
Write-aware replacement policies for
PCM-based systems

R. Rodŕıguez-Rodŕıguez, F. Castro, D. Chaver, R.
Gonzalez-Alberquilla, L. Piñuel, F. Tirado

ArTeCS Group, Facultad de Informatica, University Complutense of Madrid
Email: {rrodriguezr,fcastror,dani02,rgalberquilla,lpinuel,ptirado}@ucm.es

The gap between processor and memory speeds is one of the greatest challenges
that current designers face in order to develop more powerful computer systems.
In addition, the scalability of the Dynamic Random Access Memory (DRAM)
technology is very limited nowadays, leading to consider new memory technologies
as candidates for the replacement of conventional DRAM. Phase-Change Memory
(PCM) is currently postulated as the prime contender due to its higher scalability
and lower leakage. However, compared to DRAM, PCM also exhibits some
drawbacks, like lower endurance or higher dynamic energy consumption and write
latency, that need to be mitigated before it can be used as the main memory
technology for the next computers generation. This work addresses the PCM
endurance constraint. For this purpose, we present an analysis of conventional
cache replacement policies in terms of the amount of writebacks to main memory
they imply and we also propose some new replacement algorithms for the last level
cache (LLC) with the goal of cutting the write traffic to memory and consequently
to increase PCM lifetime without degrading system performance. In this paper
we target general purpose processors provided with this kind of non-volatile main
memory and we exhaustively evaluate our proposed policies in both single and
multi-core environments. Experimental results show that on average, compared
to a conventional Least Recently Used (LRU) algorithm, some of our proposals
manage to reduce the amount of writes to main memory up to 20-30% depending
on the scenario evaluated, which leads to memory endurance extensions up to
20-45%, reducing also the energy consumption in the memory hierarchy up to 9%

and hardly degrading performance.

Keywords: PCM, endurance, failing cells, cache replacement policies

1. INTRODUCTION

The current trend of increasing the number of cores in
a single chip allows various threads or applications to
execute simultaneously, which increases the demand on
the main memory system to retain the working set of
all the concurrently executing streams. This leads to
the requirement of a larger main memory capacity in
order to maintain the expected performance growth.
However, although DRAM has been the prevalent
building block for main memories during many years,
scaling constraints have been observed when DRAM is
used with small feature sizes. Moreover, the increase
in memory size makes its leakage current to grow
proportionally, and as a result, its energy consumption
has become a major portion of the overall energy
consumption in the system. Consequently, current
research is focused on exploring new technologies for
designing alternative memory systems in response to
these energy and scaling constraints observed in DRAM
technology. Among these technologies, Phase-Change

Memory (PCM) is clearly the prime contender.
PCM is a low-cost and non-volatile memory

technology that almost removes the static power
consumption and provides higher density and therefore
much higher capacity within the same budget than
DRAM. Nevertheless, several obstacles restrict the
adoption of PCM as main memory for the next
computer generation: long write access latency, high
write power and limited endurance.

The endurance is related with the amount of writes
that a cell is likely to sustain before it fails, and in PCM
technology this number is significantly lower than in
DRAM. Specifically, a PCM cell fails after around 108

writes while a DRAM cell supports over 1015 writes.
After a cell fails, it is not possible to change its value
anymore and consequently the corresponding block and
even the whole page it belongs to must be discarded.
A natural solution is to cut the write traffic to PCM
in order to extend the lifetime of PCM-based systems.
For this purpose, several architectural techniques have
been proposed recently [1, 2, 3, 4].

The Computer Journal, Vol. ??, No. ??, ????



2 Rodriguez-Rodriguez et al

In this paper, which extends our previous work [5],
we deal with the PCM endurance problem at a cache
controller level by focusing on the LLC replacement
policy. Conventional policies make their replacement
decisions with the only objective of increasing the hit
rate in the cache. Our goal is to redesign these policies
so that they report a satisfactory trade-off between the
memory lifetime and performance. We first analyze the
behavior of classical and current performance-oriented
cache replacement policies [6, 7, 8, 9] regarding the
write traffic to memory that they entail. Then, we
propose several new write-aware policies, based on the
previous performance-oriented ones. We evaluate all
these policies in a single-core environment using the
SPEC CPU2006 suite and also in a multi-core scenario
using the PARSEC parallel applications suite and
multiprogrammed workloads. The results obtained in
the single-core system reveal that some of our proposed
policies significantly reduce the number of writes to
main memory, thus improving memory endurance, and
also the energy consumption in the memory hierarchy
with respect to a conventional LRU, while they suffer a
negligible performance drop. Furthermore, in the multi-
core system our proposals behaves similarly and in some
cases even better than in the single-core environment.
We have directly ported our proposals to the multi-core
system without any change, which suggests that it still
remains opened a broad avenue for improvement.

Notably, in this paper we make the following
contributions:

• We evaluate some representative performance-
oriented cache replacement policies regarding the
amount of dirty blocks evicted from the LLC
(i.e. the number of writes transmitted to main
memory).

• We propose several modifications to these
performance-oriented policies, aimed to cut down
the write traffic to main memory and consequently
to extend the memory lifetime.

• We qualitatively and quantitatively compare, in
single and multi-core environments, our write-
aware replacement algorithms to both classical and
recent performance-oriented policies, as well as to
other write-aware policies recently proposed.

• We quantitatively compare the write traffic
reduction ability of our proposed write-aware
policies with that of an optimal policy, in order
to estimate how far we are from the maximum
reduction feasible.

The rest of the paper is organized as follows: Section
2 outlines the main concepts of PCM operation and
also recaps some related work. Section 3 presents the
algorithms proposed to increase the lifetime of PCM-
based systems. Section 4 describes other write-aware
policies previously proposed. Sections 5 and 6 detail the
experimental framework used and the obtained results
respectively. Finally, Section 7 concludes.

2. BACKGROUND

Before addressing our main goal of improving PCM
endurance by delaying the failure of the cells, we must
briefly describe their operation.

Top Electrode

Bottom Electrode
Chalcogenide

Heater

(a)

t
tamorph
christal

Te
m
p
e
ra
tu
re

Time

(b)

FIGURE 1. (a) PCM cell. A heating element (purple)
is attached to a chalcogenous material (yellow/green), and
enclosed between the two electrodes. The bit of material
attached to the heater forms the programmable volume
(green), i.e. the part of material that will experiment the
phase change, (b) Heat pulses used to set and reset.

A PCM cell consists of two enveloping electrodes,
a thin layer of chalcogenide and a heating element as
Figure 1(a) illustrates. This heater is just a material
that produces Joule heat when an electrical current
is driven through, warming the chalcogenous material.
In order to write a logical value in the cell, the
heating element is employed to apply electrical pulses
to the chalcogenide, which changes the properties of
the material resulting in two different physical states:
amorphous (high electrical resistivity) and crystalline
(low resistance). Notably, if a high-intensity current
pulse is applied, the material reaches over 600oC and
melts. Then, it is cooled down quickly, making it
amorphous (RESET process). If the pulse is longer
and with lower intensity, the material goes through
an annealing process allowing the molecules to re-
crystallize, lowering the electrical resistance (SET
process). Thus, the chalcogenide switches easily,
rapidly and in a reliable way between both states.
Figure 1(b) shows graphically the heat pulses used to
set and reset a PCM cell.

The process for reading the stored value just consists
in applying a low current to the cell in order to measure
the associated resistance. The limited endurance of
PCM relies on the fact that after a certain number
of writes on a PCM cell (around 108), the heating
element is detached from the cell as a consequence of the
continuous expansions/contractions derived from the
writing process, leaving the cell in a stuck at failure
state. From that moment on, although the cell is
still readable, the stored valued can not be changed
anymore.

Next we briefly describe some of the most representa-
tive proposals oriented to extend the PCM lifetime by
reducing the number of writes.

The Computer Journal, Vol. ??, No. ??, ????



Write-aware replacement policies for PCM-based systems 3

• Eliminating redundant bit writes [1, 10, 11]: In a
conventional DRAM write access, all bits in the
row must be updated. However, a great portion
of these writes are redundant (i.e. the bit before
and after the write remains unchanged). Hence,
taking advantage of the fact that in PCM reads
are much faster and less power consuming than
writes, every write is preceded by a read and a
bitwise comparison, writing only those bits that
have changed.

• Flip-N-Write [2]: Before performing a write to
PCM, both the data to write and its bitwise inverse
are compared with the data stored in the row,
writing the one that involves less bit flips. The
row incorporates an extra bit to indicate whether
the stored data is the original one or its opposite.

• Hybrid memory [3, 4, 12, 13]: The idea here is
to combine PCM with other technology not so
sensible to writes (for example, DRAM). Thus,
in [3] the authors combine a large PCM storage
with a fast and small DRAM memory which acts
as a cache for main memory. In [12], the same
memory combination is studied in a Digital Signal
Processor (DSP), whereas in [13], the scenario
is quite different: CMPs with local Scratch Pad
Memories (SPM) and PCM as main memory.
Finally, in [4], the authors propose to combine
DRAM and PCM in a large and flat memory and
migrate pages between them, allocating in DRAM
those pages that are most frequently written.

All these techniques pursue our same goal of
extending the PCM lifetime by reducing the amount of
writes performed to PCM, but through quite different
avenues. Although there are also some other recent
works much more closer to ours [14, 15, 16, 17], we have
postponed the corresponding descriptions to Section 4,
since we consider that the reader will much better
understand these proposals after reading Section 3.

3. PROPOSED POLICIES

As stated above, it becomes essential to restrict the
number of writes performed to memory in order to
improve the PCM lifetime. Writes can reach the
memory via two channels: from the upper level in the
hierarchy (the disk) for loading the code or data, or from
the lower level in the hierarchy (the LLC) for updating
those blocks that have been modified by the processor.
This work focuses on the second type of writes.

The observed LLC-to-memory write pattern is very
dependent on the memory updating policy employed:
if a write-through policy is used, every time a block
is modified in the LLC it is also updated in the
main memory level; conversely, if a write-back policy
is employed, a block is updated in memory only
when it leaves the LLC in a dirty state. In this
paper we will employ the latter policy, which is the
most frequently used in real systems due to its better

tolerance to high memory latency and lower bandwidth
requirements than the former one. Moreover, the write-
back policy implies a significantly lower amount of
writes to memory, which makes it even more adequate
to our scenario.

In a write-back policy, a block can be modified several
times in cache before eviction. Our aim is to coalesce as
many modifications to a block as possible in the LLC.
For this purpose we focus on the cache replacement
policy, which mainly determines the lifetime of the
blocks inside the cache. When a cache miss implies the
eviction of a block, the replacement algorithm decides
which block must be replaced/victimized. Conventional
policies –conceived for systems with several cache levels
backed up by a DRAM main memory– make their
decisions with the only goal of increasing the cache hit
rate and hence the system performance. However, in
our PCM scenario, the replacement policy for the LLC
should not only aim to improve performance but also to
reduce the number of writes to memory that it implies.

For developing such write-aware replacement policy
we should pay attention to the following general
considerations:
1. First, a clean block leaving the LLC can simply

be discarded, generating no writeback at all.
Therefore, a write-aware replacement policy should
give a higher priority to the eviction of clean blocks
over dirty ones.

2. Second, among dirty blocks, we should distinguish
whether they will be modified again in the future
or not. A block that will be modified later again
should stay in cache in order to merge future
modifications with the previous ones into a single
writeback. Conversely, a block that will never
be modified again will not be able to reduce the
amount of writebacks even though staying in the
LLC. Consequently, our policy should give a higher
priority to the eviction of the latter blocks.

3. Finally, among dirty blocks that will be modified
in the future, we should consider the following two
aspects:
• First, based on Belady’s conclusions [18],

the evicted block should be the one that
will be modified again furthest in the
future, given that this is the block with
the lowest probability of merging the future
modifications with the preceding ones into the
same writeback.

• Second, based on the fact that a dirty block
may have from only one to all its words
modified, the evicted block should be the one
with the least amount of modified words, since
this is the block with the lowest probability of
overwriting a dirty word in the next write to
the block.

The first issue is quite easy to accomplish, since the
dirtiness information of blocks is available in the cache.

The Computer Journal, Vol. ??, No. ??, ????



4 Rodriguez-Rodriguez et al

However, the two remaining points are more complex
to achieve, as they require extra hardware and some
knowledge about the future. Besides, the third issue
takes into account two conflicting aspects. Hence, as
done in other similar situations, and in particular in
conventional cache replacement policies, the solution
in this case will be to build a prediction based on the
previous behavior/state of the blocks.

Obviously, we have to take into account that an
appropriate block replacement policy is essential to
guarantee a high hit rate in the cache, and if we only pay
attention to writeback reduction we can severely impact
performance. Therefore, we must look for a satisfactory
trade-off between performance and writes reduction.

Prior to detailing our proposed write-aware replace-
ment policies, in the next subsection we describe sev-
eral conventional algorithms –only oriented to improve
performance– in which our proposals are based.

3.1. LLC performance-oriented replacement
policies

When an incoming block implies an eviction, the cache
replacement policy must decide which block to replace.
In general, as Bélády established in [18], the best
decision –in terms of performance– is to choose the
block that will not be referenced again for the longest
time. Since knowing the future in advance is not
possible, the different policies proposed in the literature
try to identify and victimize such a block by gathering
information at different points during the lifetime
of the blocks (specifically insertion and promotion).
Each block has a state associated for collecting this
information. Thus, the cache replacement algorithms
can be split into three different sub-policies:

• Insertion sub-policy: This sub-policy determines
the initial state to assign to a block when it is filled
into the cache.

• Promotion sub-policy: This sub-policy determines
how to update the state of a block when it
experiences a hit (due to a miss in the next level
closer to the processor).

• Victimization sub-policy: This sub-policy chooses
the victim block when a replacement is required,
by comparing the states of the candidate blocks.

The access pattern to the various cache levels is
different. For example, in the lowest level a strong
temporal locality is observed for most applications,
which leads to replacement policies trying to exploit
such locality. However, when a block reaches the LLC,
the temporal locality has been almost totally filtered
by the lower levels, so that the replacement policy
must also exploit other features. Although many LLC
replacement algorithms have been proposed recently, we
next describe only those directly related with our work:

3.1.1. Least Recently Used (LRU)
It constitutes the baseline algorithm to which every
proposal compares to, being implemented in most
commercial systems under different simplified versions.
LRU arranges blocks using a recency stack, in which
the block that occupies the LRU position is the furthest
referenced block in the past, while the one at the MRU
(Most Recently Used) position is the nearest referenced
block in the past.

• Insertion sub-policy: a new block is inserted into
the recency stack as the MRU block, moving
the remaining blocks one step closer to the LRU
position.

• Promotion sub-policy: a block experiencing a hit
is moved to the MRU position inside the recency
stack.

• Victimization sub-policy: the block occupying the
LRU position is selected for eviction, under the
philosophy that, due to temporal locality, it is also
the block that will not be required again for the
longest time.

3.1.2. Pseudo Last In First Out (peLIFO)
This policy [8] builds on a LIFO (Last In First Out)
replacement policy [6], in which, making use of a Fill
Stack, the last block entering the cache is the candidate
for replacement. With this scheme, some blocks will
remain at the bottom part of the stack, being able to
exploit long-term reuses. In peLIFO the bottom part
of the Fill Stack is reserved for long-term reuses as well.
However, unlike LIFO, peLIFO selects dynamically
intermediate stack positions (called Escape Points) for
replacement, that guarantee that short-term reuses are
also fulfilled.

3.1.3. Static, Bimodal and Dynamic Re-Reference In-
terval Prediction (SRRIP, BRRIP and DRRIP,
respectively)

These are the algorithms [7] in which the best of our
proposals are based on, so we will next explain them
in detail: each block has an associated state that
represents the prediction of how far in the future it will
be referenced again (Re-Reference Interval Prediction,
or RRIP). This state is codified with M bits, that
represent 2M different RRPVs (Re-Reference Prediction
Values). A block with RRPV=0 is predicted to be
referenced again soon (near-immediate RRIP), whereas
a block with RRPV=2M -1 is predicted to be referenced
again far in the future (distant RRIP). Based on
this state information, the insertion, promotion and
victimization sub-policies of SRRIP operate as follows:

• Insertion sub-policy of SRRIP: on cache fills
SRRIP assigns to the new block an intermediate
prediction state of RRPV=2M -2 (denoted as long
RRIP).

• Promotion sub-policy of SRRIP: on re-reference of
a block, there are two different options: HP (Hit

The Computer Journal, Vol. ??, No. ??, ????



Write-aware replacement policies for PCM-based systems 5

RRPV=0 RRPV=1 RRPV=2 RRPV=3

b0 b1 b2

b3

Hit to b1
(FP)

(a)

RRPV=0 RRPV=1 RRPV=2 RRPV=3

b0 b1 b2

b3

Hit to b1
(HP)

(b)

FIGURE 2. SRRIP promotion schemes: (a) SRRIP-FP,
(b) SRRIP-HP.

Priority) that sets the RRPV of the block to zero
and FP (Frequency Priority) that decrements it
by one. Figure 2 illustrates an example of both
promotion schemes for block b1 using M=2.

• Victimization sub-policy of SRRIP: for eviction,
SRRIP selects one block with a distant RRIP
(RRPV=2M -1). If there is not such a block,
SRRIP increments the RRPV of all the blocks in
the set and repeats the search. Figure 3 illustrates
the victimization process when using M=2.

In some cases, for example when the re-reference
interval of all the blocks is larger than the available
cache size, SRRIP utilizes the cache inefficiently. In
such scenarios, SRRIP generates cache thrashing and
results in no cache hits at all. To avoid this situation,
the authors propose BRRIP, that modifies the insertion
sub-policy of SRRIP:

• Insertion sub-policy of BRRIP: it inserts majority
of cache blocks with a distant RRIP (RRPV=2M -
1) and infrequently inserts new blocks with a long
RRIP (RRPV=2M -2).

This policy helps to preserve some of the working set
in cache, improving performance under such scenario.
However, for non-thrashing access patterns, always
using BRRIP can significantly hurt cache performance.
In order to be robust across all kind of cache access
patterns, the author also propose a third policy
(DRRIP) which follows an insertion sub-policy that
combines those of SRRIP and BRRIP:

• Insertion sub-policy of DRRIP: it includes a
Set Dueling mechanism [19] that identifies which

RRPV=0 RRPV=1 RRPV=2 RRPV=3

b0 b1 b2

b3
Evict one
block with
RRPV=3

FIGURE 3. SRRIP Victimization.

insertion policy among SRRIP and BRRIP –based
on the current miss rates reported– is best suited
for the application (Figure 4).

RRPV=0 RRPV=1 RRPV=2 RRPV=3

b0 b1 b2

b3

Set
Dueling

b4New
block

Long
Insertion

Distant
Insertion

4-way
cache\\

set i

FIGURE 4. DRRIP Insertion.

3.1.4. Signature-based Hit Predictor (SHiP)
This proposal [9] is not a policy per se, but a predictor
for the insertion of new blocks that can be used in
conjunction with any other policy. SHiP associates
each cache reference with a distinct signature, learns
dynamically the re-reference interval of each one, and
employs this information in the insertion sub-policy.
The authors incorporate a Signature History Counter
Table (SHCT) of saturating counters to learn the re-
reference behavior of each signature. Every time a
block is re-referenced (hit), the corresponding counter is
incremented. If a block is never re-referenced during its
residency in cache, the corresponding counter in SHCT
is decremented when the block leaves the cache. The
authors evaluate SHiP in conjunction with an SRRIP
replacement policy: when a new block enters the cache,
SHiP assigns it a distant RRIP if the associated counter
is zero; otherwise a long RRIP is assigned.

3.2. Proposed LLC write-aware replacement
policies

Before delving into our write-aware LLC replacement
policies, we first evaluated (Section 6.1) all conventional
algorithms described in the previous sub-section in
order to determine how they impact the writeback
account. Given that all assessed algorithms report quite

The Computer Journal, Vol. ??, No. ??, ????



6 Rodriguez-Rodriguez et al

poor results for our considered PCM-based scenario, we
studied several modifications looking for a reduction in
the amount of writes to memory.

We have proposed many policies based on the
conventional ones by modifying them in several ways.
However, DRRIP-based policies proved to achieve
the best trade-off between writeback reduction and
performance, so hereafter we stick to these. Below we
detail those changes to DRRIP insertion, promotion
and victimization sub-policies, that demonstrated to be
efficient enough. Note that we always use 2-bit DRRIP
(RRPV ranges between 0 and 3).

1. Changes to the insertion sub-policy of DRRIP:
the only change that reveals as satisfactory deals
with the set-dueling mechanism, which decides
the policy to employ in each insertion (SRRIP or
BRRIP). This mechanism makes the decision by
comparing the number of misses that each policy
generates in a few dedicated sets. Specifically, for
the insertion, some cache sets always follow SRRIP
while other cache sets always follow BRRIP;
the remaining sets (follower sets) use the policy
determined by the mechanism, so that the block is
inserted according to the scheme reporting a lower
amount of misses at that moment. Our proposal
is to change the metric employed to make the
decision: instead of using the number of misses
(which is reasonable for a performance-oriented
policy), we compare the number of writebacks to
memory that both SRRIP and BRRIP generated
in the dedicated sets, inserting the block according
to the policy currently exhibiting a lower number
of writebacks. We will refer to this change as SD.

2. Changes to the promotion sub-policy of DRRIP: we
make the following three proposals:

• PL (Promotion Low-aggressiveness): as
explained before, clean blocks leaving the LLC
are not harmful at all for PCM, whereas dirty
blocks cause a writeback to main memory
when evicted from the LLC. Consequently,
we propose to promote more aggressively
a dirty block than a clean one. Notably,
PL promotes clean blocks using the FP
option (decrementing the RRPV), while dirty
blocks are promoted using the HP option
(setting the RRPV to 0). Note that a more
aggressive approach would be not to promote
clean blocks at all; however, according to
our experiments this leads to an excessive
performance drop, due to not exploiting
whatsoever the temporal locality of clean
blocks. Summarizing:
– Clean Blocks→ FP promotion.
– Dirty Blocks→ HP promotion.

• PM (Promotion Medium-aggressiveness) and
PH (Promotion High-aggressiveness): based

on both the second and third general
considerations previously detailed and the
temporal locality principle, we propose to
promote a block that experiences a write
hit1 with a very aggressive policy under the
intuition that, if a block is written, it will
probably be written again soon. Notably,
in both PM and PH, blocks experiencing
a write hit promote under the HP option.
However, whereas PM promotes a block that
experiences a read hit using the FP option in
order to not impact performance in excess, PH
does not promote a block at all under a read
hit, for giving even more protection to writes
at the cost of some performance degradation.
To sum up:
PM:
– Read→ FP promotion.
– Write→ HP promotion.
PH:
– Read→ RRPV unchanged.
– Write→ HP promotion.

3. Changes to the victimization sub-policy of DRRIP:
for eviction, the only extra issue (with respect
to DRRIP) to which we will pay attention is
the dirtiness of the blocks. According to the
first general consideration previously described, we
propose the following three modifications:
• VL (Victimization Low-aggressiveness): at

first, only clean blocks with a distant RRIP
are considered to replacement2. In the event
that the policy is unable to find such a block, a
dirty block with a distant RRIP is victimized.
As in the original DRRIP policy, if no blocks
with a distant RRIP exist, VL increments
the RRPV of all the blocks and repeats the
same process. For the sake of clarity, Figure 5
illustrates the flow chart of VL policy.

• VM (Victimization Medium-aggressiveness):
we can view this policy as a two-stage
process. At the first stage, only clean blocks
are considered for the replacement, so that
the clean block with the highest RRPV is
victimized. Notably, when no clean block with
a distant RRIP is found, the policy augments
the RRPV of clean blocks. In the event that
VM is unable to find clean blocks in this first
stage, a second stage takes place, in which a
conventional search is performed considering

1Note that, unlike L1, LLC reads and writes do not correspond
directly to program loads and stores respectively. In our system,
the LLC is written to only when a dirty block is evicted from
L2, which can take place both due to a load or a store in the
processor. Conversely, LLC is read when L2 misses, which again
can occur both due to a load or a store.

2Note that, as done in original DRRIP, our three victimization
sub-policies break ties by always starting the victim search from
a fixed location (the left in our studies).

The Computer Journal, Vol. ??, No. ??, ????



Write-aware replacement policies for PCM-based systems 7

Look for clean block
with distant RRPV Evict Block

Look for dirty block
with distant RRPV

Increment RRPV of all
blocks

Not found

Found

Found

Not found

FIGURE 5. VL Flow Chart.

all blocks in the set. Figure 6 shows the flow
chart of VM policy.

Look for clean block
with distant RRPV

Increment RRPV of
clean blocks

Evict Block

Look for dirty block
with distant RRPV

Increment RRPV of all
blocks

Not found

Found

If there are no
clean blocks

Found

Not found

FIGURE 6. VM Flow Chart.

• VH (Victimization High-aggressiveness): this
is also a two-stage process. At the first
stage, as in the case of VM, only clean blocks
are considered for the replacement, so that
the clean block with the highest RRPV is
victimized. However, when no clean block
with a distant RRIP is found, the policy
maintains the RRPV of all blocks unchanged
during this first stage. When no clean blocks
exist in the set, a second stage starts, in which
a conventional search is performed considering
all blocks in the set. Figure 7 illustrates the
flow chart of VH policy.

As a result of all the possible combinations of the
7 proposed sub-policies, we introduce a full set of
LLC replacement policies, denoted by the the names
of the sub-policies they consist of. Although we have
evaluated all of them, in the evaluation section and for

Look for the clean
block with the highest

RRPV
Evict Block

Look for dirty block
with distant RRPV

Increment RRPV of all
blocks

If there are no
clean blocks

Found

Found

Not found

FIGURE 7. VH Flow Chart.

the sake of simplicity we only show results for those
providing a satisfactory trade-off among PCM lifetime
and performance.

In order to further clarify our proposals, Figure 8
illustrates an example of the operation of three of
our policies (PL-VL-SD, PM-VM-SD, PH-VH-SD)
and original DRRIP. For simplicity, we make several
assumptions: first, we consider a 4-ways LLC and that
all accesses are mapped to the same set. Second,
a write-back updating policy is used. Third, in the
sub-insertion policy, the SD mechanism is supposed
to always select SRRIP (i.e. blocks inserted with
RRPV=2). Finally, HP is employed as the promotion
sub-policy for DRRIP.

We should highlight that our proposal stacks on top
of any other technique applied at main memory level,
making it even more appealing in the presence of other
techniques to extend the lifetime of a PCM device.

3.2.1. Endurance model
The policies proposed in the previous section are con-
ceived with the aim of extending the lifetime/endurance
of a PCM main memory without sacrificing too much
performance. For achieving such a goal, we modified
conventional performance-oriented replacement policies
trying to reduce the number of LLC-to-memory write-
backs. Note that the lifetime extension of the device is
closely related to the reduction of writes, assuming the
presence of wear leveling mechanisms, both at page level
and inside each cache block, to prevent hot memory lo-
cations to wear memory unevenly, as [1, 20, 21, 22, 23].
This claim holds in the reasoning that if we write to
memory, e.g. half often, then each cell is worn half as
much, which translates directly into twice (1/0.5 = 2)
the memory lifetime.

There is a caveat though; any conventional PCM-
based memory would implement the redundant bit
writes technique [1, 10, 11], based on which only those
bits that have changed need to be updated. Therefore,
we cannot just look at the amount of writebacks to
memory we reduce, because that could artificially make
our results look better than they are, but we need to

The Computer Journal, Vol. ??, No. ??, ????



8 Rodriguez-Rodriguez et al

Blkway0
RRPV,DirtyBit

Blkway1
RRPV,DirtyBit

Blkway2
RRPV,DirtyBit

Blkway3
RRPV,DirtyBit

Initial state: A 2,1 E 2,0 C 2,0 F 3,1

Ref DRRIP PL-VL-SD PM-VM-SD PH-VH-SD

write A Hit. Promote with HP, i.e.
RRP VA=0

Hit on dirty block. Promote with
HP, i.e. RRP VA=0

Hit and write access. Promote
with HP, i.e. RRP VA=0

Hit and write access. Promote
with HP, i.e. RRP VA=0

A 0,1 E 2,0 C 2,0 F 3,1 A 0,1 E 2,0 C 2,0 F 3,1 A 0,1 E 2,0 C 2,0 F 3,1 A 0,1 E 2,0 C 2,0 F 3,1

Read C Hit. Promote with HP, i.e.
RRP VC=0

Hit on clean block. Promote with
FP, i.e. RRP VC=RRP VC -1=1

Hit and read access. Promote with
FP, i.e. RRP VC=RRP VC -1=1

Hit and read access. Do not
promote at all.

A 0,1 E 2,0 C 0,0 F 3,1 A 0,1 E 2,0 C 1,0 F 3,1 A 0,1 E 2,0 C 1,0 F 3,1 A 0,1 E 2,0 C 2,0 F 3,1

write B Miss. One block with RRPV=3
(F). Evict F.

Miss. Zero clean blocks with
RRPV=3. One dirty block with
RRPV=3 (F). Evict F.

Miss. 1st stage: Zero clean blocks
with RRPV=3. Increment RRPVs
of clean blocks. One clean block
with RRPV=3 (E). Evict E.

Miss. 1st stage: There are clean
blocks. Evict clean block with the
highest RRPV (E). Evict E. 2nd
stage unnecessary.

A 0,1 E 2,0 C 0,0 B 2,1 A 0,1 E 2,0 C 1,0 B 2,1 A 0,1 B 2,1 C 2,0 F 3,1 A 0,1 B 2,1 C 2,0 F 3,1

write C Hit. Promote with HP, i.e.
RRP VC=0 and set dirty bit.

Hit on clean block. Promote with
FP and set dirty bit.

Hit and write access. Promote
with HP and set dirty bit.

Hit and write access. Promote
with HP and set dirty bit.

A 0,1 E 2,0 C 0,1 B 2,1 A 0,1 E 2,0 C 0,1 B 2,1 A 0,1 B 2,1 C 0,1 F 3,1 A 0,1 B 2,1 C 0,1 F 3,1

Read G Miss. Zero blocks with RRPV=3.
Increment all RRPVs. Now two
blocks with RRPV=3 (E and B).
Evict E.

Miss. Zero clean and dirty blocks
with RRPV=3. Increment all
RRPVs. Now one clean block with
RRPV=3 (E). Evict E.

Miss. 1st stage: No clean blocks
at all. Go to 2nd stage: One dirty
block with RRPV=3 (F). Evict F.

Miss. 1st stage: There are zero
clean blocks. Go to 2nd stage:
One dirty block with RRPV=3
(F). Evict F.

A 1,1 G 2,0 C 1,1 B 3,1 A 1,1 G 2,0 C 1,1 B 3,1 A 0,1 B 2,1 C 0,1 G 2,0 A 0,1 B 2,1 C 0,1 G 2,0

FIGURE 8. Example of different policies operation: original DRRIP and three of our proposals.

take into account how many bits are affected by each
writeback. Given the size of the task, we have relaxed
the model slightly as follows:

• Whenever a cache block is written to main memory,
we account for how many of the 64-bit words within
the block have been modified. Unmodified do not
wear off PCM cells.

• We assume that when a word is modified half of
its bits are flipped and the other half preserves its
value. This assumption is based on the fact that
we use both integer and FP applications; on the
one hand control variables have a small variability,
on the other hand pointers to the heap and FP-
numbers have much larger variability. Therefore,
we take 0.5 as a general, broad approximation.

Based on this reasoning, we can derive the following
equations, which we will employ in the evaluation
section for calculating endurance results.

First, we need to account for how many bits in the
block are affected by each writeback. In other words,
the probability of each bit to flip, denoted as BFP (Bit
Flip Probability). This is needed because reducing the
number of writes to main memory could has the side
effect of increase the dirtiness of a block and increase
the probability of bits being flipped.

BFP =
PMBW ∗BW ∗

∑WB
n=1 n ∗NWMMn

NWMM ∗BB
(1)

where:
PMBW = Percentage of Modified Bits per

Word.
Recall that our relaxed model
assumes PMBW=0.5.

The Computer Journal, Vol. ??, No. ??, ????



Write-aware replacement policies for PCM-based systems 9

BW = Bits per Word. In our scenario,
BW=64.

WB = Words per Block. In our scenario,
WB=8.

n = Number of words modified within
a written-back block.
In our scenario, n can be an
integer from 1 to 8.

NWMM = Total Number of Writebacks to
Main Memory.

NWMMn = Number of Writebacks to Main
Memory with n words modified.

BB = Bits per Block. In our scenario,
BB=512).

Based on the fact that memory wear is proportional
to NWMM corrected with BFP, and that memory
endurance is inversely proportional to memory wear, we
can derive the wear reduction and endurance extension
(denoted as WR and EE respectively) achieved by a
policy with respect to lru algorithm when running
a particular application (we are using the relation
WB=BB/BW):

1
W Rpolicy/lru

= EEpolicy/lru = 1
BF Ppolicy

BF Plru
∗ NW MMpolicy

NW MMlru

=

1∑W B

n=1
n

W B
∗NW MMn,policy∑W B

n=1
n

W B
∗NW MMn,lru

(2)

Note that this equation is perfectly coherent with the
reasoning from this section and the assumptions of our
model: it weights each write to main memory with the
percentage of dirty words that the written-back block
contains. Note also that, due to the normalization vs
LRU, the EE obtained in Equation 2 is independent of
the constant factors we assumed above (PMWB, BB,
BW and WB).

4. OTHER WRITE-AWARE POLICIES

Recently, some other works have also addressed the
PCM endurance constraint at the LLC controller level
by redesigning the LLC cache replacement policy. Next
we recap two distinguished proposals:

• CLean-Preferred victim selection policy (CLP)
[14]: Like us, CLP aims to maintain dirty blocks
in the cache to increase the probability that writes
were coalesced. It implements a modified LRU that
gives preference to clean blocks when choosing a
victim. The authors propose a family of clean-
preferred replacement policies, called N-Chance.
The N parameter reflects how much preference is
given to clean blocks3. The algorithm selects as

3In our paper, although we have evaluated CLP with different
N values, we just report data of CLP with N equal to the
cache associativity, since it is the policy achieving the highest
writes reduction maintaining also a satisfactory trade-off with
the performance delivered.

victim the oldest clean block among the N least
recently used ones. If such a block does not exist,
the LRU block is used.

• Read-Write Aware (RWA) and Improved RWA (I-
RWA) [16]: These policies are based on SRRIP-
HP and they both use RRPV values of log2assoc
bits, being assoc the associativity of the cache.
RWA modifies neither the victimization nor the
promotion sub-policies with respect to SRRIP-HP,
but the insertion sub-policy is modified as follows:
when a read misses in the LLC, the RRPV of
the inserted block is set to assoc − 2; when a
writeback from L2 to the LLC misses, the RRPV
of the inserted block is set to 0. Conversely, I-
RWA distinguishes between single and multiple-
use dirty lines, trying to protect multiple-use lines.
The SRRIP-HP victimization sub-policy is not
modified, but the insertion sub-policy is changed
so that any read miss sets the RRPV of the filled
block to assoc − 2 while a write miss sets it to
assoc − 3. Besides, the promotion sub-policy is
changed so that a read hit sets the RRPV of the
block to a medium value –instead of 0 as done in
SRRIP-HP– while a write hit sets it to 0.

Also [15] shares our same objective of reducing the
number of LLC-to-memory writebacks at the LLC
controller level. However, in this case, the solution
has to do with the partitioning algorithm for sharing
the cache among multiple applications. Notably, the
authors accomplish the goal by adapting [24] to a PCM
scenario.

Finally, in [17], a new write-aware replacement
policy is presented, but in this case not for the
replacement of LLC blocks but for the swapping of
memory pages between PCM and DRAM in a hybrid
main memory architecture. The authors propose a new
memory management policy, based on the well-known
CLOCK algorithm [25], that predicts if memory pages
will receive future write references soon or not, and
depending on that prediction maps the pages either to
DRAM or to PCM.

5. EXPERIMENTAL FRAMEWORK

For our main experiments we use gem5 [26]. We use
the classic memory model provided by the simulator
and we modify it by including a new cache level (L3)
and encoding the proposed cache replacement policies.
We simulate both a single and a multi-core scenario,
using the simulator in its Syscall Emulation mode (SE)
or Full System mode (FS) respectively. For the sake
of a better accuracy in both execution modes, an O3
processor type (detailed mode of simulation) was used.

The cache hierarchy is modeled after that of an
Intel i7 [27], formed by three cache levels, being
L2 and L3 non-inclusive/non-exclusive. In the case
of the multi-core scenario we model 2 and 4-core
CMPs, with private L1 and L2, and a shared L3.

The Computer Journal, Vol. ??, No. ??, ????



10 Rodriguez-Rodriguez et al

Figure 9 illustrates the experimental system used in
both single-core and multi-core scenarios. Recall
that for the evaluation of our proposed policies we
implement them in the L3 while L1 and L2 use both
a classical LRU algorithm. For modeling the PCM
main memory we use DRAMSIM2 [28]. The integration
between DRAMSIM2 and gem5 is done using the patch
developed for gem5 [29]. We adapt the read and write
latencies according to the PCM target. We consider a
PCM main memory with 1 channel with 2 ranks of 8
banks each. Each bank has a 8-entry read queue and
a 32-entry write queue for pending requests. When a
writeback of a cache line from the LLC occurs, a write
request is sent to the PCM, which is queued at a write
queue. The application progresses without delay if the
write queue has available entries since the writebacks
are not on the critical path. Otherwise, the application
stalls. Both lantencies and buffers size were selected
according to the system used in [15].

dL1
32KB/8 ways

iL1
32KB/8 ways

L2
256KB/8 ways

core1

...

CPU dL1
32KB/8 ways

iL1
32KB/8 ways

L2
256KB/8 ways

coren

L3
1MB/2MB/4MB

16 ways

PCM
Main Memory

FIGURE 9. Simulated system, for all caches a 64
bytes/block is used.

Since we target both uniprocessor and multi-
processor architectures, our experiments make use
of the SPEC CPU2006 [30] and the PARSEC [31]
benchmark suites. When using the former suite
in a single core scenario (L3 1MB size) we employ
train inputs –we also tried with reference inputs,
obtaining very similar results but at the expense of
huge simulation times– and we simulate 1 billion
instructions from the checkpoint determined using
PinPoints [32]. Note that results from 9 out of 29
benchmarks are not considered in the evaluation section
due to experimental framework constraints. We also
report results of 12 multiprogrammed mixes using
SPEC CPU2006 programs (Table 1) in a 4-CMP system
with a 4MB L3. In this case, we fast forward 100M
instructions, warm up caches for 200M instructions and
then report results for 1B instructions. Finally, when
the PARSEC workload is employed, we use large inputs,
which exhibit memory footprints much more similar
to those of train inputs for SPEC applications than
small ones, and each simulation run is fast forwarded to
the predefined checkpoint at the code region of interest
(ROI), warmed-up by 100 million instructions, and then

simulate 1 billion instructions for all threads or to ROI
completion, whichever comes first.

For selecting the multiprogrammed mixes from
Table 1, we employ the following methodology: we
execute each benchmark alone, using an L3 of 1MB
and an LRU replacement policy for all cache levels, and
we measure the amount of LLC-to-memory writebacks
that it generates. We then obtain for each benchmark
the writebacks to main memory per instruction ratio
(WPI). Based on these values, we include each
benchmark into the high, medium or low category.
Specifically, the high category includes benchmarks
with a WPI higher than 3∗10−3, the medium those with
a WPI satisfying 3 ∗ 10−3 < WPI < 10−3 and finally,
in the low category we include the programs with a
WPI lower than 10−3. Table 2 shows this classification.
Based on this classification, and as we will further detail
in Section 6.3.1, we build some mixes with high WPI,
some with medium WPI, some with low WPI, and some
combining applications from different WPI categories.

We should also highlight here that gem5 supports
both x86 and Alpha ISAs. However, given that we
found restrictions when using the FS mode for x86,
we only simulated the PARSEC suite compiled for
the Alpha ISA. In the case of SPEC CPU2006 suite,
we run the simulations with the benchmarks compiled
for both architectures, but since reported results were
in the same ballpark, we chose to only show those
corresponding to the x86 architecture.

Memory endurance simulator: Although gem5
yields the values required to estimate the memory
endurance extensions according to the model detailed
in Section 3.2.1, we also employ a statistical simulator
in order to plot the available memory (#alive pages)
under each evaluated policy as time passes. Doing
faithful, cycle accurate simulation is unfeasible due to
the amount of time PCM requires to experience stuck-
at faults. Therefore, we have developed an in-house
montecarlo simulator following the description in [33].
Table 3 recaps the main parameters employed in this
simulator.

Each proposal is simulated by creating a number
of memory pages (#starting pages). Each bit inside
every page is created with a lifetime randomly
distributed according to a Gaussian distribution N(µ =
108, σ = 2.0 · 107). The simulator uses as input
parameters for each proposal the following (provided
by the gem5 simulator): the average BFP, the total
number of writes and the average write reduction vs
LRU. Initially, the wear rate w is calculated as a
function of BFP and the number of pages in the system,
as Equation 3 shows. The BFP expresses how much
each bit is worn per-write, and the part involving the
number of pages expresses how much extra wear alive
pages have to absorb on behalf of those faulty pages

The Computer Journal, Vol. ??, No. ??, ????



Write-aware replacement policies for PCM-based systems 11

Mixes Applications Mixes Applications
MIX0 lbm, mcf, milc, soplex MIX1 lbm, mcf, milc, GemsFDTD
MIX2 mcf, milc, soplex, GemsFDTD MIX3 bzip2, zeusmp, cactus, leslie3d
MIX4 zeusmp, cactus, leslie3d, gobmk MIX5 cactus, leslie3d, gobmk, calculix
MIX6 perlbench, gcc, gromacs, namd MIX7 hmmer, h264ref, omnetpp, astar
MIX8 lbm, mcf, gromacs, sphinx3 MIX9 mcf, milc, perlbench, h264ref

MIX10 cactus, hmmer, h264ref, lbm MIX11 mcf, cactus, hmmer, h264ref

TABLE 1. SPEC 2006 multiprogrammed mixes

High Medium Low
lbm, mcf, milc, soplex, bzip2, zeusmp, cactus, leslie3d perlbench, gcc, gromacs, namd,

gemsFDTD gobmk, calculix hmmer, h264ref, omnetpp, astar, sphinx3

TABLE 2. Writes to PCM per instruction categories

Page size 4KB
Row size 64 Bytes

Chips per rank 8
Bit lines per chip x8

Lifetime distribution N(µ = 108, σ = 2.0 · 107)
Pages 2000

TABLE 3. Memory endurance simulator parameters.

that have been discarded from the system.

w = BFP · #starting pages
#alive pages (3)

Then, according to the characterization obtained from
gem5, we start simulating writes to the cells. At some
point in time t a cell will wear out, the page containing
it is discarded, the simulator updates the #alive pages
and the wear rate accordingly, and the simulation
proceeds until all pages are discarded. As a result of
this simulation, a curve is generated that shows the
amount of memory available (expressed in percentage of
available pages) as a function of the number of writes.

Energy model: Finally, we should mention that in the
evaluation section we will show results about energy
consumption in the memory hierarchy4, following
a model that includes both dynamic and static
contributions. The static component is calculated using
CACTI 6.5 [34, 35], which reports a leakage number
for each cache level. In the case of the main memory,
as it is built with PCM technology, the static power
can be considered as negligible. Thus, adding the
power contributions of each cache level, we obtain the
total static power consumed in the memory hierarchy.
Finally, we multiply that number by the execution
time of the program to obtain the total static energy
consumed in the execution of that application. In the
case of the dynamic component, we again use CACTI
6.5 for determining the dynamic energy consumption
per access to each cache level, whereas for computing

4In the energy consumption analysis we do not account
for the implementation overhead of the replacement policies,
which, according to the analysis from Section 6.4.2, constitutes a
reasonable approximation. In any case, including this overhead
in the energy study would be beneficial to our interests.

the dynamic energy consumption associated with the
accesses to main memory we follow [15], employing
1J/GB and 6J/GB per PCM read and PCM write
respectively (Table 4 includes data regarding latencies
and energy consumption per memory hierarchy level).
Then, the equation employed to determine the dynamic
energy consumption in the memory hierarchy is:

Dynamic Energy =
n∑

i=1

(RHLi ∗RELi + W HLi ∗W ELi+

(RMLi + W MLi) ∗ (T ELi + W ELi))+
+RP CM ∗REP CM + W P CM ∗W EP CM

where n is the amount of cache levels, RHLi and WHLi
denote the number of read and write hits in cache level i,
RMLi and WMLi denote the number of read and write
misses in cache level i, RPCM and WPCM correspond
to the amount of reads and writes to PCM, REPCM
and WEPCM denote the energy consumption per read
and write to PCM and finally RELi, WELi and TELi
correspond to the energy consumption of a read, a write
and a tag array consult in cache level i.

6. EVALUATION

This section is divided into four parts. In Section 6.1
we evaluate how classical performance-oriented policies
behave in terms of the amount of writes they involve.
Sections 6.2 and 6.3 assess the effectiveness of our
proposed LLC replacement policies and that of other
write-aware policies in cutting the write memory traffic
and extending the memory lifetime in single-core and
multi-core environments respectively. Finally we also
report some additional results in Section 6.4. Note
that throughout this section, when providing results
about writes, we refer to LLC-to-memory writebacks
(recall that we do not deal with writes from the disk to
memory) at a block-level. Note also than the y-axis in
all charts displayed in this section does not start from 0.
Instead, we opted to start it from other different values
in order to properly explode the differences among the
various policies evaluated.

The Computer Journal, Vol. ??, No. ??, ????



12 Rodriguez-Rodriguez et al

Level Latencies (cycles) Energy (Read/Write/Tag) (nJoules) Leakage (mW/bank)
L1 1 0.222466/0.211604/0.00174426 4.01624
L2 10 0.530476/0.542389/0.0055894 11.6566

L3 1MB 30 2.25868/2.50327/0.019461 38.6125
L3 2MB 30 1.98142/2.16845/0.034619 115.595
L3 4MB 30 2.71345/2.98494/0.0673199 202.533

PCM read 100 59.6046447754 0
PCM write 700 357.6278686523 0

TABLE 4. Latencies and Energy Consumption

6.1. Performance-oriented policies

In this section we evaluate the behavior of conventional
and recently proposed performance-oriented cache
replacement policies when applied to the LLC regarding
the number of dirty blocks evicted from this level,
which corresponds to the amount of writes to main
memory that each algorithm involves. Notably, we
evaluate LRU, RANDOM, SRRIP, DRRIP, SHiP –
in combination with SRRIP, as done in the original
paper [9]– and peLIFO policies using the SPEC
CPU2006 benchmark suite. Figure 10 illustrates the
corresponding amounts of writes to memory normalized
to the LRU baseline. Note that the figure shows results
per benchmark as well as the geometric mean obtained.
From the figure we observe that DRRIP ranks only
second to LRU as the policy that on average delivers
the lowest number of writes to main memory, although
DRRIP outperforms LRU for most applications.

6.2. Write-aware policies in a single-core
scenario

In this section we deeply analyze the behavior of
our proposed LLC replacement policies and other
algorithms in a PCM-based system within a single-core
scenario. First, we explore the isolated contribution of
each of our proposals and, based on this evaluation, we
justify the decision of reporting results from just some
of our policies, which we consider as representative,
along this section. Then, we report data about the
number of writes to memory and endurance that each
evaluated proposal involves as well as the performance
delivered. Besides, being energy consumption one of the
main motivations for adopting PCM as main memory
technology, we also include results about the involved
energy consumption in the memory hierarchy according
to the model detailed in Section 5. Finally, we expose a
brief discussion about the trade-off between the memory
endurance and the performance that the evaluated
policies deliver.

6.2.1. Contribution of each proposed change
The various modifications we have proposed over
original DRRIP impact the write memory traffic
differently. Figure 11 quantifies this impact for each
change isolated and also when we combined them. First,
we observe that modifying the insertion sub-policy
by changing the criteria that rules the Set Dueling

mechanism (SD label) reports low reductions (around
1%) in the amount of writes to memory. Second, the
impact of our promotion sub-policies is also limited.
The low, medium and high-aggressive versions (PL,
PM and PH respectively) only manage to cut the
write traffic to memory between 0.5 and 1.5% with
respect to DRRIP. Third, the victimization sub-policies
clearly report the major benefits. Notably, VL, VM
and VH are able to reduce the amount of writes
generated by original DRRIP by around 10, 24 and 32%
respectively. Therefore, we arrange our proposals into
high-aggressive, medium-aggressive and low-aggressive
categories depending on whether they include the VH,
VM or VL label respectively. It is worth to note that
when different sub-policies are combined, in some cases
the writes reduction achieved is higher than that we
would expect considering their isolated contributions.

Next we explain the criteria followed to choose
the most representative policies across the board
(highlighted in Figure 11 with green bars and north-
east lines). First, we discarded all policies that do
not reduce the write traffic to memory with respect
to conventional LRU. We also ruled out most of the
algorithms that achieve modest writes reductions at the
expense of performance drops. Finally, among those
policies reporting similar results in both amount of
writes to memory and performance, we pick one of them
within each group. As a result, we choose just one
algorithm from each class of victimization sub-policies
(i.e., VH, VM and VL) combined with one of the three
possible promotion sub-policies (the best performing
one in each case, either PH, PM or PL) and with the
SD insertion sub-policy. Notably, we choose PM-VH-
SD, PM-VM-SD and PL-VL-SD.

From now on, in all the following figures and for
each evaluated policy we report the geometric mean of
the normalized metrics (writes reduction, endurance,
performance and energy consumption in the memory
hierarchy) with respect to LRU considering both all
the benchmarks (we labeled as All) and only the most
memory-intensive programs (we labeled as memory-
intensive). The rationale behind including this group
of applications with high memory footprints is twofold:
first, to reveal potential biased values in the All
numbers due to programs in which the amount of writes
is so low that minimal writes reductions in absolute
values lead to high percentage numbers, polluting
the All number, and second, to stress the benefits

The Computer Journal, Vol. ??, No. ??, ????



Write-aware replacement policies for PCM-based systems 13

40
0.p

erl
ben

ch

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

43
3.m

ilc

43
4.z

eu
sm

p

43
5.g

ro
mac

s

43
6.c

ac
tu

sA
DM

43
7.l

esl
ie3

d

44
4.n

am
d

44
5.g

ob
mk

45
0.s

op
lex

45
4.c

alc
ulix

45
6.h

mmer

45
9.G

em
sF

DTD

46
4.h

26
4r

ef

47
0.l

bm

47
1.o

mnetp
p

47
3.a

sta
r

48
2.s

phinx3

gm
ea

n
0.8

1

1.2

1.4

DRRIP peLIFO Random SRRIP SHiP

FIGURE 10. Writes to main memory normalized to LRU for performance-oriented policies: SPEC CPU2006 suite. hmmer
and astar applications report numbers ranging between 7 and 16x for most policies.

D
R

R
IP

PM
-V

L
V

L-
SD

PL
-V

L

V
L

V
H

-S
D

PH
-V

H

PM
-V

H
PM

-V
H

-S
D

PL
-V

H
PL

-V
H

-S
D

V
H

PH
-V

L

PH
-V

M

PH
-S

DPH

PM
-V

L-
SD

PM
-V

M

PM
-S

D

PM

V
M

-S
D

PH
-V

M
-S

D

V
MSD

PL
-S

D

PL
-V

M
PL

-V
M

-S
DPL

PL
-V

L-
SD

PH
-V

H
-S

D

PH
-V

L-
SD

PM
-V

M
-S

D

0.7

0.8

0.9

1

FIGURE 11. Amount of writes to main memory normalized to LRU: contribution of each proposed policy.

derived from our techniques over those applications
that, performing high amounts of writes to memory,
are more harmful to PCM lifetime. In order to define
this second group of applications, we sort all the
programs according to the WPI values exhibited in
the baseline policy, and, starting from the benchmark
with the highest WPI, we pick applications until the
accumulated WPI of the selected programs reaches
at least the 75% of the total WPI obtained when
considering all applications. In the experimental setting
we employ in this section, the memory-intensive group
is conformed by lbm, mcf, milc and soplex.

Note that in this scenario we also report the
geometric mean of the evaluated metrics when all the
applications except the sphinx3 program are considered
(we label this group as All w/o sphinx3 ). The reason for
this is that this application exhibits an special behavior
that may lead the evaluated metrics to be somehow
biased. Notably, while for the rest of applications the
evaluated policies are able to reduce the amount of
writes to memory by a factor ranging from 1 to 2X,
for sphinx3 many policies under evaluation are able to
cut the write traffic to memory in an unusually large

fashion (up to a hundredth part, 100X).

6.2.2. Amount of writes and Endurance
Figure 12 illustrates the number of writes to main
memory generated by different proposals: from left
to right we show results of some performance-oriented
policies (DRRIP, peLIFO and SHiP), some previously
proposed write-aware approaches (RWA, IRWA and
CLP) and –ordering by decreasing aggressiveness– our
chosen algorithms.

First, as shown, all our proposals significantly
outperform original DRRIP. Second, they also exhibit
higher ability in cutting the write traffic to main
memory than other write-aware policies (RWA and
IRWA and similar to that of CLP). The rationale
behind the deficient behavior of both RWA and
IRWA is twofold: 1) they are based on SRRIP
instead of DRRIP, which implies a higher number
of writes as Figure 10 illustrates, 2) they do not
modify the SRRIP victimization sub-policy, that, as
demonstrated in Section 6.2.1, constitutes the sub-
policy with the highest impact (Section 6.2.1). CLP
reduces the amount of writes by around 33% and

The Computer Journal, Vol. ??, No. ??, ????



14 Rodriguez-Rodriguez et al

CLP
IRWA

peLIFO
RWA

SHiP
DRRIP

PM-VM-SD

PL-VL-SD

PM-VH-SD

0.6

0.8

1

1.2

All All w/o sphinx3 Memory-intensive

FIGURE 12. Amount of writes to main memory
normalized to LRU: SPEC CPU2006 suite.

15.3% when sphinx3 is considered or not respectively,
while the best-performing of our proposals (PM-VH-
SD) reaches the 30 and 16% respectively. Third,
the three performance-oriented policies augment the
number of writes compared to LRU. Fourth, zooming
into the memory-intensive programs, we observe that,
although the results follow a similar tendency, the
differences among policies get reduced5. Besides, our
most aggressive policy even improves CLP for these
applications.

Next, according to the model detailed in Sec-
tion 3.2.1, we show how the achieved reductions in
writes to memory translate into extensions of the PCM
lifetime for each evaluated proposal. Notably, Table 5
illustrates the memory lifetime improvement (percent-
ages) with respect to LRU.

As shown, the trends observed in the values of
memory lifetime extension closely follow those observed
for the writes reduction numbers when considering
all applications. This is due to the fact that the
ratios between the BFP of each evaluated policy and
that of LRU, which modulates the contribution of
the writes reduction factor to the memory endurance
extension number as shown in Equation 2, are very
similar across the board. Notably, the average of dirty
words per writeback when considering all applications
ranges between 5.95 in SHiP and 5.62 in PM-VM-
SD, exhibiting LRU a value of 5.86, which implies
BFPs ratios in the range 1.02-0.95. This makes the
writes reduction number the major contribution to
the memory improvement obtained. However, those
policies exhibiting a BFP value lower than that of LRU
obtain an additional memory lifetime improvement.
Thus, PM-VM-SD, reducing 6% less memory writes
than CLP when considering all applications except
sphinx3, is able to almost match its endurance extension
(17.1% vs 17.6%) since the geomean of the ratios
between BFP and the BFP of LRU is 0.94 in our

5The percentages of writes reduction exhibited by most write-
aware policies decrease for the memory-intensive programs (as
analyzed in Section 6.4.1, this occurs even for an optimal policy).

proposal while it is just 1.0 in CLP. When considering
the memory-intensive programs, the memory lifetime
improvements observed are further below from the
values of writes reductions than when all applications
are considered. This is due to the fact that the ratios
obtained between the BFPs of the evaluated policies
and that of LRU are higher than 1 across the board (up
to 1.06 in the case of CLP), hence reducing the memory
endurance extensions achieved. For these programs
the average of dirty words per writeback is moderately
lower, ranging from 3.9 in LRU to 4.17 in CLP.

In order to visually observe the memory lifetime
improvements achieved, we use the memory endurance
simulator detailed in 5, which reports the amount of
memory available (expressed in percentage of available
pages) as a function of the number of writes. We apply
the change of variable in the x-axis from number of
writes to time (expressed in generic units). Figure
13 illustrates the curves obtained when considering
both all the applications except sphinx3 and the
memory-intensive programs. We observe how in
both cases our PM-VH-SD policy reports the highest
amount of memory available for a given time. For
instance, when considering all applications except
sphinx3, after 1.8 billions of programs execution PM-
VH-SD maintains around 58% of pages surviving while
CLP just maintains around 42%. Note that for the
sake of clarity we omit some proposals (peLIFO, SHiP
and IRWA) that do not provide satisfactory results
according to Table 5.

Note also that the time reached for the memory-
intensive programs until the whole memory fails is
higher than that of all the applications, since, although
the amount of writes performed is higher, the average of
dirty words that exhibit the writebacks in this kind of
applications is significantly lower than when considering
all applications.

6.2.3. Performance
Although our prime goal is to extend the PCM lifetime,
it is clear that a proposal meeting this requirement
could not be adopted if it comes at the expense of
a significant performance drop. In order to further
evaluate the benefits that each policy reports, Figure 14
shows the performance (execution time) delivered.

First, we observe that most of our DRRIP-based
proposals almost match the execution time of original
DRRIP and even some of our algorithms –those
including a medium-low victimization sub-policy (VM
or VL)– manage to outperform it. Second, all our
proposals outperform the other write-aware policies
(especially RWA and IRWA, which significantly degrade
performance, 4.1 and 10.2% over LRU respectively).

Third, the two most aggressive policies in reducing
the amount of writes to memory (CLP and PM-VH-
SD) do provide a moderately satisfactory trade-off with
performance since they all penalize it around 1-2%,

The Computer Journal, Vol. ??, No. ??, ????



Write-aware replacement policies for PCM-based systems 15

Benchs/Policies DRRIP peLIFO SHiP RWA IRWA CLP PM-VH-SD PM-VM-SD PL-VL-SD
All/All w/o sphinx3 -5.9/-6.3 -11.5/-12.2 -20.9/-24.9 5.4/-7.2 -23.1/-25.1 49.1/17.6 41.4/19.0 36.3/17.1 7.4/6.5

Memory-intensive 2.0 0.9 -3.7 3.6 -4.2 11.9 16.1 11.6 5.8

TABLE 5. Memory lifetime improvements (percentages) with respect to LRU: SPEC CPU2006 suite.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

10

20

30

40

50

60

70

80

90

100

Time (generic units)

%
av

ai
la

bl
e

pa
ge

s

LRU DRRIP RWA CLP

PLVLSD PMVHSD PMVMSD

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
0

10

20

30

40

50

60

70

80

90

100

Time (generic units)

%
av

ai
la

bl
e

pa
ge

s

LRU DRRIP RWA CLP

PLVLSD PMVHSD PMVMSD

(b)

FIGURE 13. Available memory vs time for SPEC CPU2006 suite: (a) All, (b) Memory Intensive.

CLP
IRWA

peLIFO
RWA

SHiP
DRRIP

PM-VM-SD

PL-VL-SD

PM-VH-SD

0.95

1

1.05

1.1

All All w/o sphinx3 Memory-intensive

FIGURE 14. Execution Time normalized to LRU: SPEC
CPU2006 suite.

depending on considering the sphinx3 program or not.
Intuitively, we would expect that this performance
penalty was higher. Therefore, it is worth to note the
key factors that may affect the performance delivered
by the various write-aware approaches. Note that two
opposing factors turn up:

1) Our proposed replacement algorithms are mainly
focused on reducing the amount of dirty blocks evicted,
being partially unaware of the consequent impact on
performance, so it would be expected to lead to
an increase on the number of read misses, hence
augmenting the amount of accesses to main memory
and hurting performance. However, our results reveal
that for the PM-VH-SD policy –our algorithm achieving
the highest reduction of writes to memory– the amount
of LLC read misses in 8 out of 20 benchmarks decreases
with respect to LRU. In fact, in the original DRRIP

algorithm (the policy our schemes are based on) more
than half of the benchmarks exhibit a lower amount of
LLC read misses than LRU. The rationale behind this
decrease in the amount of LLC read misses is that the
temporal locality has been almost totally filtered at the
LLC by the lower cache levels, thus a policy focusing
only on temporal locality exploitation, like LRU, may
provide poor results at this level of the hierarchy for
some applications. Overall, the total amount of read
misses in L3 considering all applications (and hence the
events of read queue filling) has slightly increased in
our proposals compared to LRU. This makes the net
contribution on performance essentially negligible for
our proposals.

2) Conversely, reducing the number of writes to
memory reduces the pressure over the write queues,
which leads to performance improvements (as explained
in Section 5, once the corresponding write queue is
full, the application stalls when a writeback from the
LLC occurs). As for the write queues filling, our
results illustrate that in the LRU baseline only in 8
out of 20 programs some write queue fills up at least
once. For these 8 benchmarks, PM-VH-SD is able
to significantly reduce the chances of filling up write
queues and therefore mostly cancel the performance
drops associated with the higher LLC read misses
observed in 6 of these programs. For the remaining
two applications (soplex and h264ref ), as the amount of
LLC read misses is also lower than that of the baseline,
performance improvements of 16 and 5% respectively
are delivered.

Fourth, among the performance-oriented policies,
DRRIP and peLIFO provide satisfactory results (as
expected) while SHiP surprisingly exhibits the second

The Computer Journal, Vol. ??, No. ??, ????



16 Rodriguez-Rodriguez et al

worst number across the board (largely due to the
performance drop delivered in hmmer, astar, bzip2 and
soplex applications). Finally, zooming into the memory-
intensive programs, we observe that all our policies
manage to significantly improve the performance of
the other write-aware proposals and also that of some
performance-oriented algorithms (note that DRRIP
performs especially well for this kind of applications).
Notably, our most aggressive algorithm, providing
very similar writes reductions as CLP, manages to
outperform it by more than 3%. Moreover, for these
applications (and also considering all benchmarks) our
less-aggressive approach even reports the best numbers
across the board, exhibiting also the lowest amounts of
LLC read misses among all evaluated policies.

6.2.4. Memory energy consumption
As for the energy consumption on the memory hierarchy
for the different evaluated policies, our experimental
results reveal that our proposals outperform all the
other policies, reporting energy savings ranging between
4% (medium and less-aggressive algorithms) and 2%
(high-aggressive policies) with respect to LRU. Only
DRRIP and CLP are able to also report energy savings
with respect to LRU. The other two write-aware
policies significantly augment the energy consumption.
Considering only the memory-intensive programs, the
energy savings are greater across the board, being again
our three proposals (and also CLP) those reporting the
highest values (in the range from 9 to 8%). We should
highlight that these savings mainly come from a lower
number of writes to main memory, which are highly
energy-consuming in the PCM technology. However,
note also that for the SPEC applications the most
aggressive policies in cutting the write traffic to memory
are not the best in terms of energy consumption, since
they penalize the execution time with respect to the
less-aggressive schemes, leading the static energy to
grow. Thus, the energy saving for these high-aggressive
policies is partially canceled.

6.2.5. Putting it all together
Although considering a policy as the best one depends
on the particular requirements of the system and
the user, here we try to extract some insights about
the trade-offs reported based on the different metrics
evaluated. We consider that our high-aggressive
algorithm provides satisfactory trade-offs between
the memory endurance extension and performance.
Notably, it exhibits a high number in memory lifetime
extension (around 19% when the sphinx3 application
is not considered) without significantly degrading
performance (around 1.4% penalty), reducing also
the memory energy consumption around 2%. Our
medium-aggressive policy also reports satisfactory
trade-offs, improving memory endurance in a slightly
more modest fashion (17%) but maintaining the

system performance largely unchanged with respect
to original DRRIP and LRU, and also reporting
around 4% energy savings. Our less aggressive
algorithm –although it contributes least to PCM
lifetime extension (around 6.5%)– exhibits the best
performance and energy numbers. As for the other
write-aware policies, while RWA and IRWA clearly
report poor trade-offs, CLP exhibits similar numbers
to our most-aggressive proposal when considering
all the applications except sphinx3 (although CLP
achieves a lower endurance extension and delivers lower
performance), but performs significantly worse when we
focus on the memory-intensive programs (our PM-VH-
SD is able to improve memory lifetime by 4% more than
CLP while also exhibits a performance value more than
3% better than CLP). Finally, the performance-oriented
policies –although exhibiting satisfactory performance
numbers, except SHiP– fail in improving the memory
endurance.

6.3. Write-aware policies in a multi-core
scenario

In this section we extend the prior study about
the behavior of different cache replacement policies
to a multi-core scenario. We just move to this
new and more realistic setting without any change
in our proposed algorithms. We evaluate the
same policies that in the single-core environment for
both multiprogrammed workloads (Section 6.3.1) and
multithreaded applications (Section 6.3.2). For this
purpose, we measure again the number of writes to
main memory, endurance, execution time and energy
consumption in the memory hierarchy that each policy
involves normalized to LRU. However, due to the
inherent non-determinism that all simulators exhibit
(especially in multi-core environments, where the
number of instructions executed across different policies
are not stable owing to the random interleaving among
memory accesses of different threads) and for the sake
of higher accuracy, we opted to employ in this scenario
the geometric mean of the metrics above mentioned but
divided by the total number of instructions executed.
Note that, conversely, in the single-core scenario both
kind of metrics match, since all the benchmarks execute
the same amount of instructions (1B) in all the runs.
Finally, in Section 6.3.3 we analyze the trade-off
between memory endurance and performance that the
evaluated policies exhibit.

6.3.1. Multiprogrammed workloads
We employ 12 mixes made up of applications from
SPEC CPU2006 chosen accordingly to the WPI
categories illustrated in Table 2. We randomly compose
3 mixes made up of applications with high values of
WPI (mixes 0, 1 and 2, referred to as the memory-
intensive ones), 3 made up of programs exhibiting a
medium WPI ratio (mixes 3, 4 and 5) and 2 composed

The Computer Journal, Vol. ??, No. ??, ????



Write-aware replacement policies for PCM-based systems 17

by benchmarks with low WPI values (mixes 6 and 7).
We also evaluate four mixes merging applications with
WPI corresponding to different categories (mixes 8 to
11). The detailed mixes are illustrated in Table 1.
Besides, like in the single-core configuration, we report
data considering both all applications and only the
memory-intensive programs.

6.3.1.1. Amount of writes and Endurance Figure 15
shows the number of writes to memory per instruction
that each evaluated policy performs normalized to LRU.
As shown, considering all mixes, our most-aggressive
proposal exhibits the best behavior. Notably, PM-VH-
SD achieves a writes reduction of around 19%. The
rest of our techniques manage to cut the write traffic
to memory in the range from 14-12%. The other
write-aware policies (except CLP that reduces writes
by around 16%) as well as the performance-oriented
ones behave significantly worse. Indeed some of them
even augment the amount of writes with respect to the
baseline.

When we just consider the 3 memory-intensive mixes,
our proposals with medium and low-aggressiveness are
able to further increase the writes reduction capability,
mainly due to the numbers that they exhibit for the mcf
application (better than those of all the other policies
evaluated), which appears in these 3 mixes. Besides, our
three techniques –and also SHiP and peLIFO– achieve
the best numbers across the board (reductions ranging
from 22 to 15%), significantly outperforming the other
write-aware evaluated policies. Even 2 of our proposals
exhibit an amount of writes more than 10% lower than
that of CLP, the best-performing of the other write-
aware techniques.

CLP
IRWA

peLIFO
RWA

SHiP
DRRIP

PM-VM-SD

PL-VL-SD

PM-VH-SD

0.8

0.9

1

All Memory-instensive

FIGURE 15. Writes to main memory per instruction
normalized to LRU: multiprogrammed workloads.

Table 6 illustrates the memory lifetime improvements
with respect to LRU for the different evaluated policies.

As in the single-core scenario, the general trend
observed is similar to that of writes reduction numbers.
However, in this case we observe a higher variability
in the ratios of BFPs when considering all applications

(from 1.02 in CLP to 1.15 in SHiP), which mitigates
the memory endurance extensions. These numbers are
even higher when considering just the memory-intensive
programs, ranging from 1.04 in PM-VH-SD to 1.18 in
peLIFO. The average of dirty words per writeback are
slightly lower than in the single-core scenario, oscillating
between 5.31 in CLP and 5.98 in SHiP.

Figure 16 shows the memory available when using
each proposal over the time, where we observe that,
according to data of Table 6, PM-VH-SD exhibits
the best behavior when considering all applications
and our three proposals are the best-performing across
the board when considering just the memory-intensive
programs. Note also that in this scenario, unlike in the
single-core environment, we do not observe the effect
of a significant higher amount of programs execution
for the memory-intensive programs until the entire
memory fails. This is due to the fact that the average
of dirty words per writeback for these applications is
just slightly lower than that when considering all the
applications, ranging between 4.73 and 5.57.

6.3.1.2. Performance In order to evaluate the per-
formance delivered by each proposal when executing
multiprogrammed workloads, we analyze the Instruc-
tion Throughput (IT) and the Weighted Speedup (WS)
metrics. The IT metric is defined as the sum of
all the number of instructions committed per cycle
in the entire chip (

∑n
i=1 IPCi, being n the number

of applications/threads), while the WS is defined as
the slowdown experienced by each application in a
mix, compared to its run under the same configura-
tion when no other application is running on other
cores (

∑n
i=1(IPCsharedi /IPCalonei )). Figure 17 illus-

trates the IT that each evaluated policy delivers nor-
malized to LRU. Note that, unlike in the case of CPI
metrics, now values higher than 1 imply performance
improvements with respect to LRU.

First, we observe that although our medium-
aggressive policy suffers a performance drop of around
1%, our high-aggressive algorithm slightly improves
LRU performance and our less-aggressive scheme
outperforms LRU by more than 2% and also all
the other algorithms evaluated. Second, all our
techniques behave better than RWA and IRWA write-
aware policies, while CLP performs slightly worse than
our most aggressive proposal. Third, zooming into
the performance-oriented policies, the figure reveals
that DRRIP and peLIFO slightly improve the LRU
performance, while SHiP suffers a moderate penalty due
to the high performance drop exhibited in mixes 7, 10
and 11, which include the hmmer application, for which,
as stated in Section 6.2.3 SHiP performs especially poor.

Fourth, for the memory-intensive mixes, we observe
that all evaluated policies, except the most aggressive
ones (CLP and PM-VH-SD) and RWA, improve their
IT with respect to considering all the mixes. Note
also that original DRRIP performs significantly well

The Computer Journal, Vol. ??, No. ??, ????



18 Rodriguez-Rodriguez et al

Benchmarks/Policies DRRIP peLIFO SHiP RWA IRWA CLP PM-VH-SD PM-VM-SD PL-VL-SD
All -5.0 -4.9 -16.7 -1.6 -17.1 16.8 19.9 7.8 4.1

Memory-intensive 4.7 6.0 4.3 0.7 -1.1 7.5 12.9 14.4 13.1

TABLE 6. Memory lifetime improvements (percentages) with respect to LRU: multiprogrammed workloads.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

10

20

30

40

50

60

70

80

90

100

Time (generic units)

%
av

ai
la

bl
e

pa
ge

s

LRU DRRIP RWA CLP

PLVLSD PMVHSD PMVMSD

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

10

20

30

40

50

60

70

80

90

100

Time (generic units)

%
av

ai
la

bl
e

pa
ge

s

LRU DRRIP RWA CLP

PLVLSD PMVHSD PMVMSD

(b)

FIGURE 16. Available memory vs time for multiprogrammed workloads: (a) All, (b) Memory Intensive.

CLP
IRWA

peLIFO
RWA

SHiP
DRRIP

PM-VM-SD

PL-VL-SD

PM-VH-SD

0.95

1

1.05

1.1

All Memory-instensive

FIGURE 17. Instruction throughput normalized to LRU:
multiprogrammed workloads.

for these mixes. Our less-aggressive proposal reports
performance numbers that improve LRU by more than
8%, still outperforming all the other techniques –
except SHiP–. All our proposals also outperform RWA,
while IRWA is able to report for these mixes an IT
improvement over LRU of around 1%. Finally, we
should also highlight that all our techniques clearly
outperform CLP –even up to more than 10%– for these
memory-intensive workloads.

For the sake of simplicity and since in our context the
WS does not constitute a metric as significant as the IT,
we do not show the WS results obtained. Anyway, these
results follow an analogous trend that those obtained
when we evaluate the instruction throughput.

6.3.1.3. Memory energy consumption As for the
energy savings per instruction, our results reveal that

our three evaluated proposals and CLP achieve the best
results with numbers around 9% (our most aggressive
policy) and 7% (CLP and our medium-less aggressive
schemes) with respect to LRU. The results from the
other write-aware and performance-oriented policies
are much more modest even augmenting the energy
consumption as in the case of RWA, IRWA and SHiP.
For the memory-intensive mixes, our PM-VH-SD policy
reports energy savings of around 5% whereas our
medium and less-aggressive schemes are around 12 and
15% respectively. The best of the other write-aware
techniques (IRWA) hardly reaches 7% while CLP is
around just 3%.

6.3.2. Multithreaded applications
In this section we inspect the behavior of our proposals
when using the parallel applications from the PARSEC
suite running in a system with two private cache levels
(being L1 32KB/8-Way and L2 256KB/8-Way) and a
shared level (L3). We explore both a 2-CMP system
where L3 is 1MB/16-Way and a 4-CMP system with a
2MB/16-Way L3 . Again, we report data considering
both all applications and only the memory-intensive
programs. Following the same criteria defined in
Section 6.2, this group of benchmarks includes vips,
facesim, dedup, ferret and fuidanimate for the 2-CMP
system while in the 4-CMP it consists of vips, facesim,
dedup, ferret and canneal. Note that using the PARSEC
applications we evaluate exactly the same algorithms as
when employing the SPEC benchmark suite.

6.3.2.1. Amount of writes and Endurance Figure 18
shows the number of writes to memory per instruction
that each policy generates. We can observe that in both

The Computer Journal, Vol. ??, No. ??, ????



Write-aware replacement policies for PCM-based systems 19

CMP systems all our proposals significantly outperform
the performance-oriented policies (that roughly match
and even exceed the number of writes of LRU) as
well as the IRWA write-aware algorithm. Notably,
our most aggressive policy reduces the write traffic
to memory with respect to LRU by around 31 and
28% in the 2-CMP and 4-CMP evaluated systems
respectively, improving CLP numbers by around 2
and 5% respectively. Moreover, when considering
the memory-intensive programs, our best-performing
policy is able to even involve amounts of writes 8% and
7% lower than those of CLP in the 2-CMP and 4-CMP
systems respectively.

CLP
IRWA

peLIFO
RWA

SHiP
DRRIP

PL-VL-SD

PM-VH-SD

PM-VM-SD

0.7

0.8

0.9

1

2-cores All 2-cores Memory-intensive
4-cores All 4-cores Memory-intensive

FIGURE 18. Writes to main memory per instruction
normalized to LRU: PARSEC suite.

These amounts of writes leads to the memory lifetime
improvements with respect to LRU shown in Table 7.

As in the case of the single-core scenario, in the 2-
CMP system the trends observed in the memory lifetime
improvements when considering all applications closely
follow those of the writes reduction numbers since the
BFP ratios just ranges between 0.99 and 1.02. For the
memory-intensive programs, these values are lower than
1 for all the policies across the board (except RWA),
which further extends the memory lifetime, with PM-
VM-SD and PL-VL-SD exhibiting the best numbers
(0.95 and 0.96 respectively), just outperformed by SHiP
with 0.93. Thus, SHiP, even augmenting the amount of
writes to memory with respect to LRU by 1.7% is able
to extend the memory lifetime by 5.1% compared to
the baseline. The average of dirty words per writeback
ranges between 5.5 and 5.7 in this scenario.

The 4-CMP system is the scenario in where our
policies benefit the most from the BFP ratios, that
considering all applications range between 0.95 and 0.98
and considering just the memory-intensive programs
range among 0.87 and 0.91. Notably, PL-VL-SD,
reducing writes with respect to LRU by 9.6 and 6.2% for
All and memory-intensive groups respectively, manages
to improve the memory lifetime by 16.2 and 21.8%
respectively. The average of dirty words per writeback
ranges between 5.0 and 5.5 in this scenario.

Figures 19 and 20 show the memory available over
the time for each evaluated proposal in the 2-CMP and
4-CMP systems respectively, where we observe that in
all the cases PM-VH-SD exhibits the best behavior,
significantly outperforming CLP. Furthermore, our
three proposals behave especially well for the memory-
intensive programs in both scenarios.

Note also here how the program executions number
reached for All applications in the 2-CMP system
before the entire memory fails is higher than that of
the memory-intensive programs, since the difference
between the memory lifetime improvements obtained
by these two groups of benchmarks is the highest across
all the scenarios evaluated, and, although the average
of dirty words is slightly lower for memory-intensive
applications, it is not enough to compensate the lower
writes reduction obtained in these applications.

6.3.2.2. Performance Figure 21 shows the geometric
mean of the cycles per instruction (CPI) reported by all
evaluated policies.

First, we observe that our proposals behave slightly
better in the 2-CMP system than in the 4-CMP one.
Indeed, in the 2-CMP system most of our schemes even
outperform original DRRIP.

Second, RWA performs worse than all of our
proposals while IRWA outperforms most of them in
both scenarios at the expense of reporting no memory
lifetime extension or even augmenting it. CLP, the
other write-aware policy under evaluation, reports
worse numbers than all our proposals in both 2 and 4-
CMP systems (up to 5 % performance degradation with
respect to LRU in the 4-CMP system while our PM-
VH-SD is able to improve LRU performance). Third,
as expected, the performance-oriented policies –except
peLIFO in the 4-CMP system– deliver satisfactory
performance numbers.

Fourth, when considering the memory-intensive
programs, in both CMP systems our algorithms that
report higher writes reductions than CLP are also able
to exhibit better performance numbers.

6.3.2.3. Memory energy consumption As for the
energy consumption in the memory hierarchy per
instruction reported by the evaluated policies, in the 2-
CMP scenario the energy savings achieved are moderate
across the board, being the the best-performing policy
our low-aggressive PL-VL-SD, with reductions by
around 5% compared to LRU. In the 4-CMP system our
proposals obtain more modest numbers, up to 2.5%. In
both scenarios they all outperform the other evaluated
policies unless DRRIP in the 4-CMP system, which also
reduces the energy consumption by around 2.5%.

For the memory-intensive programs, in the 2-CMP
system our proposals obtain numbers between 8 and
6.5% while CLP reports energy savings of just 2.3%
with respect to LRU. In the 4-CMP, our proposals
report energy savings in the range 5-4.5%, while CLP

The Computer Journal, Vol. ??, No. ??, ????



20 Rodriguez-Rodriguez et al

Benchmarks/Policies DRRIP peLIFO SHiP RWA IRWA CLP PM-VH-SD PM-VM-SD PL-VL-SD
2-CMP All 3.2 2.5 9.3 24.9 4.2 38.5 44.1 39.3 18.3

2-CMP Memory-intensive 9.1 4.7 5.1 5.0 2.7 6.9 18.3 17.1 16.3
4-CMP All -8.7 -15.2 -23.9 -2.5 -10.4 35.1 40.7 29.0 16.2

4-CMP Memory-intensive 11.2 -6.8 -2.3 -4.5 -4.6 24.2 30.7 22.9 21.8

TABLE 7. Memory lifetime improvements (percentages) with respect to LRU: PARSEC suite.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

10

20

30

40

50

60

70

80

90

100

Time (generic units)

%
av

ai
la

bl
e

pa
ge

s

LRU DRRIP RWA CLP

PLVLSD PMVHSD PMVMSD

(a)

0 0.10.20.30.40.50.60.70.80.9 1 1.11.21.31.41.51.61.71.81.9 2
0

10

20

30

40

50

60

70

80

90

100

Time (generic units)
%

av
ai

la
bl

e
pa

ge
s

LRU DRRIP RWA CLP

PLVLSD PMVHSD PMVMSD

(b)

FIGURE 19. Available memory vs time for PARSEC suite in a 2-CMP: (a) All, (b) Memory Intensive.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

10

20

30

40

50

60

70

80

90

100

Time (generic units)

%
av

ai
la

bl
e

pa
ge

s

LRU DRRIP RWA CLP

PLVLSD PMVHSD PMVMSD

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

10

20

30

40

50

60

70

80

90

100

Time (generic units)

%
av

ai
la

bl
e

pa
ge

s

LRU DRRIP RWA CLP

PLVLSD PMVHSD PMVMSD

(b)

FIGURE 20. Available memory vs time for PARSEC suite in a 4-CMP: (a) All, (b) Memory Intensive.

reduces the energy consumption by 1%.

6.3.3. Putting it all together
Analyzing the trade-off between memory endurance and
performance exhibited by the evaluated proposals in
the multi-core scenario, we observe that when running
multiprogrammed workloads, our PM-VH-SD is able
to report the highest memory lifetime improvement
(19.9%) and the highest reduction in the energy
consumption in the memory hierarchy (more than
9%) without degrading performance. We must also
highlight our low-aggressive PL-VL-SD policy, which
clearly reports the best trade-off across the illustrated

proposals6 when considering only the memory-intensive
programs. In such scenario, it achieves the second-
highest memory lifetime improvement (13.1%, just
slightly outperformed by PM-VM-SD), the second-
highest throughput value (8.7% improvement with
respect to LRU, just outperformed by SHiP) and the
highest energy savings (more than 15%). In the same
scenario CLP reports 7.5% of endurance extension,
3.3% of throughput degradation and just 3.3% of

6In the multiprogrammed workload scenario, other of our low-
aggressiveness schemes report better numbers than the chosen
algorithm. Notably, PM-VL-SD, delivering the same performance
and energy numbers as PL-VL-SD, is able to reach 8.1% and
15.6% memory endurance extension for All and memory-intensive
programs respectively vs 4.1 and 13.1% obtained by PL-VL-SD
respectively.

The Computer Journal, Vol. ??, No. ??, ????



Write-aware replacement policies for PCM-based systems 21

CLP
IRWA

peLIFO
RWA

SHiP
DRRIP

PL-VL-SD

PM-VH-SD

PM-VM-SD

0.96

0.98

1

1.02

1.04

1.06

2-cores All 2-cores Memory-intensive
4-cores All 4-cores Memory-intensive

FIGURE 21. CPI normalized to LRU: PARSEC suite.

memory energy savings.
In the 2-CMP system running parallel applications,

our most-aggressive policy, extending the memory
lifetime up to 44.1%, provides also satisfactory
performance numbers (around 1% improvement over
LRU). Our medium-aggressive algorithm, that improves
the memory endurance by around 39%, experiences also
a performance improvement of around 2%. Finally,
our less-aggressive policy, although extending memory
endurance by a moderate 18%, manages to also improve
performance by around 2%. They also are able to
deliver energy savings of 3, 4 and 5% respectively.
Thus, for our purpose of extending the memory lifetime
without penalizing performance PM-VH-SD seems to
be the the best option in this scenario. Note that CLP
improves memory lifetime by 6% less than our proposal
and also behaves worse (2.5%) than our PM-VH-SD
in terms of performance. Moreover, for memory-
intensive programs our three proposals significantly
outperform CLP in memory lifetime while also deliver
higher performance. In the 4-CMP, PM-VH-SD clearly
provides again the best trade-off across the board (40%
memory lifetime extension, performance improvement
of around 1% and energy savings of 1.5%). Note that
CLP improves endurance by 35%, but at the expense of
a performance drop of around 5%. Finally, it is worth to
note that the same trends, even augmented in favour of
our proposals, are maintained when only the memory-
intensive programs are considered.

Overall, we consider that in all the multicore-
systems analyzed we always may find at least one of
our policies that is able to clearly deliver a better
trade-off (higher lifetime extension and also higher
performance) than the other write-aware proposals and
also performance-oriented algorithms. Notably, most
performance-oriented policies decrease the memory
lifetime with respect to LRU and even exhibit worse
performance numbers than some of our proposals,
while the RWA and IRWA write-aware policies clearly
exhibit poor trade-offs. Finally, for CLP, which also

OPTIM
AL

CLP
DRRIP

PM-VH-SD

0.6

0.8

1

SPEC All SPEC Memory-intensive
2-cores All 2-cores Memory-intensive
4-cores All 4-cores Memory-intensive

FIGURE 22. Amount of writes to main memory
normalized to LRU: optimal policy and ours.

reports significant extension in memory endurance, we
perform a direct comparison with our proposals along
the evaluation section to demonstrate our better trade-
offs.

6.4. Additional analysis

Next we extend our study with some additional
experiments.

6.4.1. Comparison to an optimal policy
In order to find out how far we are from the maximum
writes reduction feasible, we compare the performance-
oriented policies which report the lowest amount of
writes –DRRIP and LRU–, our most-aggressive write-
aware algorithm evaluated in the previous sections
(PM-VH-SD) and also CLP with a straightforward
optimal policy (in terms of writes to main memory),
that operates as follows. For a given cache set, we
allocate an array with an amount of entries matching
the associativity (n) of the LLC, and traverse the trace
of writebacks from L2 to L3. We first fill the array
with the first n different blocks that are written back.
Then, for every new block written back from L2 to L3
and not contained in the array, we do the following:
(1) we analyze the trace onward to find the block in
the array that will be re-written the furthest in the
future; (2) we replace the found block with the incoming
one (or we just bypass the new block if it is re-written
further than all the other blocks in the array); and (3)
we increment a counter. When the entire trace has been
processed, the counter stores the total number of writes
to main memory generated in this set under an optimal
replacement policy.

Given that the simulation of the optimal policy is
a time-consuming process, we opted to restrict the
analysis to a pool of sets (32) conveniently scattered
across the cache. Obviously, the other policies are also
evaluated in the same cache sets.

The Computer Journal, Vol. ??, No. ??, ????



22 Rodriguez-Rodriguez et al

Figure 22 illustrates the amount of writes to memory
that each evaluated policy implies normalized to LRU
for both SPEC and PARSEC benchmarks (2 and 4-
CMP systems). Although the analysis is limited due to
the reduced number of sets considered, we can infer
a couple of relevant qualitative conclusions. First,
our most aggressive policy is moderately close to the
maximum theoretical reduction. Notably, PM-VH-
SD is the algorithm closest to the optimal in all
the scenarios evaluated for both All and memory-
intensive benchmark sets. Second, for both SPEC
applications and parallel programs in the 2-CMP
system, the maximum writes reduction feasible for
the memory-intensive programs is lower than that
when considering all the benchmarks (in the 4-CMP
system these numbers for both groups of benchmarks
remain laregely unchanged). Overall we can extract
the conclusion that although the optimal policy is
unfeasible and our proposals are close to the optimal
numbers, it seems that it still remains opened some
avenue for improvement in order to even further reduce
the current gap with this optimal policy and even
improving the performance delivered.

6.4.2. Implementation Overhead
A new policy may induce two types of overhead,
specifically, extra hardware (both extra storage
needed for book keeping and extra logic needed for
implementing the new algorithm) and impact on the
critical path. We should start mentioning that, as
many authors have previously pointed out, the updating
of the replacement policy state is completely off the
critical path [7, 8], which makes the critical path delay
remain unaltered by our proposed changes. However,
for the sake of completeness, we will prove in this
section, by means of deeply analyzing the algorithm
complexity of our proposals, that the delay generated by
our changes, as well as the extra logic they involve, are
both negligible compared to DRRIP. Besides, we will
analyze the extra storage involved by our policies. To
complete the section, we will also analyze the overhead
of DRRIP, LRU, CLP, RWA and IRWA.

Algorithm Complexity: Let us analyze the
algorithm complexity of each sub-policy for the different
replacement policies.

• Insertion sub-policy: With respect to DRRIP,
our policies only modify the set-dueling evaluating
metric, so it comes ”for free”.
Moreover, comparing DRRIP with LRU, note that,
whereas the former policy only requires to update
the RRPV of the new block, the latter one needs
to update the position in the Recency Stack of all
the blocks in the set.

• Promotion sub-policy: Our policies incorporate
cleanness/dirtiness (PL) or read/write (PM and
PH) information to the promotion process,
something extremely simple. Besides, all this

information is already present in the block or comes
along with the access itself.
Furthermore, compared to LRU, DRRIP promo-
tion is much easier, since, like in the insertion sub-
policy, DRRIP just updates the RRPV of the pro-
moted block, whereas LRU promotion updates also
the blocks between the promoted one and the MRU
position.

• Victimization sub-policy: As established in [7],
original DRRIP searches for the first block with
the highest RRPV by replicating the Find First
One (FFO) logic, requiring four FFO circuits that
operate in parallel to find pointers to the first “0”,
“1”, “2”, and “3” RRPV registers. Then, a priority
MUX chooses the output of the appropriate FFO
circuit as the victim. When a block with distant
RRIP is not found, DRRIP also requires additional
logic to age the RRPV registers, using state
machine logic for this purpose. Our policies
could either duplicate the number of FFO circuits
for distinguishing between clean and dirty blocks,
leaving the delay intact vs DRRIP, or access the
four FFO circuits sequentially, first for clean blocks
and then for dirty blocks (if needed), leaving the
logic overhead almost untouched with respect to
DRRIP. Besides, VM entails some changes on the
aging logic for being able to increment only clean
blocks during the first stage of this sub-policy.
Now let us move to the comparison among LRU
and DRRIP. Similarly to DRRIP, the former
policy requires a search for finding the LRU block.
However, LRU needs no aging logic, making its
complexity slightly lower.

To sum up, the time delay and extra logic that
our policies introduce with respect to DRRIP can be
considered negligible, whereas they are higher in LRU
than in DRRIP.

Extra Storage: Original DRRIP just requires 2 bits
per cache block for storing the state associated to the
replacement policy. In our policies, no extra bits need
to be added to those required by DRRIP.

Furthermore, as stated by the authors in [7], DRRIP
implies less hardware overhead than LRU. Notably, the
number of bits required per cache set, assuming an N-
way associative cache, is N ∗ logN in LRU and 2 ∗ N
in DRRIP, which, for example, in our setting (LLC
associativity = 16), would lead LRU to need twice as
much storage overhead as DRRIP.

Finally, note that the implementation complexity of
CLP, given that this policy is based on a conventional
LRU, would be the same (or even higher) as that of
LRU. Other approaches in which CLP was based on
efficient implementations of LRU (such as Tree-LRU)
would be possible, but this would come at the expense
of some performance degradation. RWA and IRWA,
like in our case, are DRRIP-based policies so they

The Computer Journal, Vol. ??, No. ??, ????



Write-aware replacement policies for PCM-based systems 23

entail a negligible implementation overhead compared
to original DRRIP. Indeed, the overhead is even smaller
than in our policies due to the fact that RWA and IRWA
preserve the victimization sub-policy unchanged with
respect to DRRIP.

6.4.3. Sensitivity to LLC size
In order to further evaluate the impact of our proposals,
we inspect the reduction in the number of writes to
memory7 and also the performance delivered when
larger sizes of LLC are considered. To analyze
our proposals operation we scale the problem by
augmenting the LLC size without changing the number
of cores. We choose a 4-CMP system and explore
multiprogrammed workloads (using SPEC CPU2006
applications) with LLC sizes of 4, 8 and 16 MB
and parallel applications (PARSEC) employing 2, 4,
8 and 16 MB LLC sizes. We just evaluate LRU,
DRRIP, CLP and our three chosen policies (PM-VH-
SD, PM-VM-SD and PL-VL-SD). Figures 23 and 24
show the amount of writes and the performance (CPI)
respectively when using multiprogrammed workloads,
whereas Figures 25 and 26 illustrate the same
information (using the throughput metric instead of
CPI to measure performance) when multithreaded
programs are employed.

CLP
DRRIP

PM-VH-SD

PM-VM-SD

PL-VL-SD

0.6

0.7

0.8

0.9

1

4MB All 8MB All 16MB All
4MB M.I. 8MB M.I. 16MB M.I.

FIGURE 23. Writes to main memory per instruction nor-
malized to LRU for different LLC sizes: multiprogrammed
workloads.

For the evaluated mixes we observe that the same
trends are still valid when we increase the LLC size.
First, our PM-VH-SD policy reports again the highest
writes reduction across the board when considering all
the benchmarks, slightly outperforming CLP, while also
delivers a higher throughput than CLP. Second, for
the memory-intensive programs (labeled here as M.I.
due to space constraints), although the differences get
reduced with respect to a smaller LLC size, most of our

7For the sake of simplicity we omit endurance results,
that follow a similar trend to writes reduction as previously
demonstrated.

CLP
DRRIP

PM-VH-SD

PM-VM-SD

PL-VL-SD

0.95

1

1.05

1.1

4MB All 8MB All 16MB All
4MB M.I. 8MB M.I. 16MB M.I.

FIGURE 24. Instruction Throughput normalized to LRU
for different LLC sizes: multiprogrammed workloads.

proposals still outperform CLP in both writes reduction
capability and throughput. Thus, for this kind of
applications, our PL-VL-SD policy, matching the CLP
number regarding the amount of writes to memory in
the 8MB scenario, is able to deliver a throughput 4%
higher than that of CLP. Conversely, in the 16MB
scenario, CLP is just outperformed by our PM-VH-SD
policy.

CLP
DRRIP

PM-VH-SD

PM-VM-SD

PL-VL-SD

0.7

0.8

0.9

1

1.1

2MB All 4MB All 8MB All 16 MB All
2MB M.I. 4MB M.I. 8MB M.I. 16MB M.I.

FIGURE 25. Writes to main memory per instruction
normalized to LRU for different LLC sizes: PARSEC suite.

For multithreaded applications, as shown, our
PM-VH-SD policy always reports the best numbers
in cutting the write traffic to memory across the
board for the four LLC sizes analyzed and for both
All and memory-intensive8 groups of benchmarks,
moderately outperforming CLP. Furthermore, our PM-
VH-SD scheme, being the technique that provides the
highest reduction in amount of writes to memory, also
behaves correctly in terms of performance, significantly
outperforming CLP (up to 5%) in all the scenarios

8Note that the group of memory-intensive applications, chosen
according to the criteria explained in Section 6.2.1 is not made
up of exactly the same programs for all the LLC sizes considered.

The Computer Journal, Vol. ??, No. ??, ????



24 Rodriguez-Rodriguez et al

CLP
DRRIP

PM-VH-SD

PM-VM-SD

PL-VL-SD

0.95

1

1.05

2MB All 4MB All 8MB All 16 MB All
2MB M.I. 4MB M.I. 8MB M.I. 16MB M.I.

FIGURE 26. CPI normalized to LRU for different LLC
sizes: PARSEC suite.

evaluated. Finally, note that our medium and
less aggressive schemes analyzed also exhibit better
performance numbers than CLP for all the LLC sizes
and groups of benchmarks under evaluation.

7. CONCLUSIONS

In this paper we addressed the endurance constraint
of the phase-change memories by means of the last
level cache replacement policy. First, we evaluated
the operation of classical replacement algorithms in
terms of writes to main memory and then we proposed
new policies with the main goal of minimizing this
number in order to extend the PCM lifetime. The
foundation behind these proposals is to merge as
many modifications to a block as possible in a single
writeback, while maintaining the system performance.

According to our results, the conclusions are
triple. First, as the conventional performance-oriented
replacement algorithms are absolutely unaware of the
amount of writes performed to memory, they entail low
PCM lifetime values, which suggests that they must
be adapted to a potential future scenario where PCM-
based systems prevail. Second, combining efficiently
the proposed changes to the insertion, promotion
and victimization sub-policies leads to algorithms that
significantly cut the write traffic to memory and hence
increase its lifetime, with low impact over performance.
Specifically, our most aggressive policies deliver the
best trade-offs between endurance and performance in
both the single and the multi-core scenarios, reporting
memory lifetime improvements in the range 20-45%
without hardly penalizing performance. Besides, the
write traffic reduction they achieve is not far from
optimal. Concerning our medium and low-aggressive
algorithms, they also report satisfactory results in
both scenarios evaluated, managing to moderately
improve the PCM lifetime and also reduce the energy
consumption while delivering satisfactory performance
results. Third, as demonstrated in Section 6, previously

proposed write-aware policies (especially RWA and
IRWA) clearly fail to achieve satisfactory trade-offs.

ACKNOWLEDGEMENTS

This work has been supported in part by the Spanish
government through the research contract CICYT-
TIN 2008/508, TIN2012-32180, and the HIPEAC-3
European Network of Excellence. Also it was supported
by a grant scholarship from the University of Costa Rica
and Costa Rican Ministry of Science and Technology
MICIT and CONICIT.

REFERENCES
[1] Zhou, P., Zhao, B., Yang, J., and Zhang, Y. (2009)

A durable and energy efficient main memory using
phase change memory technology. ACM SIGARCH
Computer Architecture News, 37, 14.

[2] Cho, S. and Lee, H. (2009) Flip-n-write: a
simple deterministic technique to improve pram write
performance, energy and endurance. MICRO, pp. 347–
357.

[3] Qureshi, M. K., Srinivasan, V., and Rivers, J. A.
(2009) Scalable high performance main memory system
using PCM technology. ACM SIGARCH Computer
Architecture News, 37, 24–33.

[4] Ramos, L. E., Gorbatov, E., and Bianchini, R. (2011)
Page placement in hybrid memory systems. ICS, pp.
85–95.

[5] Rodŕıguez-Rodŕıguez, R., Castro, F., Chaver, D.,
Piñuel, L., and Tirado, F. (2013) Reducing writes in
phase-change memory environments by using efficient
cache replacement policies. DATE, pp. 93–96.

[6] Kim, C. (2001) LRFU: A spectrum of policies that
subsumes the least recently used and least frequently
used policies. IEEE Transactions on Computers, 50,
1352–1361.

[7] Jaleel, A., Theobald, K. B., Steely, S. C., and Emer,
J. S. (2010) High performance cache replacement using
re-reference interval prediction (RRIP). ISCA, pp. 60–
71.

[8] Chaudhuri, M. (2009) Pseudo-lifo: the foundation of a
new family of replacement policies for last-level caches.
MICRO, pp. 401–412.

[9] Wu, C.-J., Jaleel, A., Hasenplaugh, W., Martonosi, M.,
Steely, S. C., and Emer, J. S. (2011) Ship: signature-
based hit predictor for high performance caching.
MICRO, pp. 430–441.

[10] Lee, B. C. et al. (2010) Phase-change technology and
the future of main memory. IEEE Micro, 30, 143.

[11] Qureshi, M. K., Gurumurthi, S., and Rajendran, B.
(2011) Phase change memory: From devices to systems.
Synthesis Lectures on Computer Architecture, 6, 1–134.

[12] Hu, J., Xue, C. J., Tseng, W.-C., He, Y., Qiu, M., and
Sha, E. H.-M. (2010) Reducing write activities on non-
volatile memories in embedded cmps via data migration
and recomputation. DAC, pp. 350–355.

[13] Liu, T., Zhao, Y., Xue, C. J., and Li, M. (2011) Power-
aware variable partitioning for dsps with hybrid pram
and dram main memory. DAC, pp. 405–410.

The Computer Journal, Vol. ??, No. ??, ????



Write-aware replacement policies for PCM-based systems 25

[14] Ferreira, A. P., Zhou, M., Bock, S., Childers, B. R.,
Melhem, R. G., and Mossé, D. (2010) Increasing pcm
main memory lifetime. DATE, pp. 914–919. IEEE.

[15] Zhou, M., Du, Y., Childers, B., Melhem, R., and
Mossé, D. (2012) Writeback-aware partitioning and
replacement for last-level caches in phase change main
memory systems. ACM TACO, 8, 1–21.

[16] Zhang, X., Hu, Q., Wang, D., Li, C., and Wang,
H. (2011) A read-write aware replacement policy for
phase change memory. Advanced Parallel Processing
Technologies, pp. 31–45. Springer.

[17] Lee, S., Bahn, H., and Noh, S. (2013) Clock-dwf:
A write-history-aware page replacement algorithm for
hybrid pcm and dram memory architectures. IEEE
Transactions on Computers.

[18] Belady, L. A. (1966) A study of replacement algorithms
for virtual-storage computer. IBM Systems Journal, 5,
78–101.

[19] Qureshi, M. K., Jaleel, A., Patt, Y. N., Steely, S. C.,
and Emer, J. S. (2007) Adaptive insertion policies for
high performance caching. ISCA, pp. 381–391.

[20] Ban, A. (2004). Wear leveling of static areas in flash
memory. US Patent 6,732,221.

[21] Kgil, T., Roberts, D., and Mudge, T. N. (2008)
Improving nand flash based disk caches. ISCA, pp.
327–338. IEEE.

[22] Gal, E. and Toledo, S. (2005) Algorithms and data
structures for flash memories. ACM Comput. Surv.,
37, 138–163.

[23] Ben-Aroya, A. and Toledo, S. (2011) Competitive anal-
ysis of flash memory algorithms. ACM Transactions on
Algorithms, 7, 23.

[24] Qureshi, M. K. and Patt, Y. N. (2006) Utility-
based cache partitioning: A low-overhead, high-
performance, runtime mechanism to partition shared
caches. MICRO, pp. 423–432. IEEE Computer Society.

[25] Corbato, F. J. (1969) A Paging Experiment with the
Multics System. In Honor of P.M. Morse, pp. 217–
228. MIT Press.

[26] Binkert, N. et al. (2011) The gem5 simulator. ACM
SIGARCH Computer Architecture News, 39, 1.

[27] Intel (2013). http://www.intel.com/content/www/us/
en/processors/core/core-i7-processor.html.

[28] Rosenfeld, P., Cooper-Balis, E., and Jacob, B. (2011)
Dramsim2: A cycle accurate memory system simulator.
Computer Architecture Letters, 10, 16 –19.

[29] http://www.cse.psu.edu/ xydong/software.html.
[30] (2013). http://www.spec.org/cpu2006/.
[31] Bienia, C. (2011) Benchmarking Modern Multiproces-

sors. PhD thesis Princeton University.
[32] Patil, H., Cohn, R. S., Charney, M., Kapoor, R.,

Sun, A., and Karunanidhi, A. (2004) Pinpointing
representative portions of large intel R© itanium R©
programs with dynamic instrumentation. MICRO, pp.
81–92. IEEE Computer Society.

[33] Schechter, S. E., Loh, G. H., Strauss, K., and Burger,
D. (2010) Use ecp, not ecc, for hard failures in resistive
memories. ISCA, pp. 141–152.

[34] (2013). http://www.hpl.hp.com/research/cacti/.
[35] Muralimanohar, N., Balasubramonian, R., and Jouppi,

N. P. (2009) Cacti 6.0: A tool to understand large
caches.

The Computer Journal, Vol. ??, No. ??, ????


