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It has been reported in the literature on computational neuroscience that a rat’s uncanny ability to
dash back to a home position in the absence of any visual clues (or in total darkness, for that matter)
may stem from its distinctive method of position representation. More specifically, it is hypothesized
that the rat uses a multimodular method akin to residue number system (RNS), but with continuous
residues or digits, to encode position information. After a brief review of the evidence in support of
this hypothesis, and how it relates to RNS, we discuss the properties of continuous-digit RNS, and
derive results on the dynamic range, representational accuracy and factors affecting the choice of
the moduli, which are themselves real numbers. We conclude with suggestions for further research
on important open problems concerning the process of selection, or evolutionary refinement, of the

set of moduli in such a representation.
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1. INTRODUCTION

Neurobiologists have long been in awe of the common rat’s
ability to return to its starting position in a straight line, after
a long sequence of movements in different directions. This
ability (Fig. 1a) persists in the absence of visual and other
environmental clues. Experiments in total darkness, and in
locations not previously visited by the rat, have confirmed
that this is an innate ability resulting, in part, from internal
neural activity as opposed to the processing of environmental
clues. Of course, there is no reason to believe that the rat’s
nervous system operates in a manner that is fundamentally
different from other animals, or even humans. So, a study of rat’s
navigation mechanisms, and the attendant encoding of position
information, is quite important to neurobiology.

We will not enter into a detailed discussion of the biological
bases of the rat’s ability to localize within an environment that
could span 10s or 100s of meters. Rather, we touch upon the
most important of the supporting evidence, reported recently
by Fiete et al. [1], to provide motivation for our study of
residue number systems (RNS) with continuous, real-valued
digits (residues) and moduli.

Briefly, a landmark paper by Hafting et al. [2], established
that in addition to ‘place cells,’ which are activated when the

rat is in specific locations, thus encoding location information
to help with the acquisition of memory, there exist ‘grid cells’
whose firing is not linked to specific locations, but rather to the
rat’s relative in-cell position within a periodic, hexagonal grid
(Fig. 1b). When the rat moves to the vicinity of the grid point A,
say, a specific cell associated with that grid fires. Thus, firing of
a grid cell provides partial information about the rat’s location
(Fig. 1c [3]), in the same manner that knowing the residue
of an integer modulo m supplies partial information about its
value. Such partial information, obtained from several grids
of different resolutions and orientations (Fig. 1d [3]), would,
in principle, allow the rat to derive full location information.
Again, the analog in digital arithmetic is the identification of
an integer R from several residues, via the Chinese remainder
theorem (CRT) [4].

For simplicity, let us ignore the 2D (or even 3D) nature of a
rat’s environs and focus on a 1D model at the outset. As shown
in Fig. 2, given a 1D grid x, the real value R might be specified
by a pair (i, φ), where i is an integer identifier of a grid cell or
interval and φ is a real-valued ‘phase’or displacement within the
cell. Similarly, R can be specified by the pair (j, ψ) in relation
to a second 1D grid y. Now, given only the phases φ and ψ

within the grids x and y, we may be able to deduce R. The
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Digital Arithmetic in Nature: Continuous-Digit RNS 1215

FIGURE 1. The notion of ‘grid cells’ in a rat’s sense of location.
(a) Travel and return paths, (b) rat’s hexagonal grid, (c) firings and
locations [3] and (d) two hexagonal grids [3].

FIGURE 2. Localization with two grids in 1D space.

phase φ within grid x represents any of the heavy dots in Fig. 2,
whereas the phase ψ within grid y is associated with any of the
values marked by small, hollow circles. Given a limited range
of values for the indices i and j , the two phases could pinpoint
the value R in the 1D space, depending on the accuracy with
which φ and ψ are known.

Assuming that the cell indexed 0 in each of the two grids x and
y begins at 0, grid cell widths are a and b, respectively, and the
phases φ and ψ are known exactly, the location of R is obtained
by solving the linear Diophantine equation ia +φ = jb+ψ for
integer indices i and j . Because a linear Diophantine equation
has either no solution or an infinite number of solutions [5],
ensuring that the solution R = ia + φ is unique requires the
placement of bounds on the values of i and j , thus restricting
the dynamic range. The effect of imprecision in the phase
values φ and ψ is to further restrict the dynamic range of the
representation scheme, as we will see later.

In this paper, we study continuous-digit RNS (CD-RNS) as
a model for the aforementioned grid-cell-based localization,
solving an open problem posed in [1] regarding the range of
number representation.After a review of RNS and the definition

of CD-RNS in Sections 2 and 3, we derive the representation
range as a function of accuracy in Section 4. We then discuss
moduli selection, arithmetic and extensions in Sections 5, 6 and
7, respectively. Conclusions and some directions for future work
are presented in Section 8.

2. RESIDUE NUMBER SYSTEMS

RNS have been studied since the early days of digital computers.
Initial hopes of superfast arithmetic, arising from independent
operations on residues within parallel channels, were shattered
by the realization that certain difficult arithmetic operations,
such as division, and commonly used decision processes,
like sign or overflow detection, can nullify much or all of
the gain from parallelism. Consensus thus developed that
only certain signal processing tasks that are dominated by
additions and multiplications are appropriate candidates for
RNS implementation. An extensive body of techniques and
applications in this regard was already developed by 1986 [6].
More recently, the potential of RNS for low-power arithmetic
has gained attention (e.g. [7, 8]).

In the context discussed above, RNS is used to represent
integers or scaled fixed-point values. Given pairwise relatively
prime integer moduli mk−1 > . . . > m1 > m0, an integer R

is represented by its ordered set of residues (rk−1, . . . , r1, r0)

with respect to the k moduli. The dynamic range of this
number system, that is, the number of distinct integers that are
uniquely represented, is M = mk−1 . . . m1m0. This range can
be used for the unsigned values [0, M −1], the symmetric range
[−M/2, M/2) or any other set of M consecutive integer values.

In RNS, addition, subtraction and multiplication operations
are performed independently on each residue. Given the RNS
operands S ≡ (sk−1, . . . , s1, s0) and T ≡ (tk−1, . . . , t1, t0),
their sum/difference and product are given by

S ± T ≡ (|sk−1 ± tk−1|mk−1 , . . . , |s1 ± t1|m1 , |s0 ± t0|m0)

S × T ≡ (|sk−1 × tk−1|mk−1 , . . . , |s1 × t1|m1 , |s0 × t0|m0)

Notationally, |z|m stands for z mod m. Division is in general
difficult, making RNS unsuitable for applications involving
even moderate use of division. Division by a modulus, known
as scaling, can be performed fairly efficiently, however.

Problems to be addressed in applying RNS in practice
include choice of the moduli (how many, and of what
values), conversions from/to binary format for input/output, and
determination of when and how to scale the intermediate results
to avoid overflow. Moduli of the form 2i ± 1 have received
much attention from researchers and practitioners [9], given
that such moduli vastly simplify both modular operations and
input/output conversions. By including a single modulus 2j

among the moduli of the form 2i ± 1, various special sets of
moduli are derived (e.g. [10, 11]). Readers interested in learning
more about the theoretical and practical aspects of RNS, as well
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1216 B. Parhami

FIGURE 3. Conventional RNS with the moduli 3 and 4.

as some of its applications, can consult the book by Omondi and
Premkumar [4].

In the rest of this section, we focus only on the dynamic
range and its properties, in preparation for our discussion of the
CD case in Section 3. The example RNS with moduli m1 = 4
and m0 = 3 has a dynamic range of 12, which can be used to
represent the natural numbers 0–11, as depicted in Fig. 3. The
next natural number, 12, has the same representation as 0, so 11
is as high as we should go.

Now, forgetting for the moment that the residues r1 and
r0 are restricted to natural numbers, let us ponder the effect
of having real-valued residues, represented, for example, by
analog signals. If we change (r1, r0) = (1.0, 1.0) to (r ′

1, r
′
0) =

(1.0 + ε1, 1.0 + ε0), where ε1 and ε0 are absolute errors, we
can still correctly decode the number, as long as both ε1 and
ε0 are <0.5. We see that the horizontal/vertical separation of
codes in Fig. 3 by a minimum of 1 unit allows us to correct any
error of <0.5 in residues. In other words, r ′

1 and r ′
0 can vary

anywhere inside the dashed box surrounding the representation
of 1 in Fig. 3, without causing a decoding error. Of course, if we
were interested in error detection, rather than correction, then
any error of <1 would be detectable. Similar error detection
and correction capabilities may be provided by additional or
redundant moduli, which lead to the extension of dynamic
range, without actually utilizing all the values that would be
representable [12].

3. CONTINUOUS-DIGIT RNS

The RNS of Fig. 3, with continuous or analog digits, can be
viewed as representing real numbers in the range [0.0, μ), where
μ is the dynamic range. But what would be an appropriate value

for μ? For ease of future reference, we tackle this question in
Example 1. Notationally, we switch to the use of μ for dynamic
range and ρ for residues, to signify that they are real valued
rather than integers.

Example 1. If, in Fig. 3, we drew lines with the slope of 1 to
connect all the values 0–11 in ascending order, intermediate
points on these line would correspond to representations of
nonintegers. Thus, the value 6.3 yields (ρ1, ρ0) = (0.3, 2.3),
a point on the sloped line between 6 and 7. It is readily seen
that we can go beyond 11 in this case. If the real-valued
residues are exact, the representable range will be [0.0, 12.0);
otherwise, if εmax denotes the maximum error in ρ1 or ρ0, that
is, εmax = max((max ε1), (max ε0)), then the range that ensures
correct decoding, within an error of εmax, is [0.0, 12.0 − εmax).

At any rate, the dynamic range is on the order of m1m0. Note
that even though the residues ρ1 and ρ0 are now real valued,
m1 and m0 being relatively prime is still a precondition for
maximizing the dynamic range. More importantly, we cannot
increase the dynamic range beyond m1m0, even if the real-
valued residues are known to be very accurate. This is because
the wrap arounds in Fig. 3 occur at precisely the same points
for both real valued and integer residues.

Consider the following analysis as a starting point for solving
the limited dynamic range problem. Given the RNS encoding
of a value R, with the two residues containing (signed) errors
of ε1 and ε0, the erroneous residues specify a point R′ on the
2D residue plane (Fig. 4). To decode this number, we might
attempt to find the closest point R′′ to it on one of the slanted
lines of Fig. 3. It is readily seen that, as long as ε1 and ε0

are <0.5, the closest line to R′ would be the same line that
contains R and that the error in the decoded value R′′ is at
most εmax. This is because the coordinates of R′′ in Fig. 4 are
ρ ′′

1 = ρ1 +(ε1 +ε0)/2 and ρ ′′
0 = ρ0 +(ε1 +ε0)/2, leading to the

conclusion R − εmax ≤ R′′ ≤ R + εmax. Note that in Fig. 4, we

FIGURE 4. Decoding error with CD-RNS.
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FIGURE 5. CD-RNS with the moduli 3.6 and 4.4.

have ε1 > 0 and ε0 < 0, which do not represent the worst-case
error conditions.

Now that we have opted for continuous digits (residues), there
is no good reason to insist that the moduli m1 and m0 be whole
numbers in a CD-RNS.

Example 2. Consider a CD-RNS with μ1 = 4.4 and μ0 = 3.6
(Fig. 5). The set of values represented in this RNS fall on lines of
slope 1, starting with 0 at the origin and ending at the dynamic
range μ, as yet to be determined. The product of the two moduli,
that is, 15.84 = 4.4×3.6, would be a reasonable first guess. But,
we see from Fig. 5 that we can go past 15.84, all the way to 18.0
(see the lower right corner of Fig. 5), without the horizontal or
vertical line separations becoming <0.8. Actually, if we want
an error of ±0.4 in either residue to be correctable, we have
to stop just under 17.6, a value represented with ρ1 = 0 and
ρ0 = 3.2. This is because an error of +0.4 in both these residues
at R = 17.6 will yield (0.4, 0.0) as the residue representation,
which defines Point R′, thus causing the value to be interpreted
as R′′ = 0.2 after correction, rather than R = 17.6, per our
procedure of Fig. 4.

Example 2 shows that the same error tolerance is provided
with the extended range [0.0, 17.6), in lieu of [0.0, 15.84). In
other words, reducing the line separations from 1.0 in Fig. 3 to
0.8 in Fig. 5, a reduction factor of 1.25, has allowed us to extend
the dynamic range by ∼11%, from 15.84 to 17.6. Intuitively,
the reason for the dynamic range not increasing by a factor of
1.25 is the unevenness of line spacings in Fig. 5, which leads to
some waste.

Example 3. If we decide to go beyond 18.0 in the CD-RNS
of Example 2, the continuation of the dashed line from point
R′ in Fig. 5 suggests that we can do so, provided that the error
tolerance is reduced from 0.4 to 0.2. In fact, we can go all the
way to 39.6, represented by the point at the upper right corner
of Fig. 5, after wrapping around at 21.6, 22.0, 25.2, 26.4, 28.8,
30.8, 32.4, 35.2 and 36.0, successively. Again, to ensure that an
error of ±0.2 in either residue is correctable, we have to end the
dynamic range just under 39.4.

In the context of a rat’s position encoding, as discussed in
Section 1, if 1D grids with cell widths of 44 and 36 cm (μ1 = 4.4
and μ0 = 3.6, in units of 10 cm) are used, and assuming that the
rat knows its phase inside each of the two 1D cell types within
±2 cm, then a dynamic range of 39.4×10 cm ≈ 4 m is available
(the number 39.4 was derived in Example 3). The example above
might be considered realistic, given that measured grid distances
tend to be ∼2–3 times the length of the animal [3].

In the preceding example, what limits the dynamic range to
∼4 m is a combination of the assumed error bound of εmax = 0.2
and the chosen moduli μ1 = 4.4 and μ0 = 3.6. If we reduce
the error bound to 0.1 (±1 cm), the dynamic range will remain
the same, however, because the value 39.6 + β has the exact
same representation as 0 + β. So, even much greater accuracy
would not help extend the dynamic range. On the other hand,
if we modify one of the moduli slightly, the final wrap around
will not lead to a line that exactly overlaps the line beginning at
0, and we may be able to accommodate a wider dynamic range.
Relationships between the moduli, precision and dynamic range
are explored in the next section.

4. DYNAMIC RANGE AND ACCURACY

We continue with the assumption of an RNS with only two
moduliμ1 andμ0, and further assume, at the outset, that residues
are accurate to within ±(μ1mod μ0)/2, which is dependent on
the moduli chosen. We will later consider the effect of precision
as an independent parameter.

Theorem 1. Let σ1 = |μ1|μ0 . If the residues ρ1 and ρ0 are
accurate to within ±εmax = ±σ1/2, then the dynamic range of
a CD-RNS with μ1 > μ0 is μ = μ0(1 + �μ1/μ0	�μ0/σ1	).

Proof of theorems appear in Appendix.
Note that in Example 1, we derived the dynamic range as [0.0,

12.0 − εmax). Similarly, in Examples 2 and 3, we subtracted
εmax from the upper end of a computed range to ensure that
the last number included within the range is distinguishable
from very small values at the start of the range. In Theorem
1, and henceforth, we omit the very small −εmax adjustment,
in an effort to simplify the expressions involved. Thus, the
statement of Theorem 1 should really entail the expression
μ0(1 + �μ1/μ0	�μ0/σ1	) − εmax.
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1218 B. Parhami

When μ1 is not close to a multiple of μ0, Theorem 1
essentially establishes a lower bound on the available dynamic
range, given that its accuracy requirement for the residues is
quite modest.

Example 4. With μ1 and μ0 integers and σ1 = 1, the dynamic
range of Theorem 1 will extend to μ = μ0(1 + �μ1/μ0	μ0) =
μ0μ1, provided residues are accurate to within ±0.5. This is
consistent with the dynamic range of [0.0, 11.5), which turns
into [0.0, 12.0) when ignoring −εmax, obtained in Example 1.

Example 5. For μ1 = 4.4, μ0 = 3.6, leading to σ1 = 0.8,
an accuracy of ±0.4 in the residues would guarantee a dynamic
range of [0.0, 18.0), matching to within the ignored −εmax term
the result [0.0, 17.6) that we obtained in Example 2.

Now, given an arbitrary precision ±εmax for the two residues,
deriving the dynamic range is a bit more complicated. First, we
note that if either of the moduli is an integral multiple of σ1,
then the dynamic range will be limited to that given in Theorem
1, provided that εmax ≤ σ1/2. This is because the sloped lines
of Fig. 4 will eventually wrap around and trace the same path
as that beginning at point 0. This occurs in Fig. 3, for example,
limiting the dynamic range to [0, 12.0). On the other hand, in
Fig. 5, neither μ1 nor μ0 is divisible by σ1 = 0.8, allowing
the dynamic range to extend beyond [0, 18.0), provided that
εmax < 0.2. Generally speaking, this extension is possible if
the residues of μ1 and μ0 mod σ1 are at least 2εmax. This is
formalized as follows.

Theorem 2. Let σ−1 = μ1, σ0 = μ0 and, for 0 ≤ i ≤ j ,
σi+1 = min(|σi−1|σi

, σi − |σi−1|σi
), where j is the largest

possible index for which σj ≥ 2εmax. If the residues ρ1 and
ρ0 are accurate to within ±εmax, then the dynamic range μ of
a CD-RNS with the moduli μ1 and μ0 is lower bounded by

μ0(1 + �μ1/μ0	�μ0/σ1	)�σ1/σ2	�σ2/σ3	 . . . �σj−1/σj	

Given that the expression in the statement of Theorem 2 is
rather complicated, an intuitive explanation that supplements
the formal proof in Appendix might be helpful. If we remove
the floor operators (which essentially model the waste due to
unequal line spacings of the types seen in Figs 5 and 6) and
assume σj = 2εmax, both bounds reduce to μ0μ1/(2εmax),
indicating that under ideal conditions, the allowed dynamic
range is directly proportional to the two moduli μ1 and μ0 and
varies inversely with the maximum representation error εmax.
One implication of this result is that the same pair μ1 and μ0 of
moduli can be used to cover a wider dynamic range with more
accurate residues, provided certain conditions on the parameters
σi are met.

Theorem 3. Define γ = max(2εmax, δ), where δ is the largest
number that exactly divides both μ0 and μ1, if such a number

FIGURE 6. CD-RNS with the moduli 6.5 and 4.4.

exists, and 0 otherwise. Then, the dynamic range μ of a CD-RNS
with the moduli μ1 and μ0 is upper bounded by

max(μ0�μ1/γ 	, μ1�μ0/γ 	)
The following corollary entails a useful variation of the result

of Theorem 3.

Corollary 1. To attain a dynamic range μ with a maximum
residue error εmax, we must have μ0μ1 ≥ 2μεmax.

When the moduli μ0 and μ1 are comparable in magnitude,
the lower and upper bounds of Theorems 2 and 3 are close
to each other, thus providing a fairly accurate estimate for the
dynamic range μ. We will see shortly that optimal choice of the
moduli essentially entails an attempt to make the two bounds
approach each other. Put another way, the most efficient CD-
RNS representations tend to have moduli that are fairly close
in magnitude. Interestingly, in ordinary (integer-valued) RNS,
moduli that are comparable in magnitude are also desirable
because they lead to more efficient and uniform circuitry; speed
is determined by the largest modulus, so making the other ones
larger entails no speed penalty.
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Example 6. Assuming εmax = 0.2 in the CD-RNS of Fig. 5,
we obtain σ1 = 0.8 and σ2 = 0.4, with σ3 = 0.0 violating
the requirement that the last σj not be < 2εmax. The lower- and
upper-bound expressions of Theorems 2 and 3 evaluate to 36.0
and 39.6, respectively, indicating a dynamic range of at least
[0.0, 36.0). Note that the true range is [0.0, 39.6), with its top
end shown at the upper right corner of Fig. 5, that is, the point
where full wrap around from 39.6 to 0 occurs.

Example 7. Raising the accuracy of residues in Example 6 to
εmax = 0.1 would not increase the dynamic range, given the full
wrap around at 39.6. The pessimistic lower-bound expression
of Theorem 2 reflects this limitation, as its value remains at 36.0
for εmax < 0.2. On the other hand, the optimistic upper bound
of Theorem 3 indicates the wider range [0.0, 79.2), which is
clearly unattainable. Slightly different values for the moduli μ1

and μ0 could fix this problem, however.

Example 8. We consider a case where σ1 is not an integral
multiple of σ2. For the CD-RNS of Fig. 6, we have σ−1 = μ1 =
6.5, σ0 = μ0 = 4.4, σ1 = |μ1|μ0 = 2.1 and σ2 = |μ0|σ1 = 0.2.
Assuming εmax = 0.1, Theorem 2 yields the dynamic range
lower bound 132.0. The upper end of the derived range is less
than the ideal value μ1μ0/(2εmax) = 143.0 because some of the
potential dynamic range is lost to the unequal spacing between
lines of slope 1 in Fig. 6 and some to the fact that the lower
bound is generally less than the true value. Note, in particular,
that the solid line just below the one originating at 0 in Fig. 6 has
a horizontal and vertical separations of 0.3, instead of 0.2. The
next line after wrap around, the dashed one in Fig. 6, will have
horizontal and vertical separations of 0.1, which is not allowed
with εmax = 0.1. The actual dynamic range is 136.5.

Example 9. Consider the smaller error bound εmax = 0.05 in
Fig. 6. The dashed line, along with its (wrapped) successors,
will then be allowed, leading to increases in the dynamic range
lower/upper bounds provided by Theorems 2 and 3 (to 264.0
and 286.0, respectively); the actual range is [0, 286.0).

A natural question at this point is whether we can derive
an exact formula for the range of a CD-RNS, rather than rely
only on the bounds provided by Theorems 2 and 3. The author’s
attempts in this direction have not been successful, but this does
not necessarily imply that a closed-form formula does not exist.
To provide a sense of the difficulty of deriving an exact formula,
we construct an example showing the relationship between the
bounds and the exact dynamic range for a particular family of
CD-RNS representations.

Example 10. Let us fix μ1 at 4.4 and εmax at 0.2, and study
how the dynamic range varies as we pick different μ0 values in
the range 2.5–4.3. Lower and upper bounds of Theorems 2 and
3 are shown as white and black circles, respectively, in Fig. 7.
The lower bound is shown only for μ0 in [2.5, 4.0] because

FIGURE 7. Dynamic range and its bounds for μ1 = 4.4, as μ0 varies.

beyond that the condition for Theorem 1 is not met. The actual
dynamic range, obtained via manual calculation, is shown as
the dashed line, with XOR (⊕) symbols denoting points that do
not coincide with the lower or upper bound. Chaotic variation
of the dynamic range is a good indication that an exact formula,
if it exists, will be quite complicated.

Note that in Example 10, upper and lower bounds approach
each other as the smaller modulus gets closer to the larger one,
with the bounds coinciding when μ0 reaches μ1 − 2εmax. The
latter choice also maximizes the dynamic range and the lower
and upper bounds for it. This observation leads to the general
result in Theorem 4.

In conventional RNS, the moduli being pairwise relatively
prime lead to maximization of the dynamic range. The
corresponding result for CD-RNS is as follows.

Theorem 4. Let σ−1 = μ1, σ0 = μ0, and, for 0 ≤ i ≤ j ,
σi+1 = min(|σi−1|σi

, σi − |σi−1|σi
), where j is the largest

possible index for which σj ≥ 2εmax. The maximum possible
dynamic range of μ0μ1/(2εmax) is obtained if σj = 2εmax.

Note that the maximum range specified by Theorem 4 is
achieved in Examples 1, 3, 4, 6 and 9.

5. CHOOSING THE CD-RNS MODULI

Based on Theorem 1, given a maximum error ±εmax for our
residues, we can choose the moduli to be μ0 + 2εmax and μ0,
leading to the dynamic range μ0�μ0/(2εmax) + μ0. This result
suggests that to cover a desired dynamic range [0, μ) with
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1220 B. Parhami

residues that are accurate to ±εmax and moduli that are as small
as possible, the moduli should approximately equal (2μεmax)

1/2

and they should differ by 2εmax.

Example 11. A dynamic range of [0, 100.0) with εmax = 0.1
translates to moduli on the order of 4.5. Choosing μ1 = 4.6 and
μ0 = 4.4 yields the dynamic range [0.0, 101.2).

Note that the dynamic range of Example 11 could have been
computed by scaling up εmax to 1, scaling up the two moduli by
the same factor of 10 to integer values m1 = 46 and m0 = 44,
and then using the rules for ordinary RNS. This would have
yielded M = m1m0/gcd(m1, m0) = 1012. Scaling back down
by a factor of 10 confirms the derived range of [0.0, 101.2).
However, the same could not be done when 1 is not an integral
multiple of εmax.

Example 12. To attain a dynamic range of μ = 100.0
with εmax = 0.15, the two moduli must be on the order
of (2 × 100.0 × 0.15)1/2 = 5.5. Choosing μ1 = 5.6 and
μ0 = 5.4 yields the dynamic range [0, 102.6). There is no
direct counterpart to this latter CD-RNS among ordinary RNS.

Now consider the case when a rough magnitude for one of
the moduli is known. Without loss of generality, let the smaller
of the two moduli μ0 be known. Further, assume that the given
μ0 is an integral multiple of 2εmax (if not, minor adjustment
to μ0 will make it so). Then, to achieve a dynamic range of
μ, Corollary 1 suggests that μ1 must be at least 2μεmax/μ0.
One way to ensure the adequacy of a near-minimal value for
μ1 is to adjust it upward, if necessary, until it is a multiple of
2εmax, compute the lower bound of Theorem 2, and continue
adjusting upward by 2εmax until the lower bound equals or
exceeds the desired dynamic range. Alternatively, one could
aim for satisfying the condition of Theorem 4.

Example 13. Consider a goal of μ ≥ 100.0, with εmax = 0.15
and μ0 ≈ 3.5. We take μ0 = 3.6, which is a multiple of 2εmax.
Corollary 1 yields μ1 ≥ 8.33. Taking μ1 = 8.4 leads to the
lower bound of 25.2, which is too small. Adding = 0.3 to make
μ1 = 8.7 yields the lower bound 72.0, which is still inadequate.
We could continue with increasing μ1 to 9.0 and beyond, but
Theorem 4 guarantees a dynamic range of 104.4 with μ0 = 3.6
and μ1 = 8.7, given that σ3 = 0.3.

A general algorithm for choosing an optimal moduli set for
a CD-RNS of a desired dynamic range is unlikely to exist,
given that for ordinary RNS, constituting special cases of CD-
RNS, such a tool is not available. At this juncture, the best
we have for ordinary RNS are trial-and-error methods aided
by certain mathematical results and heuristics to limit the
search space [13]. More work remains to be done in developing
corresponding tools for CD-RNS.

6. ARITHMETIC IN CD-RNS

The main aspects of arithmetic discussed in this section
pertain to forward and reverse conversions; that is, conversion
from binary to CD-RNS and vice versa. CD-RNS arithmetic
operations, such as addition, subtraction and multiplication, are
identical to those of conventional RNS [13]. In the context of
a rat’s sense of location, discussed in Section 1, updating of
position may entail adding appropriate offsets to a previously
stored location vector [1]. The addition occurs independently
for each component (residue) in the vector and entails a very
limited range of values in analog form.

Forward conversion to CD-RNS is similar to binary-to-
RNS conversion in all respects. Thus, it can be accomplished
by standard table-lookup, followed by modular multioperand
addition [4]. The fact that the moduli may be nonintegers does
not complicate either of the two steps. At the circuit level,
designs similar to A/D converters can be used to transform an
analog input to modulo-μi residues. For both approaches, the
entire process, including the final multioperand addition, if any,
can be mapped onto a neural network.

The reverse conversion is perhaps more important in the
biological context, because some type of absolute positional
information is needed to allow the rat to zip back to its starting
point in a straight line. How the post-conversion absolute
coordinate data might be stored or processed by the rat is not
elaborated upon in neurobiological literature available to us.
We will thus not postulate on the practical application of our
reverse conversion process, focusing solely on how it might be
accomplished in a feasible way.

In the case of ordinary RNS, the CRT or its various
derivatives [4, 13] are used for reverse conversion. These
methods essentially compute a weight wi corresponding to each
modulus mi , with the converted value x then derived as

x = wk−1rk−1 + . . . + w1r1 + w0r0 mod M

The weight wi associated with mi is the smallest multiple of
M/mi that is 1 mod mi .

Example 14. Consider the conventional RNS with m1 = 4,
m0 = 3 and M = m1m0 = 12 (Fig. 3). The weight w1 is
a multiple of M/m1 = 3 such that w1 = 1 mod 4; thus,
w1 = 9. Similarly, w0 is a multiple of M/m0 = 4 such
that w0 = 1 mod 3; thus, w0 = 4. Given the representation
(r1, r0) in our (4, 3) RNS, it can be converted to decimal via the
weighted-sum computation x = 9r1+4r0 mod 12. For example,
the residue pair (3, 1) represents 9 × 3 + 4 × 1 mod 12 = 7.

Unfortunately, standard methods based on the CRT and its
derivatives [4, 13] are inapplicable to CD-RNS. It suffices
to show the inapplicability of CRT in the special case of a
CD-RNS using moduli that are scaled-down versions of a
conventional RNS with integer moduli. We do this through an
example.
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FIGURE 8. Circuit for CD-RNS to binary conversion.

Example 15. Consider the CD-RNS of Example 11 and its
conventional RNS counterpart with m1 = 44 and m0 = 23,
having a dynamic range of 1012 (we have divided the
larger modulus 46 by 2 to make the moduli relatively prime
for this demonstration). The CRT weights associated with
the two moduli are 529 and 484, respectively. Thus, the
RNS number (r1, r0) represents x = 529r1 + 484r0 mod
1012, or in scaled form [14, 15], x/1012 ≈ 0.522727r1 +
0.478261r0 mod 1. Given that we have εmax = 0.5 in our
conventional RNS formulation, the error in the latter expression
can be as large as (0.522727 + 0.478261) × 0.5 ≈ 0.5,
indicating a relative error of >50% in the scaled conversion
process.

Example 15 demonstrates that small errors in the residues
may be amplified through the conversion process, leading to
useless results. One way out is to view the reverse conversion
process as a nonlinear optimization problem [16]. As shown
schematically in Fig. 8, a single-layer feedback network
may be utilized whose inputs are the given residues ρ1 and
ρ0, along with the residues |x|μ1 and |x|μ0 of the output.
Note that the latter values can be formed using a forward
converter. The resulting arrangement can be shown to converge
to the correct result within the RC time constant of the
circuit.

We used Example 15 to demonstrate that CRT-like methods
used in connection with conventional RNS do not carry over
to CD-RNS. This negative conclusion should not be interpreted
as an impossibility result. Further research may reveal ways of
adapting CRT-like methods to CD-RNS.

7. EXTENSIONS AND GENERALIZATIONS

Thus far, we have limited our discussion to CD-RNS with two
moduli μ1 and μ0. Whereas a conventional RNS with three
pairwise relatively prime moduli m2, m1 and m0 can be studied
as one with the two moduli m1m0 and m2, given that the
latter two values are also relatively prime, the same method
of extension cannot be applied to CD-RNS.

We leave extension of our results in a general case to future
work. Here, we note that when we can choose εmax or the moduli
μi such that mi = μi/(2εmax) is an integer, and the resulting
mis are pairwise relatively prime, then our results are readily
extended as in the case of conventional RNS.

Theorem 5. The dynamic range of a multimodular CD-RNS
whose moduli are pairwise relatively prime integral multiples
of 2εmax is μ = μ0
1≤i≤k−1[μi/(2εmax)].
Example 16. Let εmax = 0.1, and consider a CD-RNS with
the moduli μ2 = 3.0, μ1 = 2.6 and μ0 = 2.2. According to
Theorem 5, the dynamic range of this CD-RNS is μ = 429.0,
given that m2 = 3.0/0.2 = 15, m1 = 2.6/0.2 = 13 and
m2 = 2.2/0.2 = 11 are pairwise relatively prime integers.

In the context of biological computing, justifying moduli
choices that satisfy the conditions of Theorem 5 may seem
difficult. On the other hand, given a particular set of moduli,
a slight reduction in the error bound εmax may bring the
system close to satisfying the required conditions. Such an
improvement in the accuracy of the residues, which increases
the dynamic range of the associated CD-RNS, may give the
rat a survival advantage. Thus, it is conceivable that biological
systems would converge on such optimal combinations of
values in an evolutionary way.

Note that the result of Theorem 5 confirms the numerical
simulations of Fiete et al. [1], which indicate the range to be
exponentially increasing with 1/εmax, with the exponent being
slightly less than the number of moduli (they find an exponent
of ∼10.7 with a particular set of 12 moduli (Theorem 5 suggests
an exponent of 11, given an ideal set of 12 moduli). In actuality,
Fiete et al.’s results are based on a relative formulation of
accuracy, as opposed to our absolute view (i.e. their error bound
is greater for larger moduli); so the relationship of our work to
their work is not quite direct.

Our discussion thus far has entailed a second limitation. Two
or more residues can be used to represent a single value and thus
may convey positional information in one dimension. Animals,
on the other hand, live and move in a 3D world.At the very least,
two dimensions must be considered in any practical context.
Extending our results to multiple dimensions can be achieved in
a number of ways. The use of a Cartesian coordinates system is
one possible approach. However, the use of a coordinate system
specifically attuned to the hex mesh may be more appropriate,
given our discussion of neuroscience research in Section 1.

FIGURE 9. Hex-grid coordinate system.
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It is well known [17] that cells in a hex mesh can be indexed
by using three coordinates, as shown in Fig. 9. The triple of
numbers in some of the nodes denote the xyz index of the
associated node. This coordinate system is redundant, in the
sense that any two of the displacements suffices for determining
the third. This form of redundant representation can compensate
for inaccuracies in the phase information and may be utilized
in addition to the type of redundancy and error resilience that
having more moduli can provide [1, 12].

8. CONCLUSION

Our results provide a digital arithmetic perspective on the work
of computational neuroscientists who have hypothesized the use
of modular number representation by rats and have verified the
feasibility of this type of representation, as well as adequacy
of the resulting dynamic range, via numerical simulation. We
have shown that the aforementioned decade-old hypothesis and
its simulation-based verification are supported by theoretical
results on CD-RNS that parallel those of conventional RNS
representation of integers.

Further research can be undertaken in several different
directions. In the domain of digital arithmetic, there is a
need to complete and expand the theory presented here by
removing some of the restrictions under which certain results
were obtained. Methods for selecting the moduli need to
be improved and generalized. Expanding our discussions of
arithmetic operations, particularly those of forward/reverse
conversion, constitute other fruitful areas for further work.

In the domain of biological applications, one may endeavor
to determine how close the actual moduli associated with a
rat’s navigation system are to optimal values that maximize
the dynamic range, and whether there is any evidence of
evolutionary refinement of the moduli or of the accuracy with
which phase information is maintained.

Study of the robustness of CD-RNS representations,
including suitable error detection/correction schemes, falls in
the interface between the two disciplines. Such properties can
be dealt with in isolation or in conjunction with the use of
supplemental environmental clues (when available).
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APPENDIX: PROOFS OF THEOREMS

Proof of Theorem 1. Consider the line of slope 1 in Fig. 10,
beginning at the origin and continuing until the upper end of
the dynamic range has been reached. This line wraps around
horizontally and vertically. There is a horizontal wraparound
for every μ0 increase in dynamic range and a vertical one
for every μ1 increase. The separation of lines after the first
vertical wrap around is σ1 = |μ1|μ0 , so the maximum possible
number of wrap arounds (�μ1/μ0	�μ0/σ1	 + 1 horizontally
and �μ0/σ1	 vertically) are accommodated without the lines
getting too close to each other. The dynamic range is thus
max(μ0(�μ1/μ0	�μ0/σ1	 + 1), μ1�μ0/σ1	)). Note that the
number of vertical wrap arounds is �μ0/σ1	, whereas for
horizontal wrap arounds, the number �μ0/σ1	 within each span
of μ0 is multiplied by �μ1/μ0	 and the result incremented by
1 to account for an extra wrap around. Our proof is complete
upon noting that μ0(�μ1/μ0	�μ0/σ1	+1) ≥ μ1�μ0/σ1	. This
inequality holds because μ1 = hμ0 + σ1 for some h ≥ 1,
�μ1/μ0	 = h and

μ0(�μ1/μ0	�μ0/σ1	 + 1) = μ0(h�μ0/σ1	 + 1)

= (hμ0 + σ1)�μ0/σ1	
+ (μ0 − σ1�μ0/σ1	)

= μ1�μ0/σ1	 + (μ0 − σ1�μ0/σ1	)
≥ μ1�μ0/σ1	

FIGURE 10. Illustrating the wrap arounds encountered in the course
of spanning the dynamic range of a CD-RNS.

Proof of Theorem 2. Referring to Fig. 10, the lines of slope 1
starting at the origin (solid, then dashed) will continue shifting
to the right, with the ρ0 intercept moving by σ1 each time.
After �μ0/σ1	 repetitions in this first set of slanted lines, the
last ρ0 intercept will be close to the lower right corner of
the diagram and at a distance of |μ0|σ1 = |σ0|σ1 from it.
The next wrap around will take the line near the lower left
corner, being placed above the slanted solid line at the origin
and vertically separated by |σ0|σ1 from it. The next vertical
wrap around occurs at a horizontal distance of σ1 − |σ0|σ1

from the origin. Thus, σ1 = min(|σ0|σ1 , σ1 − |σ0|σ1) denotes
the smaller distance between the new set of slanted lines and
the first set. The factor �σ1/σ2	 is the number of repetitions in the
second set, as the lines spaced σ2 apart fill the spacing between
lines of distance σ1. The other floored ratios are similarly
justified.

Proof of Theorem 3. If δ, satisfying δ > 2εmax, exactly divides
μ0 and μ1, then the sequence of values σ1, σ2, . . ., defined in the
statement of Theorem 2, will converge to σj = δ. Thus, we will
have at most μ1/δ horizontal and μ0/δ vertical wrap arounds,
before a full wrap around, from the upper right corner of the
diagram to the origin, occurs. The two terms μ0�μ1/δ	 and
μ1�μ0/δ	 will be equal in this case and denote the total span
of the slanted lines (or the dynamic range) in the ideal case.
When δ < 2εmax, including when δ = 0, the best-case scenario
is to have slanted lines cover the entire μ0 × μ1 rectangular
space, without any wasted space, except possibly at the very end
(owing to μ0 or μ1 not being an integral multiple of 2εmax). The
larger of the two terms μ0�μ1/(2εmax)	 and μ1�μ0/(2εmax)	 is
an upper bound for the total length of the slanted lines in this
case.

Proof of Theorem 4. The proof parallels that of the first part of
Theorem 3, with δ replaced by 2εmax.

Proof of Theorem 5. We use an inductive proof. As the
induction basis, the result holds for k = 2 by Theorem 4. Now,
assume that the result is valid for k − 1 moduli, that is, the
dynamic range μ(k−1) = μ0
1≤i≤k−2[μi/(2εmax)] is attained
with the moduli μ0, μ1, . . . , μk−2 satisfying the postulated
conditions. Upon adding μk−1 to the existing set of moduli,
consider the resulting CD-RNS as a two-modulus system, with
the moduli μ′ = μ0
1≤i≤k−2[μi/(2εmax)] and μk−1. It is
readily seen that μ′/(2εmax) and μk−1/(2εmax) are relatively
prime. Thus, applying Theorem 4 one more time, we find that
the overall dynamic range is μ = μ(k) = μ′[μk−1/(2εmax)] =
μ0
1≤i≤k−1[μi/(2εmax)].
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