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Abstract. A major factor affecting the readability of a graph drawing is its
resolution. In the graph drawing literature, the resolution of a drawing is ei-
ther measured based on the angles formed by consecutive edges incident to a
common node (angular resolution) or by the angles formed at edge crossings
(crossing resolution). In this paper, we evaluate both by introducing the notion
of “total resolution”, that is, the minimum of the angular and crossing resolu-
tion. To the best of our knowledge, this is the first time where the problem of
maximizing the total resolution of a drawing is studied.
The main contribution of the paper consists of drawings of asymptotically op-
timal total resolution for complete graphs (circular drawings) and for complete
bipartite graphs (2-layered drawings). In addition, we present and experimen-
tally evaluate a force-directed based algorithm that constructs drawings of
large total resolution.

Date: September 10, 2010.

1 Introduction

Graphs are widely used to depict relations between objects. There exist several criteria
that have been used to judge the quality of a graph drawing [3,16]. From a human
point of view, it is necessary to obtain drawings that are easy-to-read, i.e., they should
nicely convey the structure of the objects and their relationships. From an algorithmic
point of view, the quality of a drawing is usually evaluated by some objective function
and the main task is to determine a drawing that minimizes or maximizes the specific
objective function. Various such functions have been studied by the graph drawing
community, among them, the number of crossings among pairs of edges, the number
of edge bends, the maximum edge length, the total area occupied by the drawing and
so on.

Over the last few decades, much research effort has been devoted to the problem
of reducing the number of crossings. This is reasonable, since it is commonly accepted
that edge crossings may negatively affect the quality of a drawing. Towards this di-
rection, there also exist eye-tracking experiments that confirm the negative impact of
edge crossings on the human understanding of a graph drawing [20,21,22]. However,
the computational complexity of the edge crossing minimization problem, which is
NP-complete in general [11], implies that the computation of high-quality drawings
of dense graph is difficult to achieve.

Apart from the edge crossings, another undesired property that may negatively
influence the readability of a drawing is the presence of edges that are too close
to each other, especially if these edges are adjacent. Thus, maximizing the angles
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among incident edges becomes an important aesthetic criterion, since there is some
correlation between the involved angles and the visual distinctiveness of the edges.

Motivated by the cognitive experiments by Huang et al. [14,15] that indicate that
the negative impact of an edge crossing is eliminated in the case where the crossing
angle is greater than 70 degrees, we study a new graph drawing scenario in which both
angular and crossing resolution1 are taken into account in order to produce a straight-
line drawing of a given graph. To the best of our knowledge, this is the first attempt,
where both angular and crossing resolution are combined to produce drawings. We
prove that the classes of complete and complete bipartite graphs admit drawings
that asymptotically maximize the minimum of the angular and crossing resolution
(Section 3). We also present a more practical, force-directed based algorithm that
constructs drawings of large angular and crossing resolution (Section 4).

1.1 Previous Work

Formann et al. [9] were the first to study the angular resolution of straight-line draw-
ings. They proved that deciding whether a graph of maximum degree d admits a
drawing of angular resolution 2π

d
(i.e., the obvious upper bound) is NP-hard. They

also proved that several types of graphs of maximum degree d have angular resolution
Θ( 1

d
). Malitz and Papakostas [18] proved that any planar graph of maximum degree

d, admits a planar straight-line drawing with angular resolution Ω( 1
7d
). Garg and

Tamassia [12] showed a continuous tradeoff between the area and the angular resolu-
tion of planar straight-line drawings. Gutwenger and Mutzel [13] gave a linear time
and space algorithm that constructs a planar polyline grid drawing of a connected
planar graph with n vertices and maximum degree d on a (2n−5)×(32n−

7
2 ) grid with

at most 5n − 15 bends and minimum angle greater than 2
d
. Bodlaender and Tel [2]

showed that planar graphs with angular resolution at least π
2 are rectilinear. Recently,

Lin and Yen [17] presented a force-directed method based on edge-edge repulsion that
leads to drawings with high angular resolution. In their work, pairs of edges incident
to a common node are modeled as charged springs, that repel each other.

A graph is called right angle crossing (or RAC for short) graph if it admits a
polyline drawing in which every pair of crossing edges intersects at right angle. Didimo
et al. [6] showed that any straight-line RAC drawing with n nodes has at most 4n−10
edges. Angelini et al. [1] showed that there are acyclic planar digraphs not admitting
straight-line upward RAC drawings and that the corresponding decision problem is
NP-hard. They also constructed digraphs whose straight-line upward RAC drawings
require exponential area. Di Giacomo et al. [5] presented tradeoffs between the crossing
resolution, the maximum number of bends per edges and the area. Dujmovic et al.
[7] studied α Angle Crossing (or αAC for short) graphs, that generalize the RAC
graphs. A graph is called αAC if it admits a polyline drawing in which the smallest
angle formed by an edge crossing is at least α. For this class of graphs, they proved
upper and lower bounds for the number of edges.

Force-directed methods are commonly used for drawing graphs [8,10]. In such a
framework, a graph is treated as a physical system with forces acting on it. Then,
a good configuration or drawing can be obtained from an equilibrium state of the

1 The term angular resolution denotes the smallest angle formed by two adjacent edges
incident to a common node, whereas the term crossing resolution refers to the smallest
angle formed by a pair of crossing edges.
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system. An overview of force-directed methods and their variations can be found in
the graph drawing books [3,16].

2 Preliminaries and Notation

Let G = (V,E) be an undirected graph. Given a drawing Γ (G) of G, we denote by
pu = (xu, yu) the position of node u ∈ V on the plane. The unit length vector from
pu to pv is denoted, by −−→pupv, where u, v ∈ V . The degree of node u ∈ V is denoted
by d(u). Let also d(G) = maxu∈V d(u) be the degree of the graph.

Given a pair of points q1, q2 ∈ R2, with a slight abuse of notation, we denote by
||q1 − q2|| the Euclidean distance between q1 and q2. We refer to the line segment
defined by q1 and q2 as q1q2.

Let −→α and −→γ be two vectors. The vector which bisects the angle between −→α and
−→γ is

−→α
||−→α ||

+
−→γ

||−→γ ||
. We denote by Bsc(−→α ,−→γ ) the corresponding unit length vector.

Given a vector
−→
β , we refer to the unit length vector which is perpendicular to

−→
β

and precedes it in the clockwise direction, as Perp(
−→
β ). Some of our proofs use the

following elementary geometric properties:

tan (ω1 − ω2) =
tanω1 − tanω2

1 + tanω1 · tanω2
(1) tan (ω/2) =

sinω

1 + cosω
(2)

ω ∈ (0,
π

2
) ⇒ tanω > ω (3)

3 Drawings with Optimal Total Resolution for Complete and

Complete Bipartite Graphs

In this section, we define the total resolution of a drawing and we present drawings of
asymptotically optimal total resolution for complete graphs (circular drawings) and
complete bipartite graphs (2-layered drawings).

Definition 1. The total resolution of a drawing is defined as the minimum of its

angular and crossing resolution.

We first consider the case of complete graphs. Let Kn = (V,E) be a complete
graph, where V = {u0, u1, . . . , un−1} and E = V × V . Our aim is to construct a
circular drawing of Kn of maximum total resolution. Our approach is constructive and
common when dealing with complete graphs. A similar one has been given by Formann
et al. [9] for obtaining optimal drawings of complete graphs, in terms of angular
resolution. Consider a circle C of radius rc > 0 centered at (0, 0) and circumscribe
a regular n-polygon Q on C. In our construction, the nodes of Kn coincide with the
vertices of Q. W.l.o.g., we further assume that u1, u2, . . . , un appear in this order in
the counter-clockwise direction around (0, 0), as illustrated in Fig.1a.

Theorem 1. A complete graph Kn admits a drawing of total resolution Θ( 1
n
).

3



Proof. We prove that the angular resolution of the presented drawing of Kn is π
n
,

whereas its crossing resolution is 2π
n

. First, observe that the arc of circle C that con-
nects two consecutive nodes ui and u(i+1)modn is equal to 2π

n
, for each i = 0, 1, . . . , n−

1. Therefore, the angular resolution of the drawing is π
n
, as desired. Let now ei =

(ui, ui′) and ej = (uj , uj′) be two crossing edges. Without loss of generality, we as-
sume that i < j < i′ < j′, as in Fig.1a. The crossing of ei and ej defines two angles
φc and φ′

c such that φc + φ′
c = π. In Fig.1a, φc is exterior to the triangle formed by

the crossing of ei and ej and the nodes uj and ui′ (refer to the dark-gray triangle of
Fig.1a). Therefore: φc = (j′− i′)π

n
+(j− i)π

n
. Similarly, φ′

c = (i′−j)π
n
+(n−(j′− i))π

n
.

In the case, where j = (i+1) mod n and j′ = (i′+1) mod n (i.e., the nodes ui (ui′ ,
resp.) and uj (uj′ , resp.) are consecutive), the angle φc receives its minimum value,
which is equal to 2π

n
. Similarly, we can prove that the minimum value of φ′

c is also
2π
n

. This establishes that the crossing resolution is 2π
n

. ⊓⊔

We now proceed to consider the class of complete bipartite graphs. Since an n-
vertex complete bipartite graph is a subgraph of a n-vertex complete graph, the bound
of the total resolution of a complete bipartite graph can be implied by the bound of
the complete graph. However, if the nodes of the graph must have integer coordinates,
i.e., we restrict ourselves on grid drawings, few results are known regarding the area
needed of such a drawing. An upper bound of O(n3) area can be implied by [2].
This motivates us to separately study the class of complete bipartite graph, since
we can drastically improve this bound. Note that the tradeoff between resolution
and area has been studied by the graph drawing community, in the past. Malitz
and Papakostas [18] showed there exist graphs that always require exponential area
for straight-line embeddings maintaining good angular resolution. The claim remains
true, if circular arc edges are used instead of straight-line [4]. More recently, Angelini
et al. [1] constructively showed that there exists graphs whose straight-line upward
RAC drawings require exponential area.

Again, we follow a constructive approach. First, we consider a square R = ABΓ∆
where its top and bottom sides coincide with L1 and L2, respectively (see Fig.1b).
Let H be the height (and width) of R. According to our approach, the nodes of
V1 (V2, resp.) reside along side Γ∆ (AB, resp.) of R. In order to specify the exact
positions of the nodes u1

1, u
1
2, . . . , u

1
m along side Γ∆, we first construct a bundle of

m semi-lines, say ℓ1, . . . , ℓm, each of which emanates from vertex B and crosses side

Γ∆ of R, so that the angle formed by BΓ and semi-line ℓi equals to (i−1)·∆̂BΓ

m−1 , for

each i = 1, . . . ,m. These semi-lines split angle ∆̂BΓ into m− 1 angles, each of which

is equal to π
4·(m−1) , since ∆̂BΓ = π/4. Say φ = π

4·(m−1) . Then, we place node u1
i at

the intersection of semi-line li and Γ∆, for each i = 1, . . . ,m (see Fig.1b). In order
to simplify the description of our approach, we denote by ai the horizontal distance
between two consecutive nodes u1

i and u1
i+1, i = 1, . . . ,m− 1.

We proceed by defining an additional bundle of m semi-lines, say ℓ′1, . . . , ℓ
′
m, that

emanate from vertex A. More precisely, semi-line l′i emanates from vertex A and passes
through the intersection of lm−i and Γ∆ (i.e., node u1

m−i), for each i = 1, . . . ,m (see
Fig.1b). Let φ′

i be the angle formed by two consecutive semi-lines l′i and l′i+1, for each
i = 1, . . . ,m− 1.

So far, we have managed to fix the position of the nodes of V1 only (along side
Γ∆ of R). Symmetrically, we define the position of the nodes of V2 along side AB of
R. This only involves two additional bundles of semi-lines emanating from vertices

4
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(a) A circular drawing of Kn.
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H
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(b) A 2-layered drawing of Km,n.

Fig. 1: Illustrations of our constructions

Γ and ∆. We now proceed to investigate some geometric properties of the proposed
construction.

Lemma 1. For each i = 1, 2, . . . ,m− 1, it holds that ai−1 < ai.

Proof. By induction. For the base of the induction, we have to show that a1 < a2.
First observe that a1 = H tanφ and a1 + a2 = H tan 2φ. Therefore:

a2 = H(tan 2φ− tanφ) =
(1)

a1 · (1 + tan 2φ · tanφ)

However, both tanφ and tan 2φ are greater than zero, which immediately implies
that a1 < a2. For the induction hypothesis, we assume that ∀ k, k < m−1 it holds that
ak−1 < ak and we should prove that ak < ak+1. Obviously, a1 + . . .+ ak = H tan kφ.
Based on Equation 1 and similarly to the base of the induction, we have:

– ak+1 = H tanφ · (1 + tan (k + 1)φ · tan kφ)
– ak = H tanφ · (1 + tan (k − 1)φ · tan kφ)

In order to complete the proof, observe that (k + 1)φ > (k − 1)φ. ⊓⊔

Lemma 2. For each i = 1, 2, . . . ,m− 1, it holds that φ′
i−1 > φ′

i.

Proof. By induction. For the base of the induction, we have to prove that φ′
1 > φ′

2 or
equivalently that tanφ′

1 > tanφ′
2. It holds that tanφ′

1 = am−1/H and tan (φ′
1 + φ′

2) =
(am−1 + am−2)/H . By combining these relationships with Equation 1 we have that

tanφ′
2 = Ham−1

H2+a2
m−1+am−1am−2

. Therefore:

tanφ′
1 > tanφ′

2 ⇔ H2(am−1 − am−2) + a3m−1 + a2m−1am−2 > 0,

which trivially holds due to Lemma 1. For the induction hypothesis, we assume that
∀ k, k < m−1 it holds that φ′

k−1 > φ′
k and we have to show that φ′

k > φ′
k+1. Observe

that:
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– tanφ′
k =

tan(φ1+...+φ′

k
)−tan(φ′

1+...+φ′

k−1)

1+tan(φ′

1+...+φ′

k
)·tan(φ′

1+...+φ′

k−1)
=

Ham−k

H2+(am−1+...+am−k)(am−1+...+am−k+1)

– tan(φ′
k+1) = · · · =

Ham−(k+1)

H2+(am−1+...+am−(k+1))(am−1+...+am−k)

By Lemma 1 we have that (am−1 + . . . + am−(k−1)) > (am−1 + . . . + am−(k+1)) and
H · am−k > H · am−(k+1). Therefore, tanφ′

k > tanφ′
k+1. ⊓⊔

Lemma 3. Angle φ′
m−1 is the smallest angle among all the angles formed in the

drawing.

Proof. From Lemma 2, it follows that angle φ′
m−1 is the smallest angle among all

φ′
i, i = 1, . . . ,m − 1. Additionally, it is not difficult to see that angle φ′

m−1 is larger
(but remains the smallest among all φ′

i, i = 1, . . . ,m − 1), if the endpoint of the
bundle (i.e., node u2

n) moves to any internal point (i.e., node u2
i ) of side AB (see

Fig.1b). Therefore, φ′
m−1 is the smallest angle among all the angles formed by pairs

of consecutive edges incident to any node of V2. Since m ≥ n, the same holds for the
nodes of V1. Therefore, φ′

m−1 defines the angular resolution of the drawing.
Consider now two crossing edges (refer to the bold, crossing dashed-edges of

Fig.1b). Their crossing defines (a) a pair of angles that are smaller than 90o and
(b) another pair of angles that are larger than 90o. Obviously, only the acute angles
participate in the computation of the crossing resolution (see angle φc in Fig.1b).
However, in a complete bipartite graph the acute angles are always exterior to a tri-
angle having two of its vertices on V1 and V2, respectively (refer to the gray-colored
triangle of Fig.1b). Therefore, the crossing resolution is always greater than the an-
gular resolution, as desired. ⊓⊔

Lemma 4. It holds that φ′
m−1 ≥ φ

2 .

Proof. We equivalently prove that tanφ′
m−1 > tan φ

2 . Using Equation 2, we have that

tan φ
2 < a1

2H . Therefore:

tanφ′
m−1 > tan

φ

2
⇐⇒

a1

H

1 + a1+...+am−1

H
· a2+...+am−1

H

>
a1

2 ·H

⇐⇒ H2 > (a1 + . . .+ am−1)(a2 + . . .+ am−1)

⇐⇒ H · a1 > 0

which obviously holds. ⊓⊔

Theorem 2. A complete bipartite graph Km,n admits a 2-layered drawing of total

resolution Θ( 1
max{m,n} ).

Proof. Immediately follows from Lemmata 3 and 4. ⊓⊔

Consider now the case where the nodes of the graph must have integer coordinates,
i.e., we restrict ourselves on grid drawings. An interesting problem that arises in this
case is the estimation of the total area occupied by the produced drawing. We will
describe how we can modify the positions of the nodes produced by our algorithm in
order to obey the grid constraints. Assume without loss of generality that L1 and L2

are two horizontal lines, so that L2 coincides with y-axis and the drawing produced

6



by our algorithm has a1 = 1. Then, we can express the height of drawing Γ (Km,n) as
a function of φ, as follows:

a1 = 1 ⇐⇒ tanφ ·H = 1 ⇐⇒ H = 1/ tanφ

Note that this drawing does not obey the grid constraints. To achieve this, we
move the horizontal line L1 to the horizontal grid line immediately above it and each
node of both V1 and V2 to the rightmost grid-point to its left. In this manner, we
obtain a new drawing Γ ′(Km,n), which is grid as desired. By Lemma 1, it follows
that there are no two nodes sharing the same grid point, since a1 is slightly greater
than one grid unit. Since neither horizontal line L1 nor any node of Km,n moves
more than one unit of length, the total resolution of Γ ′(Km,n) is not asymptotically
affected, and, in addition the height of the drawing is not significantly greater (i.e.,
asymptotically it remains the same). Based on the above, the area is bounded by
cot2 φ or equivalently by 1/ tan2 φ. By Equation 3, this is further bounded by 1/φ2.
By Theorem 2, it holds that φ = O(1/max{m,n}). Therefore, the total area occupied
by the drawing is O(max{m2, n2}). The following theorem summarizes this result.

Theorem 3. A complete bipartite graph Km,n admits a 2-layered grid drawing of

Θ( 1
max{m,n} ) total resolution and O(max{m2, n2}) area.

4 A Force Directed Algorithm

We present a force-directed algorithm that given a reasonably nice initial drawing,
probably produced by a classical force-directed algorithm, results in a drawing of
high total resolution. The algorithm reinforces the classical force-directed algorithm of
Eades [8] with some additional forces exerted to the nodes of the graph. More precisely,
these additional forces involve springs and some extra attractive or repulsive forces
on nodes with degree greater than one and on end-nodes of edges that are involved
in an edge crossing. This aims to ensure that the angles between incident edges and
the angles formed by pairs of crossing edges will be as large as possible. The classical
force-directed algorithm of Eades [8] models the nodes of the graph as electrically
charged particles that repel each other, and its edges by springs in order to attract
adjacent nodes. In our approach, we use only the attractive forces of the force-directed
algorithm of Eades (denoted by Fspring), which follow the formula:

Fspring(pu, pv) = Cspring · log
||pu − pv||

ℓspring
· −−→pupv, (u, v) ∈ E

where Cspring and ℓspring capture the stiffness and the natural length of the springs,
respectively. Recall that −−→pupv denotes the unit length vector from pu to pv.

We first describe our approach for the case where two edges, say e = (u, v) and
e′ = (u′, v′), are involved in a crossing. Let pc be their intersection point. W.l.o.g., we
assume that u and u′ are to the left of v and v′, respectively, yu′ < yu and yv < yv′ , as
in Fig.2. Let θvv′ be the angle formed by the line segments pcpv and pcpv′ in counter-
clockwise order around u from pcpv to pcpv′ . In order to avoid confusion, we assume
that θvv′ = θv′v, i.e., we abuse the counter-clockwise measurement of the angles that
would result in θvv′ = 2π − θv′v. Similarly, we define the remaining angles of Fig.2.
Obviously, θvv′ + θv′u = π. Ideally, we would like θvv′ = θv′u = π

2 , i.e., e and e′ form
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F
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F
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F
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θuu′
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(a)

u

u′

v

v′

θvv′

θv′u

θuu′

θu′v

F
cros
angular(pv′ , pv)

F
cros
angular(pv, pv′)

F
cros
angular(pv′ , pu)F

cros
angular(pu, pv′)

F
cros
angular(pu, pu′)

F
cros

angular(pu′ , pu)

F
cros
angular(pu′ , pv)

F
cros
angular(pv, pu′)

lvv′
pc

(b)

Fig. 2: Forces applied on nodes in order to maximize the crossing resolution. (a) Springs on
nodes involved in crossing. (b) Repelling or attractive forces based on the angles.

a right angle crossing. As we will shortly see, the magnitude of the forces that we
apply on the nodes u, u′, v and v′ depends on (a) the angles θvv′ and θv′u and (b) the
lengths of the line segments pcpu, pcpu′ , pcpv and pcpv′ .

The physical model that describes our approach is illustrated in Fig.2. Initially,
for each pair of crossing edges at point pc, we place springs connecting consecutive
nodes in the counter-clockwise order around pc, as in Fig.2a. The magnitude of the
forces due to these springs should capture our preference for right angles. Consider
the spring connecting v and v′. The remaining ones are treated symmetrically. We
set the natural length, say ℓvv

′

spring, of the spring connecting the nodes v and v′ to be
√

||pc − pv||2 + ||pc − p′v||
2. This quantity corresponds to the length of the line seg-

ment that connects v and v′ in the optimal case where θvv′ = π
2 . So, in an equilibrium

state of this model on a graph consisting only of e and e′, e and e′ will form a right
angle. Concluding, the force on v due to the spring of v′ is defined as follows:

Fcros
spring(pv, pv′) = Ccros

spring · log
||pv − pv′ ||

ℓvv
′

spring

· −−−→pvpv′

The remaining forces of Fig.2a are defined similarly. Note that in the formula
above, the constant Ccros

spring is used to control the stiffness of the springs.
Our preference for right angle crossings can be also captured using the angles θvv′

and θv′u (see Fig.2b). As in the previous case, we restrict our description on the angle
formed by the line segments pcpv and pcpv′ . Ideally, we would like to exert forces
on the nodes v and v′ such that: (i) when θvv′ → 0, the magnitude of the force is
very large (in order to repel v and v′), and (ii) when θvv′ → π

2 , the magnitude of
the force is very small. A function, say f : R → R, which captures this property is:

f(θ) =
|π2 −θ|

θ
. Having specified the magnitude of the forces, we set the direction of

the force on v (due to v′) to be perpendicular to the line that bisects the angle θvv′

(refer to the dash-dotted line lvv′ of Fig.2b), or equivalently parallel to the unit length
vector Perp(Bsc(−−→pcpv,

−−−→pcpv′)). Recall that Perp and Bsc refer to the perpendicular and
bisector vectors, respectively (see Section 2). It is clear that if θvv′ < π

2 , the forces on
v and v′ should be repulsive (in order to enlarge the angle between them), otherwise
attractive. This can be captured by the sign function. We conclude with the following
formula which expresses the force on v due to v′.

Fcros
angle(pv, pv′) = Ccros

angle · sign(θvv′ −
π

2
) · f(θvv′) · Perp(Bsc(−−→pcpv,

−−−→pcpv′))
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u

F
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; u)
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ed(u)−1
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F
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angular(pvi+1

, pvi ; u)

θi

(b)

Fig. 3: Forces applied on nodes in order to maximize the angular resolution. (a) Springs on
consecutive edges around u. (b) Repelling or attractive forces based on the angles.

where constant Ccros
angle controls the strength of the force. Similarly, we define the

remaining forces of Fig.2b.

Consider now a node u that is incident to d(u) edges, say e0 = (u, v0), e1 = (u, v1),
. . ., ed(u)−1 = (u, vd(u)−1). We assume that e0, e1, . . . , ed(u)−1 are consecutive in the
counter-clockwise order around u in the drawing of the graph (see Fig.3a). Similarly
to the case of two crossing edges, we proceed to connect the endpoints of consecutive
edges around u by springs, as in Fig.3a. In this case, the natural length of each spring,
should capture our preference for angles equal to 2π

d(u) . In order to achieve this, we

proceed as follows: For each i = 0, 1, . . . , d(u)−1, we set the natural length, say lispring,
of the spring connecting vi with v(i+1)mod(d(u)), to be:

ℓispring =
√

||ei||2 + ||e(i+1)mod(d(u))||2 − 2 · ||ei|| · ||e(i+1)mod(d(u))|| · cos (2π/d(u))

where ||e|| is used to denote the length of the edge e ∈ E in the drawing of the graph.
The quantity ℓispring corresponds to the length of the line segment that connects vi with
v(i+1)mod(d(u)) in the optimal case where the angle formed by ei and e(i+1)mod(d(u)) is
2π
d(u) . Therefore, the spring forces between consecutive edges should follow the formula:

Fangular
spring (pvi , pv(i+1)mod(d(u))

;u) = Cangular
spring ·log

||pvi
−pv(i+1)mod(d(u))

||

ℓispring
·−−−−−−−−−−−−→pvipv(i+1)mod(d(u))

where the quantity Cangular
spring is a constant which captures the stiffness of the spring.

Let now θi be the angle formed by ei and e(i+1)mod(d(u)), measured in counter-
clockwise direction from ei to e(i+1)mod(d(u)), i = 0, 1, . . . , d(u) − 1. Similarly to the
case of two crossing edges, we exert forces on vi and v(i+1)mod(d(u)) perpendicular to
the bisector of θi, as illustrated in Fig.3b. However, in this case we need a magnitude
function such that: (i) when θi → 0, the magnitude of the force is very large (in order
to repel vi and v(i+1)mod(d(u))), and (ii) when θi →

2π
d(u) , the magnitude of the force

is very small. Such a function, say g : R× V → R, is: g(θ;u) =
| 2π
d(u)

−θ|

θ
. Having fully

specified the forces applied on the endpoints of consecutive edges and their directions,
we are now ready to provide the exact formulas that the forces follow:
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Fangular
angle (pvi , pv(i+1)mod(d(u))

;u) = Cangular
angle · sign(θi −

2π

d(u)
) · g(θi;u)·

Perp(Bsc(−−−→pupvi ,
−−−−−−−−−−−→pupv(i+1)mod(d(u))

))

where Cangular

angle is a constant to control the strength of the force. In the work of Lin and
Yen [17], the above technique which applies large repelling forces perpendicular to the
bisector of the angle, when the angle is small, is referred to as edge-edge repulsion.
However, in their work, they use different metric to control the magnitude function.
Of course, we could also use their metric, but we prefer the one reported above in
order to maintain a uniform approach in both crossing and angular cases. In Section
4.1, we provide an experimental comparison of these techniques.

Note that by setting zero values to the constants Ccros
spring, Ccros

angle or Cangular
spring ,

C
angular

angle , our algorithm can be configured to maximize the angular, or the crossing
resolution only, respectively.

On each iteration, our algorithm computes three types of forces. Computing the
attractive forces of the classical force-directed model among pairs of adjacent nodes
of the graph requires O(E) time per iteration. The computation of the forces due to
the edge crossings needs O(E2) time, assuming a straight forward algorithm that in
O(E2) time reports all pairwise crossing edges. Finally, the computation of the forces
due to the angles between consecutive edges can be done in O(E + V d(G) log d(G))
time per iteration, where d(G) denotes the degree of the graph, since we first sort the
incident edges of each node of the graph in cyclic order. Summarizing the above, each
iteration of our algorithm takes O(E2 + V d(G) log d(G)) time.

The time complexity can be improved using standard techniques from compu-
tational geometry [19]. If K is the number of pairwise-crossing edges, then the K
intersections can be reported in O(K + E log2 E/ log logE) time [19, pp.277], which
leads to a total complexity O(K+E log2 E/ log logE+V d(G) log d(G)) per iteration.

4.1 Experimental Results

In this section, we present the results of the experimental evaluation of our algorithm.
Apart from our algorithm, we have implemented the force directed algorithms of
Eades [8] and Lin and Yen [17]. The implementations are in Java using the yFiles
library (http://www.yworks.com). The experiment was performed on a Linux machine
with 2.00 GHz CPU and 2GB RAM using the Rome graphs (a collection of around
11.500 graphs) obtained from graphdrawing.org. Fig.4, illustrates a drawing of a Rome
graph with 99 nodes and 135 edges produced by our force directed algorithm.

The experiment was performed as follows. First, each Rome graph was laid out us-
ing the SmartOrganic layouter of yFiles. This layout was the input layout for all three
algorithms, in order to speed up the experiment and overcome problems associated
with local minimal traps especially in large graphs. If both the angular and the cross-
ing resolution between two consecutive iterations of each algorithm were not improved
more that 0.001 degrees, we assumed that the algorithm has converged and we did
not proceed any more. The maximum number of iterations that an algorithm could
perform in order to converge was 100.000. We note that the termination condition
is quite strict and demands a large number of iterations. Our algorithm is evaluated

10
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Fig. 4: A drawing of Rome graph grafo10129.99 consisting of 99 nodes and 135 edges with
angular resolution 20.15

o and crossing resolution 26.12
o .

as (a) Crossing-Only, (b) Angular-Only and (c) Mixed. The results are illustrated in
Fig.5 and should be viewed in color.

The Angular Resolution Maximization Problem: Refer to Fig.5a. Our experimental
analysis shows that our Angular-Only algorithm achieves, on average, better angular
resolution. The angular resolution of our Mixed algorithm is almost equal, on average,
to the one of Lin and Yen. Note that the algorithm of Lin and Yen, in contrast to ours,
does not modify the embedding of the initial layout [17] (i.e., it needs a close-to-final
starting layout and improve on it). This explains why our Mixed algorithm achieves
almost the same performance, in terms of angular resolution, as the one of Lin and
Yen. In 59.76% of the graphs our Mixed algorithm yields a better solution compared
to Lin-Yen’s algorithm with an average improvement of 6.94o.

The Crossing Resolution Maximization Problem: In Fig.5b the data were filtered
to depict only the results of non-planar drawings produced by the algorithms and
avoid infinity values in the case of planar ones. It is clear that our Crossing-Only
algorithm results in drawings with high crossing resolution. Our Crossing-Only al-
gorithm performs better on large graphs compared to the algorithm of yFiles. The
average improvement implied by our Crossing-Only algorithm is 13.63o w.r.t. the
yFiles algorithm.
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(a) Angular resolution results (b) Crossing resolution results

(c) Total resolution results (d) Running time results

Fig. 5: A visual presentation of our experimental results. The X-axis indicates the number
of the nodes of the graph. In Fig.(a)-(c) the Y -axis corresponds to the resolution
measured in degrees, whereas in Fig.(d) to the running time measured in milliseconds.

The Total Resolution Maximization Problem: Refer to Fig.5c. This is the most
important result of our experimental analysis. It indicates that our Mixed algorithm
applied on graphs with more than 50 nodes constructs drawings with total resolution
of 20 degrees, on average. Note that this is an achievement on average and under the
particular termination condition discussed above, i.e., there is no guarantee, that it
would be maintained indefinitely. An example is given in Fig.4.

Finally, Fig.5d summarizes the running time performance of the algorithms. Our
algorithm needs, on average, 7340milliseconds and 1298 iterations to converge, whereas
the one of Lin and Yen 8346 and 1952, respectively. Note that the time complexity
of Lin-Yen’s algorithm is better than ours. However, the termination condition takes
into account the crossing improvement and therefore the algorithm of Lin and Yen
needs more iterations to converge, which explains this contradiction.

5 Conclusions

In this paper, we introduced and studied the total resolution maximization problem.
Of course, our work leaves several open problems. It would be interesting to try to
identify other classes of graphs that admit optimal drawings. Even the case of planar
graphs is of interest, as by allowing some edges to cross (say at large angles), we may
improve the angular resolution and therefore the total resolution.
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