
c© The British Computer Society 2015. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

doi:10.1093/comjnl/bxv031

HarmonyAssumptionsinInformation
RetrievalandSocialNetworks

Thomas Roelleke1,∗, Andreas Kaltenbrunner2

and Ricardo Baeza-Yates3

1Queen Mary University of London, London, UK
2Barcelona Media, Barcelona, Spain

3Yahoo Labs Barcelona, Barcelona, Spain
∗Corresponding author: thor@eecs.qmul.ac.uk

In many applications, independence of event occurrences is assumed, even if there is evidence for
dependence. Capturing dependence leads to complex models, and even if the complex models were
superior, they fail to beat the simplicity and scalability of the independence assumption. Therefore,
many models assume independence and apply heuristics to improve results. Theoretical explanations
of the heuristics are seldom given or generalizable. This paper reports that some of these heuristics can
be explained as encoding dependence in an exponent based on the generalized harmonic sum. Unlike
independence, where the probability of subsequent occurrences of an event is the product of the sin-
gle event probability, harmony is based on a product with decaying exponent. For independence, the
sequence probability is p1+1+···+1 = pn, whereas for harmony, it is p1+1/2+···+1/n. The generalized
harmonic sum leads to a spectrum of harmony assumptions. This paper shows that harmony assump-
tions naturally extend probability theory. An experimental evaluation for information retrieval
(IR; term occurrences) and social networks (SN’s; user interactions) shows that assuming harmony
is more suitable than assuming independence. The potential impact of harmony assumptions lies
beyond IR and SN’s, since many applications rely on probability theory and apply heuristics to com-
pensate the independence assumption. Given the concept of harmony assumptions, the dependence

between multiple occurrences of an event can be reflected in an intuitive and effective way.
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1. INTRODUCTION

In a variety of applications, the independence assumption
is employed for keeping probabilistic reasoning simple and
scalable. Even though event occurrences may be known to
be dependent, it often appears to be non-realistic to capture
explicitly the dependence. Instead, parameters are added to fix
the error made by assuming independence.

Parameter tuning in information retrieval (IR) models has
led to ‘heuristics’ that are known to be conducive to good
retrieval quality. Most important for retrieval quality is the term
frequency (TF) quantification of the BM25 ranking formula
[1, 2]. To illustrate what the BM25-TF quantification is about,
consider an event (term) t , and let pt be the single event prob-
ability. Then, in basic probability theory, for a sequence with

nt occurrences of event t , the sequence probability is pnt
t . The

exponent being the total count means to assume independence.
The BM25-TF can be interpreted as estimating the sequence
probability differently, namely as p2·nt /(nt +1)

t . What type of
dependence does this sequence probability reflect?

The work reported in this paper is the result of a system-
atic process to explain the type of dependence assumption
that is inherently modelled by TF quantifications applied in
IR. The motivation of theoretical research is that if we were
able to analytically describe the dependence, then we could
arrive at a probability theory that helps to replace the ‘heuris-
tics’. At the same time, the achievements regarding IR ranking
quality potentially can be generalized and transferred to other
application domains that rely on probability theory.
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The wider picture of this research can be related to [3]. The
preface describes a scene where dad and daughter enter a cave.
- ‘Dad, that boulder at the entrance, if it comes down, we are locked

in’.
- ‘Well, it stood there the last 10 000 years, so it won’t fall down just

now’.
- ‘Dad, will it fall down one day?’
- ‘Yes’.
- ‘So it is more likely to fall down with every day it did not fall down?’

This scenario elicits the conflict arising when considering
evidence, let it be for the occurrence or non-occurrence of an
event. How is the probability of subsequent occurrences of an
event affected by observed occurrences? This paper proposes
and investigates ‘harmony assumptions’ for modelling the
probabilities of subsequent event occurrences. For harmony,
the probability of subsequent event occurrences is greater than
for the early occurrences.

The notion of harmony encompasses and enriches the tradi-
tional way assumptions are modelled and referred to. It leads
to a versatile probability theory with new terminology that
allows for the intuitive formulation of scalable assumptions in
a continuous spectrum from disjointness over independence to
subsumption.

1.1. Structure of this paper

The first part discusses the Background (Section 2). We revisit
independence vs dependence in IR and Social Networks
(SN’s), before engaging into a technical introduction of the
main concepts that underpin this paper: Probability Theory
(Independence Assumption, Section 2.4) and IR Models
(TF-IDF and BM25, Section 2.5).

The second part introduces the Harmony Assumptions
(Section 4). This is followed by Sequence Probabilities
(Section 5) and Frequency Probabilities (Section 6). For
frequency probabilities, we define the harmonic binomial
probability (Section 6.3), a variant of the generalized binomial
probability (Section 6.2) that is based on the harmonic sum.

The third part reports the Analytical Verification (Section 7)
and the Experimental Evaluation (Section 8). We measure the
dependencies among word occurrences in documents (IR sce-
nario) and user interactions with recipients (SN scenario). It
came as a surprise to find a similar type of harmony in both
scenarios.

The appendix contains technical details.

2. BACKGROUND

There is a wide range of research aiming at solutions to the
problem of ‘modelling of event dependencies’. We review
first the work that relates probability theory, randomness, IR
and SN. Then, we provide the background of probability the-
ory and IR models required to position the role of harmony
assumptions.

2.1. Independence vs dependence in IR

The issue that the occurrences of a term are dependent is
reflected by Zipf’s law. How is the dependence related to Pois-
son? Early work to capture the dependence includes ‘N-Poisson
document modelling’ [4], ‘Poisson mixtures’ [5] and ‘IDF:
Deviation from Poisson’ [6]. The overall conclusion is that
the independence assumption underlying the Poisson distri-
bution does not reflect the actual distribution of terms (term
frequencies), and that in the most widely known IR model,
namely TF-IDF, there is somehow an inherent way to capture
the dependence.

The two seminal papers ‘Some Simple Approximations
of the 2-Poisson Model’ [7] and ‘Okapi at TREC’ [1, 2]
brought the most effective TF quantification, the BM25-TF
‘tfd/(tfd + Kd)’, where tfd is the frequency of term t in doc-
ument d, and Kd is a normalization parameter for a document
length pivotization [8].

Some basic transformations (see Section 2.5.5) show that
the BM25-TF can be related to an expression of the form
2 · n/(n + 1). This is the convergence value of the harmonic
sum of Gaussian sums (see Section 4), and this started the
research on harmony assumptions.

Another important TF quantification is the logarithmic
TF, log(tfd + 1), common in text classification [9–12]. The
logarithmic TF count (‘ltc’) is crucial for achieving good
quality.

Bending the total count, like the BM25-TF and logarithmic
TF do, coincides with the overall evidence that a Poisson-based
model assigns too little of the probability mass to possible
worlds with several occurrences of the same event. [13] ‘TF
normalization via Pareto distributions’ and [14] ‘Divergence
From Randomness (DFR)’ point at ways to measure the diver-
gence between randomness and observed probabilities, and
exploit these for ranking. However, there is no explicit coverage
of the type of dependence.

Tuning the TF quantification can be considered as a research
direction in IR. The work circles around Dirichlet priors, DFR,
multinomial distributions and dependencies. For example:
‘Dirichlet priors for TF normalizations’ [15], ‘TF Normal-
ization Tuning for BM25 and DFR’ [16], ‘Retrieval based
on Dirichlet Compound Multinomial Distribution’ [17] and
‘High-Order Word Dependence Mining’ [18]. This work shows
that the TF quantification and the coverage of dependencies
are important and conducive to retrieval quality. Many of the
models are complex, and although they capture the depen-
dence (e.g. conditional probabilities), there is no analytical
model. It is difficult to generalize the results to other application
domains.

The late 90s saw language modelling (LM) [19] becom-
ing popular in IR. This revived research on explaining roots
and finding semantics for TF-IDF [20]. ‘Approaches for using
probabilistic dependencies’ [21] provides an account of the
techniques applied in IR (language modelling).
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The research regarding ‘event spaces’ [22] and dualities
between IR models [23, 24] produced a range of insights.
This pathway led to the notion ‘semi-subsumption’ [25], an
assumption lying between independence and subsumption.

The modelling of event dependencies is also a research
topic in probabilistic DB’s [26, 27]. The area of probabilistic
databases sparkled a wide range of issues regarding the cover-
age of dependencies, and the safe and efficient processing of
queries: [28–34]. The research in probabilistic DB’s concerns
the modelling of event dependencies to obtain ‘correct’ proba-
bilities generated by ‘safe’ relational algebra expressions. The
efficient processing is a major challenge when following the
way traditional probability theory captures dependencies.

2.2. Independence vs dependence in SN’s

Modelling of human interaction in SN’s traditionally does not
assume independence. One of the most applied models for
human interaction is the preferential attachment model [35],
which is based on the assumption that the likelihood to inter-
act with a person is a function of the number of times one has
previously interacted with this person. Preferential attachment
leads to power-law (PL) distributions [36].

Nevertheless, in the IR-related task of link prediction,
(i.e. estimate the likelihood of existence of a link between two
nodes, based on observed links and the attributes of nodes) [37],
most studies only focus on undirected and unweighted net-
works [38]. Connection weights (e.g. the number of interactions
between friends) have been taken into account in [39] as linear
sums. This idea has been extended in [40] using exponents in
the weights. Interestingly, the best results are obtained in some
cases for negative exponents, indicating a close relationship
with the harmony assumption we propose in this paper.

2.3. Independence vs dependence before 1990

Research on uncertain reasoning and fuzzy theory suggest
for long that the independence assumption needs alternatives.
Fuzzy theory [41, 42] can be viewed as assuming events to be
subsumed if the T-norm is based on the minimum and maximum
of probabilities.

Early work addressing the independence and dependence of
events include [43] ‘On the independence assumption underly-
ing Bayesian updating’, [44] ‘A generalized term dependence
model in IR’, [45] ‘An evaluation of term dependence models
in IR’, [46, 47] ‘Independence assumptions and Bayesian
updating’ and [48] ‘Boolean queries and term dependencies in
probabilistic retrieval models’.

This surface overview pointing at the wide range of research
underlines that the intuitive and analytical formulation of depen-
dence is a long-standing problem. The fact that the TF quantifi-
cation in IR reflects a dependence, combined with the fact that
the TF quantification has a strong impact on retrieval quality,
gives the ground for a general model of dependence.

2.4. The independence assumption

The independence assumption is simple, scales well and
is applied in many scenarios. Let ti denote an event, and
� = {t1, . . . , tn} the set of events. Let d = (t1, t2, t1, . . .) be
a sequence of event occurrences. Then, the independence
assumption is

P(d) =
∏

t IN d

P(t) =
∏
t∈d

P(t)n(t,d) (1)

The notation ‘t IN d’ views d as a sequence of event occur-
rences, whereas ‘t ∈ d’ views d as a distinct set of events, and
n(t, d) is the number of occurrences of event t in sequence d.
For example, for a document d with three words, the document
probability is

P(d) = P(sailing, boat, sailing) = P(sailing)2 · P(boat)1

There are two independence assumptions here. First, the dif-
ferent events, t ∈ d, are assumed to be independent. Secondly,
the multiple occurrences of each event t are assumed to be
independent. This paper addresses the second independence
assumption, and proposes to make a harmony assumption.

2.5. IR models: TF-IDF and BM25

TF-IDF and BM25 are two of the main IR models [49, 50].
IR models have probabilistic roots, but contain heuristic com-
ponents such as TF quantifications. TF-IDF and BM25 are
the document-likelihood models, whereas LM is the query-
likelihood model. For this paper, we focus on the document-
likelihood side, since for the probability P(d), the dependence
matters. We briefly discuss the issues that arise when relating
TF-IDF to probability theory, and where BM25 steps in. The
aim is to highlight the relationship between TF quantifications
and the independence assumption.

2.5.1. TF: within-document term frequency
Let t be a term and d a document. Let tfd be the term frequency
(total count) of term t in document d. The TF quantifications
correspond to independence and dependence assumptions.

TFtotal(t, d) := tfd independence
TFlog(t, d) := log(1 + tfd) what type of dependence?

TFBM25(t, d) := tfd

tfd + Kd
what type of dependence?

TFlog is a quantification where the impact of high frequencies
is less than for independence. TFBM25 assigns even less impact
to high frequencies (Kd is discussed in Section 2.5.4, BM25).
What type of dependence do TFlog and TFBM25 reflect? This
paper shows analytically that both TFlog and TFBM25, cor-
respond to making a harmony assumption regarding the
subsequent occurrences of an event.
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2.5.2. IDF: inverse document frequency
Though this paper mainly addresses the dependence modelled
by the TF, it is important to capture some of the IDF issues.
Regarding the definition of IDF, let df(t, c) be the document fre-
quency of term t in collection c; let ND(c) be the total number
of Documents in collection c. Let PD(t | c) := df(t, c)/ND(c)
denote the Document-based probability of term t in collection c.
The common definition is

IDF(t, c) := log(1/PD(t | c))

Without exploring details about theories on IDF, we briefly point
out that there are three event spaces regarding the representation
of the document event:

(1) binary vector: �d = (1, 0, 1, 0, . . .): xi ∈ {0, 1};
(2) frequency vector: �d=(1, 0, 2, 0, . . .): fi ∈{0, 1, 2, . . .};
(3) term sequence: d = (t3, t1, t3, . . .): ti ∈ set of terms.

TF-IDF can be derived from any of the three spaces. (1) IDF
is related to the binary independence retrieval model [51]. (2)
IDF is related to the Poisson probability of the term frequency
[4, 6, 52]. (3) TF-IDF is dual to LM, i.e. it can be derived based
on a term sequence [20, 24]. The parallel derivation of models
[23] distills the event spaces [22, 53]. Overall, we recall that
IDF is based on the probability of a document. Therefore, the
TF quantification models the dependencies between document
occurrences.

2.5.3. Probabilistic Root of TF-IDF
Let d be a document, q a query, c a collection and t a term. The
TF-IDF-based retrieval status value (RSV) is defined as follows:

RSVTF-IDF(d, q, c) :=
∑

t

TF(t, d) · TF(t, q) · IDF(t, c)

The intuition is to reward terms that occur frequently in docu-
ment and query (TF(t, d) and TF(t, q) high) and are rare among
all documents (IDF(t, c) high for rare terms). The question is:
what is the probabilistic root of this intuitive and widely used
scoring function?

For answering this question, we summarize the discussion
presented in [52]. We start with a basic decomposition of the
document probability P(d | c):

P(d|c) =
∏

t IN d

P(t |c) =
∏
t∈d

P(t |c)n(t,d) =
∏
t∈d

P(t |c)tfd (2)

In the set-based product, the exponent of the single event prob-
ability is the number of term occurrences (see Equation (1)).
Next, we apply the logarithm to the fraction P(d | q)/P(d | c).
The rationale of this fraction is discussed in [24]; the fraction
is related to the LM-based approach to IR, and is also justified

by divergence-based retrieval [54].

log
P(d | q)

P(d | c)
= log

∏
t IN d

P(t | q)

P(t | c)
=
∑
t∈d

log

((
P(t | q)

P(t | c)

)tfd
)

The next transformation is based on a query-term assumption:
for non-query terms, P(t | q) = P(t | c), whereas for query
terms, P(t | q) = 1. The first setting reflects the assumption
usually applied to avoid the ‘zero-probability problem’: for
terms that do not occur in the query, the background (collection)
model is applied. The second setting can be viewed as maxi-
mizing the impact of the foreground (query) model. This leads
to the following rank equivalence:

log
P(d | q)

P(d | c)
rank=

∑
t∈d∩q

tfd · log(1/P(t | c)) (3)

The right-hand side of Equation (3) is the probabilistic root of
TF-IDF. However, there is a gap between the root and TF-IDF,
and this fuels the view that TF-IDF is heuristic. The two issues
in this gap are:

(1) tfd : The total count of term occurrences corresponds
to assuming independence. The retrieval quality for
TFtotal(t, d) := tfd is known to be poorer than for
TFBM25(t, d) := tfd/(tfd + Kd). Explaining the depen-
dence assumption underlying the BM25-TF is important
to close the gap between foundations and heuristics.

(2) P(t | c): The maximum-likelihood estimate of this prob-
ability is based on counting the occurrences of term t .
The IDF, however, is based on counting the documents
in which the term occurs (Section 2.5.2).

2.5.4. BM25: best-match version 25
The BM25 retrieval model [1] is the main instantiation of the
probabilistic retrieval model [55]. It is based on the odds of
relevance, P(r | d, q)/(1 − P(r | d, q)), where ‘r ’ denotes the
event ‘relevant’, d denotes a document and q denotes a query.
TF-IDF can be viewed as an approximation of BM25 for the
case of missing relevance information [51, 56]. The follow-
ing TF quantification is a main component for achieving good
retrieval quality:

TFBM25(t, d) := tfd

tfd + Kd

The parameter Kd is defined as follows:

Kd := k1 · (b · dl/avgdl + (1 − b))

There is a range of symbols involved in the BM25-TF:

tfd Within-document term frequency (count)
Kd Parameter to pivotize the TF quantification

dl Document length
avgdl Average document length
pivdl Pivoted document length: pivdl := dl/avgdl
k1, b Parameters to adjust the pivotization

Section A: Computer Science Theory, Methods and Tools
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Kd captures a document length pivotization. Thus, the rise and
saturation of TFBM25 is faster for short than for long documents.

Overall, though the BM25-TF is motivated by the 2-Poisson
model [7], TF-IDF and BM25 are viewed as being heuristic.

2.5.5. On the BM25-TF and the harmonic sum
The BM25-TF can be expressed as follows:

TFBM25(t, d) = tfd/Kd

tfd/Kd + 1
= TFpiv(t, d)

TFpiv(t, d) + 1
(4)

TFpiv is the pivoted TF. The equation shows how to relate the
BM25-TF to the expression n/(n + 1), and this factor can be
expressed as the harmonic sum of Gaussian sums (Appendix 1):

n

n + 1
= 1

2
·
(

1 + 1

1 + 2
+ · · · + 1

1 + · · · + n

)
(5)

Equation (5) led to the core of this paper, namely to apply the
harmonic sum for modelling analytically the dependence of sub-
sequent event occurrences.

3. INDEPENDENCE VS HARMONY

Linking Equations (3) and (5) leads to showing analytically the
effect of the BM25-TF. For ‘naive’ TF-IDF (total TF count),
the total term frequency count, tfd , can be expressed as the sum
tfd = 1 + 1 + · · · + 1.

tfd · log(1/P(t | c)) = (1 + 1 + · · · + 1) · log
1

P(t | c)

This is in contrast to the smarter BM25-TF-IDF:

tfd

tfd + 1
· log

1

P(t | c)

= 1

2
·
(

1 + 1

1 + 2
+ · · · + 1

1 + · · · + tfd

)
· log

1

P(t | c)

The harmonic sum of Gaussian sums makes explicit that the
second-occurrence of the event (term) is considered with 1/3,
and the nth occurrence with 1/(1 + · · · + n). The impact of
subsequent event occurrences decreases in a harmonic Gaus-
sian way. For independence, each occurrence has the same

impact, and two decades of IR research confirm that this is sub-
optimal. Given the framework of harmony assumption, we can
now describe in a precise and analytical form what the currently
superior TF quantification means with regard to dependence
assumption and probability theory.

4. HARMONY ASSUMPTIONS

We introduce harmony-based dependence assumptions to be
alternatives to the today’s most common assumption, the inde-
pendence assumption. For independence, pn

t is the sequence
probability to observe n occurrence of event t that occurs with
probability pt . In more general, pa(n)

t is the sequence probabil-
ity, where a(n) is the assumption function. If the assumption
function is based on the harmonic sum, then we refer to the
assumption as harmony assumption.

Table 1 shows the main harmony assumptions, and Fig. 1
illustrates graphically the effect of harmony: the overlap of
event occurrences is proportional to α.

4.1. Natural harmony

If the assumption function is the harmonic sum, then we refer to
the dependence as ‘natural harmony’.

anatural-harmony(n) := 1 + 1

2
+ · · · + 1

n
(6)

Natural harmony is a parameter-free assumptions. More
adjustable (i.e. better for parameter learning) is the generalized
harmonic sum with parameter α.

4.2. Alpha-harmony (generalized harmony)

If the assumption function is the generalized harmonic sum, then
we refer to the dependence as ‘generalized harmony’ or ‘alpha-
harmony’.

ageneralised-harmony,α(n) := 1 + 1

2α
+ · · · + 1

nα
(7)

For α = 1, generalized harmony is natural harmony. For
α = 0, the harmonic sum is n = 1 + 1 + · · · + 1, which

TABLE 1. The main harmony assumptions.

Assumption name Assumption function a(n) Description/comment

Natural harmony 1 + 1/2 + · · · + 1/n Harmonic sum

Alpha-harmony 1 + 1
2α + · · · + 1

nα Generalized harmonic sum; convergent for α > 1

Square-root harmony 1 + 1
21/2 + · · · + 1

n1/2 α = 1/2; divergent

Square harmony 1 + 1
22 + · · · + 1

n2 α = 2; convergent: π2/6 ≈ 1.645

Gaussian harmony 2 · n
n+1 = 1 + 1

1+2 + · · · + 1
1+···+n Explains the BM25-TF tfd

tfd+pivdl

Section A: Computer Science Theory, Methods and Tools
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FIGURE 1. Illustration of the Overlap for Independent and Harmonic Event Occurrences. The area of each circle corresponds to the single event
probability: p = 0.5. The overlap becomes larger for growing α (harmony).

corresponds to independence. For α = −∞, we obtain dis-
jointness, and for α = +∞, subsumption.

In more detail, let 1/kα be the components of the har-
monic sum. For α = −∞, we obtain 1/kα = ∞ (for k > 1).
Therefore, the sequence probability is p∞ = 0, which corre-
sponds to disjointness. For α = +∞, we obtain 1/kα = 0 (for
k > 1). Therefore, the sequence probability is p1 = p, which
corresponds to subsumption.

Since the parameter α can be tuned to fit a distribution, alpha-
harmony is a prime choice. The two values α = 1/2 and α = 2
are special.

4.3. Square-root harmony: α = 1/2

Sqrt-harmony (α = 1/2) is between natural harmony (α = 1)
and zero harmony (α = 0, independence). Sqrt-harmony views
event occurrences to be more overlapping than the indepen-
dence assumption does, but the overlap is less than for natural
harmony (see illustration in Fig. 1). This mid-point between
independence and natural harmony turns out to be focal in the
experimental study, where we found that sqrt-harmony is the
average assumption that represents the dependence between
term occurrences, and between user interactions.

4.4. Square harmony: α = 2

Square harmony (α = 2) reflects stronger dependence than
natural harmony (α = 1) does.

This assumption is special since α = 2 is the smallest
natural number for which the harmonic sum is convergent.
(The convergence value, 1.645 = π2/6, is a famous founda-
tion of number theory; Basel problem.) Also, the expression
1/k2 is only by a margin greater than half of the expres-
sion 2 · 1/(k · (k + 1)), and this suggests the relationship
between square harmony and the assumption that motivated
this research: Gaussian harmony.

4.5. Gaussian harmony

The harmonic sum of Gaussian sums is

aGaussian-harmony(n) := 1 + 1

1 + 2
+ · · · + 1

1 + · · · + n
(8)

This partial harmonic sum comprises the elements where the
Gaussian sums are the denominators. The convergence value
is as follows (Appendix 1):

2 · n

n + 1
= 1 + 1

1 + 2
+ · · · + 1

1 + · · · + n
(9)

A more compact formulation takes advantage of the Gaussian
summation formula:

G(k) := k/2 · (k + 1)

Then, Gaussian harmony can be expressed as follows:

aGaussian-harmony(n) = 1

G(1)
+ 1

G(2)
+ · · · + 1

G(n)
(10)

Gaussian harmony is the assumption that corresponds to
the notion of semi-subsumed events [25], which was the first
attempt to explain the dependence underlying the BM25-TF.

4.6. On log(1 + tfd) and harmony assumptions

The question remaining is: how is the log-TF log(1 + tfd)

related to harmony assumptions?
To answer this question we recall that the logarithm log(x)

is equal to the integral
∫ x

1 1/z dz. This leads to a series-based
explanation of the logarithmic TF. The explanation originates
from the integral-based approximation of the harmonic sum:

log(n) ≈
[

n∑
k=1

1/k

]
− (0.5772 + 1/(2 · n))

Here, the Euler–Mascheroni constant 0.5772 and the fac-
tor 1/(2 · n) approximate the difference between the sum of
rectangles and the area under 1/z.

Section A: Computer Science Theory, Methods and Tools
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The relationship between the log and the harmonic sum solves
two problems. First, it delivers a semantics of log(1 + tfd) in the
sense that the log-TF quantification corresponds to the harmonic
sum from 1 to 1 + tfd minus the factor 0.5772 + 0.5/(1 + tfd).
Therefore, we can embed the log-TF into the assumption spec-
trum using the name ln-harmony. Secondly, the logarithm can be
utilized to approximate the value of the harmonic sum, and this
reduces the computational complexity.

Future research will investigate how to embed and utilize
integral-based expressions related to the generalized harmonic
sum. Learning from the approach for the natural harmonic sum
and the logarithm, approximations can be developed starting
with the integral

∫ x
1 1/zα dz = 1/(1 − α) · (x1−α − 1). For the

purpose of this paper, it shall be sufficient to investigate series-
based assumptions plus the log-based quantification. Future
research directions include the approximations of series-based
assumptions.

4.7. Other dependence assumptions

In principle, any arbitrary function f () in p f (k) could be used
to represent a form of dependence. Therefore, the question is
why one would want to use a restricted spectrum of functions,
restricted to harmonic sums. There is a particular charm when
modelling dependence assumptions via series-based functions
such as the harmonic sum. They lead to self-explanatory decay
models, and the decay is relatively slow (compared with the thin
tails of exponential functions). Of course, any function could be
considered and compared with the harmonic sums, and research
on dependence functions for IR and SN is gaining momentum.

Regarding a spectrum of dependence assumptions, it is
even advisable to define a small set of parameter-free assump-
tions. This is because people need reference points to utilize
mathematical frameworks that are open and general; too
general means too many options, which means too compli-
cated. Parameter-free models are easier to exchange and to
agree on. Therefore, we have laid out a clear terminology for
α ∈ {0.5, 1, 2}, for the Gaussian harmonic sum and for embed-
ding log(1 + tfd) (ln-harmony). To briefly indicate that there
are other important harmonic sums that are not captured by a
value of α, we consider the harmonic sums of primes.

1 + 1

2
+ 1

3
+ 1

5
+ 1

7
+ 1

11
+ 1

13
+ · · · + 1

prime(n)

This harmonic sum is interesting because it is smaller than the
harmonic sum, but it is still divergent, whereas the harmonic
sum is convergent for α < 1. As we will find in the next section,
the border between convergence and divergence is of particular
importance.

4.8. From total harmony to total disharmony

It is challenging to achieve a clear and useful terminology
regarding dependence assumptions. Table 2 shows a spectrum

TABLE 2. Spectrum of assumptions: from total harmony over
zero harmony to total disharmony.

α Assumption name Exponent

+∞ Total harmony (subsumption) 1

+2 Square harmony
n∑

k=1

1

k2

Gaussian harmony: convergent! 2 · n

n + 1

ln-harmony: divergent! ln(n + 1)

+1 Natural harmony
n∑

k=1

1

k

+1/2 Sqrt-harmony
n∑

k=1

1√
k

0 Zero harmony (independence) n

−1/2 Sqrt-disharmony
n∑

k=1

√
k

−1 Natural disharmony
n

2
· (n + 1)

−2 Square-disharmony
n∑

k=1

k2

−∞ Total disharmony (disjointness) ∞

of selected assumptions from total harmony (subsumption,
α = +∞), over zero harmony (independence, α = 0), to total
disharmony (disjointness, α = −∞). The greater α, the more
likely is the co-occurrence of events (the overlap, see Fig. 1).

For independence, the assumption function is a(k) = k.
We refer to assumptions where 0 < α ≤ 1 as harmonic,
whereas assumptions where α > 1 are over-harmonic
(and convergent). For α ≤ 1, the harmonic sum is diver-
gent. The spectrum illustrates that the two standard TF
quantifications, the BM25-TF (Gaussian harmony) and
the log-TF (ln-harmony), are the two sides of the border
between convergent and divergent. For divergence, any of
many event occurrences does matter, whereas for conver-
gence, there is an upper ceiling. To achieve a memorisable
terminology, there are systematic names for selected alpha
values: α ∈ {−∞,−2,−1,−0.5, 0, 0.5, 1, 2,+∞}.

The next sections discuss the effect of harmony assumptions
when computing sequence and frequency probabilities.

5. SEQUENCE PROBABILITIES

Figure 2 illustrates the nature of sequence probabilities.
The curves illustrate that for harmony (α > 0), the sequence

probabilities are greater than for independence, whereas for
disharmony (α < 0), they are smaller. The curves are for
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disharmony vs. harmony, p = 0.1
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–20
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–15
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–10
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–5

10
–1

ln−harmony
α = 1: natural harmony
α  = 0.5: square−root harmony
α = 0.2
α = 0: independence
α = –0.2
α = –0.4

FIGURE 2. Illustration of Sequence Probabilities. α > 0: probabili-
ties greater than for independence. α < 0: probabilities smaller than for
independence.

the event probability p = 0.1, and for event frequencies
k ∈ {1, . . . , 10}. For independence, the sequence probabil-
ity is pk , for example, p5 = 10−5. For sqrt-harmony, it takes
k = 10 event occurrences for the sequence probability to drop
to a value close to 10−5. This is because the harmonic sum of
square roots, the exponent is hα=0.5(10) ≈ 5.02.

Of particular interest for our study are the assumptions
between zero and square harmony (0 < α < 2). Setting α > 0
reflects that word occurrences (and user interactions) occur
more frequently together than independence tells. The upper
value, α = 1, is a strong dependence assumption. The exper-
imental study reports that the middle between independence
and natural harmony, namely sqrt-harmony, turns out to be the
assumption that models best the average dependence observed
in test datasets.

Having explored the effect on sequence probabilities, the next
section investigates the effect on frequency probabilities.

6. FREQUENCY PROBABILITIES

It is essential to define and investigate the effect of depen-
dence assumptions on frequency probabilities. There are many
potential models, and for the purpose of this paper, we focus
the discussion on one of the main models of probability theory:
the binomial probability.

6.1. Binomial probability

The binomial probability, and its approximation, the Poisson
probability, are the first choice for a probabilistic model of a
frequency. For making the case of this paper, it is sufficient to

focus on the binomial probability:

Pbinomial,n,p(k) :=
(

n
k

)
· pk · (1 − p)(n−k)

The case for the Poisson probability is a direction of future
research.

6.2. Generalized binomial probability

We base the generalization of the binomial probability on
replacing the integer exponents, k and n − k, by the assump-
tion functions a1(k) and a0(n − k). We distinguish between the
asymmetric and the symmetric generalization. The asymmetric
generalization supports different dependence assumptions for
‘event occurs’ and ‘event does not occur’, whereas the sym-
metric generalization applies the same assumption, i.e. for the
symmetric case, a ≡ a1 ≡ a0.

The generalization requires to make explicit the normalizing
constant �, which is usually omitted for independence, since
� = 1. This follows from the binomial theorem: 1 = (p − (1 −
p))n = ∑n

k=0

(n
k

) · pk · (1 − p)n−k .

Definition 6.1 (Normalizing Constant �).

�n,p,a1,a0 :=
n∑

k=0

(
n
k

)
· pa1(k) · (1 − p)a0(n−k)

Then, the asymmetric generalization is as follows.

Definition 6.2 (Asymmetric Generalized Binomial Probabil-
ity).

Pn,p,a1,a0(k) := 1

�
·
(

n
k

)
· pa1(k) · (1 − p)a0(n−k)

Regarding the computation of �, for small n, a table approach
is sufficient; for large n, approximations can be applied.

The symmetric generalization uses the same assumption
function for occurrence and non-occurrence.

Definition 6.3 (Symmetric Generalized Binomial Probabil-
ity).

Pn,p,a(k) := 1

�
·
(

n
k

)
· pa(k) · (1 − p)a(n−k)

For a being the identity function (a(k) = k), we obtain the tra-
ditional binomial probability which assumes independence of
event occurrences.

6.3. Harmonic binomial probability

The generalized binomial probability is referred to as harmonic
if the assumption function is based on the harmonic sum. Then,
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FIGURE 3. Illustration of Frequency Probabilities. Inside graph for
α ∈ {0, 0.2, 0.3}. The larger the values of α, the more probability mass
is shifted to higher frequencies.

the assumption is a(k) = hα(k), where hα(k) is the generalized
harmonic sum. For example, for the alpha-harmonic binomial
probability function, the assumption function is

a(k) := hα(k)

(
hα(k) = 1 + 1

2α
+ · · · + 1

kα

)

In addition to the harmonic assumption functions, we also inves-
tigate the logarithmic quantification a(k) := ln(k + 1).

Figure 3 illustrates alpha-harmonic binomial probabilities
(symmetric generalization).

The curves show the values of the probability function
Pn=100,p=0.01,α(k). The inside graph shows a zoom for
0 ≤ α ≤ 0.3, and the main graph shows selected curves
for 0 ≤ α ≤ 1. The curves illustrate that, for harmony, the
frequency probabilities of small k are smaller than for inde-
pendence. Harmony shifts the probability mass to the right, to
higher frequencies. For α = 0.2, the shift is moderate, and for
α > 0.3, the curves develop into a bell shape. For total har-
mony (subsumption, α = +∞), the maximum probability is
P(n/2) = ( n

�n/2
)
/2n , because of the binomial theorem and

Pascal’s triangle.
At the early stage of this research, we investigated

asymmetric cases, for example, a1(k) := ln(k + 1) and
a0(n, k) := n − ln(k + 1). It appears to be easier to find closed
forms for asymmetric than for symmetric assumptions. On
the other hand, however, asymmetric assumptions cause a
misbalance between occurrence and non-occurrence, and this
did not lead to useful estimates. Therefore, and because the
experimental study was very convincing for the symmetric
alpha-harmonic probability, at this stage, we did not engage
further with asymmetric variants.

Overall, the definition of the harmonic binomial probability
shows that harmony assumptions make the dependendencies

between event occurrences explicit in the generalized binomial
probability. We conclude this section with a brief look at the
multinomial case.

6.3.1. Multinomial probability
The multinomial probability is a generalization of the bino-
mial probability. This generalization is with respect to a
multi-dimensional space of events. The harmonic assump-
tion functions fits seamlessly into the multinomial probability.
Let pi be the single event probability that event ei occurs,
and the event occurs ki times. For example, let the sequence
s = e1, e3, e1, e7, . . . be given, where k1 = 2 for the two occur-
rences of event e1, and so forth. The multinomial probability
involves the following sequence probability:

P(s) = P(e1, e3, e1, e7, . . .) = pk1
1 · . . . · pkM

M

The harmony-based generalization directly applies to the multi-
nomial probability: we apply the assumption functions ai (ki )

instead of the total counts ki .

P(e1, e3, e1, e7, . . .) = pa1(k1)
1 · . . . · paM (kM )

M

This excursion on the interplay between multinomial prob-
ability and harmony concludes the introduction of harmony
assumptions, sequence probabilities and frequency probabil-
ities. The next part focuses on the analytical verification and
experimental evaluation.

7. ANALYTICAL VERIFICATION

For the analytical verification, we discuss the complexity of har-
mony, the role of harmony assumptions regarding concepts of
IR (TF quantification) and SN’s (e.g. centrality), the relationship
between harmony and PL, and between harmony and Laplace’s
law of succession.

7.1. Complexity

Computational complexity is a major concern when capturing
the dependence between event occurrences. In general, the
computation of the harmonic sum is of linear complexity:
O(n). This is not a problem for small n where a tabling
approach can be applied. If the computation for larger n were
required and computational costs start to be problematic, then
approximations of the harmonic sum can be applied.

Another complexity challenge is the computation of the
normalization factor �. The efficient computation of the nor-
malization constant is a direction of future research (e.g. apply
a harmonic variant of the Beta distribution).

7.2. IR models

This paper was motivated by the observation that the BM25-TF,
tfd/(tfd + Kd), can be related to the harmonic sum of Gaussian
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sums. When exploring the harmonic sum, there was a range of
discoveries. First, this led to the analytical description of what
TF quantifications capture, namely the dependence between
multiple event occurrences expressed via the generalized har-
monic sum. This semantics is more general than the semantics
presented in [25], where it was reported that the BM25-TF is an
assumption between independence and subsumption. This argu-
ment is based on the fact that for independence the sequence
probability is pn and for subsumption it is p1. The harmonic
mean of the exponents is 2/(1/1 + 1/n) = 2 · n/(n + 1).
Because of this property (harmonic mean of indepen-
dence and subsumption), the assumption has been coined
as ‘semi-subsumed’. Given the framework of harmony
assumptions, semi-subsumption corresponds to Gaussian
harmony.

Whereas Gaussian harmony explains the BM25-TF, the
experiments brought another assumption into the spotlight: sqrt-
harmony. This assumption models best the average dependence
in the test datasets. Given this result, the question is whether
sqrt-harmony could potentially outperform the BM25-TF?
There are indicators pointing at cases where the BM25-TF is
suboptimal. The observation is that for long queries, the BM25-
TF appears to be suboptimal, i.e. there are other (less saturating)
TF quantifications that perform better for long queries. This
coincides with our observation that for the IR scenario, there
are hardly any terms (and for the SN scenario, there are hardly
any users) where α > 1. Future publications in the field of IR
will report experiments for TF quantifications based on har-
mony assumptions that are less strong than Gaussian harmony
(BM25-TF), and this potentially leads to new standards of TF
quantifications.

The overall result from an IR model perspective is that har-
mony assumptions explain factors that are so far considered
as heuristics. Therefore, harmony assumptions close the gap
between probability theory, IR models (where log(1 + tfd)

and tfd/(tfd + Kd) are renown TF quantifications), and also
classification (where log-tf is applied [12]).

7.3. Social networks

Whereas in IR, the TF quantification compensates for the inde-
pendence assumption, in SN’s, the number of interactions is
viewed as a function of previously observed interactions. On
the one hand, harmony-based dependence assumptions are a
conclusive solution to close the gap between heuristics and
sound probability theory, but on the other hand, the poten-
tial of applying a harmonic probability theory remains to be
explored in future research. For SN’s in particular, this con-
cerns tasks such as the link (interaction) prediction problem.
It is known that a traditional Poisson process (independence
assumption, thin-tail distribution) does not predict interactions
appropriately. The hypothesis is that when assuming harmony,
it will be possible to devise probabilistic models that perform

at least similarly to state-of-the-art approaches based on PL
distributions or polya-urn models.

Another interesting relationship between SN’s (graphs) and
harmony assumptions comes from a notion of ‘centrality’. The
harmonic distance, i.e.

∑n
i=1 1/ i , where n is the path length

between two connected nodes, has been shown to improve the
identification of central (popular) nodes [57, 58]. The basic
path length can be viewed as assuming independence, whereas
the harmonic distance reflects a dependence assumption.

In more general, graph theory can be utilized to model the
occurrence of events, and the components of the harmonic sum
correspond to the weights associated with the arcs connecting
the nodes.

7.4. PL and harmony

The power-law (PL) is a widely known concepts applied for
describing a sub-exponential distribution, i.e. a distribution
with a tail ‘fatter’ (‘heavier’) than the thin tail of the Poisson
distribution. It is widely understood and accepted that natural
and human-made systems have a fat tail (follow a PL). This
holds, for example, for the distribution of

number of cities with population x , and

number of earthquakes with force x .

To be more precise, it is accepted that the distribution is different
from Poisson. Or in more general, a thin-tail (exponential) dis-
tribution based on an independence assumption does not model
the observed distribution. It is also accepted that PL distribu-
tions are fat-tail distributions. Whether or not a PL distribution
or another distribution best reflects some of the distributions we
observe in nature, is an open question. This is where the concept
of harmony opens up new pathways to be explored.

Regarding the scenarios IR and SN’s, a PL distribution can be
observed for the following distributions:

number of documents
in which term t occurs kt times

number of recipients
with whom user u interacts ku times

Given that the frequencies follow a PL distribution, we consider
PL-based distributions as a candidate model for the experi-
ments. From an analytical point of view very interesting is
that the harmonic binomial model brings forward an explicit,
self-explanatory way for capturing dependencies, whereas
dependencies are not explicit in the PL.

7.5. Laplace’s law of succession

The Laplace law of succession is a model to capture that the
occurrence of an event affects the probability of the event
to occur again. Let mt be the number of past occurrences of

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, 2015



Harmony Assumptions in Information Retrieval and Social Networks 11

event t , and let M be the number of past trials. Then, given kt

new occurrences in K new trials, the single event probability is

P(t) = mt + kt

M + K

In sequence probabilities, the single event probabilities vary.
For example, consider the following probability of a sequence
of event occurrences where one event (e.g. one word) occurs
twice.

PLaplace(t1, t1, t2) = mt1

M
· mt1 + 1

M + 1
· mt2

M

This sequence probability is in contrast to the case of indepen-
dence:

Pindependence(t1, t1, t2) = mt1

M
· mt1

M
· mt2

M
=
(mt1

M

)2 · mt2

M

The Laplace law is also the foundation of polya-urn models
that have been applied in the context of SN’s. Regarding IR,
the Dirichlet compound multinomial distribution [17] has been
proposed to mirror the dependence of term occurrences. The
concept of harmony can be viewed as an alternative to the
Laplace law, where harmony adapts the exponent of the single
event probability rather than the event and trial counts.

8. EXPERIMENTAL EVALUATION

In this section, we firstly elicit the duality between IR and SN,
and this explains the type of event and frequency probabili-
ties to be studied. Then, we describe the data sets employed.
Section 8.3 discusses the distribution of alpha’s and some
details of the experiments. Section 8.4 summarizes the overall
result.

8.1. Duality between IR and SN

For IR, the main event is ‘word occurs in document’. For SN, it is
‘user interacts with recipient’. The respective probabilities and
frequencies are

IR SN
pt = nt/NWords pu = nu/NInteractions
nt : number of times nu : number of times

term t occurs user u interacts
NWords: number of trials NInteractions: number of trials
tfd : within-document ufr : within-recipient

term frequency user frequency
dl: document length: rl: recipient ‘length’:

number of words number of interactions
in document of recipient

Given the single event probabilities pt (pu), we fit α for each
term t (user u). Mathematically, this means that for α, we maxi-
mize the value of the log-likelihood ratio test (Appendix 3). In

a formal way, let �̂ be the likelihood function. Then, the opti-
mization is expressed as finding the maximum-likelihood esti-
mates (mle) of α: {α̂mle} ⊆ {arg max(α)�̂(α | x1, . . . , xn)}. The
xi correspond to the term occurrences in document i (user inter-
actions with recipient i). With regard to binomial and observed
probabilities, we search for the α’s that best satisfy the follow-
ing approximations:

Pdl,pt ,αt (kt ) ≈ Pobs(number of documents where tfd = kt )

Prl,pu ,αu (ku) ≈ Pobs(number of recipients where ufr = ku)

The document length n = dl corresponds to the number of tri-
als, and pt is the probability that term t occurs. For SN, the dual
formulation is with respect to the recipient ‘length’ n = rl, and
pu is the probability that user u interacts.

When computing the divergence between model distribution
and observed distribution, it is useful to transform to the follow-
ing setting:

IR: n = nt and pd = 1/NDocuments
SN: n = nu and precipient = 1/NRecipients

This parameter setting leads to a more efficient computation,
since we consider the same single event probability for each
term (user, respectively). The setting is justified since the
product nt · 1/NDocuments is equal to avgdl · nt/NWords, where
avgdl = NWords/NDocuments.

8.2. Data sets

For the experimental study, we employed two data sets:

Dataset

TREC-2 10 000 terms (pruned)
Meneame 5780 users (pruned)

[59] provides details about the Meneame data set and [60]
describes the TREC-2 data collection. The terms and users
were selected (pruned) to avoid effects from sparse or noisy
data. We excluded terms/users that are very rare (too little evi-
dence) or very frequent (users such as owner or administrator
who interact with many more users than the ordinary user;
terms that occur in most documents). Appendix 2 provides
more details.

8.3. Distribution of alpha’s

Figure 4 shows graphs and tables for illustrating and discussing
the experimental results.

One of the most interesting aspect was to investigate which
alpha’s generate the best fit between the model (the harmonic
binomial probability) and the observed distributions. Figure 4
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FIGURE 4. IR (left) and SN (right). Distribution of alpha’s (top) and log-likelihood ratio (middle and bottom).
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(top) shows the distributions of the alpha’s. The means and stan-
dard variations are

Mean stdv

TREC-2 0.58 0.24
Meneame 0.52 0.18

The averages are close to sqrt-harmony (α = 0.5), marking it to
be the best parameter-free assumption. For many terms (users),
sqrt-harmony reflects the underlying dependence between term
occurrences (user interactions). For IR, 56.5% of the terms, and
for SN, 63.1% of the users, have a dependence that lies in the
interval 0.4 ≤ α ≤ 0.8.

The tables in the middle of Fig. 4 show the numerical val-
ues underlying the graphical illustration at the bottom of the
figure. The comparison is based on the log-likelihood ratio test
(see Section 8.4 for details). For the comparison, we pair PL
vs harmony, independence vs harmony and independence vs
PL. Moreover, we pair independence vs the main parameter-
free harmony assumptions: natural harmony, ln-harmony and
sqrt-harmony.

The comparisons show the proportion of terms and users for
which candidate distribution X is better than distribution Y .
The notion ‘Y=independence’ corresponds to applying the tra-
ditional, independence-based binomial distribution, whereas
‘Y = α-harmony’ refers to the generalized binomial distribution
(α learnt for each term and user). For ‘Y=sqrt-harmony’, the
setting α = 0.5 is applied for all terms (users).

The most remarkable result is the one for ‘independence vs
sqrt-harmony’ (pink line in coloured graphs). For example, for
P-value = 0.1, sqrt-harmony is better for 51.07% of the terms,
whereas independence is better for only 16.75%.

8.4. Conclusions and overall result

The main conclusions are:

(1) For both scenarios, IR and SN, assuming harmony is
more appropriate and versatile than assuming indepen-
dence.

(2) Alpha-harmony outperforms independence; this is
as expected, since there is the tuning parameter α,
whereas independence is parameter-free. Therefore,
we also report the results for parameter-free harmony
assumption, and compare the PL (parameter α) vs
harmony.

(3) Sqrt-harmony outperforms independence; this is evi-
dent from the distribution of alpha’s (left and right plots
at top of Fig. 4): the average is α ≈ 0.5.

(4) Natural harmony is outperformed by independence.
This shows that natural harmony is a too strong depen-
dence assumption, at least for the data sets considered.
The distribution of alpha’s shows that there are only
few terms and users for which such a strong dependence
holds.

(5) The harmonic binomial probability shows about the
same performance as the PL-based probability.

(6) The majority of observed dependencies lies between
independence, α = 0, and natural harmony, α = 1.
For IR, 56.5% of the terms, and for SN, 63.1% of
the users, have a dependence that lies in the interval
0.4 ≤ α ≤ 0.8.

(7) The experiments indicate that there is an underlying law
of harmony in both, IR (term frequencies) and SN (user
frequencies).

The overall result is that harmony assumptions are an appropri-
ate and relatively intuitive framework to model dependencies
between event occurrences.

9. SUMMARY AND OUTLOOK

This paper proposes harmony-based dependence assump-
tions to model the dependence between the occurrences of
an event. Harmony assumptions help to analytically describe
the dependence assumption inherently modelled by ‘heuris-
tic’ parameters (whether or not the parameters are heuristic is
usually a major discussion) in otherwise probabilistic mod-
els. We coin the notion harmony because of the usage of the
harmonic sum as the decaying exponent in a sequence proba-
bility. Whereas for independence, the sequence probability is
p1+1+···+1 = pn , for natural harmony, it is p1+1/2+···+1/n .

The main contributions of this paper are the groundwork and
definition of the main harmony assumptions, and the experi-
mental study of dependencies as they occur in IR and SN. There
is a clear terminology to refer to selected assumptions on the
harmony scale (Table 2). In order of increasing dependence,
the assumptions are

zero harmony (independence, α = 0) ≺
sqrt-harmony (α = 1/2) ≺
natural harmony (α = 1) ≺
ln-harmony (divergent) ≺
Gaussian harmony (convergent) ≺
square harmony (α = 2) ≺
total harmony (subsumption, α = +∞)

There are few, well-defined and parameter-free assumptions
placed between the traditional assumptions independence
and subsumption. Notably, the two TF quantifications log-TF
(ln-harmony) and BM25-TF (Gaussian harmony) frame the
border between divergent and convergent.

The concept of harmony meets the general perception that
event occurrences are bursty. This is the subjective feeling
many people articulate when waiting for an event to occur:
while there are many periods where the event does not occur,
suddenly, there is a period in which the event occurs several
times. The probability that the event occurrences are close to
each other is greater than the traditional, independence-based
binomial probability tells.
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For IR, term frequencies (term occurrences in a document)
greater than one are more likely than if the term occurrences
were independent. The same pattern can be observed for SN,
where user frequencies (user interactions with a recipient)
greater than one are more likely than for independent inter-
actions. Given the framework of harmony assumptions, we
can capture the dependence as alpha values. A single value,
namely the average alpha value, reflects the average depen-
dence. This is a key characteristics of data that can be used
alongside averages, deviations and other values.

A particularly interesting dependence assumption is square-
root harmony (α = 1/2). It lies between independence (α = 0)
and natural harmony (α = 1). For the experiments, this assump-
tion models best the average dependence.

Another interesting assumption is Gaussian harmony,
2 · n/(n + 1). It delivers a series-based explanation of the
BM25-TF, and this closes the long-standing gap between
probability theory and this TF quantification.

Overall, the framework of harmony assumptions supports the
idea to choose an appropriate dependence assumption instead of
the independence assumption and heuristics. While making har-
mony assumptions is less complex than modelling with Markov
chains or Bayesian networks, it is a complementary concept, and
future work will combine it with models that are tailored to cap-
turing explicitly the dependencies between different events.

On the theoretical side, harmony assumptions fit seam-
lessly into existing probability theory, leading to a theory that
is more capable in capturing the dependence between event
occurrences in large-scale applications. On the pragmatic side,
harmony assumptions seem to fit into the real world, explaining
effects we sometimes feel but find difficult to explain, namely
that a rare event suddenly occurs several times.

Returning to the boulders at the entrance of a cave, we still do
not know whether the boulder falls today or another day. But,
what we can model is that if one boulder falls, then, for harmony,
it is more likely that another boulder falls as well, and for dishar-
mony, it is less likely, i.e. the other boulders will hold still. It is
currently hypothetical, but it is potentially possible, that for nat-
ural and human-made systems, characteristic alpha values can
be found. This will help to formulate general laws that can guide
the modelling of systems.
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APPENDIX 1. GAUSSIAN HARMONY

This section contains the formal proof regarding the rela-
tionship between the BM25-TF, 2 · tfd/(tfd + Kd), and the
harmonic sum of Gaussian sums.

We show the proof for the case Kd = 1, i.e. for a document of
average length.

Theorem A.1 (BM25-TF is Gaussian Harmony). The BM25-
TF for the case of a document of average length is equal to the
harmonic sum of Gaussian sums.

2 · n

n + 1
= 1 + 1

1 + 2
+ · · · + 1

1 + 2 + · · · + n
(A.1)

Proof. The proof is via induction. For the proof, we will apply
the common Gaussian summation formula:

G(n) = 1 + 2 + · · · + n = n/2 · (n + 1)

Induction start, n = 1:

2 · 1

1 + 1
= 1

Induction assumption:

2 · n

n + 1
= 1 + 1

1 + 2
+ · · · + 1

1 + 2 + · · · + n

Induction step, n → (n + 1):

2 · (n + 1)

(n + 1) + 1
= 1 + 1

1 + 2
+ · · · + 1

1 + 2 + · · · + (n + 1)

Insertion of induction assumption for n:

2 · (n + 1)

(n + 1) + 1
= 2 · n

n + 1
+ 1

1 + 2 + · · · + (n + 1)

Insertion of Gaussian summation formula:
G(n + 1) = (n + 1)/2 · (n + 2):

2 · (n + 1)

(n + 1) + 1
= 2 · n

n + 1
+ 1

(n + 1)/2 · (n + 2)

Bring to common denominator:

2 · (n + 1) · (n + 1)

(n + 2) · (n + 1)
= 2 · n · (n + 2)

(n + 1) · (n + 2)
+ 2

(n + 1) · (n + 2)

It remains to show the equality of the numerators.

2 · (n + 1) · (n + 1) = 2 · n · (n + 2) + 2

The following rewriting shows the equality:

2 · (n + 1)2 = 2 · (n2 + 2 · n + 1)

APPENDIX 2. TERM OCCURRENCES

Table A1 shows a snapshot of the term statistics used for the
experimental study. For each term, there are four rows. The first
row, labelled with the term (stemming applied), shows the num-
ber of documents in which the term occurs k times. The second
row (labelled tf) shows the number of term occurrences (prod-
uct of k and number of documents in which the term occurs).
For example, the term ‘africa’ (third term), occurs once (k = 1)
in 4584 documents, twice (k = 2) in 1462 documents, etc. The
probability Pobs(1) = 0.0062 is smaller than the Poisson proba-
bility PPoisson,λ(1) = 0.0258. For k ≥ 2, however, the observed
probability is greater than the Poisson probability tells.

The most right column contains the total number of docu-
ments in which the term occurs (for africa, 8533), the total num-
ber of occurrences (for africa, 19 681) and the average occur-
rence (the parameter of the Poisson probability). The average
is λ(t, c) = nLocations(t, c)/ND(c), where ND(c) = 742 611 is
the number of Documents in collection c ≡ TREC-2. Thus, for
africa, λ = 19 681/742 611 = 0.0265.

The pattern of observed and Poisson probabilities illustrates
that for k > 2 the observed probabilities are greater than the
Poisson probability tells.

The pruning selects terms (users) that occur in at least 20 doc-
uments (that interact with at least 20 recipients), and the term
occurs in at least one document more than once (the user inter-
acts with at least one recipient more than once).
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TABLE A1. Term statistics: test collection TREC-2.

k 0 1 2 3 4 5 6 7 8 9 10

act 628 334 64 628 22 914 9963 5534 3500 2640 1840 1405 1061 792 114 277

tf 64 628 45 828 29 889 22 136 17 500 15 840 12 880 11 240 9549 7920 237 410

pobs 0.846 0.0870 0.0309 0.0134 0.0075 0.0047 0.0036 0.0025 0.0019 0.0014 0.0011

Poisson 0.7264 0.2322 0.0371 0.0040 0.0003 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 0.3197

antimis 742 516 86 7 1 1 0 0 0 0 0 0 95

tf 86 14 3 4 0 0 0 0 0 0 107

pobs 1.000 0.0001 <10−4 <10−4 <10−4 0.0 0.0 0.0 0.0 0.0 0.0

Poisson 0.9999 0.0001 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 0.0001

africa 734 078 4584 1462 809 550 345 271 182 137 105 88 8533

tf 4584 2924 2427 2200 1725 1626 1274 1096 945 880 19 681

pobs 0.989 0.0062 0.0020 0.0011 0.0007 0.0005 0.0004 0.0002 0.0002 0.0001 0.0001

Poisson 0.9738 0.0258 0.0003 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 0.0265

control 630 781 69 990 21 259 8836 4444 2747 1625 1113 795 550 471 111 830

tf 69 990 42 518 26 508 17 776 13 735 9750 7791 6360 4950 4710 204 088

pobs 0.849 0.0942 0.0286 0.0119 0.0060 0.0037 0.0022 0.0015 0.0011 0.0007 0.0006

Poisson 0.7597 0.2088 0.0287 0.0026 0.0002 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 0.2748

compan 506 578 103 554 52 147 30 077 17 788 11 254 7519 5204 3631 2793 2066 236 033

tf 103 554 104 294 90 231 71 152 56 270 45 114 36 428 29 048 25 137 20 660 581 888

pobs 0.682 0.1394 0.0702 0.0405 0.0240 0.0152 0.0101 0.0070 0.0049 0.0038 0.0028

Poisson 0.4568 0.3579 0.1402 0.0366 0.0072 0.0011 0.0001 <10−4 <10−4 <10−4 <10−4 0.7836

govern 615 963 60 675 26 725 15 013 8899 5579 3619 2492 1666 1163 817 126 648

tf 60 675 53 450 45 039 35 596 27 895 21 714 17 444 13 328 10 467 8170 293 778

pobs 0.829 0.0817 0.0360 0.0202 0.0120 0.0075 0.0049 0.0034 0.0022 0.0016 0.0011

Poisson 0.6733 0.2663 0.0527 0.0069 0.0007 0.0001 <10−4 <10−4 <10−4 <10−4 <10−4 0.3956

human 710 486 21 608 5664 2145 1039 639 390 219 197 129 95 32 125

tf 21 608 11 328 6435 4156 3195 2340 1533 1576 1161 950 54 282

pobs 0.957 0.0291 0.0076 0.0029 0.0014 0.0009 0.0005 0.0003 0.0003 0.0002 0.0001

Poisson 0.9295 0.0679 0.0025 0.0001 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 0.0731

islam 739 052 2108 665 324 188 103 73 35 23 19 21 3559

tf 2108 1330 972 752 515 438 245 184 171 210 6925

pobs 0.995 0.0028 0.0009 0.0004 0.0003 0.0001 0.0001 <10−4 <10−4 <10−4 <10−4

Poisson 0.9907 0.0092 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 0.0093

medicin 734 560 6117 1012 510 191 97 41 24 31 12 16 8051

tf 6117 2024 1530 764 485 246 168 248 108 160 11 850

pobs 0.989 0.0082 0.0014 0.0007 0.0003 0.0001 0.0001 <10−4 <10−4 <10−4 <10−4

Poisson 0.9842 0.0157 0.0001 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 0.0160

spy 740 614 1309 320 137 107 54 32 17 12 4 5 1997

tf 1309 640 411 428 270 192 119 96 36 50 3551

pobs 0.997 0.0018 0.0004 0.0002 0.0001 0.0001 <10−4 <10−4 <10−4 <10−4 <10−4

Poisson 0.9952 0.0048 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 0.0048
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APPENDIX 3. LIKELIHOOD RATIO TEST

For comparing two distributions regarding their fit to a given
dataset, we use the likelihood ratio test as described in [61]. The
idea behind this test is to analyse the differences (point-wise)
between the log-likelihoods of the data-points within the two
distributions (the sum over k = 1, . . . , 10 of log PX(k)/PY(k)).

The test hypothesis is that the sum of these differences is close
to zero. If the probability (the P-value) of observing the actual
difference is small, then one can assume that the sign of the
differences indicates which one of the two distributions is a bet-
ter fit of the data. The tables in Fig. 4 indicate for given P-values
the number of cases where a distribution X is better than Y.
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