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Abstract: Multi-hop wireless networks (MWNs) have been widely accepted as an indispensable 
component of next-generation communication systems due to their broad applications and easy 
deployment without relying on any infrastructure. Although showing huge benefits, MWNs face many 
security problems, especially the internal multi-layer security threats being one of the most challenging 
issues. Since most security mechanisms require the cooperation of nodes, characterizing and learning 
actions of neighboring nodes and the evolution of these actions over time is vital to construct an 
efficient and robust solution for security-sensitive applications such as social networking, mobile 
banking, and teleconferencing. In this paper, we propose a new dynamic cross-layer reputation 
computation model named CRM to dynamically characterize and quantify actions of nodes. CRM 
couples uncertainty based conventional layered reputation computation model with cross-layer design 
and multi-level security technology to identify malicious nodes and preserve security against internal 
multi-layer threats. Simulation results and performance analyses demonstrate that CRM can provide 
rapid and accurate malicious node identification and management, and implement the security 
preservation against the internal multi-layer and bad mouthing attacks more effectively and efficiently 
than existing models. 

Keywords: multi-hop wireless networks, network security, cross-layer design, reputation computation 
model 
 
 

1. INTRODUCTION 

Multi-hop wireless networks (MWNs), such as mobile ad hoc networks (MANETs), wireless sensor 

networks (WSNs), and wireless mesh networks (WMNs), are vulnerable to different security risks, 

especially the risks arising from the internal multi-layer attacks [1-3] due to inherent features prone to 

attacks such as multi-hop decentralized architecture, wireless medium, etc. All of these constrains make 

security protection in MWNs more complicated compared to traditional networks. 

Security protection in MWNs is closely related to trust. In MWNs, trust can help characterize and 

learn the nodes’ actions and the evolution of these actions over time, which facilitates secure 

cooperation and is vital to construct an efficient and robust solution for security-sensitive applications 
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such as social networking, mobile banking, and teleconferencing. As a key scheme for managing trust, 

the reputation computation model (RCM) has been introduced as an effective approach to characterize 

and quantify nodes’ behaviors for MWNs. Although a number of RCMs and reputation-based trust 

functions for MWNs have been proposed in the literature, all existing RCMs were based on the direct 

observation of layer-specifics to evaluate the node reputation, thus ignoring many key factors of 

reputation in other layers [4-12] such as node forwarding behaviors at the network layer, channel 

collisions at the MAC layer, channel quality measures at the physical layer and node access behaviors 

at the application layer. Moreover, they did not take into account the bad mouthing attack where 

attackers provide dishonest recommendations to frame up good parties and/or boost trust values of 

malicious peers. For example, Ben-Othman et al. [8] presented a new mechanism named Hybrid 

Wireless Mesh Protocol (HWMP) Watchdog at the network layer, which is a reputation model that 

combines the benefits of HWMP and Watchdog techniques to detect and exclude malicious nodes 

during the path-selection process and to protect against internal attacks. However, it only focused on 

the flooding and modification attacks. Luo et al. [9] proposed RFSTrust, a trust model based on fuzzy 

recommendation similarity to quantify and evaluate the trustworthiness of nodes at the network layer, 

and it only focused on the selfish node attack. Therefore, cross-layer security mechanisms need to be 

implemented and enforced for MWNs to resist the multi-layer and bad mouthing attacks. 

With this goal in mind, in this paper, we propose a cross-layer dynamic reputation computation 

model named CRM for the MWNs. To the best of our knowledge, the proposed model is the first 

dynamic RCM considering the cross-layer design [13-14] and multi-level security technology [15] to 

identify and manage internal malicious nodes. The major contributions of this paper are as follows.  

1) To resist the multi-layer attacks and make the malicious nodes detection more effectively and 

accurately, cross-layer design is introduced into node reputation computation, which incorporates 

network-layer node forwarding behavior observations, MAC-layer channel collision detections, 

physical-layer channel quality measures and application-layer node access behavior observations.  

2) To further enhance the reliability and validity of the proposed model and defend against the bad 

mouthing attack, the node role security class relevancy and role security level relevancy (see Section 

4.1.2 for details) are introduced into the recommendation reputations evaluation, which makes the 

recommendation reputations more reliable and credible, and the computation and update of the 

recommender’s credibility more effectively in the presence of dishonest or unreliable referrals.  
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3) The node role security class and security level classification based on the reputation value make 

the punishment and management of malicious nodes more flexible, which improves the fault-tolerant 

ability and the survival ability of the proposed model in MWNs. 

4) Extensive OPNET simulation experiments are conducted to validate the performance of the CRM. 

Simulation results show that the performance of the CRM in terms of false positive rate, packet 

delivery ratio and reputation update speed, are better than those of the existing SLCRM and FSLR 

models when multi-layer and bad mouthing attacks are present. 

The remainder of this paper is organized as follows. In Section 2, some important related work is 

reviewed. Section 3 describes the network and adversary models. In Section 4, the proposed cross-layer 

dynamic RCM is presented. We verify the effectiveness of our model through extensive simulations in 

Section 5. Finally, the paper is concluded in Section 6. 

2. RELATED WORK 

RCMs have been widely studied in various fields of distributed networks to support secure and 

trustworthy communications and collaborations among participants [4-12].  

Ben-Othman et al. [8] presented a new mechanism called HWMP-Watchdog, which is a reputation 

model at the network layer that combines the benefits of HWMP and Watchdog techniques to detect 

and exclude malicious nodes during the path-selection process and protect against internal attacks in 

the HWMP Routing Protocol. Luo et al. [9] proposed RFSTrust, a trust model based on fuzzy 

recommendation similarity to quantify and evaluate the trustworthiness of nodes at the network layer. 

By using fuzzy logic theory, RFSTrust provides a natural framework to deal with uncertainty and 

tolerance of imprecise data inputs for the subjective tasks of trust evaluation, packet forwarding review 

and credibility adjustment. Li et al. [4] presented a hierarchical account-aided reputation management 

system (ARM) at the network layer to efficiently and effectively provide cooperation incentives. The 

ARM built a hierarchical locality-aware dynamic hash table infrastructure for efficient and integrated 

operations of both reputation and price systems. Laniepce et al. [10] proposed a cross-layer reputation 

system which runs on the AP (Access Point) and makes use of the TCP control mechanism to evaluate 

the node cooperation. The system is based on the transport layer observations and evaluates node 

misbehaviors by deducting from the TCP control decisions. Liu et al. [11] proposed a RCM at the 

network layer to help nodes to recognize selfish nodes much earlier and decrease the convergence time 
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for isolating selfish nodes by combining familiarity values with subjective opinions. The familiarity 

value represents a node’s familiar degree with another individual node and is used to calculate the 

weighting factor that determines how much the node recommendation opinion impacts on the 

reputation computation result.  

All existing RCMs are based on the direct observation of layer-specifics to evaluate the node 

reputation, thus ignoring many key factors of reputation in other layers such as node forwarding 

behaviors at the network layer, channel collisions at the MAC layer, channel quality measures at the 

physical layer and node access behaviors at the application layer. Also, none of them takes into account 

the malicious behavior of the recommendation nodes within the recommendation reputation evaluation. 

Therefore, the design of a cross-layer and efficient reputation computation model for MWNs to resist 

multi-layer and bad mouthing attacks is still an open issue, and it is also a highly challenging task for 

two reasons. Firstly we need to accurately capture the behavior of each layer and obtain related 

parameters and information from different layers, which demands careful observations of protocols at 

each layer. Secondly, we need to integrate all the collected information and input them to the reputation 

evaluation process for a precise evaluation, which needs a thorough understanding of attacking 

behaviors and patterns at each layer. 

3. NETWORK AND ADVERSARY MODEL 

3.1 Network Model 

In this paper, we consider multi-hop 802.11s WMNs composed of mesh routers (or mesh nodes) and 

mesh clients. Mesh nodes establish a backbone to relay data from/to mesh clients. The wireless 

backbone is connected to the Internet through mesh portal which is a mesh router with gateway 

functionalities. Mesh clients connect directly to the routers or indirectly associate with mesh routers 

through client networks such as wireless ad hoc networks, sensor networks, cellular networks, etc. We 

suppose that two nodes are one-hop neighbors if they stay within the transmission range of each other 

and all nodes are connected through bidirectional wireless links. It is assumed that there exist a link 

layer protocol to manage all radios and channels through measurement procedures and a dynamic 

channel assignment algorithm. 

3.2 Adversary Model  

Multi-hop WMNs are vulnerable to both external and internal attacks [12, 16] and attacks may occur 
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at different layers. In this paper, we consider the internal multi-layer attacks. The internal attacks are 

launched by an inside attacker who is a mesh node (probably as a forwarder) included in a mesh 

connection. Therefore, it knows its previous hop, next hop and the type of packets going through it. It 

can also exploit all the information encountered on the compromised node(s). For the multi-layer 

attacks, we consider the jamming attack at the physical layer, selfish MAC attack at the MAC layer, 

blackhole/grayhole attack at the network layer and malicious resource access attack at the application 

layer. Moreover, the bad mouthing attack is taken into account.  

4. CROSS-LAYER DYNAMIC REPUTATION COMPUTATION MODEL 

In this section, a novel dynamic cross-layer reputation computation model named CRM is extended 

from our previous work [17-18]. CRM couples uncertainty based reputation computation models [11] 

[19-21] with the cross-layer design [13][14] and multi-level security technology [15].  

In CRM, the cross-layer design is introduced into the node reputation evaluation to resist the 

multi-layer attacks and make the malicious nodes detection more effectively and precisely, which 

incorporates the network layer node forwarding behavior observations, the MAC layer channel 

collision detections, the physical layer channel quality measures and the application layer node access 

behavior observations. Meanwhile, cross-layer interactions are modeled by a simple architecture that 

assumes there is a common database accessible by all layers within the protocol stack. These layers are 

configured to store and update the required parameters in this database, which are retrieved while 

needed by the reputation evaluation. Furthermore, by leveraging the multi-level security technology to 

classify malicious nodes and to decide whether to punish or isolate them, the management of malicious 

nodes becomes more flexible and the fault-tolerant ability of CRM is improved. 

To further enhance the reliability and validity of the dynamic reputation computation model, the 

proposed CRM model also adopts a unique combination of node role level relevancy and node security 

level relevancy to evaluate the reliability and the credibility of the recommendation reputations that can 

further defend against the bad mouthing attack. The main notations and symbols used in the paper are 

summarized in Table 1.  
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Table 1. Main notations and symbols 

:x yω ,
:

dir
x yω ,

:
rec
x yω ,

:
final

x yω  
x’s reputation, direct, recommendation and final reputation 

towards y 

0 , :
App dir
t x yω − ,

0 , :
Net dir
t x yω − ,

0 , :
MAC dir
t x yω − ,

0 , :
Phy dir
t x yω −  

reputation evaluation results at the physical layer, MAC 

layer, network layer, and application layer at time t0 

sI , tI  
the number of total interactions and successful interactions 

between nodes  

fP ,
aP  

the node successful forwarding probability and secure 

access probability 

sN , tN  
the number of packets been successfully forwarded and the 

total number of packets that need to be forwarded 

MAC
colP , Phy

lossP  
the packet collision probability and the packet loss 

probability at the MAC and physical layer respectively 

:x yb , :x yd , :x yu , :x ya  
x’s belief, disbelief, and uncertainty towards y, x’s 

willingness to believe y 

1θ , 2θ  the sc and sl relevancy between x and y/k 

1
,sl scTH , 2

,sl scTH  the up and down thresholds of the sl (or sc) 

In CRM, each node keeps a reputation value towards other nodes as a prediction of their future 

behaviors and a 4-tuple : : : : :( , , , )x y x y x y x y x yb d u aω = is used to represent a node reputation. In the 

4-tuple, :x yb , :x yd , and :x yu denote x’s belief, disbelief, and uncertainty towards y , respectively. The 

base rate :x ya denotes x’s willingness to believe y, which determines how uncertainty is viewed as belief 

when the reputation is used. They satisfy the following conditions: 

[ ]
: : :

: : : :

1.0

, , , 0.0,1.0
x y x y x y

x y x y x y x y

b d u

b d u a

+ + =


∈
                           (1) 

When a reputation is used in a decision, it is projected onto the belief/disbelief axis through its 

expectation ( ):x yE ω that is given as follows: 

( ): : : :x y x y x y x yE b a uω = +                                    (2) 

The CRM consists of two phases: 1) Reputation Computation; 2) Malicious Node Classification and 

Management. 

4.1 Reputation Computation 
In this section, we present the process of the reputation computation. Suppose x and y are two 

neighboring nodes, the final reputation of x towards y at initial time t0, 0 , :
final

t x yω , includes two components. 

One is the direct reputation
0 , :
dir
t x yω  and the other is the recommendation reputation

0 , :
rec
t x yω .  

4.1.1 Direct Reputation Computation 

In CRM, direct reputation computation operates independently at each node that stores its opinion 
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towards the others’ reputation in the local reputation database. The proposed direct reputation 

computation model depends on the information from the physical, MAC, network, and application 

layers. For neighbor nodes x and y, x’s direct reputation towards y at time t0, 0 , :
dir
t x yω , can be given by  

0 0 0 0 0, : 1 , : 2 , : 3 , : 4 , :

1 2 3 4 1

dir App dir Net dir MAC dir Phy dir
t x y t x y t x y t x y t x yω α ω α ω α ω α ω

α α α α

− − − − = ∗ + ∗ + ∗ + ∗


+ + + =
               (3) 

where the first part considers node security level according to its resource access behavior at the 

application layer; the second part considers node forwarding reliability according to node forwarding 

behavior at the network layer; the third part considers the link quality or the collision probability at the 

MAC layer; and the last part considers the channel quality at the physical layer. ( 1..4)i iα = is the 

weight factor, which determines how much the direct reputation evaluation result of the specific layer 

affects the final direct reputation. 
0 , :
dir
t x yb ,

0 , :
dir
t x yd ,

0 , :
dir
t x yu  and 

0 , :
dir
t x ya  in 

0 , :
dir
t x yω  can be computed as 

0 0 0 0 0

0 0

0

, : 1 , : 2 , : 3 , : 4 , :

, : , :

, :

(1 ) (1 ) (1 )

1 (1 ) (1 ) (1

cr dir App dir Net dir MAC dir Phy dir
t x y t x y t x y t x y t x y

cr dir Phy MAC cr dir
t x y a f loss col t x y

cr dir Phy MAC
t x y a f loss col

u u u u u

b P P P P u

d P P P P

α α α α− − − − −

− −

−

= ∗ + ∗ + ∗ + ∗

= ∗ ∗ − ∗ − ∗ −

 = − ∗ ∗ − ∗ − ∗  0

0

, :

, :

)

0.5

cr dir
t x y

cr dir
t x y

u

a

−

−






−


=

               (4) 

where 
0 , :
App dir
t x yu − ,

0 , :
Net dir
t x yu − ,

0 , :
MAC dir
t x yu − , and 

0 , :
Phy dir
t x yu −  denote x’s uncertainty on y at the application, network, 

MAC and physical layers respectively. They can be calculated as  

0

0

0

0

, :

, :

, :

, :

1

App dir
t x y a

Net dir s
t x y

t
Mac dir MAC
t x y col

Phy dir Phy
t x y loss

u P

Iu I

u P

u P

−

−

−

−

 =

 = −

 =

 =

                                            (5) 

where sI is the number of successful interactions between nodes and tI is the total number of 

interactions between nodes. 

fP is the node successful forwarding probability and aP is the node secure access probability. They 

are given by 

1

s
f

t
n

ii
na

ii

NP N

v
P

v
ε=

=

 =


 =


∑
∑

                                         (6) 

where iv is the number of times that the node accessing behavior is confirmed as the security level i. 

sN is the number of packets that have been successfully forwarded by the node. tN is the total number 

of packets that need to be forwarded. 

MAC
colP is the packet collision probability at the MAC layer and can be obtained based on its 

relationship to the link busyness ratio link bussyr − as [22] 
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1

1
1

1

( )
1

( ) ( ) ( )

( ) (1 )

( ) (1 )[1 (1 ) ]

( ) 1 ( 1)(1 ) (1 )

MAC
col idle

link bussy MAC MAC MAC
col idle col suc col col

nMAC MAC n
col col

MAC MAC MAC n
col col col

nMAC MAC MACn
col col col

f P
r

f P g P h P

f P P

g P n P P

h P n P n P

λ
λ λ λ−

−

−

−

 ∗
= − ∗ + ∗ + ∗

 = −

= ∗ − − −

= + − − − ∗ −






            (7) 

where idleλ , sucλ , and colλ denote the length of the idle slot, the duration of a successful transmission, and 

the duration of a collision, respectively, which can be determined from the 802.11-based models 

[22-23]. 

Phy
lossP is the packet loss probability depending on the wireless channel quality at the physical layer. We 

estimate Phy
lossP by modeling the underlying time varying wireless channel as a Gilbert-Elliott two-state 

Markov error model [13, 22]. As shown in Fig. 1, the model has two states 0 (good state) and 1 (bad 

state) and the parameters p and q denote the transition probability from states 0 ((good state) to 1 (bad 

state) and vice versa.  

G(0) B(1)1-p 1-q

q

p

 
Fig. 1. Gilbert-Elliott Two-State Markov Error Model 

Phy
lossP can be expressed as 

( ) ( )
1

1

0
1

1
1

1

Phy
loss l g l b

n
ii

n
ii

n
ii

q pP P P
p q p q

m
p m

m
q

m i

− −

−

=

−

=
−

=

 = ∗ + ∗ + +
 =



=
∗

∑

∑
∑

                              (8) 

where 0m is the number of delivered packets and im is the number of lost bursts with the length i. 

l gP− and l bP− are the loss probability in good and bad states, respectively. The details on how to estimate 

the parameters l gP− and l bP− can be found in [22-24]. 

4.1.2 Recommendation Reputation Computation 

When there is not enough historical interaction data for x to evaluate the direct reputation towards y 

or the direct reputation is not enough for x to make a decision on y, x will start a recommendation 
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reputation query by broadcasting a reputation query message to the neighbors to ask for their reputation 

opinions on y. 

Whenever an x’s neighbor receives the Query message, it will check its local reputation table to see 

whether there is a direct reputation on y with the uncertainty value less than 1.0. If there is one, the 

node will send a Reply message to x which contains its id, 2-tuple (sl, sc), the valid time period and its 

direct reputation on y, otherwise it simply ignores the query, where sl represents the security level of 

x’s role and sc represents the security class of x’s role. Security level stands for the level of security of 

a node, e.g., high, medium, low; and security class represents a finer granularity of security at each 

level, e.g., there may be multiple sc at the same sl, and with the same sc, different nodes may have 

various sl.  

Let R represent the set of recommenders ( , 1R n n= > ). After receiving the replies, x will execute 

the recommendation reputation evaluation phase as follows.  

(1) If n=2 and the two recommendation reputations from y and k are conflict, x will evaluate the 

reliability of two recommenders considering the sl and the sc of the recommender as (9), and then 

select the recommendation opinion from the more trustworthy one. 

: / 1 1 2 2

1 2 1
x y kξ β θ β θ

β β

= ∗ + ∗


+ =
                                (9) 

where 1θ is the sc relevancy between x and y/k and 2θ is the sl relevancy between x and y/k, they can be 

computed as (10) and (11), respectively. The 1 2,β β  are the weight factors of the sc and sl 

respectively, which determine how much the sc and sl affect the final reliability of recommenders. 

/
1 1 , [1, ]y k x

sc
sc

sc sc
sc N

N
θ

−
= − ∈                           (10) 

  

/
/

2
/

/

,

, [1, ]

1 ,

y k x
y k x

sl
sl

y k x
y k x

sl

sl sl
sl sl

N
sl N

sl sl
sl sl

N

θ

−
≥

= ∈
− − <



                 (11) 

 Considering that y and k have been defined over the same context and use the same policy vector, 

we say y is more trustworthy than k, if any of the following conditions holds.  
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: :

: :

: :

: : ( ) ( )

x y x k

x y x k y k

x y x k y k y k

x y x k y k y k

b b
b b d d
b b E E

ξ ξ

ξ ξ

ξ ξ

ξ ξ ω ω

>


= ∧ >
 = ∧ = ∧ <
 = ∧ = ∧ >

                    (12) 

(2) If n>2, for each recommender i R∈ , let 'R ( 'R τ= ) be the new set of the recommenders, 'R is 

defined as (13). Furthermore, we allocate an appropriate weight if  given by Eq. (14) to each 

recommendation reputation and calculate 
0 , :
rec
t x yω  by Eq. (15). 

{ }:' x iR i THξξ= ≥                                 (13) 

0 0: , : : , :
'

( ) ( )i x i t x i x k t x k
k R

f E Eξ ω ξ ω
∈

= ∗ ∗∑                      (14) 

0 0

0 0

0 0

0 0

rec dir
, : , :1, '

rec dir
, : , :1, '

rec dir
, : , :1, '

rec dir
, : , :1, '

t x y k t k yk k R

t x y k t k yk k R

n
t x y k t k yk k R

t x y k t k yk k R

b f b

d f d

u f u

a f a

τ

τ

τ

τ

τ

τ

τ

= ∈

= ∈

= ∈

= ∈

 = ⋅

 = ⋅


= ⋅

 = ⋅

∑
∑
∑
∑

                        (15) 

4.1.3 Dynamic Final Reputation Computation 

After getting the direct reputation and the recommendation reputation, the static final reputation at 

time t0 0 0 0 0 0, : , : , : , : , :( , , , )final final final final final
t x y t x y t x y t x y t x yb d u aω =  can be calculated as [11]: 

     

( ) ( )
( ) ( )

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

, : , : , : , : , : , : , : , : , :

, : , : , : , : , : , : , : , : , :

final dir rec rec dir dir rec dir rec
t x y t x y t x y t x y t x y t x y t x y t x y t x y

final dir rec rec dir dir rec dir rec
t x y t x y t x y t x y t x y t x y t x y t x y t x y

t

b b u b u u u u u

d d u d u u u u u

u

= ⋅ + ⋅ + − ⋅

= ⋅ + ⋅ + − ⋅

( ) ( )
( ) ( )

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

, : , : , : , : , : , : , :

, : , : , : , : , : , : , : , : , :

final dir rec dir rec dir rec
x y t x y t x y t x y t x y t x y t x y

final dir rec rec dir dir rec dir rec
t x y t x y t x y t x y t x y t x y t x y t x y t x y

u u u u u u

a a u a u u u u u







= ⋅ + − ⋅

 = ⋅ + ⋅ + − ⋅

               (16) 

However, as the belief, disbelief, uncertainty and base rate change over time, the trust relationship 

changes over time too. Thus, the trust relationship at present depends not only on the values of the 

underlying parameters but also on the decayed values of the previous trust. The time-dependent value 

of a trust relationship from time ti, computed at the present time tn, is given by: 

1 2

1 2

1 2

(( ) )

(( ) )

(( ) )

1

k
i

k
i

k
i

b t
n i

d t
n i

n n n

a t
n i

n i

b b e

d d e
u b d

a a e
t t t

−

−

−

− ∆

− ∆

− ∆

 = ×

 = ×
 = − −


= ×
∆ = −

                             (17) 

where k (k >= 1) is the decay rate.  
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The dynamic final reputation considering the trust decay at the time tn can be given by 

, : 1 2( , , , ) ( , , , )dynamic
fin x y i i i i n n n nb d u a b d u aϖ η η= × + ×                    (18) 

where 1η and 2η are the weight factors ( 1 2 1 21, ( , [0,1])η η η η+ = ∈ ) used to determine how much the 

reputation evaluation results at time ti and tn affect the dynamic final reputation. 

4.2 Malicious Node Identification and Management 

In this subsection, a novel malicious node identification and management scheme is proposed, which 

makes the management of the malicious nodes more flexible and improves the fault-tolerant ability and 

the survival ability of the CRM in multi-hop wireless networks [25, 26]. 

In CRM, each node is assigned a sl (and sc) according to its reputation value. Each sl (and sc) level 

has its thresholds 1
,sl scTH  and 2

,sl scTH ( 1 2
, , , ( ) 1 ( )sl sc sl sc sl scTH TH sl sc N N< =  ). After getting the final 

reputation, x will compare it with the thresholds of each sl and sc, and then make the decision whether 

to punish or isolate the malicious node.  

For example, suppose there are four nodes p, q, r, u and their final reputations 

are: 1 1 2
: 2,3 2,3,fin

x p TH THϖ  ∈   , 1 1 2
: 2,4 2,4,fin

x q TH THϖ  ∈   , 2 1 2
: 4,3 4,3,fin

x r TH THϖ  ∈   and 3 1 2
: 5,3 5,3,fin

x u TH THϖ  ∈   . 

Since the sl’s values of p and q are both 2, which meet the predefined security level requirement, nodes 

p and q will be perceived as cooperative nodes and the service request will be taken into account. 

However, y and k will be considered as malicious nodes because that their security levels are lower 

than the predefined security level requirement. Furthermore, because u’s sl is 5, lower than the lowest 

security level requirement 4, it will be isolated, while r will be punished with the security level 4. For p 

and q, suppose the sc of x is 1, since the sc distance between x and p is 2, less than the distance between 

x and q, p will be selected as the cooperative node at last.  

Many methods can be used to punish the malicious nodes, e.g., (1) reduce the corresponding 

reputation value of the malicious nodes by leveraging the punishment factors. (2) forbid the malicious 

nodes from participating in the network activities for a period of time. The detailed process of the 

punishment is out of scope of this paper. 

5. SIMULATION RESULTS AND ANALYSIS 

In this section, we present simulation results on OPNET [27-28] to demonstrate the performance of 

the CRM. The simulated network consists of 100 wireless mesh nodes located in a rectangular space of 
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the size 1000m x 1000m. The physical layer uses a fixed range transmission model, where two nodes 

can directly communicate with each other only if they are within one hop. The MAC layer protocol is 

the IEEE 802.11 Distributed Coordination Function (DCF) [29]. Hybrid Wireless Mesh Protocol 

(HWMP) is used as the underlying routing protocol. Traffic sources are constant bit-rate (CBR) and 

each source sends data packets of the size 1024 bytes. The other parameters used in the CRM are as 

follows. α1, α2, α3, and α4 are 0.2, 0.3, 0.3, and 0.2 respectively, β1 and β2 are 0.5 each, and η1 and η2 are 

0.4 and 0.6 respectively. These settings make a specific scenario where there are more weights on the 

network and MAC layer compared to the application and physical layer, more weights on the present 

than the history, and the weightings of the sc and sl are the same. Simulations were performed for a 

duration of 100 seconds, and all simulations were repeated 50 times to obtain reliable results. 

In the simulation, we consider a more practical scenario achieved by simulating multi-layer attacks, 

which represent the real-world attacks better than single-layer attacks, because attacks are likely to be 

launched at different layers in practice. Specifically, we consider the jamming attack at the physical 

layer, selfish MAC attack at the MAC layer, blackhole/grayhole attack at the network layer and 

malicious resource access attack at the application layer, respectively. In the jamming attack, attackers 

send a lot of data on the physical channel in a short time interval to keep the channel busy and prevent 

other nodes from transmitting data. In the selfish MAC attack, attackers manipulate the parameters and 

the rules of the MAC layer to degrade the performance of other hosts and increase their own shares of 

the common transmission resource. In the grayhole/blackhole attack, attackers refuse to forward certain 

packets and simply drop them. Specially, if attackers drop all the packets, the attack is then called a 

black hole attack. In the malicious resource access attack, attackers access the resource without 

authorization. 

The computation cost of our model is O(n), same as the compared models in the paper. Owing to the 

linear run time of our model and the strong computing power of modern devices, the network delay 

caused by the computation is little and is thus negligible considering the great benefits of enhanced 

security with the computation. 

In this section, we compare the proposed CRM against the FSLR model in [11] and the SLCRM 

model in [18], respectively. The performance is evaluated using the following metrics: 

 False Positive Rate (FPR): the ratio of the number of false reports on malicious nodes to the total 

number of reports on malicious nodes. 
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 Packet Delivery Rate (PDR): the ratio of the number of data packets received at the destinations 

to the total number of data packets generated by the CBR sources. 

 Reputation Update Speed (RUS): the rising or dropping speed of the node reputation under 

different attacking scenarios. 

5. 1 False Positive Rate (FPR) 

In the first experiment, the evaluated performance metric is the FPR. In these models, false positive 

means that a normal node is classified as a misbehaving one. 

Fig. 2 illustrates that the FPR increases in all the three reputation computation models, when the 

percentage of malicious nodes working at the network layer increases, given that the link/channel 

quality is good and the recommendations are honest. As shown in the figure, when only attacks in a 

single layer are considered (e.g. the network layer), the FPRs of the three models are close since they 

all can detect the network layer attacks (e.g. backhole/grayhole attacks). But the update speed of 

reputation values of CRM and SLCRM is faster than that of the FSLR, because the CRM and SLCRM 

models are dynamic while the FSLR is static. Thus, the FPR of the FSLR is slightly higher than those 

of the CRM and SLCRM. 

Figs. 3 and 4 show that the FPRs of all the three models increase by 10%-15% compared to the 

results in Fig. 2 under the scenarios where the link/channel quality is bad and the recommendations are 

honest, and the link/channel quality is good and the recommendations are dishonest, respectively. In 

these scenarios, the bad mouthing attack and the multi-layer attack (e.g. the network, MAC and 

physical layer attacks) are taken into account, which result in the link/channel loss and dishonest 

recommendations. Also, we can see that the FPRs of the three models are different and the CRM has 

the lowest FPR. For the FSLR, because it cannot detect the multi-layer attacks launched in other layers 

in addition to the network layer and the dishonest recommendations, its FPR is the highest. The FPR of 

the CRM is lower than that of the SLCRM because the CRM considers both the multi-layer attacks and 

the dishonest recommendations while the SLCRM can only detect the attacks launched at the network 

and MAC layers. The attacks launched at the physical layer cause channel interrupts and packet losses, 

and dishonest recommendation nodes always give fake recommendations, either bad mouthing or false 

praise towards other nodes. Both of the above-mentioned constrains pose significant impacts on the 

detection of malicious nodes, which cause the SLCRM to produce more false positives than the CRM. 

In Fig. 5, we build the experimental environment with the bad link/channel quality and dishonest 
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recommendations. Similar to the results in Figs. 3 and 4, the FPRs of all three models increase when 

the percentage of the malicious recommendation nodes rises. Since both the bad mouthing and 

multi-layer attacks are present, the increase in this experiment is about 10% more than the results in 

Figs. 3 and 4, and the fastest and the slowest growing models are the FSLR and the CRM, respectively. 

Because of the effective detection and defending mechanism against both bad mouthing and 

multi-layer attacks proposed in the CRM, its superiority is more obvious than that in Figs. 3 and 4. 
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5.2 Packet Delivery Rate (PDR) 

In this subsection, we compare the PDR of the CRM to those of the SLCRM and FSLR. First, the 

scenario is set with attacks launched at the network layer, a good link/channel quality, and honest 

recommendations. As shown in Fig. 6, the average PDR will be significantly degraded by malicious 

attackers without taking reputation computation model into account. We can also observe that by using 

the three reputation computation models to detect and management the malicious nodes, the average 

PDR can be substantially improved. As the time increases, the average PDR without reputation 

decreases accordingly. While for all the three models, the average PDR decreases in the initial 60 

seconds, and then starts to restore by using the reputation computation model to detect and identify the 
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less trustworthy nodes effectively and avoid them during the node selection process. Moreover, since 

there are only attacks at the network layer, the link/channel quality is good and recommendations are 

honest, the average PDR of the three models are close.  

Second, we consider the scenario with the honest recommendations and bad link/channel quality. In 

this scenario, the link/channel loss caused by the multi-layer attacks and the normal loss are considered. 

From the results in Fig. 7, we can see that: (1) the average PDR of all the three models decreases when 

the percentage of the bad link/channel increases. (2) For FSLR, since it cannot detect the multi-layer 

attacks launched at other layers in addition to the network layer, it cannot distinguish the reasons of 

packet losses, which will result in more normal nodes being classified as misbehaving nodes and then 

be isolated from the network. Consequently, the average PDR of the FSLR falls at the highest speed. (3) 

The average PDR of the CRM drops slower than that of the SLCRM. The SLCRM can only detect the 

attacks launched at the network and MAC layers but ignoring the channel interrupts and packet losses 

caused by the attacks launched at the physical layer, which can cause a significant impact on the 

detection of malicious nodes and make the average PDR of the SLCRM fall faster than that of the 

CRM. 
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Third, we consider the scenario with multi-layer attacks and bad mouthing attacks present. At the 

beginning, the percentage of the dishonest recommendations is from 0% to 50%. Then, we assume that 

the percentage of the dishonest recommendations is 30% and divide the severity degree of the 

dishonest recommendations into three levels, m1, m2 and m3 (m1>m2>m3). The results are shown in 

Figs. 8 and 9, respectively. 

In Fig. 8, similar to the results in Fig. 7, the average PDR of all the three models decreases when the 

percentage of the malicious recommendation nodes increases. Since both the bad mouthing and 

multi-layer attacks are present and cannot be detected effectively, the PDRs of SLCRM and FSLR 

decrease at percentages up to 16% and 23%, respectively. However, for the CRM, because of its 

effective detection and defending mechanism against the channel interrupts and packet losses caused 

by multi-layer attacks and the fake recommendations or false praises, its PDR only decreases by 10%, 

which is lower than that of the SLCRM and FSLR. 

In Fig. 9, we compare the fault tolerance and flexibility of the three models. The average PDR of the 

CRM is 71-72% when the percentage of the dishonest recommendations increases from 30% to 35%, 

which is increased by 1% (in Fig. 8, it is 70% -72%). However, the average PDRs of the SLCRM and 

FSLR in Fig. 9 are 64-66% and 50-52%, respectively, being the same as the results in Fig. 8. The 

reasons of the difference between CRM, SLCRM and FSLR lie in: (1) both the SLCRM and FSLR 

cannot detect the dishonest recommendations attacks. (2) In the CRM, the dishonest recommendation 

behavior is punished according to the degree of damage it has caused, which implements the fine 

granularity malicious nodes identification and management. Therefore, in the CRM, only those 

malicious nodes causing severe damages will be eliminated from the network immediately, which can 

avoid network congestion and flow interruptions caused by a large number of nodes being ejected from 

the network, and thus improve the average PDR effectively. 

5. 3 Reputation Update Speed (RUS) 

In this subsection, we first compare the RUS of the CRM to those of the SLCRM and FSLR in a 

hostile network environment where attacks such as bad mouthing and multi-layer are present. Figs. 10 

and 11 show the reputation increase speed and decrease speed, respectively. 

Fig. 10 shows the performance of the reputation increase speed of the CRM, SLCRM and FSLR. For 

CRM, the reputation value rises to 0.9 at 70 seconds and increases to 0.95 at 90 seconds. In contrast, 
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FSLR takes 55 and 80 seconds, and SLCRM takes 60 and 85 seconds to achieve the reputation values 

of 0.9 and 0.95, respectively.  

In a hostile network environment, the multi-layer and bad mouthing attacks are assumed to be 

present. The multi-layer attacks enable the attacks to be launched at the network, MAC, physical and 

application layers. While the bad mouthing attack enables the dishonest recommendation nodes to 

increase collusion nodes’ reputation rapidly by giving fake recommendations and false praises. Since 

the FSLR and SLCRM cannot detect the bad mouthing attack and the attacks launched at the physical 

layer effectively, their RUS is higher than that of the CRM. Moreover, because CRM can detect the 

fake recommendations and false praises, only the recommended nodes with a higher :x yξ value have a 

possibility to be accepted, the RUS of the CRM is lower than that of the FSLR and SLCRM. 

In this subsection, the situation of decreasing reputation is also considered. Fig. 11 shows that 

reputation decreases when the bad mouthing and multi-layer attacks are present. The value of 

reputation computed under the CRM decreases more rapidly than those under the SLCRM and FSLR. 

In the FSLR, it cannot effectively and accurately identify the malicious nodes that launch the bad 

mouthing and multi-layer attacks. As a result, the reputation of the malicious node decreases the 

slowest. In the SLCRM, it cannot detect the bad mouthing and the attacks launched at the physical 

layer, thus the reputation of the malicious node decreases slower than that of the CRM. 

Consequently, we can conclude that the proposed reputation computation model can adapt the status 

of nodes, especially malicious nodes, to the environment more rapidly, effectively and accurately. 
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6. CONCLUSIONS AND FUTURE WORK 

In this paper, we have investigated the problems of the internal multi-layer and bad mouthing attacks 

in MWNs and have proposed a new dynamic cross-layer reputation computation model named CRM. 



18 
 

Based on the combination of the uncertainty based reputation computation model, cross-layer design, 

multi-level security technology and recommendation reputation evaluation, CRM can effectively 

defend against the internal multi-layer and bad mouthing attacks. Elaborate theoretical analyses have 

demonstrated that the CRM is secure and efficient. Furthermore, extensive simulation results have 

verified that the false positive rate, packet delivery ratio and reputation update speed of the proposed 

CRM are better than those of the SLCRM and FSLR models. The CRM could be applied to enhance 

the security and trust of various networks and systems such as social networks, distributed systems, and 

peer-to-peer networks. 

In future work, we plan to introduce game theory into the CRM to make the reputation evaluation 

more accurately and effectively. In addition, we intend to extend this CRM model to incorporate the 

encryption and signature based privacy preserving technology into the evaluation and transmission 

process of reputation. 
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