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Online community detection is essential for social network analysis. Modularity is a qual-

ity function used to measure the strength of the community structure discovered with so-

cial networks. Existing methods detect community structures through modularity analysis. 

However, the existing modularities are unable to identify community structures correctly 

when communities are very different in size, in particular, when the size of some com-

munities is very small compared to others. To address this problem, we propose the con-

cept of a coupling coefficient between two communities and define a new modularity, MC 

modularity, to evaluate the quality of the discovered community structures. This method 

can provide adequate measures for the quality of community structures. In addition, we 

develop the DC_MC algorithm to detect community structures based on the concept of 

MC modularity. An algorithm for shifting a group of nodes, instead of one node at a 

time, amongst communities also is designed to achieve optimal results. The effective-

ness and efficacy of the approach we proposed have been demonstrated through a set of 

experiments involving real data benchmarks and synthetic data sets that are purpose-built 

for evaluating different types of networks.    
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1.  Introduction 

Online community studies in social networks have gained significant attention recently due to the 

popularity of online social media. Social networks can be represented by graphs where vertices 

represent individuals and edges represent relationships and interactions amongst individuals. 

Meanwhile, to understand community structures within social networks it is essential to have both a 

visual and mathematical analysis of relationships [1],[2],[3]. From the perspective of topological 

structures of a network, communities are groups (or clusters) of vertices that are densely interconnect-

ed, but only sparsely connected with the rest of the network [4][5]. The understandings of communi-

ties from large networks have great implications because they are closely related to the behaviour of 

social groups in a social network. Therefore, community detection is critical to gain an understanding 

of the features and other aspects of networks, and to reveal insightful functions and properties [6]. 

One difficulty in the identification of communities within online social networks is that there 

could be many ways to recognise the existence of a community; it is often unknown beforehand, thus 

it is difficult to determine a rational way to recognise communities within a network. In order to 

evaluate the quality of the discovered community structures, the concept of modularity has been 

introduced [7]. It is based on the idea that a random graph is not expected to have a cluster structure, so 

the possible existence of clusters is revealed by comparisons between the actual density of edges in a 

subgraph and the density one would expect to have in the subgraph if the vertices of the graph were 

attached regardless of community structure [8]. Modularity is one attempt to understand the clustering 

problem, and it embeds in its compact form all the essential ingredients and questions, from the 

definition of “community”, to the choice of a null model, to the expression of the “strength” of 

communities and partitions [8].  

The modularity of Newman and Girvan [9], NG modularity for short, has been widely recognised 

by academic communities and it is “the most popular quality function” [8] for measuring the strength of 

the community structures detected. In addition, other quality functions have also been proposed for 

evaluating the quality of discovered community structures from different aspects of consideration, such 

as the generalization of modularity suggested by Arenas et al. [10], influence-based modularity 

suggested by Ghosh and Lerman [11], and modularity density suggested by Li et al. [12].  

However, as observed in this study, and also as has been pointed out in a recent review of [8], the 

NG modularity [9] is not sensitive enough for detecting clusters that are comparatively small compared 
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to other communities in a network, even when they are actually well defined communities such as 

cliques (subsets whose vertices are all adjacent to each other). Let us examine the example illustrated in 

Figure 1. Figure 1(a) and Figure 1(b) respectively show two community structures (Structure_1 and 

Structure_2) of a network consisting of 104 vertices. In Figure 1(a), community 1V  and 2V  contain 

100 and 4 vertices that form two cliques respectively. In Figure 1(b), community 1'V  contains 99 

vertices that form a clique, community 2'V  consists of 5 vertices, but they do not form a clique. 

Clearly, structure_1 in Figure 1(a) is more rational than structure_2 in Figure 1(b), but the value of 

NG modularity (its definition is shown in Section 2.1) of structure_1 is smaller than that of struc-

ture_2. This shows that NG modularity does not provide an adequate measure for partitioning a 

network where communities are very different in size. Good et al. [13] mentioned that the maximum 

modularity of a graph generally grows if the size of the network and/or the number of (well-separated) 

clusters increases. Therefore, NG modularity is not suitable for comparing the quality of the community 

structure of networks where communities with very different sizes exist [8]. 

 

V1 V2 

NG modularity of structure_1 =0.0024 

V’1 V’2 

Figure 1. An example to illustrate the motivation of our work 

Figure 1(a). structure_1 Figure 1(b). structure_ 2 

NG modularity of structure_2 =0.0026 

NG modularity of structure_1 < NG modularity of structure_2 

 

In fact, it is not uncommon that communities in a social network have varied sizes; just look at the 

size and populations of all the countries in the world, and so community structures within a social 

network usually contain communities that are very diverse in size [14][15][16]. Therefore, it is 

indispensable to provide a quality function that can effectively measure the community structures of 

networks, no matter if the communities are similar or very different in size.  

In this paper, we propose a concept of a coupling coefficient between two communities. It is the 

ratio of the link density between two communities over the sum of the densities of these two communi-

ties. The smaller the coupling coefficient is, the more independent these two communities are. Also, 

based on the coupling coefficient we define a new modularity, which we name MC modularity, for 
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evaluating the quality of the discovered community structures. A unique feature of MC modularity is 

that it is suitable for measuring the partitioning quality of networks with different sizes. 

Moreover, in order to obtain maximal value of MC modularity, we propose a community detection 

algorithm based on MC modularity, which is referred to as the DC_MC algorithm, to extract groups of 

vertices that are densely interconnected, but only sparsely connected with the rest of the network; 

these groups will be identified as communities. A new method for shifting a group of nodes, instead of 

one node at a time, amongst communities also is designed to achieve optimal results.  

Further, we have implemented the DC_MC algorithm, and experiments on synthetic and real data 

sets have shown that MC modularity can measure correctly the quality of community structures no 

matter communities are similar or different in size. 

The details of this study are introduced as follows. Section 2 reviews the related work. In Section 

3, we define MC modularity to measure the partition quality of networks. In Section 4, we present the 

DC_MC algorithm to automatically detect communities, and we propose some optimized methods to 

shift vertices. In order to verify our approach, we conducted extensive experiments on synthetic and 

real data sets. The experimental design and results analysis are given in Section 5. Finally, we 

conclude the paper in Section 6. 

2 Related works 

There are several algorithms that have been designed to analyse community structures in complex 

networks. Methods and principles of physics, artificial intelligence, graph theory, and even matrix 

factorization have been applied for this purpose [1][2]. Most of these algorithms therefore detect 

community structures via maximizing modularity to obtain optimised solutions, and differ in terms of 

the variations of the definitions of modularity designed and the methods used to achieve maximal values 

of modularity. This section presents a review on definitions of modularity and methods to obtain values 

of modularity. 

2.1 Definitions of Modularity 

Modularity of Newman and Girvan (NG modularity for short). The modularity of Newman and 

Girvan [9], was originally introduced to define a stopping criterion for the algorithm of Girvan and 

Newman for identifying communities within a network, and has rapidly become an essential element of 

many clustering methods. NG modularity is defined as  
i

iii aeQ )( 2 , where iie  is the fraction of 

edges in the network that link vertices within community i ; and ia  is the fraction of edges that connect 
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to vertices in community i . NG modularity measures the fraction of the edges in the network that 

connect vertices of the same type (i.e., within community edges) minus the expected value of the same 

quantity in a network with the same community divisions but random connections between the vertices. 

In this way, the more the number of internal edges of the community exceeds the expected number, the 

better defined the community will be. 

Motif modularity. Arenas et al. [10] suggested that high edge densities inside clusters usually im-

ply the existence of long-range topological correlations between vertices, which are revealed by the 

presence of motifs, i.e., connected undirected subgraphs, such as cycles. They suggested that modularity 

can be generalized by comparing the density of motifs inside clusters with the expected density in the 

modularity's null model. 

Influence-based modularity. Ghosh and Lerman [11] believed that edges do not give a true meas-

ure of network connectivity. Instead, they defined the number of paths, of any length, that exist between 

two vertices as the measure of network connectivity. They redefined modularity in terms of the 

influence metric and use the new definition of modularity, influence-based modularity, to partition a 

network into communities. 

Modularity density. Li et al. [12] have introduced modularity density, which consists in the sum 

over the clusters of the ratio between the difference of the internal and external degrees of the cluster 

and the cluster size. The modularity density does not require a null model.  

Network community profile plot. The network community profile plot, defined by Leskovec et al. 

[17], is defined as the conductance value (the ratio of the number of “cut” edges between a set and its 

complement divided by the number of “internal” edges inside that set) of the minimum conductance set 

of cardinality k in the network. Based on the concept of network community profile plot, Leskovec et al. 

[17] observed that good network communities exist only up to a size scale of ≈ 100 nodes. 

2.2 Methods for obtaining maximal values of modularity  

Once modularity has been derived, the community structures can be identified and detected through 

modularity analysis. Brandes et al. [18] have shown that the process of detecting clusters of vertices 

with a high modularity, and therefore identifying communities within a network, is an NP-complete 

problem. In order to complete this process within a reasonable and acceptable time, several different 

techniques can be used: 

Greedy method. Greedy method was first devised by Newman [7] to identify communities with a 

high modularity. It is an agglomerative hierarchical clustering method, where groups of vertices are 
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successively joined to form larger communities such that the modularity increases after the merging. 

Danon et al. [15] found that the performance of Newman’s Fast algorithm [7] is affected by inhomoge-

neities in community sizes considerably, so they modified the algorithm such that they can treat the 

communities of different sizes equally. Ciglan and Nørvåg [19] proposed a greedy algorithm for 

detecting size-constrained communities in large networks. The algorithm allows a user to specify the 

upper size limit of the communities being produced.  

Duch method. Duch and Arenas [20] proposed to achieve maximal modularity via shifting the 

vertices between two initial groups with the same number of vertices. After the bipartition, each cluster 

is considered as a graph on its own and the procedure is repeated, as long as the modularity increases for 

the partitions found. 

Simulated annealing method. Guimerà et al. [5] employed simulated annealing to obtain maximal 

value of modularity. Two types of moves are combined to achieve this: local moves, where a single 

vertex is shifted from one cluster to another, taken at random; and global moves, consisting of mergers 

and splits of communities.   

In addition to these, spectral method [21], mathematical programming  

[22], and genetic algorithm [23] are also used to achieve maximal values of modularity for community 

detection.  

3 Modularity based on the coupling coefficient 

In this section, we introduce the concept of a coupling coefficient between two communities. This 

concept is proposed to reflect the edge density between two communities, and the edge density within 

these two communities, simultaneously. Based on the average coupling coefficients over all pairs of 

communities, a new modularity can be defined, which is referred to as Modularity based on the 

coupling coefficient (MC modularity) for analyzing and measuring the strengths of discovered 

community structures. We will firstly define the link density within a community and the link density 

between two communities before we give definitions of the coupling coefficient and MC modularity. 

3.1 The definition of the modularity based on the coupling coefficient 

Assume that a social network is denoted by graph ),( EVG  , where V  is a set of vertices that 

represent underlying social entities, and E  is a set of edges that represent interactions between pairs 

of entities. ||V  denotes the number of vertices in V . iV  is a subset of V , and },...,,{)( 21 kVVVkP   is a 
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community structure of the network, i.e. a division of V , where VkPVi
 )( , and  )(kPVi

 (an 

empty set). The lowercase letters zyx ,,  denote vertices in iV  and xiV   represents }{xVi  . iE  is a 

subset of E , and each edge in iE  connects two vertices of iV . ),( ji VVe  denotes the number of edges 

in ),( EVG   that link vertices in community iV  to vertices in community jV . 

Definition 1 Link Density within a community.  

Link density )( iVD  within community iV  is defined as: 
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]1,0[)( iVD , )( iVD  measures the density of edges linking vertices within community iV . When 

the number of vertices in iV  is fixed, the more link edges exist between vertices, the larger the )( iVD  

is; when all of vertices in iV  are fully connected to each other, 1)( iVD ; when there is only one vertex 

in iV , or iV  is empty, 0)( iVD . 

Definition 2 Link Density between two communities.  

Link Density ),( ji VVL  between community iV  and jV  is defined as: 
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]1,0[),( ji VVL , ),( ji VVL  measures the density of edges linking vertices in community iV  to 

vertices in community jV . When the numbers of vertices in community iV  and jV  are fixed, the 

greater ),( ji VVe  is, the larger the ),( ji VVL  is. When || iV  vertices in iV  are fully connected with || jV  

vertices in || jV , 1),( ji VVL ; when two communities are mutually independent from each other (there 

is no edge between iV  and jV ), or iV  and jV  are two empty sets, 0),( ji VVL . 

Definition 3 Coupling Coefficient between two communities.  

Coupling Coefficient ),( ji VVC  between community iV  and jV  is defined as: 

1)()(

),(
),(




ji

ji
ji VDVD

VVL
VVC . 

),( ji VVC  measures the proportion of link density between community iV  and jV . The lower the 

link density between community iV  and jV  is, and the higher the link density between communities 
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is; the smaller ),( ji VVC  is and stronger the feature (vertices are densely connected within a communi-

ty and have much sparser connections between the communities) will be. When there is no edge 

between iV  and jV , iV  and jV  are independent from each other, and 0),( ji VVC .  

Definition 4 Modularity based on coupling coefficient– MC modularity. Let },...,,{)( 21 kVVVkP   is 

a community structure with k  communities in ),( EVG  , then the MC modularity  with respect to 

},...,,{)( 21 kVVVkP   is defined as: 
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2  is the average coupling coefficient over all pairs of communities. 

The lower the coupling coefficient is, the larger ))(( kPMC  is. The MC modularity of )1(P , a special 

community structure in which all vertices of V  form a community, is defined as )(VD .  

Example 1. In Figure 1(a), },{)2( 21 VVP  , 1)()( 21  VDVD , 0025.0),( 21 VVL , 00083.0),( 21 VVC , 

9992.0))2(( PMC . In Figure 1(b), }','{)2(' 21 VVP  , 1)'( 1 VD , 7.0)'( 2 VD  , 2.0)','( 21 VVL , 

074.0)','( 21 VVC , 926.0))2('( PMC . We can see that ))2('())2(( PMCPMC  , which correctly reflects 

the strength of two community structures.  

3.2 The properties of MC modularity  

MC modularity has following properties: 

(1) ))1((1|))(|( PMCVPMC   

|)(|VP  is a special community structure in which each vertex in )1|(| VV  forms an independent 

community, so ))1((1
)1|(|||

),(2
1|))(|( PMC

VV

VVe
VPMC 


 . If ),( EVG   is a complete graph, then 

1))1(( PMC , 0|))(|( VPMC . If 0|| E  in ),( EVG  , then 0))1(( PMC , 1|))(|( VPMC . 

(2) MC modularity has higher values compare to those of NG modularity when communities are 

similar in size.  

We take MC modularity and NG modularity with respect to },{)2( 21 VVP   as a representative case.  
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1V  and 2V  are similar in size  |||| 21 VV    . 
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, and ))2(())2(( PNGPMC  . 

(3) MC modularity would not be affected by 
),(

),(

VVe

VVe ii  when communities are different in size.  

We also take MC modularity and NG modularity with respect to },{)2( 21 VVP   as a representative 

case. We assume that ),(),( 2211 VVeVVe  , then 
),(

),( 11

VVe

VVe  would approach to 1, so ))2((PNG  would 

approach to 0-the minimal value of NG modularity, no matter how much the 
),(

),( 21

VVe

VVe
 is, thus in this 

case, NG modularity does not provide an adequate measure for measuring the quality of community 

structures. However, the link density ( )( 1VD , )( 2VD  or ),( 21 VVL ) would not be affected by 
),(

),( 11

VVe

VVe , 

because they are the proportion of the actual number of edges over the maximal number of edges. 

Therefore, ))2((PMC  would not be affected by 
),(

),( 11

VVe

VVe  when communities are different in size. 

Considering a threshold of ))2((PMC  be  , then ))2((PMC , iff. 
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 . It means that the fewer the 

number of edges existing between two communities, the greater ))2((PMC  would be. For example, in 

the Example 1, },{)2( 21 VVP  , if 12),( 21 VVe , 99.0))2(( PMC . 

The analysing of ))2((PMC  is straightforward for the case of ))(( kPMC  ( 2k ), which will not be 

presented here. 

4 Community detection algorithm 
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In ),( EVG  , a fixed k  (community number) corresponds to many kinds of )(kP  (community 

structure). ))(( kPMC  varies with k  and )(kP . ))((maxarg)(
)(,

* kPMCkP
kPk

 , the community structure with 

maximal value of MC modularity, represents a rational community structure of G . 

Figure 2 shows 5 values of MC modularity of a network with 11 vertices and 18 edges. From 

Figure 2, we can see that )3(P  shown in Figure 2(b) is a rational community structure and ))3((PMC is 

larger than the others. 

))3(())2(())4(())11((3273.0))1(( PMCPMCPMCPMCPMC   

 Figure 2. The values of MC modularity under different number of communities 

V1 

V2 

9662.0))2(( PMC  Figure 2(a). 2 communities 

V1 
V2 

V3 

9746.0))3(( PMC  Figure 2(b). 3 communities 

V1 V3 V2 

V4 

9236.0))4(( PMC  Figure 2(c). 4 communities 

V1 V2 

V11 

Figure 2(d). 11 communities 6727.0))11(( PMC  

 

In order to detect communities in a network, we develop an algorithm that applies modularity 

(such as MC modularity, NG modularity) to evaluate the strength of discovered community structures. 

This algorithm is referred to as the DC_MC algorithm. The main idea of the DC_MC algorithm is 

initializing a community structure },...,{)( 1 kVVkP   according to the degrees of vertices in a network, 

and then optimizing )(kP  to maximize ))(( kPMC  by shifting vertices amongst iV  ( ki ,...,1 ); and 

further repeat this process with increased k until ))(( kPMC  cannot be increased any more. At that stage, 

this process has identified k community structures; each of them corresponds to a maximal value of 

MC modularity and a special community structure. Then a rational community structure can be 

selected from these k community structures. 
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4.1 Description of the DC_MC algorithm 

The DC_MC algorithm for detecting communities is as follows: 

Input: a graph ),( EVG  , and k (the maximal community number)  

Output: },...,,{)( *21
*

k
VVVkP  , i.e. a community structure of G   

(1) }{)1( VP  , 
)1|(|||

||2
)())1((




VV

E
VDPMC ; 

(2) 2i ; 

(3) while ki   do 

(4)     VV ' , )(iP ; 

(5)     for 1j  to i  do 

(6)         jV ; 

(7)     end for  

(8)     0j ;  

(9)     while ij   do 

(10)       1 jj ; 

(11)       if 'V  do 

(12)            )'},({maxarg
'

Vyex
Vy

 , }{xVV jj  , }{'' xVV  ; 

(13)            for each 'Vy  do 

(14)               if 0)},({ jVye  do 

(15)                  }{yVV jj  , }{'' yVV  ; 

(16)               end if 

(17)           end for 

(18)       else if 'V  do 

(19)            )},({minarg),(
1,...,2,1

r

Vy
jr

Vyelx
r


 , }{xVV jj  , }{xVV ll  ; 

(20)       end if 

(21)    end while 

(22)    while 'V  do 

(23)        )},({maxarg),(
'
,...,2,1

r

Vy
jr

Vyelx



 , }{xVV ll  , }{'' xVV  ; 
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(24)     end while 

(25)     for 1j  to i  do 

(26)         
jViPiP  )()( ; 

(27)     end for  

(28)    compute ))(( iPMC , keepflag=0;  

(29)    while keepflag < |V| do 

(30)        for 1j  to i  do 

(31)             for each jVx  

(32)                for 1l  to i , jl   do 

(33)                   }},...,{},...,{,...,{)(' 1 ilj VxVxVViP  ; 

(34)                   if ))(())('( iPMCiPMC   do 

(35)                       )(')( iPiP  , ))('())(( iPMCiPMC  , keepflag=0; 

(36)                   else    keepflag= keepflag+1; 

(37)                   end if 

(38)                end for 

(39)             end for 

(40)        end for 

(41)    end while 

(42) 1 ii ; 

(43) end while 

(44) ))((maxarg
,...,1

* jPMCk
kj

  

(45) output )( *kP  

In the DC_MC algorithm, (1) sets a community structure in which all vertices form a community; 

(4)~(28) initialize a community structure )(iP  according to the degrees of vertices, and their computa-

tional complexity is |)(|VO ; (29)~(41) search the optimal community structure of G  with respect to i  

communities by shifting vertex x . The computational complexity for calculating the value of MC 

modularity in )(iP  is )( 2iO ; there are ||V  vertices shifting amongst 1i  communities, so the 

computational complexity (29)~(41) is )|(| 3iVO ; the loop of (3)~(43) searches k  optimal community 
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structures; (44) selects a community structure from )(iP  ( ki ,...,1 ). The computational complexity of 

the algorithm is |)||||(|))32(|||||(| 423332 VkVkVOkVVkVO   . 

4.2 Calculation of modularity after moving a vertex 

A crucial issue in the DC_MC algorithm described in Section 4.1 is the calculation of modularity 

))('( iPMC  after moving vertex x  in (34). In fact, when moving x  from rV  to jV , not only the 

coupling coefficient ),( jr VVC  between community rV  to jV  changes, but also coupling coefficients 

jrsVVC sr ,),,(   and jrlVVC lj ,),,(   will be changed, where at least there is an edge between sV  

and rV , between lV  and jV . Figure 3 shows an example of links amongst community rV , jV , sV , uV , 

vV  and wV , where vertex x  belongs to rV ; in jV  and sV , there is at least a vertex connecting to x; in 

uV  there is at least a vertex connecting to a vertex except for x  in rV ; there is at least an edge between 

jV  and sV , between jV  and vV , between sV  and wV , between wV  and vV .  

Figure 3.  An example of links between communities 

Vs Vw 

Vj Vv 

Vr 
x 

Vu 

 

Now moving x  from rV  to jV , then },...,,...,,...,{)( 1 ijr VVVViP   will change to 

}},...,{},...,{,...,{)(' 1 ijr VxVxVViP  . Therefore, 1|||'|  rr VV , 1|||'|  jj VV , 

)},({),(),(' xrrrrr VxeVVeVVe  , )},({),(),(' jjjjj VxeVVeVVe  , 

)},({)},({),(),(' jxrjrjr VxeVxeVVeVVe   , )},({),(),(' ssrsr VxeVVeVVe  , 

)},({),(),(' ssjsj VxeVVeVVe  , and we have:  




























 



2||,0

2||,
)2|)(|1|(|

)},({2
)(

2||

||

)2|)(|1|(|

)]},({),([2

)('

r

r
rr

xr
r

r

r

rr

xrrr

r

V

V
VV

Vxe
VD

V

V

VV

VxeVVe

VD  (5) 



 14

||)1|(|

)},({2
)(

1||

1||

||1||

)]},({),([2
)('

jj

j
j

j

j

jj

jjj
j VV

Vxe
VD

V

V

VV

VxeVVe
VD














）（
 (6) 

)1|)(|1|(|

)},({)},({

)1|)(|1|(|

),(||||

)1|)(|1|(|

)},({)},({),(
),('












 

jr

jxr

jr

jrjr

jr

jxrjr
jr VV

VxeVxe

VV

VVLVV

VV

VxeVxeVVe
VVL  (7) 

||)1|(|

)},({
),(

1||

||

||)1|(|

)},({),(
),('

sr

s
sr

r

r

sr

ssr
sr VV

Vxe
VVL

V

V

VV

VxeVVe
VVL










  (8) 

),(
1||

||

||)1|(|

),(
),(' ur

r

r

ur

ur
ur VVL

V

V

VV

VVe
VVL





  (9) 

||)1|(|

)},({
),(

1||

||

||)1|(|

)},({),(
),('

sj

s
sj

j

j

sj

ssj
sj VV

Vxe
VVL

V

V

VV

VxeVVe
VVL










  (10)  

),(
1||

||

||)1|(|

),(
),(' vj

j

j

vj

vj
vj VVL

V

V

VV

VVe
VVL





  (11) 

For communities without a vertex connecting to any vertex in rV  or jV , the link densities within 

and between communities will not be affected by moving x . For example, in Figure 3, )( wVD , )( vVD  

and ),( wv VVL will not be changed after moving x . Therefore, after computing ),(' jr VVC , ),(' sr VVC , 

),(' ur VVC , ),(' sj VVC  and ),(' vj VVC , the modularity ))('( iPMC  can be obtained. 

4.3 How to choose a candidate vertex 

Another crucial issue in the DC_MC algorithm (described in Section 4.1) is how to choose a candidate 

vertex x. A social network usually includes many vertices, if every vertex is going to be moved, the 

computational complexity will be high. In fact, if the movement of a vertex will not lead to an 

increase of MC modularity, then this movement is in vain. According to the definition of MC 

modularity, we know that reducing coupling coefficient means increment of MC modularity and 

),( jr VVC  in Formulas (5)–(11) has most change, so we will focus on the change of ),( jr VVC . 

),( jr VVC  is going to reduce after moving x  from rV  to jV  if )(' rVD  and )(' jVD  increase, and 

),(' jr VVL  reduces, i.e., 0)()('  rr VDVD , 0)()('  jj VDVD , 0),(),('  jrjr VVLVVL , therefore, we have: 
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Formulas (12)–(14) describe the relationships of edges between candidate x and jV , xrV  . The 

vertices that satisfy Formulas (12)–(14) would be the most suitable candidates that have edges with 

vertices in rV  and jV , and these vertices are referred to as boundary vertices. Conversely, the vertices 

that have only edges with vertices in a community are referred to as internal vertices. These internal 

vertices are not suitable for moving because they do not satisfy Formula (14) and their movement 

would result in incensement of ),( jr VVC .  

Example 2. A social network shown in Figure 4(a) includes 9 social individuals 91 ~ vv  that form 

two communities. In the initial community structure }},,{},,,,,,{{)2( 985764321 vvvvvvvvvP  , shown in 

Figure 4(b), 8397.0))2(( PMC , and the values of MC modularity after shifting boundary vertices 5v  

and 7v  are respectively 0.9412 and 0.9781. The values of MC modularity have increased. According 

to Figure 4, these shifts are logical.  

 

V1 
V2 

Figure 4(b). A initial community structure Figure 4(a). A social network 

V’1 V’2 

Figure 4(c). Shifting node 5 

V’’1 V’’2 

Figure 4(d). Shifting node 7 
8397.0))2(( PMC  9412.0))2('( PMC  9781.0))2(''( PMC  
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Figure 4. The figures of Example 2  

4.4 How to choose a candidate vertices group 

The focus of Section 4.3 concerns an alternative vertex so that communities can be recognised in a 

more logical and rational way. However, sometimes considering an alternative vertex will not result in 

an improved community structure. For example, in Figure 5, the vertices group xV  composed of 

vertex x and the vertices connecting to it should be in community jV , but during initial partition, xV  is 

assigned to iV , So moving any vertex in xV  separately will not reduce ),( ji VVC , but if xV  is moved as 

a whole, the ),( ji VVC  will be reduced significantly, therefore moving a group of vertices should be 

considered. The conditions that the candidate vertex group should satisfy are given in Formulas (15)–

(17), where xiVi VVV
x

 . 
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Figure 5. An example of vertices group 
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5. Experimental studies and results 

The purposes of our experiments are to test (1) whether the DC_MC algorithm can correctly identify 

the community numbers in various types of social networks; (2) whether our MC modularity can 

correctly evaluate the strength of the discovered community structures; (3) whether our approach of 

choosing candidate vertices is effective. For the first and second purposes, we have implemented the 

approaches proposed in this study and applied them to detect community structures in four synthetic 

networks and three real networks [24][25][26]. In the synthetic networks, communities have very 

different sizes and topologies. The three real networks are well-known social networks used as a 

benchmark for testing community detection algorithms. We used MC modularity and NG modularity 

(the most popular approach [7]) respectively in the DC_MC algorithm and compared the community 

structures under these two different modularities. For the third purpose, we created a purpose-built 

synthetic network to verify the features of MC modularity and ran the DC_MC algorithm under two 

different strategies: the first chooses every vertex as a candidate vertex to shift, and the other only 

chooses vertices that satisfy Formulas (12)–(17) as candidates to shift; we then compared the running 

time of the DC_MC algorithm under these two different strategies. If the running time of the DC_MC 

algorithm under the second strategy is shorter than the one under the first strategy, then it shows that 

our approach of choosing candidate vertices is effective. 
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5.1 Identifying the number of communities 

Four synthetic networks and three real networks were used to test whether the DC_MC algorithm can 

correctly identify the number of communities in social networks with different sizes and topologies. 

These networks are illustrated in Figure 6(a)~(g), synthetic network_1 and synthetic network_2 

(shown in Figure 6(a) and Figure 6(b)) consist of one big clique and four small cliques. The big clique 

consists of 100 vertices and each small clique consists of 4 vertices, but these four small cliques are 

connected to different vertices of the big clique in Figure 6(a) while the four small cliques are 

connected to a same vertex of the big clique in Figure 6(b). In synthetic network_3 and synthetic 

network_4 (shown in Figure 6(c) and Figure 6(d)), small communities are set as cliques with 4 

vertices and the big community consists of 100 vertices, but edges were placed independently at 

random between vertex pairs with probability 9.0inp  for an edge to fall between vertices in the big 

community and 1.0outp  to fall between vertices in different communities. The first real network, in 

Figure 6(e), is Zachary's network of karate club members [24], a well-known network used as a 

benchmark to test community detection algorithms. The Zachary's network consists of 34 vertices, 

concerning the members of a karate club in the United States, and presenting data collected during a 

period of three years. Edges connect individuals who were observed to interact outside the activities 

of the club. At some point, a conflict between the club president and the instructor led to the fission of 

the club into two separate groups, supporting the instructor and the president, respectively (indicated 

by squares and circles). The two groups (squares and circles in Figure 6(e)), one around vertices 33 

and 34 (34 is the president), the other around vertex 1 (the instructor), can be easily distinguished in 

Figure 6(e). The second real network, in Figure 6(f), is Lusseau's network of bottlenose dolphins 

living in Doubtful Sound in New Zealand [25]. It is another graph often used to test algorithms for 

community detection. There are 62 dolphins and edges were set between animals that were seen 

together more often than expected by chance. The dolphins separated into two groups after a dolphin 

(vertex 31) left the place for some time (squares and circles in Figure 6(f)). Such groups are quite 

cohesive, and easily identifiable from the original network structure. The third real network, in Figure 

6(g), is the network of interactions between major characters in the novel Les Misèrables by Victor 

Hugo [26]. In this network, 77 vertices represent characters and an edge between two vertices 

represents coappearance of the corresponding characters in one or more scenes. In this network, the 

interactions between major characters are complex than that in the Zachary's karate network and 

Lusseau's dolphins network.  
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Figure 6(e). Zachary’s karate network  
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Figure 6(g). Les Misèrables’ characters network  

Figure 6. synthetic networks and real networks 
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The real numbers of communities in these networks of Figure 6, as we know, are less than 15, so 

in the algorithm we assign the maximal number k of communities to be 15 – it is assumed that the 

number of communities is unknown but is expected to be less than 15. In the experiments, the number 

of communities will be increased progressively from 1 to 15, so the algorithm will compute 15 values 

of modularity. We want to see if the numbers of communities in the community structure with 

maximal value of modularity would match with the real numbers of communities. 

In the experiments, the DC_MC algorithm produced 15 maximal values of MC modularity and 

15 maximal values of NG modularity respectively for each network in Figure 6. Table 1 shows the 

maximal values of MC modularity and NG modularity of seven networks of Figure 6 under different 

community numbers. The variation trends of maximal values of MC modularity and NG modularity of 

six networks are shown in Figure 7(a)~(g). 

 Table 1. The maximal values of MC modularity and NG modularity 

The number of communities 
Data sets 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

MC 0.6982 0.9992 0.9995 0.9996 0.9996 0.9997 0.9997 0.9782 0.9508 0.9495 0.9366 0.9268 0.9264 0.9177 0.9199 
synthetic 

network_1 
NG 0 0.0026 0.0049 0.0074 0.0097 0.0122 0.0122 0.0112 0.0104 0.0101 0.0098 0.0095 0.0091 0.0088 0.0085 

MC 0.6891 0.9969 0.9976 0.9988 0.9989 0.9997 0.9992 0.9868 0.9807 0.9775 0.9761 0.9688 0.9660 0.9614 0.9537 
synthetic 

network_2 
NG 0 0.0055 0.0036 0.0067 0.0072 0.0130 0.0121 0.0120 0.0124 0.0116 0.0104 0.0095 0.0092 0.0088 0.0085 

MC 0.6701 0.7565 0.9140 0.8865 0.8951 0.8922 0.8755 0.8638 0.8673 0.8594 0.8541 0.8527 0.8468 0.8416 0.8495 
synthetic 

network_3 
NG 0 0 0.0376 0.0251 0.0155 0.0094 0.0159 0 0 0.0171 0.0127 0.0103 0.0160 0.0164 0 

MC 0.6411 0.8593 0.9086 0.9532 0.9729 0.9525 0.9105 0.9195 0.8736 0.8998 0.8948 0.8545 0.8911 0.8790 0.8566 
synthetic 

network_4 
NG 0 0.0186 0.0194 0.0226 0.0332 0.0209 0.0222 0.0235 0.0244 0.0228 0.0249 0.0238 0.0241 0.0237 0.0228 

MC 0.1381 0.9770 0.9743 0.9680 0.9389 0.9617 0.9481 0.9523 0.9603 0.9622 0.9651 0.9625 0.9717 0.9631 0.9595 Zachary’s 

karate 

network NG 0 0.3564 0.4006 0.3368 0.3618 0.3284 0.3057 0.3755 0.3786 0.3217 0.2804 0.2661 0.3919 0.2406 0.2219 

MC 0.0843 0.9958 0.9814 0.9779 0.9791 0.9779 0.9828 0.9846 0.9868 0.9856 0.9872 0.9831 0.9851 0.9783 0.9723 Lusseau's 

dolphins 

network NG 0 0.4010 0.5147 0.4760 0.4861 0.4380 0.4383 0.4228 0.4177 0.4035 0.3730 0.3574 0.3529 0.3678 0.3291 

MC 0.0868 0.9826 0.9826 0.9863 0.9900 0.9623 0.9702 0.9599 0.9727 0.9584 0.9565 0.9580 0.9645 0.9654 0.9543 
Les 

Misèrables’ 

characters 

network 
NG 0 0.3025 0.3276 0.3141 0.4595 0.3111 0.3983 0.3783 0.4040 0.2986 0.4107 0.4073 0.4064 0.3889 0.3985 
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Figure 7(a). The values of MC modularity and NG 

modularity of synthetic network_1 

Figure 7(b). The values of MC modularity and NG 

modularity of synthetic network_2 

 

  

Figure 7(c). The values of MC modularity and NG 

modularity of synthetic network_3 

Figure 7(d). The values of MC modularity and NG 

modularity of synthetic network_4 

 

  

Figure 7(e). The values of MC modularity and NG 

modularity of Zachary’s karate network 

Figure 7(f). The values of MC modularity and NG 

modularity of Lusseau's dolphins network 
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Figure 7(g). The values of MC modularity and NG modularity of 

Les Misèrables’ characters network 

Figure 7. The maximal values of MC modularity and NG modularity under different number of communities  

 

In Figures 7(a) and (b) for synthetic network_1 and synthetic network_2, the maximal values of 

MC modularity and NG modularity occur when the number of communities is 6. In Figure 7(c) for 

synthetic network_3, the maximal value of MC modularity and the maximal value of NG modularity 

occur when the number of communities is 3. In Figure 7(d) for synthetic network_4, the maximal 

value of MC modularity and the maximal value of NG modularity occur when the number of commu-

nities is 5.  In Figure 7(e) for Zachary’s karate network and in Figure 7(f) for Lusseau's dolphins 

network, both numbers of communities corresponding to the maximal value of MC modularity are 2, 

but the numbers of communities corresponding to the maximal value of NG modularity are 3. In 

Figure 7(g) for Les Misèrables’ characters network, the maximal values of MC modularity and NG 

modularity occur when the number of communities is 5. 

The results of Table 1 indicate that DC_MC algorithm is able to correctly identify the number of 

communities when MC modularity is used, no matter in the synthetic networks or in the real networks. 

Moreover, we can see that the maximal value in 15 values of MC modularity is significantly differ 

from the rest in Figures 7(c)~(d) for synthetic network_3 and synthetic network_4, in which the edges 

in the big community and edges between communities were placed independently at random.  

5.2 Evaluating the quality of discovered community structures 

When MC modularity and NG modularity are used respectively by our algorithm to detect community 

structures, the community structures detected by DC_MC algorithm in networks of Figure 6 are 

shown in Figure 8, in which different colours represent different communities, and vertices with a 

same colour belong to the same community. 
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Figure 8(b). Community structure of synthetic network_1 
corresponding to the maximal value of NG modularity 
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Figure 8(c). Community structure of synthetic network_2 
corresponding to the maximal value of MC modularity 

Figure 8(d). Community structure of synthetic network _2 
corresponding to the maximal value of NG modularity 
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Figure 8(e). Community structure of synthetic network_3 
corresponding to the maximal value of MC modularity 

Figure 8(f). Community structure of synthetic network_3 
corresponding to the maximal value of NG modularity 
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corresponding to the maximal value of MC modularity 

Figure 8(h). Community structure of synthetic network_4 
corresponding to the maximal value of NG modularity 
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Figure 8(i). The community structure of 
Zachary’s karate network corresponding to the 

maximal value of MC modularity 
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Figure 8(j). The community structure of 
Zachary’s karate network corresponding to the 

maximal value of NG modularity 
 

 

 

 

Figure 8(m). The community structure of Les 
Misèrables’ characters network corresponding to 

the maximal value of MC modularity 

Figure 8(n). The community structure of Les 
Misèrables’ characters network corresponding to 

the maximal value of NG modularity 

Figure 8. Community structures of four synthetic networks and three real networks corresponding to the maximal value 
of MC modularity and NG modularity 

  

 

 

Figure 8(a) and Figure 8(b) show the community structure of synthetic network_1 detected by 

DC_MC algorithm. In Figure 8(a) (under MC modularity) all vertices are identified correctly, but in 

Figure 8(b) (under NG modularity) there are five vertices (vertices 1, 2, 3, 99, 100) which are 

misidentified.  

Figure 8(c) and Figure 8(d) show the community structure of synthetic network_2 detected by 

DC_MC algorithm. In Figure 8(c) (under MC modularity) all vertices are identified correctly, but in 

Figure 8(b) (under NG modularity) vertices 100, 101~104, 109~112 are considered as in one cluster. 
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Figure 8(k). The community structure of Lusseau's 
dolphins network corresponding to the maximal 

value of MC modularity 

2 

1 

5 

6 

3 

4 
8 18 

9 

10 
7 

15 16 

20 

11 
19 

21 

13 

31 

14 
33 

28 

49 

27 

22 
24 

25 
53 

29 

54 

34 

17 

50 

30 

51 59 
52 

58 

57 
55 

56 

60 
61 

62 

12 

32 

35 

36 

37 

38 

39 
40 

41 
42 

44 

46 47 

48 

43 

45 

23 

26 

Figure 8(l). The community structure of 
Lusseau's dolphins network corresponding to the 

maximal value of NG modularity 



 24

Figure 8(e) and Figure 8(f) show the community structure of synthetic network_3 detected by 

DC_MC algorithm. In Figure 8(e) (under MC modularity), the small community composed by vertices 

101, 102, 103, 104 is identified correctly, vertices 1~100 are divided into two communities, one of 

them consists of vertices 3, 14, 16, 24, 34, 35, 72, 77, 82, 96. In Figure 8(f) (under NG modularity), 

104 vertices are divided into three communities, but the clique composed by vertices 101, 102, 103, 

104 is not identified. 

Figure 8(g) and Figure 8(h) show the community structure of synthetic network_4 detected by 

DC_MC algorithm. In Figure 8(g) (under MC modularity), three small community {101, 102, 103, 

104}, {105, 106, 107, 108} and {109, 110, 111, 112} are identified correctly, vertices 1~100 forms 

two communities: one consists of {1, 72, 22, 36, 40, 63, 88, 90, 2, 7, 10, 16, 24, 41, 56, 59, 100}. In 

Figure 8(h) (under NG modularity), the clique {109, 110, 111, 112} is identified correctly, but the 

other two cliques are merged into {101, 102, 103, 104, 79} and {105, 106, 107, 108, 73, 77}. The 

other 97 vertices are divided into two communities. 

Figure 8(i) and Figure 8(j) show the community structure of Zachary’s karate network detected 

by DC_MC algorithm. In Figure 8(g) (under MC modularity), the classification of vertices except for 

vertex 10 fit well with the real one. In Figure 8(h) (under NG modularity), the algorithm identified a 

new community {24, 25, 26, 28, 29, 32}. 

Figure 8(k) and Figure 8(l) show the community structure of Lusseau's dolphins' network detect-

ed by DC_MC algorithm. In Figure 8(k) (under MC modularity), the identification of vertices except 

for vertex 12, 22 and 23 fit well with the real one. In Figure 8(l) (under NG modularity), the algorithm 

identified a new community {12, 31, 32, 35~48} and vertices 22 and 23 are misidentified. 

Figure 8(m) and Figure 8(n) show the community structure of Les Misèrables’ characters net-

work detected by applying DC_MC algorithm. In Figure 8(m) (under MC modularity), DC_MC 

algorithm have identified 5 communities, and they are different in size (the biggest community has 52 

vertices, the smallest community only has 2 vertices). Vertices in these communities are densely 

interconnected, but sparsely connected with the rest of the network. In Figure 8(n) (under NG 

modularity), the differences in sizes amongst 5 communities detected by DC_MC algorithm are 

inapparent (the biggest community has 21 vertices, the smallest community has 10 vertices). In this 

community structure, vertices 12, 49, 56, 28 are appointed to different communities. In fact, vertices 12, 

49, 56, 28 are connected to each other and their degrees are the largest, so it is not suitable to divide 

them into different communities from the point of view of the network structure.  



 25

The results of Figure 8 show that MC modularity can correctly evaluate the quality of discovered 

community structures. 

 

5.3 Choosing candidate vertices  

In order to test whether our approach of choosing candidate vertices is effective, we designed synthetic 

network_5, which consists of 4)1(1000)1(  mm  vertices, of which 1000)1( m  vertices form a 

large fully connected sub-graph, the other 4)1( m  vertices form 1m  fully connected sub-graphs, 

and each contains 4 vertices. So m  is the number of the fully connected sub-graphs. With the increase 

of m , the number of vertices and communities also increases. The structure of a network is shown in 

Figure 9. With respect to a fixed m , we run the DC_MC algorithm under two different strategies: the 

first chooses every vertex as candidate vertex to shift, and the other only chooses vertices that satisfy 

Formulas (12)–(17) as candidates to shift. It is intend to determine the difference of the running time 

of the DC_MC algorithm under the two different strategies.  

Figure 10 shows the comparisons of the running times of the MC_DC algorithm on the synthetic 

network_5, in which the vertical coordinates represent the running times of the MC_DC algorithm 

corresponding to two different strategies under different numbers of vertices. From Figure 10, we can 

see that the running times of the MC_DC algorithm under the second strategy (only chooses vertices 

that satisfy Formulas (12)–(17) as candidates to shift) demonstrate linear trend, which indicates that 

our approach of choosing candidate vertices is effective. 

 

 

Figure 9. synthetic network_5 
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Figure 10. The log of running times of 
MC_DC algorithm corresponding to two 
different strategies under different nodes  
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6. Conclusion 

To identify community structures within social networks is essential for further social 

network analysis. However, as we have demonstrated the existing approaches are not 

effective to detect community structures with significant size differences. We examined 

various possible approaches and proposed the concept of a coupling coefficient between 

two communities. This newly proposed concept can reflect the edge densities between 

two communities and the edge density within these two communities simultaneously. 

Based on this concept we defined a new modularity, MC modularity. MC modularity 

provides measures to evaluate the quality of the community structure detected even if 

the communities are very different in size. We further developed the DC_MC algorithm 

to detect community structures based on MC modularity, and a new algorithm for shift-

ing nodes in a group, instead of one node at a time, amongst communities also is de-

signed to achieve optimal results. Experiments on synthetic, computer-generated and real 

data sets have demonstrated that the DC_MC algorithm is capable to identify community 

structures with varied sizes from social networks, and revealed good performance fea-

tures as well.  

So far this study has only considered the basic networks. In the future, we plan to 

expend this work to directed, weighted and other more complicated social networks. 
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