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In the cloud computing, companies usually using high-end storage systems to
guarantee the efficiency of virtual machines (VM). These storage systems cost
a lot of energy for their high performance. In this paper, we propose EEDS, a
deduplication-based energy efficiency storage system for VM storage. We firstly
investigate some VM image files with general operation systems. With the analysis
result, we find there are many redundant data which bring extra energy cost in
VM storage. Therefore, in EEDS, we design a two-step deduplication mechanism
to reduce these redundant data without service interruption while traditional
deduplication technology is used for offline backup. Since this mechanism
needs CPU time which is the limited resource, we design a deduplication
selection algorithm such that the storage energy consumption is minimized for
a given set of VM in a cloud cluster with limited resource for deduplication.
Experiment results in the para-virtualization environments with EEDS show that
the energy consumption is reduced by even up to 66% with negligible performance
degradation.

Keywords: Energy Efficiency; Green Computing; Cloud; Virtualization; Deduplication

INTRODUCTION

Usually, for better isolation and management, VM

In cloud data center, the virtualization technology
brings better scalability and resource utilization. Mean-
while, since the limitation of the I/O virtualization
technology, the ordinary hardware is hard to provide
enough performance for virtual machines (VM). To
meet the requirement of fast I/O support, cloud service
providers usually adopt high-end storage systems for
VM storage[1]. These high-end systems usually means
high energy consumption[2, 3, 4].

To reduce the energy consumption of storage systems,
many works focus on the scheduling of storage systems
to make sure that more hard disk drives drop in sleeping
status.  Scheduling is effective to keep the energy
consumption down with varying loads in which low
load bring less storage energy consumption. Therefore,
considerring scheduling is hard to reduce more energy
consumption by a given storage load, we choose another
way that cutting down the existed storage loads in cloud
environment.

Reducing the storage load is another way to decrease
the energy consumption of the storage system[5, 6].

storage systems encapsulate the entire data of each VM
into a virtual disk image file. While there are limited
types of operation systems and softwares in a cloud data
center, many similar data blocks are existed between
VM image files. Except that some images extended
from the same original version, it is hard to shared data
between VM images. Therefore, we consider these data
as the one type of redundancy which bring extra loads
in VM storege.

Another redundant data are existed in each disk
image file. Image files are regarded as normal large files.
Each image file can be divided to many small blocks. In
these blocks from same image file, it is not difficult to
find identical blocks. These blocks can be considered
as the redundant data. To find these two types of
redundant data, we firstly investigate the redundant
data by analyzing some VM image files with different
OS installed.

Based on the analysis result, we design and
implement EEDS, a storage system for reducing the
energy consumption by eliminating the redundant
data during VM storage procedures. In EEDS, we

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777




2 H. L1, M. Dong, X. Liao, H. JiNn

adopt some similar mechanisms from the deduplication
technology. Deduplication is a common technology
in data backup with high data compression ratio.
Unlike the traditional deduplication which needs service
interruption, the deduplication mechanism in EEDS,
which named online deduplication, is a real-time
processing and agnostic to all guest VMs.

Another problem is, since removing redundant data
needs extra time of CPU processing, it is possible to
influence the quality of service (QoS). Considering the
processing resource in a cloud data center is limited,
it is hard to deduplicate each image files in the cloud
environment. Therefore, we module this problem as
an deduplication selection problem to choose which
image files needs deduplication. We also proof this
problem is a NP complete problem. In EEDS, we use
a dynamic programming algorithm to find the lowest
energy consumption with a given work loads.

In this paper, we also describe our implementation
of the demonstration system based distributed storage
systems with Xen Cloud Platform(XCP) [7]. We insert
data calculation process module in the user layer for
rapid development. Therefore, we evaluated the online-
deduplication both on this distributed environment and
a single plane environment.

The main contributions of this paper are summarized
as follows.

e TFirst, we design a new mechanism named online-
deduplication for redundant eliminaiton, which
reduces the work loads in VM storage for better
energy consumption.

e Second, we design EEDS, a storage system to
support online-deduplication in a cloud center
platform. We implement our design and evaluate
the EEDS system in a small cloud cluster.

e Third, we study the deduplication selection
problem to minimize the energy consumption with
limited the deduplication process resource.

The rest of this paper is summarised as follows. We
discuss the related works in Section 7. The methodology
of online-deduplication is discussed in Section 2. We
model the deduplication selection problem and describe
the heuristic algorithm in Section 4. In Section 6, we
evaluate the demonstration of our design to verify our
methodology.

2. MOTIVATION

In this section, we firstly analysis some existed VM
image files to character the redundant data in VM
storage. We also introduce the traditional data
deduplication technology in data backup.

2.1. VM image redundancy

We investigate VM image files to find the redundant
data in VM storage. We analyze five image files from

TABLE 1. The redundancy of virtual machine image file

Fedoral5| Fedoral6| CentOS6| Win7 ‘Win8
Fedoralb| 34.07% 50.94% 32.97% 52.48% 28.91%
Fedoral6 31.44% 31.57% 50.12% 28.02%
CentOS6 31.65% 52.39% 27.63%
Win7 63.71% 47.05%
Win8 24.69%

a desktop virtualization system named ClouDesk[8].
This image files have been installed on five different OS
including Fedora 15, Fedora 16, CentOS6, Windows 7
and Windows 8.

Different from inter-redundancy, inner-redundancy is
a type of redundancy come from single disk image
file. Since the disk image files are very big file whose
length will reach several to dozens of gigabyte, some
data in single file will repeat many times. For a direct
impression, we tested some image files to find the inner-
redundancy. We scan three image files to present the
most common scene in a virtualization environment.
This Scan is like the first step in file pressuring but much
simpler that only reflects the data repeatedly. As shown
in Table 1, we list the redundancy in three image files
after scanning and summary and the inner-redundancy
of each image are the data above the diagonal. This
type of redundancy cannot be removed by any COW
strategy since its complicate distribution in the image
file.

2.2. Data Deduplication

FILE 1

1

Chunk E | next | Chunk C

I

FILE 2 Chunk A | next | next |

]

Chunk F | next | next | Chunk B

v

| Chunk D

[

| next |

FIGURE 1. Example of data deduplication in tranditional
backup systems.

Deduplication is an important technology for backup
in large scaled data center, which eliminate redundancy
data by a specialized data compression technology. We
discuss an example of an typical data deduplication
method for better understanding. In this example, a
data chunk consists of three parts, the data stored in
this chunk and some points to the successor chunks.
There are two files, FILE 1 and FILE 2, need
deduplication for redudancy elimination. In FILE 1,
there 4 chunks which are Chunk E, A, B and C. To
FILE 2, the sequance of chunks is FABCDB. Without
deduplication, we need to use 10 chunks to store these
two files. Considerring there are only 6 different chunks,
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we use some points to link these unique chunks together
in this example as shown as FIGURE 1.

In these linked chunks, to access FILE 1, we can get
the entrance to Chunk E. Chunk E has a point to the
chunk A. In chunk A, there two points: first one is point
to Chunk B and the second one is point Chunk C. If
a chunk has no point, the access sequence is back to
the previous Chunk and find the next point. Therefore,
since Chunk B has no point, the access sequence is back
to the next point linked to Chunk C. To FILE 2, there
two chunk with two points: Chunk F and Chunk A.
The first point in Chunk F is linked to the Chunk A
which is the as same as FILE 1, and the second point
is point to Chunk D which has only one point linked
Chunk B. With these link relationship, we can use 6
chunks to store 10 chunks, which means there 4 chunks
are eliminated.

However, since the structure could be designed to
reduce the difficulty of realization of deduplication like
traditional chain structure, it brings a serious problems
to the storage performance that the access latency
to chunks is increased with these points. From the
example, when an application want to access some data
in Chunk C of FILE 1, it needs three jumps during
the addressing, which means additional three reading
to the storage system. In data back up, this latency is
not a problem while the history data are usually cold
data without frequently access while in VM storage,
it will bring terrible performance degradation. As a
result, in EEDS, we propose an new deduplication
mechanism with an directly mapping to each chunk
with a constant latency. We describe this mechanism
in the next section.

3. DESIGN

In this section, firstly, we describe the system structure
to support online deduplication in EEDS. Then, we
discuss the detail of the meta data of VM images for
online deduplication.

3.1. System Structure

. L (<
Application Server Storage Node
Dom U Dom 0 Storage Server
Virtual . Virtual
Calculator % Block Collision L} gy, Lock
Devie Handle ‘ mechanism
evice Device
) Physical Physical )
blkfront Storage |yl ppemer Ethernet Ethernet [—pf Address cache
Cache ‘ — Indexing || mechanism
Driver Driver
T 'y
I 4
VMM (XEN) ‘ ‘ Host OS (Linux) ‘
. J . )

FIGURE 2. Overview of the EEDS architecture.

To treat the redundancy in VM storage for lower
energy consumption, we design a new structure of VM
storage as shown as FIGURE 2, which consists of
three modules: hash value calculator, address index

and collisions handler. The hash value calculator
generates the hash value of each data chunk by MD5
[9]. The address index has two mapping: one is used
between hash values and data chunk addresses, another
is between VM images and the chunk addresses. The
collision handler checks the newly generated data chunk
and the existed data chunk with same hash value to find
collision and arrange storage space to store the collision
data chunk.

We use MD5 as the fingerprint of data since its low
collision frequency even the computation cost cannot
be neglected. For better performance, we added a
calculate machine used for the hash value generation
specially. We package RDP call to process the hash
calculator request then feedback the MD5 value. With
this fingerprint, after storing data chunk to the storage
system, address index will add a mapping between its
fingerprint and the physical address. Meanwhile, for
accessing the each data chunk efficiently, the address
index maintains the index structures between physical
addresses and the virtual addresses in all VMs.

The main function of collision handler is checking the
hash collision between new data and existed data. Since
the address index maintain a mapping between each
data block and the fingerprint, when a new data with
the same MD5 as before, collision handler checks the
each bits of the new data to find whether the new data
is repeated. If a collision happens, the collision handler
will apply a new space in the storeage system to store
the new data.

With this system structure and processing proce-
dures, online deduplication takes many computing re-
sources for each VM images. Considering most of re-
sources are provided for the cloud services, the resources
for energy efficiency are limited that only a part of VM
images are processed by online deduplication. In the
Section 4, we discuss the selection problem that select-
ing which VM images for optimization.

3.2. Mapping Structure

Chunk
Address

Chunk
Address

TR

Chunk 1(3MB) Chunia (231K8) Chunk2 (1VB) Chunka (1MB)

o
(Virtual Address, Size )

(Virtual Address, Size )

FIGURE 3. The index structure for online deduplication
in EEDS.

In particular to minimize the performance sacrifice of
online deduplication, EEDS borrows a structure usually
used to manage items in the database system. As
shown in Fig 3, an address index of each disk image is
effectively a single block address space, represented by a
B-tree that maps block addresses in virtual disk image
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to physical addresses in storage space. Block addresses
in each VM are a continuous range from 0 to the size
of its virtual disk, while physical addresses reflect the
actual location of a chunk on the storage node. In
EEDS, the address index maps block address with 4k
size or 8k size for leverage the access performance and
deduplication efficiency. Mappings are stored in B-trees
[10], with less than 6-level depth for rapid reflex, also
based on 4K blocks. Radix metadata stores 32 triples
and each triple consists of the virtual address, the size of
the chunk and the chunk address. We set the maximum
chunk as 32MB and use 64bits global physical address
then the layout results in a maximum disk image of
512GB.

Another address indexing is between the fingerprint
of each data block and its physical address. After a new
data was generated, calculator will build two-tuples to
store the MD5 value and the count of collision. Unlike
the CAS mechanism, since the insufficient relationship
between the chunk which is the physical storage unit
and the data block, the MD5 hash-value cannot be
considered as the address of the corresponding chunk.
Because bidirectional mapping is necessary in our
mechanism when new data are being inserted, we
chose boost-bitmap as the data structure for storing
the relationship between MD5 value and physical data
block address.

4. PROBLEM STATEMENT

In this section, we discuss the deduplication selection
problem that selecting the deduplicating VM images
to minimize the energy consumption with limited
processing resources.

Firstly, we study the energy consumption in VM
storage. We consider four types of energy consumption
in our system: cache E., storage access E;, data
maintain Fs and deduplication F4. The consumption
of cache means the VMM access local cache instead
of storage system access. The storage access energy
means the energy consumption during ordinary I/0
operation with storage system. The energy used
for data maintain means a fix consumption to store
data in storage devices. The more data stored in
storage system, the more active devices are required.
The deduplication energy indicate the consumption of
processing duplicated data. Therefore, the total energy
consumption of our system is as follows.

E=FE,+E +F,+Ey

Then, we discuss the scheduling granularity in
this problem. In general, access frequency to each
data block is different and it reduces more energy
consumption by cache the hotspot data. However, to
a data block, it is hard to find whether it is a duplicate
block after analysis enough data block. Since the energy
of comparison processing is the most consumption in
deduplicate, analysis the duplicable of each block is not

acceptable. 'We choose VM image as the scheduling
granularity since file is easy to predict the access traffic
and the deduplication ratio.

After that, we model the energy consumption of each
file. We use F' to denote the set of all images in storage
system. To aimage f € F, we use S¢ to denote the data
size, Tt to denote the predicted access traffic and dy to
denote the deduplicate ratio. In our storage system,
the energy to access unit of data in cache is set as e,
the energy for transferring unit of data is set as e;, the
energy of this fix consumption for maintaining unit of
data is set as e, and the energy to deduplicate unit
of data is set as eq. Therefore, we set a value zs to
denote whether image f is deduplicated in our system
as follows.

1 if f is deduplicated
Tr =
/ 0 if f is not deduplicated
After that, we get the energy consumption E; to
image f as follows.

Ef =ecdsSyxy + er(1— df(Ef)Sf?ff‘F
63(1 — def)Sf + Bde.Z’f
= (ettf + es)Sf — ((ettf +es — 6c)df + ed)Sfxf

To simplify the equation (1), we use Ay and By as
follows.

Afz(ettf—i-es)Sf VfeF (2)

By = ((esty +es —ec)ds +eq)Sy  VfeF (3)

With Ay and By, the energy consumption Ey to the
image f is described as follows.

EfZAf—BfCL‘f VfeF (4)

To simplify the problem, we consider energy is
reduced by deduplication that By of each image f is
nonnegative.

To the whole system, the energy consumption is
expressed as follows.

3l
E=) (Aj—Bszy) VfeF (5)
=1
In general, since the limitation of hardware

performance and the quality or service, the ratio of
deduplication processed data is limited by an existed
requirement. To model this requirement, we use oy to
denote the overload of deduplication processing to the
image f and P denotes the performance limitation of
the whole storage system. As a result, the total overload
of each file is stated as follows.

Ll

Y oy <P VfeF (6)
f=1
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And the object of the deduplication selection about
each image is or is not deduplicated is find the minimum
energy consumption E with the limitation of the
formula (6).

THEOREM 4.1. The deduplication selection problem
is NP-hard.

Proof. We prove the NP-hardness of the deduplication
selection by reducing a well-know 0-1 knapsack problem
defined as follows.

0-1 knapsack problem. Giving a set items
{a1, a9, ...a;, }, each item (a;) has a value v; and weight
w;, and a knapsack with maximum weight W, is there
a 0-1 knapsack scheme maximum the value of items in
the knapsack and their weight is no more than W?

We consider the item f has a value B and weight oy,
and a knapsack with maximum weight P. We suppose
the deduplication selection problem has a solution that
the 0-1 knapsack problem. We use S to denote the items
in the knapsack and the sum of value is maximum and
the weight is no more than P. In the corresponding
solution of deduplication selection problem, we choose
S as the same images for deduplication and the total
overload in S is less than P.

We than suppose that deduplication selection
problem has a solution that the energy consumption
is minimum with deduplicated images S. Considering
the object that minimum the energy consumption FE,
in which the Z‘szll Ay is a definite value before the
selection. From equation (4), the sum of the B; in the
set S is maximum, which forms a solution of the 0-1
knapsack problem.

It is easy to see that the deduplication selection
problem is in NP class as the objective function
associated with a given solution can be evaluated
in a polynomial time. Thus, we conclude that the
deduplication selection problem is NP-hard.

O

5. ALGORITHM DESIGN

In this section, we propose a heuristic algorithm, called
DPS (Dynamic Programming for selection), to solve
the deduplication selection problem. Its basic idea is
using dynamic programming that breaking the selection
problem down into simpler subproblems with CPU time
slices increased one by one. In each subproblem, we
compare each image iteratively to find whether the
energy consumption is decreased by add this image. If
energy consumption is decreased, we add this image
as one existed solution. After computing each possible
combination iteratively, we can find the result for the
selection problem.

In ordinary operation systems, task schedulers
usually use the time slice as the unit for assigning CPU
time to each task. To simplify the solution, we make an
assumption that processing resource and overload can
be described by the number of time slices. Since the

Procedure 1 The dynamic programming algorithm for
deduplication selection problem

1: for j from 0 to P do

2: Ro’j +— 0;

3: end for

4: for f’ from 1 to |F| do

5: for j from 0 to P do

6: if o < j then

7 Rf/_’j — maX(Rf/,l_j, Rf/fl,jfo} + B})
8: else

9: Rf/_,j — Rf/,l’j
10: end if

11: end for

12: end for

13: Epin < Z!flil Af — R\F|,P
14: p = R|F‘,p

15: D+ ()

16: for f’ from 1 to |F| —1 do
17: if Rf/7p 79 Rf/+17p then
18: D+ DU/f

19: p—p— o’f
20: end if
21: end for

time slice numbers are positive integers, we adopt DPS
to solute the deduplication selection problem as shown
as Algorithm 1.

Firstly, we define R ; to denote the maximum

Z;;l B¢x ¢ that can be attained with overload less than
or equal to j deduplicating images up to f’. In line 1
to line 3, we set the initial value of each Ry ; is 0.
In line 4 to line 12, we use a nested loop to traverse
each pair of f’ and j. In this loop, we calculate each
Ry ; that Vf' € F and 0 < j < P by adopting the
general dynamic programming solution of 0-1 knapsack
problem. [11] and the minimum energy consumption
is calculated in line 13. After that, we use a set D
to find which image files are chosen for deduplication
and define p as the processing resource appeared in the
result set of each Ry ;. From line 16 to line 21, if Ry,
is different from R/ 41 p, it means the image file f' needs
deduplication.

The algorithm complexity is equal to O(|F|P) which
looks like a polynomial time with the assumption that
calculate processing resource by the number of CPU
time slices.

6. EVALUATION

We now consider Online-deduplication performance.
As discussed in previous sections, the design of our
mechanism includes a number of factors that we expect
to impose considerable overheads on performance.
Virtual disk address virtualization is provided by
the Online-deduplication daemon, which runs in
user space in an isolated VM and therefore incurs
context-switching on every batch of block requests.
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Additionally, our address mapping metadata involves
6-levels B-trees, which risks a dramatic increase in
the latency of disk accesses due to seeks on uncached
metadata blocks.

There are two questions that this performance
analysis attempts to answer. First, what are the
overheads that Online-deduplication imposes on the
processing of I/O requests? Second, what are
the efficiency implications of the virtual machine
redundancy free storage that online-deduplication
provides? We address these questions in turn, using
sequential read and write and PostMark to answer
the first and using a combination of micro and macro
benchmarks to address the second.

In all tests, we use Dell machines, each node with
a 1.86 GHz Xeon E5620 processor, 4 GByte of RAM,
and an Intel e1000 GbE network interface. Storage is
provided by a western digital exporting an sata ii over 3-
gigabits links.We have been developing against XCP 1.5
as a base. One notable modification that we have made
to XCP has been to double 4th maximum number of
block requests, from 32 to 64, that a guest may issue at
any given time, by allocating an additional shared ring
page in the split block (blkback) driver. The standard
32-slot rings were shown to be a bottleneck when
connecting to Ethernet over a high capacity network.

First, we evaluate the energy efficiency of our
demonstration. Considering the difficulty to reappear
user behavior in cloud platform, we choose a typical
usage scene that booting VM concurrently in a short
period to evaluate the energy consumption of VM
storage. As comparison, we also record the result of
same test with direct connection with our distributed
storage system.

Our analysis compares access to the block device in
XCP host VM (dom0 in the graphs) and to guest VM
with online-deduplication.

Accessing block devices from domO has the least
overhead, in that there is no extra processing required
on block request and domO has direct access to the
network interface. This configuration is effectively
the same as unvirtualized Linux with respect to block
performance. In addition, in dom0 tests, the full system
RAM and both hyperthreads are available to dom0.
In the following cases, the memory and hyper threads
are equally divided between domO (which acts as the
Storage VM5) and a guest VM.

In the direct mode, we access the block device from
a guest VM over XCP blkback driver. In this case, the
guest runs a block driver that forwards requests over
a shared memory ring to a driver (blkback) in domO0,
where they are issued to the network stack. Dom0
receives direct access to the relevant guest pages, so
there is no copy overhead, but this case does incur a
world switch between the client VM and domO for each
batch of requests.

Finally, in the case of online-deduplication, the
configuration is similar to the direct case, but when

requests arrive at the domO kernel module (blktap
instead of blkback), they are passed on to the online-
deduplication daemon running in user space. Our
system issues reads and writes to the Linux kernel using
Linuxs asynchronous I/O interface (libaio), which are
then issued to the sata bus or networks.

6.1. Energy Consumption

60000

Direct ©===x1
4KB Grain
50000 8KB Grain ]
40000
30000

20000 §

N

VB

3 5
Number of VM

10000 |

Energy consumption of VM booting (Joules)

FIGURE 4. The energy consumption by VM booting.

VM booting is a very frequent operation in existed
cloud service providers. From anecdotal analysis of
EC2, based on decoding the instance ID, concluded
that O(10%) new VM instances are requested each day
[12]. Considering the convenience and practicality, we
measure the energy consumption of VM booting instead
of other benchmark applications which are very rare in
real use of cloud services. Considering the performance
limitation of our testbed hardware, we set the number
of concurrent VM booting from 1 to 10 and record the
time of beginning and finish booting to get the interval
of all VM finishing booting. As comparison, we use the
same VM instances with direct connection storage and
record same interval. We execute the test 5 times and
record the average interval as the result.

From the test result shown in FIGURE 4, with the
computing overload of the deduplication, we find the
energy consumption of our system is almost the same
with the general storage system. With increase of VM
number, comparing the linear increasing consumption
without deduplication, enhanced energy efficiency of
our system is obviously observed. When using 4KB
data block size, the energy consumption of booting
10 VM in our system is only 62 % of the comparing
system. With 8KB data block size, it costs a bit more
energy with 66 % of comparing system. When the
number of VM is less than 5, since small block size needs
more computing in deduplication, using 8KB block size
in our storage performs better energy efficiency than
4KB block size. When the number of VM increased,
considering higher deduplication ratio of the smaller
block size, less data transferring by using a small block
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FIGURE 5. System storage performance against a local
disk as reported by 10Zone Writer.
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FIGURE 6. System storage performance against a local
disk as reported by I0Zone Reader.

size get a better energy efficiency.

6.2. Sequential I/0

For each of the three possible configurations, we ran
I0Zone [13] five in succession. The first run provided
4KB grain data points, while the second allows online-
deduplication to extent its block size to 8KB. As
shown in FIGURE 5, the better write performance
in the bigger grain case demonstrates that online-
deduplication is unable to maintain write performance
near the effective line speed of the direct access. Our
system performance is within 65% of dom0. At the
same time, the 60% performance degradation in the
8KB grain case underscores the importance of block size
in online-deduplication, as doing so limits the overheads
involved in B-tree traversal. As we have focused our
efforts to date on tuning the write path, we have not
yet sought aggressive optimizations for read operations.
This is apparent in the IOZone test, as we can see read
performance slipping to more than 14% lower than that
of our non-virtualized dom0 configuration.

80
4KB Grain 5553
8KB Grain 7771

] 70 Direct 1
@
= 60
>
Q.
S 50 N N
3
<]
£ 40
5 .
= §
= 30
5
S 20 =
: N
14

10

0

4k 8k 16k 32k 64k

Record Size in KB

FIGURE 7. System storage performance against a local
disk as reported by 10Zone random Writer.
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FIGURE 8. System storage performance against a local
disk as reported by 10Zone random Reader.

6.3. Random I/O

FIGURE 7 and FIGURE 8 show the results of running
random IOZone test with the online-deduplication and
directly attached configuration. Unlike the sequential
I/O, the cache in random I/O test is much colder
while the impact of data reform in deduplication is
less than warm cache in sequential I/O test. However,
when the data size random become large, the random
I/O performance of Domain 0 is getting closer to the
sequential I/O while the online-deduplication remains
almost the same with its discontinuous data placement.

7. RELATED WORKS

In this section, we firstly introduce some related works
about energy efficiency storage, VM storage and data
deduplication.

7.1. General Storage Consumption

Sleeping idle devices are the most deeply researched
method in general storage system especially the
hard disk (HDD) devices. In general data center
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storage environment, Zedlewski et al. [14] model the
HDD consumption to accurately estimate the energy
consumed by sub-components of a disk request. Based
on their work which points out the importance of
analysis of the power mode transition, many works
worked on HDD spin-up and spin-down. Meanwhile, Li.
et al. [15] analyze the pros and cons of spinning down
disks and address the sleeping time of the disk to reduce
energy consumption. To optimize the problem of HDD
spinning down, Chung et al. [16] propose an adaptive
approach which slides windows with two-dimensional
linear interpolation of power managing a single disk.

Cache deployed in storage I/O procedure is another
efficient method to reduce energy consumption. Zhu et
al. [17] propose a set of cache management methods to
reduce the disk energy consumption, which focuses on
cache layer, and studies of many cache methodologies.
Meanwhile, many previous works study deeply about
buffering writes and performing periodic updates in the
storage system.

Using a timer to monitor the disk access traffic is
a more simple method for scheduling HDD sleeping.
By adapting to the user’s access, Douglis et al. [18]
vary the spin down threshold dynamically to reduce
the disk spin ups. Golding et al.  [19] design
several idle detection algorithms to decrease disk
energy consumption. With more aggressive dynamic
predictors, the time to sleep HDD is much longer than
timer in scheduling. Accordingly [16, 20, 21], using the
HDD access information of recent history to predict the
idle period for sleeping idle HDD.

7.2. VM storage with energy efficiency

In VM storage, even the structure is different, some
researchers use a similar method to reduce energy
consumption with original storage system. Ye et al.
[22] propose a mechanism to improve HDD energy
dissipation by adjustment of buffer cache flush to
save disk energy and implement their design in the
virtual machine monitor (VMM). Stoess et al. [23]
also insert a framework in VMM to distinguish two
different power states, which is capable of enforcing
power limits of guest VM. Nathuji et al. [24] propose
similar management in VMM to support online power
management, which reduces 34% power consumption in
VM storage.

Using VM migration and placement is another
methodology based on the facilities of virtualization
to improve energy efficiency in cloud data center.
Verma et al. [3] propose a dynamic consolidation
of storage based on VM migration to enhance the
energy efficiency. Dong et al. [25] design a VM
placement algorithm in cloud data center to save energy.
In their VM placement method, storage energy is
considered as a main factor of resources rather than
a special discussing. Shailesh S.Deore et al. [20]
introduced an energy efficient scheduling technology

to avoiding changing the status of idle node to power
on to reducing the energy consumption including the
storage system. Anton Beloglazov et al. [27] propose
heuristic algorithms to optimize the energy efficiency
after modeling the resource consumption (CPU, disk
storage and network interface) in cloud computing. Xin
Li et al. [28] proposed a virtual machine placement
algorithm EAGLE, which can balance the utilization
of multidimensional resources, reduce the number of
running PMs, and thus lower the energy consumption
while it is not an efficient method for reducing
storage energy consumption since the workloads are not
changed. Ahmed Sallem et al.[29] proposed a migration
policy for multi-object optimization strategy, in which
energy efficiency is one of objects in this work. Since it
is hard to reduce workloads by migration, this work can
not improve energy efficiency in the ordinary centralized
storage system.

7.3. Deduplication System

Venti [30], EMC Avamar [31], Pergamum [32] and
DataDomain [33] are typical deduplication storage
systems. Venti, Pergamum and Avamar target data
archiving, whereas DataDomain is designed to store
backup data. Venti prototype and Centera support
duplicate elimination, respectively, on fixed block size
and entire file level. Venti, archiving data as a network
storage system, focuses on saving storage space. It
stores duplicated copies of fixed size data blocks only
once. Venti reports a reduction of around 30% in the
size of the data sets employing this method.

EMC Avamar, as an enterprise storage server, it
takes a way to implement deduplication by software
agents. These agents work background to deduplicate
data through network with fingerprints. Each agent
can recognize message processed by sending fingerprint
to the central deduplication system and comparing the
records existed. Without the agents, deduplication can
only be used on independent machines.

Pergamum is a distributed intelligent disk based
storage system. As a disk based archive solution, it
must be easily scalable in capacity, performance and
time. With NVRAM [34] in each node to store data
signatures, metadata and other small items, Pergamum
allows to defer writing, metadata requests and inter-
disk data verification to be performed while the disk
is powered off. Although Pergamum has done some
work on deduplication, the duplicate elimination is
not supported well in the system, which means in
Pergamum the storage capacity cannot be recycled even
it knows the data have been stored before.

8. CONCLUSIONS

In this paper, we propose an energy efficient VM
storage system in cloud data center that uses
online-deduplication mechanism to reduce the energy
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consumption from redundant data. We design online-
deduplication mechanism that eliminates the redundant
data before stored in storage system. To support this
mechanism, we design a two layer storage structure
both in virtualization servers and storage units. After
that, we implement a demonstration system based
our design. We also study a deduplication selection
problem to minimum the energy consumption of
the VM storage system with limited deduplication
processing resources. Finally, the demonstration system
evaluations are conducted to show that the proposed
system can significantly reduce the energy consumption
with negligible overload.
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