sampling in
the parameter space, the sensors can no longer be regularly
placed along the border of the domain. Also, the number of the
required sensors is now significantly higher, theoretically twice
the number of the line-integrals that are considered.

4. AN EXAMPLE: ELECTRIC FIELD IMAGING

In this section we consider the case where the vector field that
we want to recover is the electric field created by a static charge.
There are many ways to recover the electric field from boundary
data. However, here we use the electric field only to demonstrate
our method. In order to satisfy the condition of a band-limited
field and avoid problems with singularities, we place the source
of the vector field that we aim to recover outside the bounded 2D
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FIGURE 5. Left two columns: error in the reconstructions when the sensors are placed uniformly along the boundary. Right two columns: errors
in the reconstruction when the sampling is done uniformly in the Radon domain with �ρ = 1 and �θ = 3◦. The location of the source of the
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area. In a real physical system, we do not expect to have to deal
with real singularities anyway. Again we stress that the problem
we solve is intentionally kept simple in order to demonstrate
the method. Hence, instead of avoiding singularities by using
a realistic version of Coulomb’s law for sources of finite size,
we place the source outside the domain of interest and make it
infinitesimally small.

We assume that the sensors we use measure the local potential
of the field. For a static electric field, every voltage difference
between any two points is the line-integral of the electric field
projected along the line that connects the two points. We may
then say that these voltage differences give the vectorial Radon
transform of the electric field.

For our experiments, we employed the digital square domain
of Fig. 1 and chose 2U = 11 as the domain size and P = 1
as the tile size. Hence, the domain consists of 121 tiles and the
number of the unknowns (the Ex and Ey components of the
field for every tile of the domain) is 242. Four different cases
for the location of a single source vector field are first reported.
We relied entirely on a number of voltage differences obtained
between ideal point sensors (electrodes) that lie on the boundary
of this domain to carry out the electric field reconstruction.
In order to acquire the simulated potential measured by every
sensor, we used Coulomb’s law. The sampling step along the
tracing lines was set to 1. We used uniform sampling in the
parameter space, using the sampling steps recommended in
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FIGURE 6. Left three columns: the relative errors in magnitude for the cases (i) uniform sampling in (x, y); (ii) uniform sampling in (ρ, θ) with
�ρ = 1 and �θ = 3◦; (iii) uniform sampling in (ρ, θ) with �ρ = 1 and �θ = 2◦. Right three columns: the error in vector field orientation for the
same cases. The location of the source of the electric field was (from top to bottom) at (19, −19), (−16, 21), (24, 11.5) and (−19, −40). We note
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[29, 30], namely �ρ = 1 and �θ = 2◦. This yielded an
over-determined system of 6 × 180 = 1080 equations. The
solution of this system of equations was obtained by applying
the least-squares method. The Householder orthogonalization
method [31], which is a numerically useful procedure in order to
solve mean square value problems for cases where the condition
number of the matrix of coefficients is large [32], was also
tested for our reconstruction problem. However, the results we
obtained were identical with the results we obtained using the
least-squares method. Moreover, it must be noted that since the
residual we computed by using the least-squares method was
not large when compared with the solution vector, there was

no need to use the Cholesky method [33]. The reconstruction
results are shown in Fig. 4.

To obtain this reconstruction, 2160 sensors had to be placed
along the boundary of the domain. The placement of such a
number of sensors in the correct position may be impractical.
This problem may be solved by using a third generation rotating
scanner configuration, that is, for this particular example, 12
(that is, 6 × 2) sensors for the six ρ values, rotated to 180
positions, could be used. For an alternative approach, based
on interpolation, see also [34]. To assess the significance of
uniform sampling in the (ρ, θ) space, we performed a second set
of experiments, where the sensors were regularly placed along
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the border of the domain, at the middle points of the boundary
edges of all boundary tiles. Hence, we used 11 sensors on each
side of the boundary of the square domain. We considered all
possible voltage differences between pairs of these boundary
points, apart from points lying on the same border line, and
we formed the system of linear equations according to the
description of Section 2. The number of available equations
this time was 726, far fewer than for the previous case. In order
to assess the effect of uniform sampling of the Radon space,
we also run experiments with �ρ = 1 and �θ = 3◦. This
choice of sampling rates yields a system of 6 × 120 = 720
equations, comparable to that we obtain by placing the sensors
uniformly along the domain border. The reconstructed fields for
all positions of the static charge were visually indistinguishable
from the reconstructions obtained by the first set of experiments.
The error plots of both these sets of experiments are shown in
Fig. 5. We note that the errors in the reconstruction are lower
when the sampling is uniform in the (ρ, θ) space.

To appreciate better the improvement gained by using
uniform sampling in the (ρ, θ) space, in Fig. 6 we present the
histograms of the errors in each case. By close examination of
Fig. 6, we may see that the use of uniform sampling in the (ρ, θ)

space resulted in a much better vector field reconstruction. Note
that in 14 out of the 16 panels referring to uniform sampling of
the Radon space, the high-error bins are empty. In all cases, the
average error is lower for uniform sampling of the Radon space.
In particular, it was found that the average difference in vector
field orientation measured in degrees was 27% lower when
using uniform sampling in the Radon domain with �ρ = 1 and
�θ = 2◦, as opposed to uniform sampling in the (x, y) domain,
whereas the average error in magnitude was lower by 19%.

The corresponding differences in angular and magnitude error
for the case with �ρ = 1 and �θ = 3◦, over the case
of uniformity in the (x, y) domain, were 20% and 13%,
respectively.

Figure 7 shows the results of the reconstruction of some much
more complicated fields. These fields were produced by placing
two point sources located at (19, −19) and (−16, 21), and at
(−11, −24.5) and (19, 19). Figure 8 shows the errors of the
reconstruction, and Fig. 9 the histograms of these errors. Note
that the high reconstruction errors appear in areas where the
field is almost 0, i.e. in areas where in the calculation of the
relative error we have a very small number in the denominator.
Further, the effects of quantization noise become significant
when the field is very weak and so its orientation is not calculated
reliably. Note also that the error of the reconstruction using
uniform sampling in the Radon space depends on the sampling
rate used. For the derivation of the right sampling rates for a
given problem, the reader is referred to [35].

5. THE EFFECT OF NOISE ON THE
RECONSTRUCTION

In this section we investigate the effect of noise on the
reconstruction of the vector field. In all experiments reported
in the previous section, the sensors were placed exactly in the
positions we had decided, and the measurement taken by each
sensor was exactly the value predicted by Coulomb’s law. In a
practical system, however, some of the sensor measurements are
expected to have inaccuracies and some of the sensor positions
are also expected to be somehow inaccurate. To emulate these
effects, we performed the following series of experiments.
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(i) We added a noise value to a measurement as a fraction of
the true value, with random sign. For example, 2% noise
means that the sensor measurement was changed by 2%
of the value dictated by Coulomb’s law. The change was
either incremental or decremental, the choice made at
random for each sensor.

(ii) We moved a sensor away from its true position by a
fraction of the true position. For example, if according
to the theory, a sensor should be placed at position
(x, y), and we consider a 2% error, then the coordinates
of this sensor were shifted by 2% the corresponding

correct values, with a positive or negative sign chosen
at random.

(iii) We considered both the above errors simultaneously.

We performed four series of experiments: (a) we perturbed
only 25% of the sensors; (b) we perturbed 50% of the sensors; (c)
we perturbed 75% of the sensors; (d) all sensors were perturbed.
In the cases where only some of the sensors were perturbed, the
perturbed sensors were selected at random.

The source for all the simulations was located at (19, −19).
The sampling steps we used for the Radon domain were �ρ = 1
and �θ = 2◦.
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FIGURE 10. (a) and (b) Errors in vector field orientation and magnitude, when noise was added to the measurements of 25% of the sensors, as
a percentage of the true value. (c) and (d) Errors in vector field orientation and magnitude, when small perturbations in the sensor positions were
added. Position perturbations were a percentage of the true positions. (e) and (f) Errors in vector field orientation and magnitude, when both sensors’
measurements and positions were changed by a percentage of their true values. In all cases, 25% of the sensors were perturbed.
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FIGURE 11. As in Fig. 10, but here 50% of the sensors were perturbed.
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FIGURE 12. As in Fig. 10, but here 75% of the sensors were perturbed.
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FIGURE 13. As in Fig. 10, but here all sensors were perturbed.

The results of these experiments are shown in Figs 10–13.
We observe that the results are relatively robust to perturbations
in the position of the sensors, but much more sensitive to
perturbations in the sensor measurements. This is not surprising
as the difference in reconstruction accuracy was not very
seriously affected either we were sampling uniformly in the
Radon domain or we were placing the sensors uniformly along
the border of the region.

The noise model assumed in these experiments is signal
dependent. Noise processes of this type are inherent in many
fields, such as optics [36], kinematics [37] and magnetic

resonance imaging [38]. However, in many cases, for example
in telecommunications, the noise that corrupts the data is signal
independent. The implication of employing signal independent
(additive or multiplicative) noise for the proposed algorithm is
that the quality of reconstruction will be worse in places where
the field is weak, and better in places where the field is strong.

6. DISCUSSION AND CONCLUSIONS

In this paper, the vector field tomography problem was
discussed. In previous attempts to map integral measurements
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obtained along tracing lines onto a vector field, conventional
(scalar) tomography theory had invariably been applied [7, 13,
14]: this had led to an under-determined problem. However,
in this paper a new analysis was presented that aimed at the
recovery of all components of a band-limited vector field at the
sampling points of a 2D digitized bounded domain, by solving,
this time, a system of linear equations. The reconstruction
was based only on boundary integral measurements. We took
advantage of the redundancy in boundary integral data with
a view to recovering the vector field at discrete and finite
in number sampling points, since these data may be seen as
weighted sums of the local vector field’s Cartesian components.
One might think that the reconstruction errors may further
be reduced if the contribution of each sampling point to the
integral along a tracing line were taken into consideration in a
more elaborate way, for example, by considering the length of
each line segment inside the tile represented by the sampling
point. This, however, would have made the solution of the
problem much more complicated. The error introduced by
the nearest neighbour interpolation we use is somehow dealt
with by the redundancy in the linear system we solve, as
the unknowns are generally much fewer than the equations.
Indeed, one may consider replacing the nearest neighbour
interpolation with bilinear or any other type of interpolation,
where the distance of the line segment, along which we
perform the integration, from the four nearest sampling points
is taken into consideration. However, it was found that bilinear
interpolation increased the angular error by 75% and the
magnitude error by 70%, compared with the nearest neighbour
interpolation. We attribute this to the accumulation of projection
errors, the fact that the system of linear equations becomes
too complicated and the least-squares solution becomes more
unpredictable.

An important issue when solving inverse problems is the
sensitivity of the solution to noise. In the case of this problem,
there are two possible sources of noise: inaccuracies in the
sensor measurements and inaccuracies in the positions of the
sensors. In a practical application, one may hope that one may
use very accurate sensors and that even more accurate sensors
may be developed in the future. The inaccuracies, however,
in the sensor positions are rather intrinsic to the problem:
the domain over which the vector field is to be reconstructed
may not have a shape that helps the correct placement of the
sensors. It is very encouraging, therefore, that the solution of
the problem is relatively stable to perturbations in the sensor
positions.

The solution is rather sensitive to the sensor measurements.
For example, if only 25% of the sensors yield measurements that
are only 4% wrong, the orientation angle of the reconstructed
field is recovered with an average error of about 15◦, while
the magnitude of the reconstructed field is recovered with an
average relative error of about 23%. Such sensitivity to errors
in the measurements may be overcome with the help of robust
reconstruction methods. There are two ways to go about this.

(i) One may solve the system of linear equations in a robust
way. For example, instead of working out a solution that
minimizes the sum of the squares of the errors with which
individual equations are satisfied, one may use a robust
redescending kernel [39] that will reduce the effect of
outliers. The problem contains enough redundancy to
permit such an approach.

(ii) The problem may be formulated as a Bayesian
reconstruction problem [40], where a regularization term
is added to a global cost function that expresses the
adherence of the values of the reconstructed field to the
obtained measurements. The regularization term may
be such that it encourages the smooth variation of the
field inside the domain. Expecting smooth field variation
between neighbouring sampling positions is compatible
with the assumption that there are no singularities
inside the domain. Indeed, we consider this assumption
pretty realistic as singularities usually arise due to poor
mathematical modelling rather than being present in a
physical system. Once a cost function of the solution
has been formulated, it can be solved using Bayesian
methods [41, 42] and a global optimization approach
like, for example, simulated annealing [43].

The analysis performed here assumed that the sensors are
placed in the desirable positions. However, in practice the user
rarely has the option to place the sensors exactly at the desired
positions. We have proposed elsewhere [34] the use of virtual
sensors, placed at the optimal positions, where the ‘measured’
values are estimated from the true sensor values. Finally, we
must emphasize that the reconstruction of the field in the digital
domain is possible, only under the assumption that the field is
band-limited. The presence of singularities in the domain of
interest would result in a field with arbitrarily high frequencies,
something that would have invalidated our method.

The proposed work may find application in CT angiography,
i.e. in imaging blood vessel flow velocity. Further, it may
be used to work out equivalent ‘effective electrostatic fields’
of complex systems, like the human brain, where the true
electromagnetic field is very difficult to be reconstructed due,
for example, to the different electromagnetic properties of the
different types of tissue that are present in the anatomy of the
brain. The idea is to consider the EEG measurements obtained
by an EEG system with the maximum number of electrodes.
Instead of trying to solve the inverse problem to identify the
active regions of the brain, we may treat these measurements as
the instantaneous voltages of an unknown electrostatic field,
measured at the locations of the electrodes. We can then
reconstruct this electrostatic field from these voltage values.
This way we have a systematic way of mapping the true
electromagnetic state of the brain to some space of electrostatic
fields and follow its evolution in that space from the succession
of samples collected. (For each combination of recorded values
at fixed time, we shall have one electrostatic field.) These fields
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are not the true states of the human brain, but rather the states
it would have had if it were made from tissue with uniform
electromagnetic properties. That is why we call these states
‘effective’ and not true. We can then study the correlation
between the sequences of the various effective states of the brain
and the external stimuli or the actions the subject performs when
the measurements are taken.

There are lots of practical issues that will have to be addressed
in such applications. For example, in many practical situations,
it is not possible to collect data over the complete angular
range [3]. In the literature, this is referred to as the limited view
problem. The reasons that cause this problem are varied. Lim-
ited data collection time, geometric constraints on the structure
of the measurement apparatus, and the size and shape of the
imaged object are some of the causes. Regarding the example
we consider in this paper, it would not be possible in a practical
situation to obtain measurements along lines that make an angle
smaller than 20o with each of the associated boundary edges,
a situation that often arises in limited view tomographic recon-
struction [44, 45]. Then about 16% of the required line mea-
surements would be missing. The limited angular coverage may
cause several problems, the most serious of which is increased
instability [46], which would increase sensitivity to noise.
Another problem would be the possible non-uniqueness of the
solution. To deal with such problems, many specialized algo-
rithms have been introduced [44, 45]. However, dealing with the
solutions of these problems falls beyond the scope of this paper.
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