
Boosting Text Compression with

Word-based Statistical Encoding ∗

Antonio Fariña1, Gonzalo Navarro2 and José R. Paramá1

1Dept. of Computer Science, University of A Coruña, A Coruña, Spain
2Dept. of Computer Science, University of Chile, Santiago, Chile

Email: antonio.farina@udc.es; gnavarro@dcc.uchile.cl; jose.parama@udc.es

Semistatic word-based byte-oriented compressors are known to be attractive
alternatives to compress natural language texts. With compression ratios around
30-35%, they allow fast direct searching of compressed text. In this article we
reveal that these compressors have even more benefits. We show that most of the
state-of-the-art compressors benefit from compressing not the original text, but
the compressed representation obtained by a word-based byte-oriented statistical
compressor. For example, p7zip with a dense-coding preprocessing achieves even
better compression ratios and much faster compression than p7zip alone. We reach
compression ratios below 17% in typical large English texts, which was obtained
only by the slow PPM compressors. Furthermore, searches perform much faster
if the final compressor operates over word-based compressed text. We show that
typical self-indexes also profit from our preprocessing step. They achieve much
better space and time performance when indexing is preceded by a compression
step. Apart from using the well-known Tagged Huffman code, we present a new
suffix-free Dense-Code-based compressor that compresses slightly better. We also
show how some self-indexes can handle non-suffix-free codes. As a result, the
compressed/indexed text requires around 35% of the space of the original text

and allows indexed searches for both words and phrases.

∗ A preliminary partial version of this work appeared in [1].

Keywords: Natural Language Text Compression, Search on Compressed Text, Compressed
Text Indexing

Received 00 January 2009; revised 00 Month 2009

1. INTRODUCTION

1.1. Classic compression

Traditionally, classical compressors used characters as
the symbols to be compressed, that is, they regarded
the text as a sequence of characters. Classical Huffman
[2] uses a semistatic model to assign shorter codes to
more frequent symbols. Unfortunately, the compression
obtained when applying it to typical English natural
language text3 is poor (around 65%4). The dictionary-
based algorithms of the Ziv-Lempel family [3, 4], which
replace text substrings by previous occurrences thereof,
are other well-known compressors. These algorithms
are usually fast at compression and especially at
decompression, but their compression ratio is still not
that good (around 35-40%). The LZMA algorithm
is a sophisticated member of this family that is

3Unless otherwise specified, our measures consider this type of
source text.

4The size of the compressed text as a percentage of its original
size, assuming each original character is encoded in one byte.

included in the p7zip software.5 With an augmented
dictionary of up to 4 Gigabytes, it achieves attractive
compression ratios (around 22-30%), at the cost of
slower compression and decompression.
It is possible to obtain better compression by

collecting k-th order statistics on the text. This is
done by modelers that predict the probability of a
symbol depending on the context formed by the last
k symbols preceding it. This is the case of PPM
(Prediction by Partial Matching) compressors [5], which
couple such modeling with an arithmetic coder [6, 7, 8].
Compression ratio is very good, for example around 17-
26% using Shkarin’s PPMd6 but they are very slow
at compression and decompression and require much
memory. Good results can also be obtained by using
a block-wise compressor such as Seward’s bzip2.7 This
makes use of the Burrows-Wheeler transform (BWT) [9]
to obtain a more compressible permutation of the text,

5http://www.7-zip.org
6We use PPMd v.j1 (PPMdj) from

http://www.compression.ru/ds
7http://www.bzip.org

The Computer Journal, Vol. ??, No. ??, ????

2 A. Fariña, G. Navarro and J. Paramá

and then applies a Move-To-Front strategy followed by
a Huffman coder. In practice, using less memory than
the PPM-based compressors, bzip2 obtains competitive
compression ratios (around 24-29%) and it is much
faster at both compression and decompression.
Other techniques, such as the offline compressors,

are particularly well-suited to compress static databases
(for example, those that could be stored in CDs or
DVDs). Offline compressors make several passes over
the text and might use large amounts of time or space
at compression. Yet, they should be both fast and
memory-efficient at decompression. One compressor of
this family is Re-pair [10], which successively replaces
the most frequent pair of adjacent source symbols by
a new symbol until all the pairs occur only once. It
achieves very appealing compression ratios (around 20-
31%), yet its compression time or space requirements
(depending on the implementation) are rather high.

1.2. Word-based text compression

In [11], Moffat presented a compressor using a zero-
order word-based modeler [12] which, combined with
a Huffman coder, achieved compression ratios around
25%. With respect to using a character-based modeler,
in addition to these improved compression ratios,
the election of words as the source alphabet also
yielded better compression and decompression times.
Basically, as words display a more biased distribution
of frequencies than characters (as Zipf’s Law [13]
indicates), they become more compressible with a
compressor building on a zero-order modeler. Another
way to see this is that, by using words, one captures
k-th order statistics for a reasonable value of k, while
ensuring that the model is not too large (as the
vocabulary grows sublinearly with the size of the text
collection [14]).
Following the word-based approach, two new byte-

oriented compressors were presented later [15]. By using
bytes instead of bits as the target alphabet (codewords
are sequences of bytes rather than bits), compression
worsens by around 5 percentage points (to around
30%). However, the method becomes much faster
at compression and especially at decompression. The
first technique, called Plain Huffman (PH), is just a
Huffman code assigning byte rather than bit sequences
to the codes, that is, this is just the d -ary Huffam
code that appears in Huffman’s original paper [2], with
d=256. Although it is possible to perform direct
searches over PH compressed text [15, 16], these are
slower than searches over the second encoding, called
Tagged Huffman (TH). TH reserves the first bit of
each byte in a codeword to mark the beginning of
the codeword and builds the Huffman code over the
remaining 7 bits. This leads to a loss of around 3
percentage points in compression ratio, but makes TH
a fast self-synchronizing code,8 which can be directly

8That is, it is possible to detect quickly the beginning of

searched for a compressed pattern with any string
matching algorithm. While most Huffman codes have
the property of self-synchronization [17], this may
require processing an arbitrary number of codewords.
Some compressors introduce synchronization strings
or marks to force the resynchronization after a given
number of bits/bytes [18, 19]. There is a trade-off
between the redundancy introduced by synchronizing
strings or marks versus the resynchronization delay.
TH has a mark at each byte, which guarantees fast
synchronization and allows the use of classical pattern
matching algorithms.
Later, the dense codes [20] improved the performance

of TH in most aspects. Dense codes are simpler
and faster to build than Huffman codes. In addition,
they permit the same fast direct searchability and
random-decompression capabilities of TH, yet with
better compression ratios. The simplest compressor
using a dense coding scheme is End-Tagged Dense Code
(ETDC), which achieves compression ratios around 31%
using a semistatic zero-order word-based model. An
improved variant, (s, c)-Dense Code (SCDC), reaches
less than 0.3 percentage points over PH compression
ratio. Subsequently, other competitive codes were
presented [21, 22], but they do not obtain the same
search performance as the dense codes.
Although TH and the dense codes traditionally would

only allow searching for words or phrases, even allowing
errors or patterns with wildcards [15], a recent work [23]
shows that it is possible to search not only for words or
phrases, but for arbitrary patterns. Yet, searches will
perform much slower as searches for a given substring
translate into searches for several patterns in parallel.

1.3. Self-indexes

Text compression has been recently integrated with text
indexing, so that one can build an index that takes
space proportional to the compressed text, replaces it,
and permits fast indexed searching on it [24]. Practical
examples of those so-called “self-index” structures are
the Compressed Suffix Array (CSA) [25], the Succinct
Suffix Array (SSA) [26], the Alphabet-Friendly FM-
index (AFFM) [27], and the Lz-index (LZI) [28, 29].9

Those indexes work for any type of text, achieve
compression ratios of 40-60% in typical English texts,
and can extract any text substring and locate the
occurrence positions of a pattern string in a time that
depends on the pattern length and the output size, but
not on the text size (that is, the search process is not
sequential). Most of them can also count the number
of occurrences of a pattern string, much faster than by
locating them.
Some word-based self-indexes have been developed,

the codeword containing any position of the compressed stream,
hence allowing random decompression from any point.

9Their code is available at the PizzaChili site,
http://pizzachili.dcc.uchile.cl.

The Computer Journal, Vol. ??, No. ??, ????

Boosting Text Compression with Word-based Statistical Encoding 3

such as the WCSA [30] and the WTBC [31]. These
achieve compression ratios of 35-40% and provide
indexed word-based searches (yet they cannot search
for arbitrary text substrings).

1.4. Our results

In text compression, the word-based detour has
been justified by the interest in achieving fast
compression/decompression and direct searching on
the compressed text, while maintaining a reasonably
competitive compression ratio. Yet, in this article
we use it in a different way. We show that those
compressors designed for natural language actually
become compression boosters for the best classical
methods, both in compression time and compression
ratio. In addition, they also boost the time of
sequentially searching for patterns in the compressed
text. They even boost the performance of compressed
self-indexes, both in compression ratio and search
performance. The fact that we boost the compression
ratio of compressors that are already supposed to
capture the high-order correlations in T is an intriguing
issue that we also discuss in the paper.
We show that compressing a typical English text T

with dense codes (or any competitive word-based byte-
oriented code) is a fast and useful preprocessing step
for a general-purpose text compressor or self-index. Let
us call Dense(T) the output of this preprocessing. As
Dense(T) reduces |T | to around |T |/3, when Dense(T)
is compressed again with a backend compressor X (i.e.,
the final, general-purpose compressor such as gzip,
bzip2, p7zip, or PPMdj), in our tests10 the cascade of
compression processes X(Dense(T)) compresses much
faster (up to 5 times) than just X(T), in some
cases decompresses faster (up to 85%), obtains better
compression ratios (up to 11 percentage points less than
X(T)), and allows searching for patterns 2-2.5 times
faster. In some cases we achieve for the first time faster
searching on the compressed text than on the plain text
T . Our best compression results, achieved by using
PPMdj as the backend compressor, compress the test
file Congressional Record 1993 (CR) from trec-4 to
17%, which is much better than most of the state of the
art, and obtain compression and decompression times
around 7-85% better than PPMdj alone.
Typical self-indexes are designed to index/compress

a sequence of characters. Therefore, since word-based
byte-oriented statistical compressors use bytes as their
target alphabet, the resulting compressed text can be
indexed by the character-based self-indexes. If we want
to search for a pattern using a self-index built from text
compressed with, for example, TH, we just encode the
pattern with the code used to obtain TH(T) and use the
index to search for the encoded pattern. As in the case
of TH and dense-coded compressed text, it is possible
to inspect the vocabulary of words to search for all the

10See Section 7 for a complete description of such text files.

words (or sequences of words) that include a pattern
that is an arbitrary sequence of characters.
If we want to display a snippet of T , we proceed in

the reverse way. That is, we extract firstly a portion
of the text compressed with TH and finally decompress
it. Yet, for this search to be feasible, the code used to
preprocess the text should be not only prefix-free (as
required for virtually any encoder) but also suffix-free,
otherwise the self-index might report false matches. A
suffix-free code does not produce codewords that are
suffixes of other codewords. TH has this property,
but this is not the case of ETDC and SCDC. Another
contribution of this article is the development of a suffix-
free version of the dense codes, that is called (s,c,b,o)-
Dense Code (SCBDC). We also show how some self-
indexes can be adapted to work correctly over the non-
suffix-free SCDC code.
In our experiments, we will show that if we compare

the self-indexes built over the uncompressed text T and
those built over TH(T), SCBDC(T), or the adapted
SCDC(T), and we set the parameters of the self-indexes
in order to obtain a structure of the same speed, those
built over the word-based byte-oriented codes require
between half and one third of the space needed by the
ones built over plain text. On the other hand, if we set
the parameters to have structures of the same size, the
self-indexes build over compressed text are much (up to
130 times) faster. With respect to WTBC and WCSA,
published after the preliminary version of this article,
these indexes are much more involved and complex
to implement than the simple solution presented in
this work. Still, the character-based indexes over
compressed text get close to the results of WTBC and
WCSA, when they do not overcome them.
The paper is structured as follows. In Section 2, we

discuss some related work, and some previous concepts
are given in Section 3. In Section 4, we analyze why
the cascade improves both the compression and the
performance of the backend compressors. Section 5
is devoted to the cascade of compressors we test
in our experiments, whereas Section 6 discusses the
application of the preprocessing step to index text.
Section 7 gives the experimental results. Finally, our
conclusions are presented in Section 8.

2. RELATED WORK

2.1. Preprocessing for compression

Preprocessing natural-language texts to improve their
compression has a long tradition. A popular approach
is to parse the source text into syntactic units, such
as q-grams, syllables, or words, and run a compressor
tailored to handle a sequence of unit identifiers [12, 11,
32, 33, 34, 15, 35, 36, 20].
Alternatively, there are various ad-hoc heuristics

[37, 38, 39, 40, 41, 42] that enrich a general-purpose
compressor by a preprocessing that chooses some words
or other types of syntactic units and replaces them by

The Computer Journal, Vol. ??, No. ??, ????

4 A. Fariña, G. Navarro and J. Paramá

different kinds of identifiers, usually assigning shorter
identifiers to more frequent units. Those are coupled
with a number of very specific tricks that slightly
improve the compression ratio.
The best compression results in this line, as far as

we know, is the MPPM family. The MPPM adaptive
compressor [43] maps text words into 2-byte identifiers
that are later encoded with Shakarin/Cheney’s PPMdi
[44]. Since 2 bytes only permit 216 identifiers, MPPM
uses a vocabulary pruning strategy to reuse codewords.
A semi-static MPPM2 [45] improves the character-
based PPM to reach up to 21% compression ratio.
The technique we present in this article fits in the

general approach of parsing the text into syntactic
units (words, in our case) to enhance a general-purpose
compressor. However, it is more principled. Instead
of using simple identifiers, or ad-hoc heuristics to
choose some “good” words to encode in an ad-hoc way,
we simply use a statistical semi-static byte-oriented
compressor on the words. In Section 4 we study the
impact of this decision, and later show that the results
we obtain with this clean and elegant method are
slightly better than those of the MPPM family, the
best exponent of the heuristic methods. In addition,
our technique has several other advantages in terms of
time and memory usage at compression/decompression,
and searchability.

2.2. Preprocessing for self-indexing

Apart from the interest of preprocessing the source text
to improve the compression, there are also works where
such preprocessing has been used to improve indexing.
Grabowski et al. [46] built an FM-index over a bit-
oriented Huffman compressed version of the text (where
characters are still the source symbols). The main
problem of this technique is that bit-oriented Huffman
does not provide self-synchronization, and thus much
additional space is needed to mark the codeword
boundaries. In order to solve this issue, they used k-bit
symbols as the target alphabet and also presented the
FM-KZ variant, where Huffman is replaced by Kautz-
Zeckendorf coding, which provides self-synchronization.
Their resulting self-indexes obtained better extract
times than previous structures such as the original FM-
index and the SSA, but a worse space/time trade-off for
operation locate. Typical English texts were compressed
to around 90% of their size, at best.
Recently, some word-based self-indexes for natural

language text have been developed. The Word-based
CSA (WCSA) [30] builds a self-index over a sequence
of words rather than characters, using Sadakane’s CSA
[25], which handles large alphabets well. The WCSA
achieves compression ratios of 35-40% and very fast
indexed search for both words and phrases.
The Byte-Oriented-Codes Wavelet Tree (WTBC)

[31] represents the sequence of words with a clever
reordering of the bytes resulting from a word-based

byte-oriented encoding of the text (such as PH or
SCDC). The reordered representation manages to
simulate inverted-index-like searches, that is, the
occurrences of single-word queries can be efficiently
found, but phrases require an expensive intersection of
the ocurrences of their words. Compression is around
35% (some space overhead over PH is necessary for the
reordering to work).
Compared to Grabowski et al.’s self-index [46], our

proposal uses words as the source symbols, which
drastically improves the compression ratios to around
31%. Compared to the WCSA, we use variable-length
codes instead of fixed integer values to represent the
words. This explains our better compression ratios, yet
the WCSA is faster as a function of the pattern length
because it regards each word as a symbol while we have
to process each of the bytes of its codeword. Compared
to the WTBC [31], our data organization allows us to
carry out phrase searches as efficiently as word searches,
where the WTBC is much slower.
The original version of this article [1] was the first

in improving the performance of self-indexes on natural
language; the others [30, 31] came (shortly) after and
are significantly more complex to implement. Finally, in
parallel to our original work [1], Ferragina [47] discussed
from a conceptual point of view the WFM-index, which
builds an FM-index over text compressed with TH.
However, no experimental results were given and, to
the best of our knowledge, the WFM-index was not
further pursued. Some combinations we present in our
experimental results are indeed an implementation of
an FM-index after a TH preprocessing. As explained,
our new SCBDC improves upon TH.

3. BASIC CONCEPTS

3.1. Empirical entropy

Statistical compression is obtained by combining a
modeler and a coder [48]. The former gathers statistics
(number of occurrences of source symbols) of the text,
and the second assigns codewords to those source
symbols (shorter codewords to more frequent symbols).
The empirical entropy of the text lower bounds the
performance achievable by some kinds of statistical
compressors.
The zero-order empirical entropy of a text T over an

alphabet Σ is defined as follows:

H0(T) =
∑

c∈Σ

nc

n
log2

n

nc

,

where n = |T |, nc is the number of occurrences of
character c, and we assume 0 log2 0 = 0. Then nH0(T)
is a lower bound on the output size of any statistical
compressor that counts isolated character frequencies
in T , independently of their surrounding characters.
Huffman coding, when applied over the frequencies nc,
obtains an average codeword length of less than one

The Computer Journal, Vol. ??, No. ??, ????

Boosting Text Compression with Word-based Statistical Encoding 5

target symbol more than the zero-order entropy. When
T is seen as a sequence of characters, its zero-order
entropy is around 5 bits per character (bpc) (62.5%
compression ratio) on natural language, but when seen
as a sequence of words it drops to around 2 bpc (25%
compression ratio).
Higher-order modelers consider character frequencies

depending on the k characters that precede them.
Their performance is lower bounded by the k-th order
empirical entropy of T :

Hk(T) =
∑

S∈Σk

|TS|

n
H0(TS),

where TS is the string formed by the characters
preceded by context S in T . A compressor family
approaching the performance of Hk is PPM. Achieving
Hk(T) for large k values is challenging because much
memory is needed to handle all the O(|Σ|k) models.
For the k values that can be reached, the entropy is
around Hk(T) = 1.2 bpc (15% compression ratio).

3.2. Byte codes

As explained, the encoding scheme of TH reserves the
first bit of each byte to mark the codeword beginnings,
and uses Huffman coding on the remaining 7 bits to
ensure that a prefix-free code is obtained.
ETDC can be seen as a variation of TH, as its

encoding scheme marks the end of a codeword instead
of the beginning. This small change has interesting
consequences, as the codewords obtained by ETDC
are prefix-free independently of the remaining 7 bits.
Therefore, Huffman coding is no longer necessary, and
ETDC can use all the combinations on those 7 bits.
That is, the 128 most frequent words in the

vocabulary are encoded using the codewords from
〈00000000〉 to 〈01111111〉. The next 1282 words are
encoded with 2-byte codewords from 〈1000000 0000000〉
to 〈1111111 01111111〉 and so on.
The origins of the coding scheme used in ETDC are

unclear. We can trace references to similar methods
in the literature under the name of byte-codes (bc)
or variable-byte coding (Vbyte) [49, 21], and there are
possibly earlier ones.
A more sophisticated variant that achieves better

compression is SCDC, where the number of byte-values
that either mark the last (stoppers) or the other bytes
(continuers) of the codeword is not set to 128 but
to a tunable value between 1 and 255. Therefore, s
values are used as stoppers and c = 256 − s values as
continuers.
That is, the s most frequent words in the vocabulary

are encoded using the codes from 〈0〉 to 〈s− 1〉. Then,
the next sc words are encoded with 2-byte codes from
〈s〉 〈0〉 to 〈255〉 〈s−1〉, and so on. In [20, 50] a discussion
on how to obtain the s and c values that minimize the
size of the compressed text for a specific word frequency
distribution can be found.

4. ANALYSIS OF THE PREPROCESSING
USING DENSE CODES

The analysis of the byte values obtained by compressing
a text T with a byte-oriented word-based compressor
(ETDC, PH, etc.) shows that the frequencies of the
byte values generated as the output stream are far from
uniform. Instead, the same analysis on the output of
an arithmetic coder11 displays a rather homogeneous
distribution. Figure 1 depicts this situation on corpus
CR (described in Section 7). This suggests that
the compressed file ETDC(T) is still compressible
with a bit-oriented compressor. This could not be
a compressor based on zero-order modeling, because
the zero-order entropy (H0) of ETDC(T) is too high
(around 7 bpc, that is, 87.5% compression ratio),
and indeed directly using a word-based bit-oriented
compressor (like arith or that in [11]) achieves better
results.
Instead, a deeper study of k-order entropy (Hk)

exposes some interesting properties of ETDC. Using
software from PizzaChili, Table 1 shows the values ofHk

obtained for T , ETDC(T), and a tokenized text where
words were considered as the source alphabet (w(T)).
The second and third columns show, respectively,
Hk and the corresponding compression ratio12 (with
respect to the size of the original file). The fourth
column displays the number of generated contexts when
regarding the text T as a sequence of characters, that is,
the k-order modeler gathers statistics of each character
ci by looking at the k characters that precede ci.
The fifth, sixth, and seventh columns do the same
considering the individual byte values of ETDC(T).
For the computation of the values of the last three
columns, first the text was parsed considering words as
the tokens. Then, all the occurrences of each word were
substituted by an identifier (integer) assigned to that
word. Finally, a modified version of the software from
PizzaChili that processes integers instead of characters
was run over that sequence. The ninth column gives the
lower bound of the compression that can be achieved
by using the k-th order compression over w(T): it
displays (((#Words ·Hk)/8) · 100)/|T |, where #Words
is the total number of words in the file, Hk is the
corresponding value of the eighth column (in bits per
word), and |T | is the size of the file in bytes.
During both the first pass needed to obtain ETDC(T)

and the computation of w(T), we used the spaceless
word model [51]; that is, if a word is followed by a space,
we just consider the word, otherwise both the word and
the separator are considered.
When considering plain text, a low-order modeler

is usually unable to capture the correlations between

11Arith, a compressor coupling a word-based mod-
eler with an arithmetic encoder. It is available at
http://www.cs.mu.oz.au/~alistair/arith coder/.

12The compression ratios displayed in Table 1 do not include
the size of the model; this will be considered soon.

The Computer Journal, Vol. ??, No. ??, ????

6 A. Fariña, G. Navarro and J. Paramá

0 50 100 150 200 250
0

0.005

0.010

0.015

0.020

0.025

0.030

byte value (non−increasingly sorted by probability)

pr
ob

ab
ili

ty
 o

f b
yt

e
va

lu
e

50 100 150 200 250

0.002

0.004

ETDC
TH
PH
Arith

FIGURE 1. Probability of byte values on CR corpus. In the right upper part, there is a magnified area of the values between
the byte values 45 and 250.

Plain Text Text compressed with ETDC Word tokenized text

kthorder Hk c. ratio #contexts Hk c. ratio #contexts Hk c. ratio # contexts
0 4.888 61.10% 1 7.137 26.85% 1 10.362 25.63% 1
1 3.591 44.89% 96 6.190 23.29% 256 6.105 15.10% 117,714
2 2.777 34.71% 4,197 4.642 17.46% 46,027 3.217 7.96% 1,609,790
3 2.098 26.22% 51,689 2.601 9.78% 1,853,531 1.330 3.28% 4,512,764
4 1.668 20.85% 299,677 1.190 4.48% 6,191,411 0.564 1.40% 6,611,528
5 1.430 17.87% 951,177 0.566 2.13% 9,396,976 0.306 0.76% 7,591,247
6 1.264 15.80% 2,133,567 0.308 1.16% 11,107,361 0.191 0.48% 8,036,769
7 1.118 13.97% 3,931,575 0.187 0.70% 12,015,748 0.145 0.36% 8,280,021
8 0.972 12.15% 6,345,025 0.132 0.50% 12,531,512 0.111 0.28% 8,443,983
9 0.837 10.46% 9,312,075 0.099 0.37% 12,854,938 0.100 0.25% 8,565,274

10 0.711 8.89% 12,647,531 0.082 0.31% 13,080,690 0.084 0.21% 8,669,849
50 0.011 0.14% 46,075,896 0.001 0.01% 14,946,730 0,001 0.004% 9,896,104

TABLE 1. k-order entropy using the CR corpus of 48.7 MB. The Hk values are relative to each text, and thus not comparable
to each other. Compression ratios are comparable, but they do not include the size of the model. The impact of the latter
can be estimated considering the number of contexts generated.

consecutive characters in the text, thus achieving poor
compression, whereas a higher-order modeler needs to
handle many contexts. The average length of a word is
around 5 bytes in English texts [48], but the variance
is relatively high (and raises if we are interested in the
distance between two consecutive words). In general,
a high-order modeler needs to achieve k near 10 to
capture the relationship between two consecutive words.

Modeling ETDC(T) instead of T is clearly advanta-
geous in this aspect. Even though the basic atom is
still the byte, the average codeword length is less than
2 bytes (even considering separators), and the variance
is low as codewords rarely contain more than 3 bytes
(this would require more than

∑3
i=1 128

i = 2, 113, 664
different words in T). Hence a k-order modeler can cap-
ture the correlations between consecutive words with a
much smaller k, or capture longer correlations with a
given k.

ETDC(T), using the spaceless model, needs 4 bytes
on average (H3) to capture the correlation between two
words. In plain text, H10 is 0.711 bytes, whereas H3 for
ETDC(T) is 2.601 bytes, but since ETDC(T) occupies
around 35% of T , the resulting value (2.601 · 0.35 =
0.913 bytes) fits in the same magnitude of compression
of plain text.

This also explains why using, say, ETDC is better
than using fixed-length integer identifiers for the words:

As ETDC compresses T better than such a simple
identifier encoding, it encodes more words on an average
context of length k, and thus the modeler captures more
correlations when looking at the last k bytes of the
compressed/encoded text.

The argument is not that simple, however, because
good compressors like PPMdj do not use a fixed k,
but rather administer a given amount of memory to
store contexts in the best way they can. Therefore, the
correct comparison considers the entropy achieved as a
function of the number of contexts necessary to achieve
it. As seen, the Hk values in Table 1 are not directly
comparable because they are in bits per symbol, and
ETDC(T) has around one third of the symbols of T .
Figure 2(a) shows the corrected comparison. It displays
the value nHk as a function of the number of contexts,
where n = |T | for plain text, n=|ETDC(T)| for ETDC,
and n=#Words for w(T). Thus we show the estimated
final output size (model excluded) as a function of
the main memory required by the compressor. As
seen, w(T) performs better than ETDC(T); this might
suggest that the improvements achieved by using ETDC
as a preprocessing could be due to the initial word-based
parsing of the text applied by ETDC. Still, the memory
consumption obtained by ETDC(T) is much closer to
that achieved with w(T) than in the case of compressing
directly T .

The Computer Journal, Vol. ??, No. ??, ????

Boosting Text Compression with Word-based Statistical Encoding 7

However, this is not considering all the aspects yet.
A k-th order compressor pays a price not only in terms
of memory required to compress, but also in terms of
compression ratio, for the number of contexts it uses.
It has to encode (as a table if it is semistatic, or as
escape symbols if it is adaptive) every different context
that appears in the sequence. Figure 2(b) gives a more
realistic estimation of the size of the compressed text
achievable by a k-th order compressor, by penalizing
each entry of each context with log2 |Σ| bits, being |Σ|
the alphabet size. The results show that although w(T)
performs better with a zero-order modeler, with higher
orders the cost of storing the contexts rapidly spoils
its compression. Moreover, when considering words
as source symbols, in the CR corpus |Σ| is 117,714,
instead of the 256 possible byte values when considering
ETDC(T) as a sequence of bytes. Therefore, the cost of
storing each context is much higher in the case of w(T),
resulting in a worse compression as the order increases.
So the optimum is achieved with a context of k = 1
preceding words.
With respect to the normal text, the minima in the

curves show that the compression is expected to be
(slightly) better for ETDC(T) than for T , but also
that the necessary k is much smaller. For ETDC(T)
the minimum is achieved with k = 2, whereas T
achieves the best compression ratio with k = 5. These
values are expected since, as explained, the average
codeword length in ETDC(T) is less than 2 bytes
and the average English word is 5 characters long.
This permits faster and less sophisticated modelers to
succeed on ETDC(T).

5. BOOSTING COMPRESSION

The main idea behind this work is simple. A text
is firstly compressed with a word-based byte-oriented
compressor, and then the resulting data is again
compressed with another character-oriented technique
X. In this work we have chosen the dense codes
(either ETDC or SCDC) to preprocess the text,
so the compressed file is obtained as X(Dense(T)).
Decompression consists also of two steps. The
compressed file is firstly decompressed with X−1 to
obtain Dense(T). Then the dense decompressor
recovers the source text.
Although PH might seem a better choice for prepro-

cessing the text, since it compresses slightly better than
SCDC, PH suffers from lack of synchronization that re-
sults in a compressed text where direct searches cannot
be performed efficiently. We will show that, as dense
codes permit us to efficiently perform direct searches,
the process of searching the final compressed text with,
for example, Lempel-Ziv compression, is much faster
than directly searching over gzip(T). The reason is that
the backend compressor has to decompress much less
text, which is not in turn decompressed from the ETDC
or SCDC format, but directly searched in compressed

Backend compressor None
Preprocessing gzip bzip2 PPMdj p7zip
PH 22.27% 20.98% 16.81% 18.53% 31.06%
SCDC 22.43% 20.95% 16.73% 18.48% 31.29%
ETDC 22.63% 20.99% 16.76% 18.49% 31.94%
TH 23.98% 20.72% 16.65% 18.85% 34.28%
None 26.44% 21.64% 16.98% 19.79% 61.23%

TABLE 2. Comparison between byte-oriented codes and
a fixed-length compressor with and without a backend
compressor, on corpus CR.

form. Section 7.3 discusses the details.
Following the guidelines given in the previous section,

we used both a PPM-based [5] and a BWT-based
[9] technique as backend compressors. These are
techniques that obtain k-th order compression. From
the PPM family we chose Shakarin’s PPMd v.j1
(PPMdj). It uses the previous k characters of the
text as a context, and models the character frequency
according to that context. A character c is usually
sought at a given k-order model. If the k-order model
fails to predict c, an escape symbol is output and a
switch to a lower-order model is performed until c is
found. Finally, the obtained statistics are used to
encode symbols with an arithmetic coder. As a BWT-
based technique we used bzip2. The BWT obtains a
permutation of the text such that characters in the same
k-th order context are grouped. Then a simple local
compression of the permuted text achieves k-th order
compression of the original text.
Compressors from the Lempel-Ziv family [3, 4] such

as the gzip software or the improved LZMA-based p7zip
are also suitable for this sake, as they converge to the
k-th order entropy. Lempel-Ziv compression should be
useful on top of Dense(T), as it would detect repeated
phrases in natural language text.
Table 2 gives some preliminary experiments compar-

ing PH, ETDC, SCDC, and TH as preprocessors for
gzip, bzip2, PPMdj, and p7zip. Surprisingly the prepro-
cessing with PH obtained almost the worst values and
TH obtained the best results with compressors that ob-
tain k-th order compression (bzip2 and PPMdj). How-
ever, apart from their simplicity, we decided to use
ETDC and SCDC as they obtain the best overall re-
sults (see gzip and p7zip) and the differences are not
significant. These experiments were run over corpus
CR.
We also included in the experiment a word-tokenized

text, where each word is substituted by a fixed-length
codeword. Its values are presented in the row labeled
None. It uses the minimum number of bytes that
are necessary to encode all the different words in the
text. In the experiment, we used the corpus CR, which
contains 117,713 different words, therefore 3 bytes are
enough to encode all the words. We also added a column
None that shows the compression ratio achieved by
the byte codes without post-processing. The cell with
row None and column None displays the compression

The Computer Journal, Vol. ??, No. ??, ????

8 A. Fariña, G. Navarro and J. Paramá

5%
10%
15%
20%
25%

5 10 15 20 25 30 35 40 45

number of contexts (x 106)

ETDC/bytes:ETDC(T)
Text/words:w(T)

Text/bytes:T

(a) ((nHk)/|T |) · 100

20%

30%

40%

50%

60%

70%

 0 10 20 30 40 50

k-th order

ETDC/bytes:ETDC(T)
Text/words:w(T)

Text/bytes:T

(b) ((nHk +#contexts log2 |Σ|)/|T |) · 100

FIGURE 2. Estimation of the compression ratio for plain text, text compressed with ETDC, and word tokenized text.
Figure (a) does not consider the size of the model, whereas Figure (b) includes an estimation of the size of the model.

ratio achieved by the word-tokenized text. As seen, the
byte codes obtain better values in all cases, yet PPMdj
over word-tokenized text is able to achieve values very
close to those of the byte codes. This occurs despite
the fact that the average codeword length of the byte
codes is less than 2 bytes, whereas the word-tokenized
text used fixed 3-byte codewords. Yet, as we set our
PPM compressor to capture contexts of lengths up to
12, it seems that the same degree of correlations were
captured in both cases.

Although the final differences in compression ratio
are not of the same magnitude as before applying the
backend compressor, the file size of the word-tokenized
text, which is input to the backend compressor, is
almost twice that of the file obtained by the byte-
code compressors. Thus a byte-code compression
preprocessing makes the (comparatively slow) backend
compressor/decompressor work over much less data,
and therefore boosts compression/decompression times.

We also tried Re-pair [10] as a backend compressor.
However, we will see that, in this case, the preprocessing
step does not actually improve the results of Re-

pair over the original text. This is because Re-pair
naturally starts by forming words via contracting pairs
of symbols, and then combines words, so starting from
the words makes little difference, as already observed in
previous work [52].

6. BOOSTING SELF-INDEXING

The same idea in the previous section can be applied
to the construction of self-indexes. Yet, in principle,
we cannot use ETDC or SCDC, given that they are
not suffix-free codes.13 This is a mandatory property
when searching for a pattern p in a self-index built over
compressed data, as it permits to compress p and then
search for its compressed form directly. Note that, in
online searches over text compressed with a non-suffix-
free code, upon a possible match of p, the searcher could
still check the previous byte to determine if it was either
an actual occurrence of p or a suffix of a longer codeword
[20]. However, performing this check on self-indexes

13We will see later that some self-indexes can index text
compressed with SCDC, but additional modifications in both the
indexes and the SCDC are needed.

The Computer Journal, Vol. ??, No. ??, ????

Boosting Text Compression with Word-based Statistical Encoding 9

would turn into linear-time searching, whereas indexed
searching should take sublinear time.
For example, assume that we have preprocessed a

text with ETDC and then a CSA has been built on it.
Assume also that ETDC has assigned the codeword 〈26〉
to word “the” and codeword 〈200〉 〈26〉 to “journal”,
and that we want to count the occurrences of “the”
using the CSA. Therefore, we are interested in counting
the occurrences of 〈26〉 preceded by a byte with a value
lower than 128 (a stopper in ETDC [20]) to ensure that
the occurrences of 〈26〉 reported are actual occurrences
of “the” rather than a suffix of a longer codeword such
as that of “journal”. Unfortunately, the CSA will
report all the occurrences of 〈26〉, and we will have to
check later if those occurrences are valid or not, one
by one. Therefore, being x the number of occurrences
of 〈26〉, counting the occurrences of “the” would cost,
due to the required check, Ω(x) time in our CSA built
on ETDC compressed data. However, that operation
would have costed only O(m logn) time on a regular
CSA, being m the length of the search pattern. Note
that, if we use a suffix-free code (such as TH) that check
is no longer needed and the counting operation costs
only O(m log n).
As a result, we can still use TH as the base compressor

because it generates suffix-free codewords. In addition,
we have also developed a new suffix-free member of the
family of dense codes which is discussed in the next
section.

6.1. SCBDC: (s, c, b, o)−dense codes

Observe that the codewords of both ETDC and SCDC
are made from two disjoint sets of byte-values; the
last byte of each codeword uses a set of byte-values
(stoppers) and the rest of bytes use a different set of
byte-values (continuers). Since a codeword always ends
with a stopper, a shorter codeword cannot be a prefix of
a longer codeword. Yet, both the one-byte codewords
and the last byte of the longer codewords share the
same byte-values. For example, the codeword 〈0〉 is
a suffix of the codeword 〈128〉〈0〉. Similarly a two-byte
codeword like 〈128〉〈0〉 is a suffix of the longer codeword
〈129〉〈128〉〈0〉, and so on.
We designed the (s, c, b, o)−dense code (SCBDC),

which overcomes the previous problems, and still keeps
the prefix-free property of ETDC and SCDC. To achieve
a prefix- and suffix-free dense code, instead of using only
two different sets of byte values, the new SCBDC has
four sets of byte values:

1. One-byte codewords have its own set of byte values.
This prevents one-byte codewords from being
either prefixes or suffixes of longer codewords.

2. Beginners are first-byte values of codewords of
two or more bytes. Since the first byte value
of a codeword cannot occur in any other part
of a codeword, we ensure that shorter codewords
cannot be suffixes of longer codewords.

3. Stoppers are last-byte values of codewords of two
or more bytes. These bytes work like in ETDC and
SCDC to achieve a prefix-free code. Since the value
of the last byte of a codeword cannot occur in any
other position of a codeword, shorter codewords
cannot be prefixes of longer codewords.

4. Continuers are the rest of byte values, which are
used in the middle bytes of codewords of length
three or more.

In Figure 3, each set of bytes is represented with a
rectangle with a different filling pattern. In the upper
part of the figure, we can see that both SCDC and
SCBDC are prefix-free codes. Observe, for example,
the second byte of the codewords of length 2 and 3, in
both SCDC and SCBDC. In the case of the codeword
of length 2, this byte is a stopper, whereas in the case
of the codeword of length 3, this byte is a continuer.
Therefore these two bytes are different values for sure,
and then the 2-byte codeword cannot be a prefix of
the 3-byte codeword. In the bottom part of the figure
we can observe that the last byte of SCDC codewords
is always from the same set of byte values (stoppers)
and the rest of bytes are continuers, therefore shorter
codewords can be suffixes of longer codewords. This
problem is solved in SCBDC: i) one-byte codewords use
different values with respect to all the others, and ii) the
values for the first byte of longer codewords are taken
from a different set of values (beginners) thus avoiding
the suffix problem.
Both SCDC and SCBDC adapt their encoding

schemes to the word frequency distribution of the source
words. SCDC computes the s and c values that
achieve the best compression, whereas SCBDC has to
compute two additional values. As in SCDC, the most
practical way to tune its parameters is performing a
brute-force search [20] which computes the size of the
compressed text for each combination of s, c, b, and o,
and finally chooses the best value. By precomputing
cumulative frequencies of the vocabulary sorted by
decreasing frequency, the whole computation takes time
(

2l

3

)

≈ 1
6 · 8l, where l is the number of bits of the

symbols. In our case l = 8 as we use bytes; this involves
less than 3 million accesses to the array of cumulative
frequencies. The time consumed by this process harms
the compression time of short files, while it becomes
more negligible as we compress larger files (see Section
7). For example, in our test computer, the search
for s, c, b, and o takes 0.0324 sec in the corpus CR,
which represents around 2% of the compression time.
In a shorter corpus of 2 Mbytes (see Section 7 for a
description of the CALGARY corpus), this time has a
considerable impact, given that the whole compression
process takes 0.11 sec, which is 37% slower than the
compression time of the same file using SCDC.
To decrease the costs of this process we developed a

procedure that, instead of computing all the possible
combinations, uses a heuristic to check only some of

The Computer Journal, Vol. ??, No. ??, ????

10 A. Fariña, G. Navarro and J. Paramá

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

1-byte values Beginners Stoppers Continuers

1-byte

2-bytes

3-bytes

4-bytes

1-byte

2-bytes

3-bytes

4-bytes

1-byte

2-bytes

3-bytes

4-bytes

1-byte

2-bytes

3-bytes

4-bytes

SCDC

SCDC

SCBDC

SCBDC

Suffix problem

Prefix problem

FIGURE 3. Suffixes and prefixes in SCDC and SCBDC.

them. It works as follows:

• Instead of checking all the combinations of s, c, and
b for the 253 possible values of o, only 10 tests are
executed. Those tests are run for values spaced at
intervals of 25, that is, the process checks values
2, 27, 52, . . . , 253.

• The previous process gives a first best candidate
o1 value. Then the search is now restricted to the
interval [o1 − 20, o1 + 20] testing values spaced at
intervals of 5.

• The previous step gives a second best candidate o2
value. Now the search is restricted to the interval
[o2 − 10, o2 + 10], where all values are tested.

This last pass gives the final o, s, c, and b values.
In all our tests, this process gave the same values
as the brute-force version. In the corpus CR, this
heuristic search takes 0.0045 seconds, that is 7 times
faster than the brute-force approach, and in the case of
the CALGARY corpus, the whole compression process
consumes 0.09 sec, only 6% slower than SCDC. Yet, in
the experiments of Section 7, we used the version with
the brute-force process.

6.2. Indexing

We applied the same idea used in compression for
boosting indexing, but using TH and SCBDC which,
as explained, are prefix and suffix-free codes. We
first apply the compressor to the original text. This
produces a sequence of bytes reduced to around 33%
of the original size. The resulting sequence is then
self-indexed. In order to search for an occurrence of
a pattern p, we encode the pattern (with the same
code used to compress the original text) and provide
its codeword Cp to the self-index, that directly searches
for pattern Cp (just considering it as a sequence of
bytes). Note that, since the time needed to search for
a pattern p typically depends on its length, and given
that it usually holds that |p| > |Cp| we expect to obtain
improved search times.

scdc codes and tagged huffman codes...T

CT

Chars c o d e s a n d s c d c t a g g e d h u f f m a n...

130 225 170 119 209 10 129 254 131 55 131 ...119 209

Vocfreq 0 5 8 12 18 ... 44

Vocalfa 1 0 n-1 2 3

51

0 1 2 3 n-1

0 1 2 3 n-1 n4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 44 45 46 47 48 49 50

FIGURE 4. In-memory data structures used to hold the
vocabulary.

The only additional structure needed is a table to
hold the correspondence between original words and
the codewords that represent them in the compressed
text. To allow searches (encoding the search pattern
is needed), this structure has to provide the codeword
corresponding to a word. This implies that the words
should either be sorted or kept in a hash table. In
addition, during decompression the reverse process is
needed: decoding a codeword Ci recovers the word at
the i-th entry in the vocabulary sorted by frequency.
Therefore, keeping a list of words sorted by frequency is
also mandatory. Figure 4 shows the data structures that
are used to manage the search operations supported
by the self-indexes built over text compressed with
SCBDC and TH.14 Note that Chars and V ocfreq keep
the list of words sorted by frequency: the i-th word
is in Chars[(V ocfreq[i]) . . . (V ocfreq[i + 1] − 1)]. Note
also that V ocalpha contains pointers to V ocfreq that
permit us to access the words in alphabetical order
(so binary searching for a pattern p in the vocabulary
is possible). We studied three different variants to
handle these vocabulary structures (Chars, V ocfreq,
and V ocalpha arrays), with different space/time trade-
offs: (i) uncompressed representation; (ii) Chars is
kept uncompressed, whereas V ocfreq and V ocalpha
are compacted using ⌈(log2 |Chars|)⌉ bits and ⌈log2 n⌉

14Additionally, SCBDC also needs the values of the parameters
o, s, c, and b. TH has to keep the shape of the canonical Huffman
tree used during the compression.

The Computer Journal, Vol. ??, No. ??, ????

Boosting Text Compression with Word-based Statistical Encoding 11

bits respectively (n represents the number of different
words); and (iii) Chars is compressed with a char-
oriented Huffman and the other structures are handled
as in case (ii) (yet pointers to bit positions are necessary
in this case). The best space/time trade-off was
obtained by the approach (ii).
In our implementation, the addition of the vocabu-

lary structures represents an increase of around 5-8%
in the size of the index. Yet, as explained, the index
built over compressed text is still much more space ef-
ficient than that built over plain text.
We modified both TH and SCBDC to ensure that at

least one byte value remains unused in the compressed
text. This is generally required by the self-indexes, that
will usually choose that value as a terminator during the
indexing process. In practice, this modification loses
less than 0.05% in compression ratio.
We considered four self-indexes from the PizzaChili

site: we used the 2.0 version of AFFM, the 3.0 version
of SSA, the LZ-Index-4 version [29] of LZI, and the
text version of CSA. As in the case of high-order
compressors, AFFM, LZI, and CSA produce structures
whose sizes approach the k-th order entropy of the
indexed sequence (yet in some of them, like the LZI, the
constant may be large), whereas the SSA size is related
to the zero-order entropy. Therefore, we expect the
AFFM, LZI, and CSA to be successful in detecting high-
order correlations in TH(T) and SCBDC(T), where a
smaller k would be sufficient to succeed compared to
those indexes built on T . This is particularly important
because the AFFM, LZI, and CSA are limited in
practice to achieve entropies of relatively low k.

6.3. Boosting self-indexing without the suffix-
free property: SCDC

In the previous sections, we have shown that by using
byte-oriented codes having the suffix-free property, any
char-based self-index can be directly built on top of
the compressed data without the need of modifying its
implementation. In such way, we obtain a universal
preprocessing step that boosts any self-index.
On the one hand, using SCBDC instead of SCDC

yields a little loss in compression, as we will show in
Section 7.1. On the other hand, using SCDC would
require the index to check whether each occurrence of
a pattern is preceded by a stopper (a byte value in the
range [0, s− 1]).
In this section we show that it is still possible to use

SCDC as the backend compressor, and build AFFM,
CSA, and SSA indexes on the compressed data, so
that the expensive check can be avoided. Yet, some
modifications are required in both the SCDC and the
search procedure of the indexes.
Those self-indexes (let us call them generically SA,

for suffix arrays [53]) represent all the suffixes of the
text they index in lexicographic order, so that they
find all the occurrences of a pattern q by identifying

a lexicographic range of suffixes starting with q. The
idea is that, although [0, s − 1] · q does not lead to a
lexicographic range of suffixes, its reverse, qrev · [0, s−1]
(where qrev means q read backwards) does.
To use this property, instead of building the self-

indexes on top of SCDC(T), we build them over
SCDC(T)rev, that is, over the text compressed with
SCDC15 and then read backwards. By doing so, we will
have to search not for the compressed representation
of a pattern p, that is, SCDC(p), but for its reversed
counterpart, SCDC(p)rev, followed by a range of
characters [0, s− 1].
This kind of search is particularly convenient in suffix

array indexes using backward-search such as AFFM,
CSA, and SSA, as it permits us to perform the check
to avoid false matches very efficiently. Backward
search processes the characters of the search pattern
in backward order, and starting with the range [0, s−1]
only requires that the search does not start over the
whole array of suffixes, but only on the range of suffixes
that begin with a character in the range [0, s− 1].
For example, assume that a compressed pattern cp =

〈200〉 〈26〉 is being searched for on a self-index SA
built over text compressed with SCDC. Therefore, the
CSA will firstly find intervals over CSA(SCDC(T)) with
suffixes starting by 〈26〉, and in the next step it will
reduce that range to an interval where suffixes start
by 〈200〉 〈26〉. Therefore, the backward search involves
only processing the two bytes of the pattern cp, but in a
later step we will have to extract one extra byte before
all those occurrences to filter out only the occurrences
of cp preceded by a stopper.
However, if we build our CSA on top of

SCDC(T)rev, we can directly search for cp′ =
〈26〉 〈200〉 〈[0 . . . s− 1]〉. In this case, the first step of
the backward search is modified so that it focuses in
locating a range containing suffixes that start with a
stopper, hence performing the needed check in a cheap
way. Next, the backward search continues considering
the bytes 〈200〉 and 〈26〉 as usual. In this case, all the
occurrences reported are guaranteed to be proper oc-
currences of cp′. Therefore, the only additional cost of
the search is that it consists of |cp|+1 steps rather than
of just |cp|.
To sum up, we have shown that SCDC can still be

used to boost self-indexing. Yet, it requires modifying
the implementation of the indexes so that it permits us
to avoid reporting false occurrences in an efficient way.

7. EXPERIMENTAL RESULTS

In this section, we used some large text collections
from trec-2 and trec-4, namely Ziff Data 1989-1990
(ZIFF), Congressional Record 1993 (CR), and Financial
Times 1991 (FT91). As a small collection, we used

15As in SCBDC and TH, we also modified SCDC so that one
byte value, (0 in this case) does not appear in any codeword.

The Computer Journal, Vol. ??, No. ??, ????

12 A. Fariña, G. Navarro and J. Paramá

CALG FT91 CR ZIFF ALL
SIZE (MB) 2.00 14.07 48.72 176.74 1030.65

PH 46.24% 34.64% 31.06% 32.88% 32.83%
TH 50.23% 37.93% 34.28% 36.31% 36.38%
ETDC 47.40% 35.53% 31.94% 33.77% 33.66%
SCDC 46.61% 34.89% 31.29% 33.06% 33.02%
SCBDC 49.64% 37.47% 33.93% 35.83% 36.01%

TABLE 3. Comparison on compression ratio of the byte-
oriented codes.

CALG FT91 CR ZIFF ALL
PH 25.09 28.65 30.68 28.68 27.71
TH 25.40 28.59 30.76 28.83 27.87
ETDC 25.73 28.42 30.91 28.81 27.99
SCDC 25.09 28.30 30.76 28.75 27.82
SCBDC 18.31 27.37 30.28 28.94 27.95

TABLE 4. Comparison on compression speed (MB/sec) of
the byte-oriented codes. The values refer to MB from the
original files processed per second.

the Calgary corpus (CALG).16 We also created a larger
corpora (ALL) by aggregating them all, AP Newswire
1988, and Financial Times 1992 to 1994. Table 3 shows
the sizes of these corpora. From now on, any claim will
be made with respect to this set of corpora.
An isolated Intel R©Xeon R©-E5520@2.26GHz with 72

GB DDR3@800MHz RAM was used on our tests. It ran
Ubuntu 9.10 (kernel 2.6.31-19-server), using gcc version
4.4.1 with -O9 options. Time results refer to cpu user
time.
In all cases, compression times assume that the

compressors or the cascades are fed with the text in
plain form. In the same way, decompression times
include the complete process of recovering the original
text. We recall that our compression ratios give the size
of the compressed file as a percentage of the original size
in plain form (text) and, in this section and subsequent
sections, they include the size of any structure needed
to recover the original file (model and/or dictionary).

7.1. (s,c,b,o)-Dense Code

We start by analyzing our suffix-free dense code.
We compare it with the most popular byte-oriented
codes: PH, TH, ETDC, and SCDC. Table 3 shows the
compression ratios, whereas Tables 4 and 5 show the
compression and decompression speeds, respectively.
Obviously, by having more restrictions on its byte

assignments, SCBDC necessarily compresses less than
SCDC. Yet, its main competitor is not the SCDC,
but the TH, as this code is also suffix-free. In our
experiments, SCBDC outperforms TH in compression
ratio (by around 1%). Differences in compression
and decompression speed are negligible in all cases,
and the reasons should be found in small details like

16We concatenated in a single file the subset of the
text files of the Calgary collection: book1-2, bib, news,
and paper1-6. The Calgary corpus is available at
ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus.

CALG FT91 CR ZIFF ALL
PH 88.36 101.19 105.91 92.77 94.11
TH 84.68 97.01 106.14 95.02 94.90
ETDC 96.78 97.01 108.51 99.35 99.18
SCDC 81.29 96.34 102.57 96.16 96.20
SCBDC 78.17 92.54 100.24 90.82 91.04

TABLE 5. Comparison on decompression speed (MB/sec)
of the byte-oriented codes. The values refer to MB of the
final file recovered per second.

compiler optimizations or cache misses. The only
remarkable differences are that SCBDC is a bit slower at
decompression (under 9%) and during the compression
of small files, as explained in Section 6.1.
As a member of the dense code family, SCBDC is

easier to program than TH, since it does not need to
deal with any kind of tree construction process. In
addition, as we will see in Section 7.4, the byte ordering
of SCBDC is predicted better by CSA and especially by
AFFM. TH.

7.2. Boosting compression

In this section, we compare plain compressors with the
cascade of first applying a dense compressor and then
a backend compressor. Our comparison includes the
following compressors:

• ETDC and SCDC standalone.17

• The Re-pair18 compressor coupled with a bit-
oriented Huffman.19

• Gnu gzip,20 a Ziv-Lempel-based compressor.
• The p7zip compressor,21 which is a LZMA

compressor with a dictionary of up to 4 Gigabytes.
It uses 8 CPUs during compression on our machine.

• Seward’s bzip2,22 a compressor based on the
Burrows-Wheeler transform.

• As a representative of the PPM family, we used
Shakarin’s PPMd v.j123 (PPMdj).

We used the maximum compression options whenever
they existed, that is, gzip -9, bzip2 -9, and
PPMdj -m256 -o12 -r1.24All these compressors X
were compared with the cascade of ETDC+X and
SCDC+X. In what follows, we will use the term
“dense+X” to refer to “ETDC+X and SCDC+X”.
We also included in the comparison the MPPM25

compressor using the -9 (maximum compression) option
as well. This compressor is not included in the cascade,
since it already handles words.

17http://vios.dc.fi.udc.es/codes
18http://www.cbrc.jp/~rwan/software/restore.html.
19http://cs.mu.oz.au/~alistair/mr-coder.
20http://www.gnu.org.
21http://www.7-zip.org/
22http://www.bzip.org.
23http://www.compression.ru/ds/
24PPMdj allows up to order 16 (-o16), but better results were

obtained with the -o12 option.
25http://www.infor.uva.es/~jadiego/.

The Computer Journal, Vol. ??, No. ??, ????

Boosting Text Compression with Word-based Statistical Encoding 13

In the compilation of ETDC, SCDC, and MPPM,
we used the -m32 option, as those compressors were
designed for 32 bit machines. In the case of PPMdj,
we also used -m32 option, as we could not compile the
64-bit version in our test machine. In the case of Re-
pair we had to compile it with -m64 option, otherwise
it cannot compress the ZIFF and ALL corpus. Finally,
we used the 64-bit versions of gzip, bzip2, and p7zip
distributed for our test system.
Table 6 shows the compression ratios achieved in

our tests. The first three lines show the values of
ETDC, SCDC, and MPPM applied over plain text.
In the rest of lines, the first column indicates if a
preprocessing step was applied or not. A “None”means
that the compressor in the second column was applied
over plain text. Otherwise, the first column informs
about the compressor (either ETDC or SCDC) used as
a preprocessing step, and the second column shows the
backend compressor.
It can be seen that dense+gzip obtains an

improvement over gzip of more than 10 percentage
points (except in the smallest corpus). These results
permit dense+gzip to overcome bzip2 by around 1.5
percentage points. Similarly, dense+bzip2 improves
bzip2 by around 3-4 percentage points (again excepting
the smallest corpus).
Dense+p7zip overcomes p7zip by around 3 percent-

age points, if we except again the smallest corpora. This
cascade overcomes the values of MPPM (in large cor-
pora) and Re-pair, but, as we show below, with much
better compression and decompression times.
Dense+PPMdj obtains improvements in the two

largest corpora of around 0.5 percentage points with
respect to PPMdj, therefore obtaining impressive values
of compression ratio of around 17%, the best one of
our experiments. In practice, dense+PPMdj works
similarly to MPPM. While MPPM associates 2-byte
identifiers to each word, which are later encoded with
a PPM encoder (PPMdi26), dense+PPMdj uses the
codeword associated by ETDC or SCDC to each word as
its id. We are not including results for dense+PPMdi,
since PPMdi is less powerful than PPMdj. However, to
have a fairer comparison with MPPM, we also run some
limited experiments. We obtained that ETDC+PPMdi
overcomes MPPM in compression ratio by around 0.5-1
percentage points.
Our rough estimation in Figure 2(b) predicted that

ETDC over k-th order compressed text would achieve
at most 21% compression ratio. Yet, Table 6 shows
that, in corpus CR, it barely overcomes PPMdj over
plain text, but with compression ratios around 16%.
This difference is due to the sophisticated PPMdj,
which is an improved PPMd version called PPM with
Information Inheritance [44].
The only compressor that obtains worse compression

ratios by applying the cascade is Re-pair, for the reasons

26Available at the Pizza-Chili website.

CORPUS
Boost Comp CALG FT91 CR ZIFF ALL

ETDC 47.40% 35.53% 31.94% 33.77% 33.66%
SCDC 46.61% 34.89% 31.29% 33.06% 33.02%

MPPM -9 26.33% 21.90% 19.14% 20.56% 20.83%
None 36.84% 36.33% 33.18% 32.98% 35.00%
ETDC gzip -9 32.30% 26.47% 22.63% 23.50% 24.34%
SCDC 32.20% 26.31% 22.43% 23.29% 24.19%
None 28.92% 27.06% 24.14% 25.11% 25.98%
ETDC bzip2 31.67% 24.41% 20.99% 22.14% 22.18%
SCDC 31.23% 24.31% 20.95% 22.12% 22.17%
None 29.96% 25.52% 21.64% 22.99% 22.80%
ETDC p7zip 29.38% 22.74% 18.49% 19.52% 19.25%
SCDC 29.48% 22.75% 18.48% 19.48% 19.21%
None 25.36% 20.31% 16.88% 18.11% 17.87%
ETDC PPMdj 28.04% 21.07% 16.76% 17.57% 17.34%
SCDC 27.97% 21.03% 16.73% 17.54% 17.31%
None 31.20% 24.00% 20.16% 20.33% 20.00%
ETDC Re-pair 34.00% 25.12% 20.92% 21.55% 21.19%
SCDC 33.57% 24.67% 20.44% 21.06% 20.77%

TABLE 6. Comparison on compression ratio. We
emphasize the best one and those within 1% of it.

already explained.
Table 7 shows compression speed. In compression,

on the one hand, the backend compressor is run over
a text compressed with ETDC or SCDC, so it has to
compress only around 33% of the original text. On the
other hand, the cascade needs to apply two procedures
instead of just one. However, since ETDC and SCDC
are much faster than most of the backend compressors,
the benefits surpass the costs and the cascades are
up to 5 times faster than the corresponding backend
compressor. More precisely, the cascades are around
38-87% faster in the case of gzip, 24-76% with bzip2,
between 3 and 5 times when using p7zip, 7-80% with
PPMdj, and even in the case of Re-pair, where the
cascades performed worse in compression ratio, there
is an improvement in compression speed between 24%
and 210%.
Table 8 displays the decompression speed. Here, as

some backend decompressors are very fast, the cascades
do not always improve times. In fact, the cascades
are between 20% and 35% slower in the case of gzip,
between 24% and 57% in the case of p7zip, and between
7% and 25% in the case of Re-pair. However, when
using bzip2 and PPMdj, the cascades obtain a speed-
up of around 9-42% and 8-85%, respectively.
We note that those measurements have been obtained

by just compressing the text with ETDC or SCDC,
and then running the second compressor over the
compressed text that is obtained in the first stage.
Better results would be obtained by joining both
techniques in such a way that the output of ETDC or
SCDC would be used directly as the input of the second
compressor. These would avoid many disk I/Os (and
I/O buffering management) and performance would be
improved.

7.2.1. Discussion
Figure 5 shows trade-offs between compression ratio
and compression/decompression speed achieved by the

The Computer Journal, Vol. ??, No. ??, ????

14 A. Fariña, G. Navarro and J. Paramá

CORPUS
Boost Comp CALG FT91 CR ZIFF ALL

ETDC 25.73 28.42 30.91 28.81 27.99
SCDC 25.09 28.30 30.76 28.75 27.82

MPPM -9 1.77 1.90 2.06 1.88 1.80
None 9.24 9.63 9.86 10.83 10.21
ETDC gzip -9 12.70 15.80 18.11 15.25 16.38
SCDC 12.70 15.98 18.45 15.36 16.60
None 6.56 6.42 6.39 6.51 6.34
ETDC bzip2 8.47 10.19 11.23 10.74 10.35
SCDC 8.13 10.19 11.23 10.74 10.37
None 1.49 1.01 0.95 0.91 0.90
ETDC p7zip 4.32 4.82 4.57 3.60 3.68
SCDC 4.42 4.92 4.73 3.70 3.79
None 3.33 2.98 2.41 1.89 1.70
ETDC PPMdj 3.57 3.97 4.34 3.15 2.89
SCDC 3.44 3.92 4.33 3.16 2.89
None 1.34 1.14 0.88 0.50 0.13
ETDC Re-pair 2.78 2.38 1.68 0.75 0.16
SCDC 2.82 2.41 1.72 0.78 0.17

TABLE 7. Comparison on compression speed (MB/sec,
where the MBs refer to the original file).

CORPUS
Boost Comp CALG FT91 CR ZIFF ALL

ETDC 96.78 97.01 108.51 99.35 99.18
SCDC 81.29 96.34 102.57 96.16 96.20

MPPM -9 2.57 3.02 3.39 3.15 3.17
None 67.74 82.74 82.57 83.72 81.60
ETDC gzip -9 50.81 63.94 70.61 64.47 65.03
SCDC 50.81 61.16 68.62 63.31 64.22
None 16.94 16.95 17.98 17.61 17.27
ETDC bzip2 18.48 22.33 25.51 23.93 23.85
SCDC 18.48 22.33 25.37 23.90 23.76
None 29.03 38.02 44.70 41.96 42.55
ETDC p7zip 18.48 28.13 35.56 33.65 34.40
SCDC 18.48 28.13 34.80 33.33 33.95
None 3.08 2.80 2.30 1.82 1.63
ETDC PPMdj 3.33 3.82 4.26 3.11 2.86
SCDC 3.23 3.73 4.24 3.11 2.87
None 50.81 46.89 45.96 42.26 35.52
ETDC Re-pair 40.65 41.37 42.74 37.50 33.26
SCDC 40.65 42.62 41.64 37.50 33.25

TABLE 8. Comparison on decompression speed (MB/sec,
where the MBs refer to the target file).

cascades against compressors applied over the plain
text. In order to avoid cluttering the figure, we did
not include the ETDC and its cascades, as their values
are very close to those of SCDC.
In particular, with respect to gzip, dense+gzip

obtains an improvement of 14-48% in compression
ratio and 38-87% in compression speed, yet the
decompression performance worsens by around 20-35%.
Moreover, dense+gzip improves the compression ratio
obtained by bzip2 by around 1.5 percentage points,
while it is around 2-3 times faster at compression and
around 3-4 times faster at decompression. Reaching a
compression ratio around 22-24%, dense+gzip obtains
values that are very close to those of the powerful but
slow p7zip technique. Dense+gzip is from 8.5 to 19
times faster than p7zip at compression and around
53-75% at decompression. Dense+gzip is around 4
percentage points worse than MPPM -9 and Re-pair
in compression ratio. However, Dense+gzip is 9-
123 times faster than Re-pair and around 7-9 times
faster than MPPM at compression, being around 0-83%

faster than Re-pair and around 20 times faster than
MPPM at decompression. Finally, dense+gzip loses 6-
7 percentage points against the unbeatable PPMdj, but
it is around 4-10 times faster at compression and 16-40
times faster at decompression. To sum up, dense+gzip
poses an almost unbeatable trade-off between space and
compression and decompression efficiency.
Dense+bzip2 obtains also a very good compression

ratio (around 22-24% in large corpora) and improves
bzip2 by around 3-4 percentage points; these values
are on a par with the compression ratios achieved
by p7zip. With respect to performance, bzip2 is
overcome by around 24-76% at compression and 9-42%
at decompression speed.
Dense+p7zip compresses around 3 percentage points

more than p7zip in large texts. Dense+p7zip also
improves the compression ratio achieved by Re-pair in
all the corpora of our experiments. The same occurs
with MPPM in the large corpora. Yet, dense+p7zip
is between 3-28 times faster at compression when
comparing with Re-pair. It is also around twice as
fast as MPPM at compression and 7-10 times faster
at decompression than MPPM.
With respect to PPMdj alone, dense+PPMdj im-

proves its compression ratios by around 0.5 per-
centage points in large texts and obtains compres-
sion and decompression times around 7-85% better.
Dense+PPMdj overcomes by far all the other compres-
sors in compression ratio. Furthermore, it compresses
around twice as fast as MPPM, between 2.5 to 21 times
faster than Re-pair, and around 2.3-4.5 times faster
than p7zip. Yet, the heavy PPMmodeling cost makes it
around 10-15 times slower than Re-pair and 9-15 times
slower than p7zip at decompression.
The case of Re-pair is the only exception of our

experiments. The preprocessing can only improve the
compression speed, yet it is still very slow.

7.3. Boosting Online Search

Dense codes were designed as text compressors that
allow direct search and random access. They are not the
best techniques in compression ratio, although they can
compete with many state-of-the-art compressors. Their
success is their good trade-off between compression
ratio and speed during compression and decompression,
and more importantly, their ability to directly search
the compressed text faster than searching the plain text.
Although in the next section we will show that self-

indexes take advantage from indexing a TH, SCBDC,
and SCDC compressed text, this section is devoted to
online search. We show that if a backend compressor
produces compressed text that allows reasonably
efficient decompression, then the preprocessing step also
boosts the search on the compressed file up to the point
that, in some cases, it is even faster than searching the
original file, yet with much better compression ratios
than ETDC or SCDC alone.

The Computer Journal, Vol. ??, No. ??, ????

Boosting Text Compression with Word-based Statistical Encoding 15

 0.1

 1

 10

 100

 16 18 20 22 24 26 28 30 32 34 36

C
om

pr
es

si
on

 s
pe

ed
 (

M
B

/s
ec

)

Compression ratio (%)

SCDC

MPPM -9

gzip -9
SCDC+gzip

bzip2

SCDC+bzip2

SCDC+p7zip

PPMdj

SCDC+PPMdj

p7zip

SBDC+Re-pair
Re-pair

(a) Compression

 1

 10

 100

 16 18 20 22 24 26 28 30 32 34 36

D
ec

om
pr

es
si

on
 s

pe
ed

 (
M

B
/s

ec
)

Compression ratio (%)

SCDC
gzip -9SCDC+gzip

bzip2

SCDC+bzip2

p7zip

SCDC+p7zip

Re-pair
SCDC+Re-pair

SCDC+PPMdj
MPPM -9

PPMdj

(b) Decompression

FIGURE 5. Space vs compression/decompression time
trade-offs on corpus ALL. The x axis shows compression
ratio (leftwards is better). The y axis (in logarithmic scale)
shows compression and decompression speed (MB/sec),
respectively (upper is better).

The reason for this achievement is that the backend
decompressor must generate only about one third of
the text than if applied without preprocessing. Over
this resulting decompressed text, we run the ETDC or
SCDC searches, which are several times faster than on
the original uncompressed text files. Two factors benefit
the search over the preprocessed text: i) a shorter input
file; and ii) a larger alphabet (with a probability of
1/119.4 ≈ 0.008 that two random characters match,
versus 1/19.3 ≈ 0.052 on plain text), which produces
fewer unsuccessful partial matchings during the search.
From the list of backend compressors of this empirical

study, we chose gzip, which is the fastest one at
decompression. We note that, coupled with ETDC
or SCDC preprocessing, it achieves a very decent
compression ratio of around 24% on large collections.
We used software Lzgrep27 [54], which couples the

27http://www.dcc.uchile.cl/~gnavarro/software/lzgrep.tar.gz.

decompression and the pattern matching on a single
buffer, and modified the original software in order to
search text compressed with ETDC and SCDC instead
of plain text.28

We performed single and multi-pattern searches for
patterns chosen at random over corpus ALL. We
compared searches over dense+gzip with searches over
uncompressed text, over text compressed with ETDC,
and over text compressed with gzip.
To search text compressed with ETDC, we use our

own implementations of Horspool and Set-Horspool
algorithms29 [55, 56]: Horspool for single-pattern
searches and Set-Horspool for multi-pattern searches.
Three different algorithms were tested to search

the uncompressed text: our own implementations of
Horspool and Set-Horspool algorithms, and the Agrep30

software [57]. Agrep returns chunks of text containing
one or more searched patterns. The default chunk is a
line. When traversing a chunk, if Agrep finds a search
pattern, it skips the processing of the rest of the chunk.
This appreciably distorts the comparison with the rest
of the searchers. To present a fairer comparison, we
performed the searches over a modified version of the
text obtained by removing all the pattern occurrences
from it, and then scaled the results. More precisely, we
computed the text T’ that is obtained by removing all
the pattern occurrences from the original text. Then
we ran Agrep -s over T’ and scaled the resulting times
assuming that |T ′| = |ALL| . This shows essentially
the same statistics and reflects more accurately the real
search cost of Agrep.
Finally, we used the original Lzgrep to search

text compressed with gzip. All the software of this
experiment was compiled with the -m32 flag.
To choose the search patterns, we considered the

vocabulary of corpus ALL, and extracted sets of
patterns with K words of length L at random. We
considered lengths L=5 and 10, and sets of K=1, 5, 10,
25, 50, 100, 500, and 1000 patterns. Figure 6 shows the
average running times of the searchers over 10 different
sets for each combination of L and K.
Leaving apart ETDC, which is unbeatable in search

speed, by comparing Lzgrep over ETDC+gzip or
SCDC+gzip with the plain text searchers, we observe
that the search over that compressed text is between
1.5 and 10 times slower in the case of patterns of
length 10. When searching for 100 patterns or less of
length 5 (the average length of English words), where
the plain text searchers perform shorter shifts, Lzgrep
over dense+gzip is still 6-468% slower. However, when
more than 100 patterns are searched for in parallel,
the cascade is able to overcome plain text searchers by
around 6-33%.
The preprocessing is indeed successful, as Lzgrep

28These modified versions of Lzgrep are available at
http://vios.dc.fi.udc.es/codes

29http://vios.dc.fi.udc.es/codes.
30ftp://ftp.cs.arizona.edu/agrep/agrep-2.04.tar.Z.

The Computer Journal, Vol. ??, No. ??, ????

16 A. Fariña, G. Navarro and J. Paramá

 0

 5

 10

 15

 20

 25

1 5 10 25 50 100 500 1000

S
ea

rc
h

tim
e

(s
ec

)

Number of Patterns

Plain Horspool
Agrep
ETDC

LzgrepGzip
LzgrepETDC
LzgrepSCDC

(a) Patterns length 5.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 5 10 25 50 100 500 1000

S
ea

rc
h

tim
e

(s
ec

)

Number of Patterns

Plain Horspool
Agrep
ETDC

LzgrepGzip
LzgrepETDC
LzgrepSCDC

(b) Patterns length 10.

FIGURE 6. Search times with patterns of different
lengths. The x axis shows the number of patterns and the
y axis plots the search time (lower is better).

over dense+gzip is between 2 and 2.5 times faster
than Lzgrep over text compressed with gzip. Note
also that the original Lzgrep was not competitive
with uncompressed text searchers, being preferable
to decompress and then search. However, with the
cascades, the gap between Lzgrep and the plain text
searchers narrows and, as seen, Lzgrep is able to
overcome the others in some cases.

7.3.1. Discussion
Figure 7 shows the trade-offs between space and
search speed achieved by the Lzgrep searchers over
text compressed with dense+gzip in comparison with
those searchers working over either plain text or text
compressed with ETDC. We used patterns of length 5,
the average length of English words. As seen, Lzgrep
over dense compressed text obtains an interesting trade-
off, with the best compression ratios of the comparative
(around 24%), Lzgrep over dense+gzip obtains results
comparable to those of the plain text searchers and, as
explained, an important improvement with respect to

 0

 2

 4

 6

 8

 10

 12

 14

 16

20 30 40 50 60 70 80 90 100

S
ea

rc
h

T
im

e
(s

ec
)

Compression ratio (%)

ETDC

LzgrepGzip

LzgrepSCDC

LzgrepETDC

Plain Horspool

Agrep

(a) 1 Pattern length 5.

 0

 5

 10

 15

 20

 25

 30

20 30 40 50 60 70 80 90 100

S
ea

rc
h

T
im

e
(s

ec
)

Compression ratio (%)

ETDC

LzgrepGzip

LzgrepSCDC

LzgrepETDC Plain Horspool
Agrep

(b) 1000 Patterns length 5.

FIGURE 7. Space vs online search speed trade-offs
on corpus ALL. The x axis shows compression ratio in
logarithmic scale (leftwards is better) and the y axis plots
search time (lower is better).

the original Lzgrep. With compression ratios around
33%, the searches over ETDC compressed text remain
as the fastest ones, being around 4-11 times faster than
Lzgrep over dense+gzip.

7.4. Boosting Indexed Search

Figures 8, 9, and 10 compare the AFFM and CSA self-
indexes31 built over text compressed with TH, SCBDC,
and SCDC with those built over the original text.
Throughout this section SCDC refers to the version
presented in Section 6.3, that is, the one that outputs
the compressed text backwards. We also include both
WTBC and WCSA in the comparison. Although we
run the same experiments on SSA and LZI, we omit
them to avoid cluttering the figures, as they were not
competitive with AFFM and CSA.
Using corpus CR, and different values of the tuning

parameters of each self-index, the figures show the

31Software available at http://vios.dc.fi.udc.es/indexing.

The Computer Journal, Vol. ??, No. ??, ????

Boosting Text Compression with Word-based Statistical Encoding 17

space/time trade-off obtained for locating and counting
all the occurrences of patterns composed of 1 and 4
words. We also show extract performance for each self-
index. We measure the time needed to recover 1,000
snippets of the original text with 10,000 characters each.
We give average times per extracted character. We do
not include display operation, as it is basically locate
plus extract.
In all cases, the cascades clearly improve the

space/time trade-off obtained by their traditional
counterparts. Furthermore, we compared the size
of the text compressed by the backend compressors
with that of both AFFM and CSA tuned to obtain
low space requirements. In the case of CSA when
reducing the sample rate (SR) to 256 and setting the
sampling of Ψ (SΨ) to 256, the resulting SCBDC+CSA
achieves a compression ratio of 31.64%, that is, even
better than applying ETDC alone (31.94%), just as
the k-th order compressors improved upon the result
of ETDC(T) or SCDC(T). In addition, SCDC+CSA
with SR=1024 and SΨ=1024 obtains a compression
ratio of 30.33%, hence overcoming the compression
ratio of SCDC (31.29%) by around 1 percentage point.
Similarly, the 33.52% achieved by the AFFM built over
text compressed with SCBDC when using SR=4096
and the rank factor (RF) is set to 64, still overcomes the
compression ratio of TH alone (34.28%) and also that
of SCBDC (33.93%). However, the AFFM built on top
of SCDC was not able to overcome compressors alone.
Even though we tuned it with a very sparse sampling
(SR=16384 and RF=1024), it obtained a compression
ratio of 35.96%.
In any case, if we set the parameters to obtain

structures of the same size, the self-indexes built over
compressed text will always be much faster. For
example, the AFFM over plain text with SR=1024
and RF=64 achieves a compression ratio of 56.94%.
Using AFFM over SCBDC, to obtain a structure of
similar size, we can set SR=16 and RF=4 (55.77%).
In these circumstances, the self-index built over text
compressed with SCBDC is 80-130 times faster to
perform locate, around 78%-100% faster at performing
count, and around 2.5 times faster on extract operation.
On the other hand, if we set the parameters to obtain
two structures that achieve similar search times, the
self-index over compressed text will occupy between half
and one third of the size of the index built from plain
text. For example, AFFM over plain text with SR=16
and RF=64 obtained a locating time per occurrence
of 3.609 µsec, when searching for patterns of 4 words,
whereas the AFFM over TH with SR=16 and RF=8,
obtains 3.601 µsec. Yet, the self-index over TH occupies
55.67% of the original text, whereas the self-index over
plain text occupies 106.16%. Using again the AFFM
over plain text with SR=16 and RF=64, its counting
time for patterns of length 4 is 0.0224 msec; to achieve
a similar time with AFFM over TH, we have to set
RF=64 and SR=1024 (0.0214 msec). With these

settings, the AFFM over TH occupies 36.69%, whereas
AFFM over plain text occupies 106.16%. Finally,
AFFM over plain text with SR=16 and RF=4 needs
0.565 µsec to extract one character (on average), and
its compression ratio is 116.36%. AFFM over TH with
RF=32 and SR=1024 consumes 0.546 µsec, with a
compression ratio of 37.10%. Similar conclusions are
obtained when comparing the indexes built on top of
SCDC with those built over plain text.

With respect to the differences between TH and
SCBDC, the k-th order self-index AFFM seems to
predict better the bytes in SCBDC(T) than those in
TH(T). This is not surprising: after a one-byte value
or a stopper only a one-byte value or a beginner can
follow, after a beginner only a continuer or a stopper can
follow, and so on; this is not that regular on TH. With
the same parameters, the index over SCBDC is around
6-9% smaller than the one built over text compressed
with TH. The same happens with CSA, but differences
are only around 1%.

When we compare SCBDC with SCDC, we find that,
surprisingly, the AFFM built on top of SCBDC obtains
much better compression than that over SCDC (around
3 percentage points in most cases when setting both
indexes with the same parameters). Furthermore, the
SCBDC version clearly obtains also better performance
at both count and locate operations, whereas the times
for extract are similar when using both SCDC and
SCBDC. In the case of CSA, results show that CSA
built on top of SCDC requires slightly less memory
to work. The SCDC version is slower at count than
that using SCBDC, but it becomes faster at extract. In
locate, CSA built on top of both SCDC and that built
over SCBDC obtain similar times.

With respect to WTBC and WCSA, the trade-
off between compression ratio and locate performance
of our CSA self-index built over compressed text is
comparable to that of WCSA, although worse than
that of WTBC in short patterns. When considering
the count performance for short patterns, CSA over
compressed text can compete with WTBC, but its
results are worse than those of the WCSA. Yet, in
long patterns, CSA over compressed text is able to
overcome the WCSA and improves by far the results
of the WTBC. Finally, in the extract operation, the
character-based self-indexes over compressed text are
clearly worse than both WCSA and WTBC. This is
expectable as the last ones extract data word-wise, so
each extracted symbol consists in one word rather than
in just one single character.

We remind that WCSA and WTBC are very
sophisticated indexing systems, so it is remarkable that
our simple combinations perform reasonably close by
just prepending a word encoding to the character-based
indexers.

The Computer Journal, Vol. ??, No. ??, ????

18 A. Fariña, G. Navarro and J. Paramá

 0.001

 0.01

 0.1

 30 35 40 45 50 55 60 65 70

A
vg

 lo
ca

te
 ti

m
e/

oc
cu

r.
 (

m
se

c)

Compression ratio (%)

AFFM+text
AFFM+SCBDC

AFFM+SCDC
AFFM+TH

CSA+text
CSA+SCBDC
CSA+SCDC

CSA+TH
WCSA
WTBC

(a) Locate Patterns 1 word

 0.001

 0.01

 0.1

 30 35 40 45 50 55 60 65 70

A
vg

 lo
ca

te
 ti

m
e/

oc
cu

r.
 (

m
se

c)

Compression ratio (%)

AFFM+text
AFFM+SCBDC

AFFM+SCDC
AFFM+TH
CSA+text

CSA+SCBDC
CSA+SCDC

CSA+TH
WCSA
WTBC

(b) Locate Patterns 4 words

FIGURE 8. Locate space/search time trade-offs on corpus
CR. The x axis shows compression ratio (leftwards is better),
and y axis plots average search time per occurrence in
logarithmic scale (lower is better).

8. CONCLUSIONS

We have shown that byte-oriented natural language
compressors such as ETDC, SCDC, SCBDC, TH,
and PH are not only attractive because of their
acceptable compression ratio and high compression
and decompression speed. They can also be seen
as a transformation of the text that boosts classical
compression/indexing techniques. They transform
a text into a much shorter sequence of bytes
(around 30-35% of the original text) that is still
compressible and, in the case of TH and SCBDC
(and in some cases SCDC), can also be self-indexed.
The results obtained by cascading word-based byte-
oriented semistatic compressors with the block-wise
bzip2, the Ziv-Lempel-based gzip and p7zip (LZMA),
and the predictive PPM-based PPMdj, show clear
improvements in their compression ratio and speed. In
the case of bzip2 and PPMdj (the slowest techniques

0.001

0.002

0.003

0.004

0.005

0.01

 30 35 40 45 50 55 60 65 70

A
vg

 c
ou

nt
 ti

m
e/

pa
tte

rn
. (

m
se

c)

Compression ratio (%)

AFFM+text
AFFM+SCBDC

AFFM+SCDC
AFFM+TH

CSA+text
CSA+SCBDC

CSA+SCDC
CSA+TH

WCSA
WTBC

(a) Count Patterns 1 word

0.009

0.01

0.02

0.03

 30 35 40 45 50 55 60 65 70

A
vg

 c
ou

nt
 ti

m
e/

pa
tte

rn
. (

m
se

c)

Compression ratio (%)

AFFM+text
AFFM+SCBDC

AFFM+SCDC
AFFM+TH
CSA+text

CSA+SCBDC
CSA+SCDC

CSA+TH
WCSA
WTBC

(b) Count Patterns 4 words

FIGURE 9. Count space/search time trade-offs on corpus
CR. The x axis shows compression ratio (leftwards is better),
and y axis plots average count time per occurrence in
logarithmic scale (lower is better). The plot for WTBC is
not shown in the bottom figure because its times are always
over 0.5 msec.

at decompression) the decompression speed was also
improved.
We showed that the cascades yield an attractive

space/efficiency trade-off. Dense+gzip is very fast,
obtains very good compression, and allows quite
efficient direct search over the compressed text.
Dense+bzip2 compresses a bit more but it is also slower.
Dense+p7zip obtains even better compression at the
expense of losing some performance. Dense+PPMdj
obtains the best compression ratio of our experiments,
around an impressive 17%. Finally, Re-pair remained
as the only compressor that does not take a clear
advantage of the preprocessing.
We also showed that the preprocessing improves

considerably the search times on the compressed text.
We empirically demonstrated this over text compressed
with gzip. We adapted the Lzgrep software to

The Computer Journal, Vol. ??, No. ??, ????

Boosting Text Compression with Word-based Statistical Encoding 19

 0.0001

 0.001

 30 35 40 45 50 55 60 65 70

A
vg

 e
xt

ra
ct

 ti
m

e/
ch

ar
. (

m
se

c)

Compression ratio (%)

AFFM+text
AFFM+SCBDC

AFFM+SCDC
AFFM+TH

CSA+text
CSA+SCBDC

CSA+SCDC
CSA+TH

WCSA
WTBC

FIGURE 10. Extract space/search time trade-offs on
corpus CR. The x axis shows compression ratio (leftwards
is better), and y axis plots average extract time per char in
logarithmic scale (lower is better).

search both text compressed with ETDC+gzip and
SCDC+gzip. The empirical results showed that the
searches over text compressed with dense+gzip are
around 2-2.5 times faster than those performed with
the original Lzgrep over text compressed with gzip.
Moreover, when we search for more than 100 patterns of
length 5, Lzgrep over dense+gzip outperforms the plain
text searchers.
We have seen that self-indexing can be boosted in a

similar way by just building the traditional char-based
self-indexes over the compressed sequence obtained with
a prefix and suffix-free word-based byte-oriented text
compressor. As the only candidate up to now was
TH, we also developed SCBDC, the first suffix-free
compressor from the family of dense codes. SCBDC
retains the same features of TH. Yet, it is simpler to
implement and improves its compression ratio, while
obtaining similar performance. We also showed how
SCDC codes can be used in combination with some self-
indexes to provide indexed searches, despite not being
suffix-free.
Our experiments showed how indexing also benefits

from the use of a compressed version of the text. If we
build both the AFFM and CSA over text compressed
with TH, SCBDC or SCDC, and we set their parameters
in order to obtain structures of the same size as if
we indexed the plain text, we obtain self-indexes that
are much (up to 130 times) faster than the traditional
ones. If we instead set the parameters of each self-
index to obtain two structures with similar search
speed, the self-index built over compressed text will
occupy between half and one third of the size of that
built over plain text. The newer WTBC and WCSA
improve our results, but these self-indexes represent
new complex developments, whereas our results are

obtained combining already developed software and
adding a small amount of new code.
As future work, we are interested in obtaining ac-

tual implementations of joined ETDC+X or SCDC+X
compressors and decompressors, especially in the case
of ETDC+gzip because of its impressive compres-
sion/performance trade-off. These joined versions
would avoid many disk I/Os, thus further improving
the performance.
In addition, in the case where efficient direct search

is not possible due to the backend compressor, we
can exploit other byte-oriented codes that display
better compression performance [21]. Under the same
circumstances, we can explore the use of vocabulary
pruning techniques [43, 45] in order to avoid the
appearance of 3-byte codewords, and then obtain better
compression ratios.

FUNDING

This work was supported in part (for the second
author) by Fondecyt (Chile) [grant 1-110066]; and
(for the Spanish group) by Ministerio de Educación y
Ciencia [TIN2009-14560-C03-02] and [TIN2010-21246-
C02-01], Ministerio de Ciencia e Innovación [CDTI
CEN-20091048], and Xunta de Galicia [grant 2010/17].

REFERENCES

[1] Fariña, A., Navarro, G., and Paramá, J. (2008) Word-
based statistical compressors as natural language com-
pression boosters. Proceedings of Data Compression
Conference (DCC 08), Snowbird, UT, 25-27 March, pp.
162–171. IEEE Computer Society, Los Alamitos, CA.

[2] Huffman, D. A. (1952) A method for the construction
of minimum-redundancy codes. Proceedings of the
I.R.E., 8 September, pp. 1098–1101. Institute of Radio
Engineers Inc., New York, NY.

[3] Ziv, J. and Lempel, A. (1977) A universal algorithm
for sequential data compression. IEEE Transactions
on Information Theory, 23, 337–343.

[4] Ziv, J. and Lempel, A. (1978) Compression of
individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24, 530–536.

[5] Bell, T., Cleary, J., and Witten, I. (1984) Data
compression using adaptive coding and partial string
matching. IEEE Transactions on Communications, 32,
396–402.

[6] Abramson, N. (1963) Information Theory and Coding.
McGraw-Hill, New York, NY.

[7] Jelinek, F. (1968) Probabilistic Information Theory.
McGraw-Hill, New York, NY.

[8] Witten, I., Neal, R., and Cleary, J. (1987) Arithmetic
coding for data compression. Communications of the
ACM, 30, 520–541.

[9] Burrows, M. and Wheeler, D. J. (1994) A block-sorting
lossless data compression algorithm. Technical Report
124. Digital Equipment Corporation, Palo Alto, CA.

[10] Larsson, N. J. and Moffat, A. (1999) Offline dictionary-
based compression. Proceedings of Data Compression

The Computer Journal, Vol. ??, No. ??, ????

20 A. Fariña, G. Navarro and J. Paramá

Conference (DCC 99), Snowbird, UT, 29-31 March, pp.
296–305. IEEE Computer Society, Los Alamitos, CA.

[11] Moffat, A. (1989) Word-based text compression.
Software Practice and Experience, 19, 185–198.

[12] Bentley, J. L., Sleator, D. D., Tarjan, R. E., and
Wei, V. K. (1986) A locally adaptive data compression
scheme. Communications of the ACM, 29, 320–330.

[13] Zipf, G. K. (1949) Human Behavior and the Principle
of Least Effort. Addison-Wesley, Cambridge, MA.

[14] Heaps, H. (1978) Information Retrieval - Computa-
tional and Theoretical Aspects. Academic Press, New
York, NY.

[15] Moura, E., Navarro, G., Ziviani, N., and Baeza-
Yates, R. (2000) Fast and flexible word searching on
compressed text. ACM Transactions on Information
Systems, 18, 113–139.

[16] Klein, S. and Shapira, D. (2005) Pattern matching in
Huffman encoded texts. Information Processing and
Management, 41, 829–841.

[17] Ferguson, T. and Rabinowitz, J. (1984) Self-
synchronizing Huffman codes. IEEE Transactions on
Information Theory, 30, 687–697.

[18] Biskup, M. (2008) Guaranteed synchronization of
Huffman codes. Proceedings of Data Compression
Conference (DCC 08), Snowbird, UT, 25-27 March, pp.
462–471. IEEE Computer Society, Los Alamitos, CA.

[19] Biskup, M. and Plandowski, W. (2009) Guaranteed
synchronization of Huffman codes with known position
of decoder. Proceedings of Data Compression
Conference (DCC 09), Snowbird, UT, 16-18 March, pp.
33 –42. IEEE Computer Society, Los Alamitos, CA.

[20] Brisaboa, N., Fariña, A., Navarro, G., and Paramá, J.
(2007) Lightweight natural language text compression.
Information Retrieval, 10, 1–33.

[21] Culpepper, J. and Moffat, A. (2005) Enhanced byte
codes with restricted prefix properties. Proceedings
of the 12th Conference on String Processing and
Information Retrieval (SPIRE 05), Buenos Aires,
Argentina, 2-4 November LNCS 3772, pp. 1–12.
Springer, Berlin / Heidelberg.

[22] Klein, S. T. and Ben-Nissan, M. K. (2008) Using
Fibonacci compression codes as alternatives to dense
codes. Proceedings of Data Compression Conference
(DCC 08), Snowbird, UT, 25-27 March, pp. 472–481.
IEEE Computer Society, Los Alamitos, CA.

[23] Klein, S. and Shapira, D. (2011) The string-to-
dictionary matching problem. Proceedings of Data
Compression Conference (DCC 11), Snowbird, UT, 29-
31 March, pp. 143–152. IEEE Computer Society, Los
Alamitos, CA.

[24] Navarro, G. and Mäkinen, V. (2007) Compressed full-
text indexes. ACM Computing Surveys, 39, article 2,
61 pages.

[25] Sadakane, K. (2003) New text indexing functionalities
of the compressed suffix arrays. Journal of Algorithms,
48, 294–313.

[26] Mäkinen, V. and Navarro, G. (2005) Succinct suffix
arrays based on run-length encoding. Nordic Journal
of Computing, 12, 40–66.

[27] Ferragina, P., Manzini, G., Mäkinen, V., and Navarro,
G. (2007) Compressed representations of sequences and

full-text indexes. ACM Transactions on Algorithms, 3,
article 20, 24 pages.

[28] Navarro, G. (2004) Indexing text using the Ziv-Lempel
trie. Journal of Discrete Algorithms, 2, 87–114.

[29] Arroyuelo, D. and Navarro, G. (2010) Practical
approaches to reduce the space requirement of Lempel-
Ziv-based compressed text indices. ACM Journal of
Experimental Algorithmics, 15, article 1.5, 54 pages.

[30] Brisaboa, N., Fariña, A., Navarro, G., Places, A., and
Rodŕıguez, E. (2008) Self-indexing natural language.
Proceedings of the 15th International Symposium on
String Processing and Information Retrieval (SPIRE
08), Melbourne, Australia, 10-12 November LNCS
5280, pp. 121–132. Springer, Berlin / Heidelberg.

[31] Brisaboa, N., Fariña, A., Ladra, S., and Navarro, G.
(2008) Reorganizing compressed text. Proceedings of
the 31st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval
(SIGIR 08), Singapore, 20-24 July, pp. 139–146. ACM,
New York, NY.

[32] Moffat and Turpin (1997) On the implementation of
minimum redundancy prefix codes. IEEE Transactions
on Communications, 45, 1200–1207.

[33] Horspool, R. N. and Cormack, G. V. (1992)
Constructing word-based text compression algorithms.
Proceedings of Data Compression Conference (DCC
1992), Snowbird, UT, 24-27 March, pp. 62–71. IEEE
Computer Society Press, Los Alamitos, CA.

[34] Ziviani, N., Moura, E., Navarro, G., and Baeza-Yates,
R. (2000) Compression: A key for next-generation text
retrieval systems. IEEE Computer, 33, 37–44.

[35] Isal, R. and Moffat, A. (2001) Parsing strategies for
BWT compression. Proceedings of Data Compression
Conference (DCC 01), Snowbird, UT, 27-29 March
2001, pp. 429–438. IEEE Computer Society, Los
Alamitos, CA.

[36] Isal, R., Moffat, A., and Ngai, A. C. H. (2002)
Enhanced word-based block-sorting text compression.
Twenty-Fifth Australasian Computer Science Confer-
ence, Melbourne, Australia, January/February, CR-
PIT, 4, pp. 129–137. Australian Computer Society,
Darlinghurst, Australia.

[37] Franceschini, R. and Mukherjee, A. (1996) Data
compression using encrypted text. Proceedings of
Advanced Digital Libraries (ADL 96), Washinton, DC,
13-15 May, pp. 130–138. IEEE Computer Society, Los
Alamitos, CA.

[38] Teahan, W. J. and Cleary, J. G. (1996) The entropy of
english using PPM-based models. Proceedings of Data
Compression Conference (DCC 96), Snowbird, UT, 31
March- 3 April, pp. 53–62. IEEE Computer Society, Los
Alamitos, CA.

[39] Awan, F., Zhang, N., Motgi, N., Iqbal, R., and
Mukherjee, A. (2001) LIPT: A reversible lossless
text transform to improve compression performance.
Proceedings of Data Compression Conference (DCC
01), Snowbird, UT, 27-29 March, pp. 481–481. IEEE
Computer Society, Los Alamitos, CA.

[40] Sun, W., Zhang, N., and Mukherjee, A. (2003)
Dictionary-based fast transform for text compression.
Proceedings of the International Conference on Infor-
mation Technology: Computers and Communications

The Computer Journal, Vol. ??, No. ??, ????

Boosting Text Compression with Word-based Statistical Encoding 21

(ITCC 03), Las Vegas, NV, 28-30 April, pp. 176–182.
IEEE Computer Society Press, Los Alamitos, CA.

[41] Abel, J. and Teahan, W. (2005) Universal text prepro-
cessing for data compression. IEEE Transactions on
Computers, 54, 497–507.

[42] Skibinski, P., Grabowski, S., and Deorowicz, S. (2005)
Revisiting dictionary-based compression. Software
Practice and Experience, 35, 1455–1476.

[43] Adiego, J. and de la Fuente, P. (2006) Mapping
words into codewords on PPM. Proceedings of the
13th Conference on String Processing and Information
Retrieval (SPIRE 06), Glasgow, UK, 11-13 October
LNCS 4209, pp. 181–192. Springer, Berlin / Heidelberg.

[44] Shkarin, D. (2002) PPM: One step to practicality.
Proceedings of Data Compression Conference (DCC
02), Snowbird, UT, 2-4 April, pp. 202–211. IEEE
Computer Society Press, Los Alamitos, CA.

[45] Adiego, J., Martinez-Prieto, M., and Fuente, P. (2009)
High performance word-codeword mapping algorithm
on PPM. Proceedings of Data Compression Conference
(DCC 09), Snowbird, UT, 16-18 March, pp. 23–32.
IEEE Computer Society, Los Alamitos, CA.

[46] Grabowski, S., Navarro, G., Przywarski, R., Salinger,
A., and Mäkinen, V. (2006) A simple alphabet-
independent FM-index. International Journal of
Foundations of Computer Science, 17, 1365–1384.

[47] Ferragina, P. (2008) String algorithms and data
structures. CoRR, abs/0801.2378.

[48] Bell, T. C., Cleary, J. G., and Witten, I. H. (1990) Text
Compression. Prentice Hall, Englewood Cliffs, NJ.

[49] Williams, H. E. and Zobel, J. (1999) Compressing
integers for fast file access. The Computer Journal,
42, 193–201.

[50] Fariña, A. (2005) New Compression Codes for
Text Databases. PhD thesis Database Labo-
ratory, University of A Coruña. Available at
http://lbd.udc.es/Repository/Thesis/phdFarinha.pdf.

[51] Moura, E., Navarro, G., Ziviani, N., and Baeza-Yates,
R. (1998) Fast searching on compressed text allowing
errors. Proceedings of the 21st Annual International
ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR 98), Melbourne,
Australia, 24-28 August, pp. 298–306. ACM, New York,
NY.

[52] Wan, R. (2003) Browsing and Searching Com-
pressed Documents. PhD thesis Dept. of
Computer Science and Software Engineer-
ing, University of Melbourne. Avaliable at
http://eprints.unimelb.edu.au/archive/00000871.

[53] Manber, U. and Myers, G. (1993) Suffix arrays: a new
method for on-line string searches. SIAM Journal on
Computing, 22, 935–948.

[54] Navarro, G. and Tarhio, J. (2005) LZgrep: A Boyer-
Moore string matching tool for Ziv-Lempel compressed
text. Software Practice and Experience, 35, 1107–1130.

[55] Horspool, R. N. (1980) Practical fast searching in
strings. Software Practice and Experience, 10, 501–
506.

[56] Navarro, G. and Raffinot, M. (2002) Flexible Pattern
Matching in Strings – Practical on-line search algo-
rithms for texts and biological sequences. Cambridge
University Press, New York, NY.

[57] Wu, S. and Manber, U. (1992) Agrep – a fast
approximate pattern-matching tool. Proceedings of the
USENIX Winter 1992 Technical Conference (USENIX
92), San Francisco, CA, 20-24 January, pp. 153–162.
USENIX, Berkeley, CA.

[58] Awan, F. and Mukherjee, A. (2001) LIPT: A lossless
text transform to improve compression. Proceedings
of the International Conference on Information and
Theory: Coding and Computing (ITCC 01), Las Vegas,
NV, 2-4 April, pp. 452–460. IEEE Computer Society,
Los Alamitos, CA.

[59] Chapin, B. and Tate, S. R. (1998) Higher compression
from the Burrows-Wheeler transform by modified
sorting. Proceedings of Data Compression Conference
(DCC 98), Snowbird, UT, 30 March–1 April, pp. 532–
532. IEEE Computer Society, Los Alamitos, CA.

[60] Mäkinen, V. and Navarro, G. (2004) Compressed
compact suffix arrays. Proceedings of the 15th Annual
Symposium on Combinatorial Pattern Matching (CPM
04), Istambul, Turkey, 5-7 July LNCS 3109, pp. 420–
433. Springer, Berlin / Heidelberg.

The Computer Journal, Vol. ??, No. ??, ????

