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Abstract. The class of H-free graphs has bounded clique-width if and only if H is an induced
subgraph of the 4-vertex path P4. We study the (un)boundedness of the clique-width of graph
classes defined by two forbidden induced subgraphs H1 and H2. Prior to our study it was not
known whether the number of open cases was finite. We provide a positive answer to this question.
To reduce the number of open cases we determine new graph classes of bounded clique-width
and new graph classes of unbounded clique-width. For obtaining the latter results we first present
a new, generic construction for graph classes of unbounded clique-width. Our results settle the
boundedness or unboundedness of the clique-width of the class of (H1, H2)-free graphs
(i) for all pairs (H1, H2), both of which are connected, except two non-equivalent cases, and

(ii) for all pairs (H1, H2), at least one of which is not connected, except 11 non-equivalent cases.
We also consider classes characterized by forbidding a finite family of graphs {H1, . . . , Hp} as
subgraphs, minors and topological minors, respectively, and completely determine which of these
classes have bounded clique-width. Finally, we show algorithmic consequences of our results for
the graph colouring problem restricted to (H1, H2)-free graphs.
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1 Introduction

Clique-width is a well-known graph parameter studied both in a structural and in an algorithmic
context; we refer to the surveys of Gurski [2] and Kamiński, Lozin and Milanič [3] for an in-depth
study of the properties of clique-width. However, our understanding of clique-width is still very
limited. For example, no polynomial-time algorithms are known for computing the clique-width
of very restricted graph classes, such as unit interval graphs, or for deciding whether a graph has
clique-width at most c for any fixed c ≥ 4 (as an aside, we note that such an algorithm does exist for
c = 3 [4]).

In order to get more structural insight into clique-width, we are interested in determining whether
the clique-width of some given class of graphs is bounded, that is, whether there exists a con-
stant c such that every graph from the class has clique-width at most c (our secondary motiva-
tion is algorithmic, as we will explain in detail later). The graph classes that we consider consist
of graphs in which one or more specified graphs are forbidden as a “pattern”. In particular, we
consider classes of graphs that contain no graph from some specified family {H1, . . . ,Hp} as an
induced subgraph; such graphs are said to be (H1, . . . ,Hp)-free. Our research is well embedded
in the literature, as there are many papers that determine the boundedness or unboundedness of
the clique-width of graph classes characterized by one or more forbidden induced subgraphs; see
e.g. [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24].
? An extended abstract of this paper appeared in the proceedings of CIAC 2015 [1]. The research in this paper
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As we show later, it is not difficult to verify that the class of H-free graphs has bounded clique-
width if and only if H is an induced subgraph of the 4-vertex path P4 (note that P4-free graphs are
also known as cographs, which are the graphs obtainable from the single-vertex graph K1 by taking
disjoint unions and complements). Hence, it is natural to consider the following problem:

For which pairs (H1, H2) does the class of (H1, H2)-free graphs have bounded clique-width?

In this paper we address this question by narrowing the gap between the known and open cases
significantly; in particular we show that the number of open cases is finite (i.e. there are only finitely
many cases for which we do not know whether or not the clique-width is bounded). Collecting all
known results for (H1, H2)-free graphs from various papers and showing that the number of open
cases is finite was one of the main goals of this paper. We emphasize, however, that the underlying
research question is: what kind of properties of a graph class ensure that its clique-width is bounded?
Our paper is to be interpreted as a further step towards this direction, and in our research project
(see also [7,8,17,19]) we aim to develop general techniques for attacking a number of the open cases
simultaneously.

Algorithmic Motivation. For problems that are NP-complete in general, one naturally seeks to find
subclasses of graphs on which they are tractable, and graph classes of bounded clique-width have been
studied extensively for this purpose, as we discuss below.

Courcelle, Makowsky and Rotics [25] showed that all MSO1 graph problems, which are problems
definable in Monadic Second Order Logic using quantifiers on vertices but not on edges, can be solved
in linear time on graphs with clique-width at most c, provided that a c-expression of the input graph
is given. Later, Espelage, Gurski and Wanke [26], Kobler and Rotics [27] and Rao [28] proved the
same result for many non-MSO1 graph problems. Although computing the clique-width of a given
graph is NP-hard, as shown by Fellows, Rosamond, Rotics and Szeider [29], it is possible to find an
(8c − 1)-expression for any n-vertex graph with clique-width at most c in cubic time. This is a result
of Oum [30] after a similar result (with a worse bound and running time) had already been shown
by Oum and Seymour [31]. Hence, the NP-complete problems considered in the aforementioned
papers [25,26,27,28] are all polynomial-time solvable on any graph class of bounded clique-width
even if no c-expression of the input graph is given.

As a consequence of the above, when solving an NP-complete problem on some graph class G,
it is natural to try to determine first whether the clique-width of G is bounded. In particular this is
the case if we aim to determine the computational complexity of some NP-complete problem when
restricted to graph classes characterized by some common type of property. This property may be
the absence of a family of forbidden induced subgraphs H1, . . . ,Hp and we may want to classify for
which families of graphs H1, . . . ,Hp the problem is still NP-hard and for which ones it becomes
polynomial-time solvable (in order to increase our understanding of the hardness of the problem in
general). We give examples later.

Our Results. In Section 2 we state a number of basic results on clique-width and two results on
H-free bipartite graphs that we showed in a very recent paper [19]; we need these results for proving
our new results. We then identify a number of new classes of (H1, H2)-free graphs of bounded
clique-width (Section 3) and unbounded clique-width (Section 4). In particular, the new unbounded
cases are obtained from a new, general construction for graph classes of unbounded clique-width. In
Section 5, we first observe for which graphs H1 the class of H1-free graphs has bounded clique-width.
We then present our main theorem, which gives a summary of our current knowledge of those pairs
(H1, H2) for which the class of (H1, H2)-free graphs has bounded clique-width and unbounded clique-
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width, respectively.1 In this way we are able to narrow the gap to 13 open cases (up to some natural
equivalence relation, which we explain later); when we only consider pairs (H1, H2) of connected
graphs the number of non-equivalent open cases is only two. In order to present our summary, we
will need several results from the papers listed above. We will also need these results in Section 6,
where we consider graph classes characterized by forbidding a finite family of graphs {H1, . . . ,Hp}
as subgraphs, minors and topological minors, respectively. For these containment relations we are able
to completely determine which of these classes have bounded clique-width.

Algorithmic Consequences. Our results are of interest for any NP-complete problem that is solvable
in polynomial time on graph classes of bounded clique-width. In Section 7 we give a concrete
application of our results by considering the well-known COLOURING problem, which is that of
testing whether a graph can be coloured with at most k colours for some given integer k and which
is solvable in polynomial time on any graph class of bounded clique-width [27]. The complexity of
COLOURING has been studied extensively for (H1, H2)-free graphs [16,18,34,35,36,37], but a full
classification is still far from being settled. Many of the polynomial-time results follow directly from
bounding the clique-width in such classes. As such this forms a direct motivation for our research.
Another example for which our study might be of interest is the LIST k-COLOURING problem (another
problem mentioned in the paper of Kobler and Rotics [27]). The complexity of this problem was
recently investigated for (H1, H2)-free graphs when H1 is a path and H2 is a cycle [38].

Related Work. We finish this section by briefly discussing some related results.
First, a graph class G has power-bounded clique-width if there is a constant r so that the class

consisting of all r-th powers of all graphs from G has bounded clique-width. Recently, Bonomo,
Grippo, Milanič and Safe [6] determined all pairs of connected graphs H1, H2 for which the class of
(H1, H2)-free graphs has power-bounded clique-width. If a graph class has bounded clique-width, it
has power-bounded clique-width. However, the reverse implication does not hold in general. The latter
can be seen as follows. Bonomo et al. [6] showed that the class of H-free graphs has power-bounded
clique-width if and only if H is a linear forest (recall that such a class has bounded clique-width if
and only if H is an induced subgraph of P4). Their classification for connected graphs H1, H2 is the
following. Let S1,i,j be the graph obtained from a 4-vertex star by subdividing one leg i− 1 times
and another leg j − 1 times. Let T1,i,j be the line graph of S1,i,j . Then the class of (H1, H2)-free
graphs has power-bounded clique-width if and only if one of the following two cases applies: (i) one
of H1, H2 is a path or (ii) one of H1, H2 is isomorphic to S1,i,j for some i, j ≥ 1 and the other one is
isomorphic to T1,i′,j′ for some i′, j′ ≥ 1. In particular, the classes of power-unbounded clique-width
were already known to have unbounded clique-width.

Second, Kratsch and Schweitzer [39] initiated a study into the computational complexity of the
GRAPH ISOMORPHISM problem (GI) for graph classes defined by two forbidden induced subgraphs.
The exact number of open cases is still not known, but Schweitzer [40] very recently proved that
this number is finite. There are similarities between classifying the boundedness of clique-width and
solving GI for classes of graphs characterized by one or more forbidden induced subgraphs. This was
noted by Schweitzer [40], who proved that any graph class that allows a so-called simple path encoding
has unbounded clique-width. Indeed, a common technique (see e.g. [3]) for showing that a class of
graphs has unbounded clique-width relies on showing that it contains simple path encodings of walls
or of graphs in some other specific graph class known to have unbounded clique-width. Furthermore,
Grohe and Schweitzer [41] recently proved that GRAPH ISOMORPHISM is polynomial-time solvable
on graphs of bounded clique-width. For H-free graphs, GI is polynomial-time solvable if H is an

1 Before finding the combinatorial proof of our main theorem we first obtained a computer-assisted proof using
Sage [32] and the Information System on Graph Classes and their Inclusions [33] (which keeps a record of
classes for which boundedness or unboundedness of clique-width is known). In particular, we would like to
thank Nathann Cohen and Ernst de Ridder for their help.
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induced subgraph of P4 [42] and GI-complete otherwise [39]. Hence, if only one induced subgraph is
forbidden, the dichotomy classifications for clique-width and GI are identical.

Finally, similar research to ours has also been done for other variants of clique-width, such as linear
clique-width [43]. Moreover, clique-width is also closely related to other graph width parameters.
For example every graph class of bounded treewidth has bounded clique-width, but the reverse is not
true [44]. Also, for any graph class, having bounded clique-width is equivalent to having bounded
rank-width [31] and to having bounded NLC-width [45].

2 Preliminaries

Below we define the graph terminology used throughout our paper. For any undefined terminology we
refer to Diestel [46].

Let G be a graph. The set N(u) = {v ∈ V (G) | uv ∈ E(G)} is the (open) neighbourhood of
u ∈ V (G) and N [u] = N(u)∪{u} is the closed neighbourhood of u ∈ V (G). The degree of a vertex
in a graph is the size of its neighbourhood. The maximum degree of a graph is the maximum vertex
degree. For a subset S ⊆ V (G), we let G[S] denote the subgraph of G induced by S, which has vertex
set S and edge set {uv | u, v ∈ S, uv ∈ E(G)}. If S = {s1, . . . , sr} then, to simplify notation, we
may also write G[s1, . . . , sr] instead of G[{s1, . . . , sr}]. Let H be another graph. We write H ⊆i G
to indicate that H is an induced subgraph of G.

Let {H1, . . . ,Hp} be a set of graphs. We say that a graph G is (H1, . . . ,Hp)-free if G has no
induced subgraph isomorphic to a graph in {H1, . . . ,Hp}. If p = 1, we may write H1-free instead
of (H1)-free. The disjoint union G + H of two vertex-disjoint graphs G and H is the graph with
vertex set V (G)∪V (H) and edge set E(G)∪E(H). We denote the disjoint union of r vertex-disjoint
copies of G by rG.

For positive integers s and t, the Ramsey number R(s, t) is the smallest number n such that all
graphs on n vertices contain an independent set of size s or a clique of size t. Ramsey’s Theorem [47]
states that such a number exists for all positive integers s and t.

The clique-width of a graph G, denoted cw(G), is the minimum number of labels needed to
construct G by using the following four operations:

1. creating a new graph consisting of a single vertex v with label i (denoted by i(v));
2. taking the disjoint union of two labelled graphs G1 and G2 (denoted by G1 ⊕G2);
3. joining each vertex with label i to each vertex with label j (i 6= j, denoted by ηi,j);
4. renaming label i to j (denoted by ρi→j).

An algebraic term that represents such a construction of G and uses at most k labels is said to be a
k-expression of G (i.e. the clique-width of G is the minimum k for which G has a k-expression). For
instance, an induced path on four consecutive vertices a, b, c, d has clique-width equal to 3, and the
following 3-expression can be used to construct it:

η3,2(3(d)⊕ ρ3→2(ρ2→1(η3,2(3(c)⊕ η2,1(2(b)⊕ 1(a)))))).

Alternatively, any k-expression for a graph G can be represented by a rooted tree, where the leaves
correspond to the operations of vertex creation and the internal nodes correspond to the other three
operations. The rooted tree representing the above k-expression is depicted in Fig. 1. A class of
graphs G has bounded clique-width if there is a constant c such that the clique-width of every graph
in G is at most c; otherwise the clique-width of G is unbounded.

Let G be a graph. The complement of G, denoted by G, has vertex set V (G) = V (G) and an edge
between two distinct vertices if and only if these vertices are not adjacent in G.

LetG be a graph. We define the following five operations. The contraction of an edge uv removes u
and v from G, and replaces them by a new vertex made adjacent to precisely those vertices that were
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⊕

3(d)

ρ3→2 ρ2→1 η3,2 ⊕

3(c)

η2,1 ⊕

2(b)

1(a)η3,2

Fig. 1: The rooted tree representing a 3-expression for P4.

adjacent to u or v in G. By definition, edge contractions create neither self-loops nor multiple edges.
The subdivision of an edge uv replaces uv by a new vertex w with edges uw and vw. Let u ∈ V (G)
be a vertex that has exactly two neighbours v, w, and moreover let v and w be non-adjacent. The vertex
dissolution of u removes u and adds the edge vw. For an induced subgraph G′ ⊆i G, the subgraph
complementation operation (acting on G with respect to G′) replaces every edge present in G′ by
a non-edge, and vice versa. Similarly, for two disjoint vertex subsets X and Y in G, the bipartite
complementation operation with respect to X and Y acts on G by replacing every edge with one
end-vertex in X and the other one in Y by a non-edge and vice versa.

We now state some useful facts for dealing with clique-width. We will use these facts throughout
the paper. Let k ≥ 0 be a constant and let γ be some graph operation. We say that a graph class G′ is
(k, γ)-obtained from a graph class G if the following two conditions hold:

(i) every graph in G′ is obtained from a graph in G by performing γ at most k times, and
(ii) for every G ∈ G there exists at least one graph in G′ obtained from G by performing γ at most k

times.

If we do not impose a finite upper bound k on the number of applications of γ then we write that G′ is
(∞, γ)-obtained from G.

We say that γ preserves boundedness of clique-width if for any finite constant k and any graph
class G, any graph class G′ that is (k, γ)-obtained from G has bounded clique-width if and only if G
has bounded clique-width.

Fact 1. Vertex deletion preserves boundedness of clique-width [21,48].
Fact 2. Subgraph complementation preserves boundedness of clique-width [3].
Fact 3. Bipartite complementation preserves boundedness of clique-width [3].
Fact 4. For a class of graphs G of bounded maximum degree, let G′ be a class of graphs that is

(∞, es)-obtained from G, where es is the edge subdivision operation. Then G has bounded
clique-width if and only if G′ has bounded clique-width [3].

It is easy to show that the condition on the maximum degree in Fact 4 is necessary for the reverse
(i.e. the “only if”) direction: for a graph G of arbitrarily large clique-width, take a clique K (which
has clique-width at most 2) with vertex set V (K) = V (G), apply an edge subdivision on an edge uv
in K if and only if uv is not an edge in G and, in order to obtain G from this graph, remove any vertex
introduced by an edge subdivision (this does not increase the clique-width). As another aside, note that
the reverse direction of Fact 4 also holds if we replace “edge subdivisions” by “edge contractions”.2

It was an open problem [2] whether the condition on maximum degree was also necessary in this
case. This was recently solved by Courcelle [50], who showed that if G is the class of graphs of

2 Combine the fact that a class of graphs of bounded maximum degree has bounded clique-width if and only if it
has bounded treewidth [49] with the well-known fact that edge contractions do not increase the treewidth of a
graph.
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clique-width 3 and G′ is the class of graphs obtainable from graphs in G by applying one or more edge
contraction operations then G′ has unbounded clique-width.

We also use a number of other elementary results on the clique-width of graphs. The first one is
well known (see e.g. [48]) and straightforward to check.

Lemma 1. The clique-width of a graph with maximum degree at most 2 is at most 4.

We also need the well-known notion of a wall. We do not formally define this notion, but instead
refer to Fig. 2, in which three examples of walls of different height are depicted (see e.g. [51] for
a formal definition). The class of walls is well known to have unbounded clique-width; see for
example [3]. (Note that walls have maximum degree at most 3, hence the degree bound in Lemma 1 is
tight.)

Fig. 2: Walls of height 2, 3, and 4, respectively.

A k-subdivided wall is a graph obtained from a wall after subdividing each edge exactly k times
for some constant k ≥ 0.

The following lemma is well known and follows from combining Fact 4 with the aforementioned
fact that walls have maximum degree at most 3 and unbounded clique-width.

Lemma 2 ([22]). For any constant k ≥ 0, the class of k-subdivided walls has unbounded clique-
width.

For r ≥ 1, the graphs Cr,Kr, Pr denote the cycle, complete graph and path on r vertices,
respectively, and the graph K1,r denotes the star on r + 1 vertices. The graph K1,3 is also called
the claw. For 1 ≤ h ≤ i ≤ j, let Si,j,k denote the tree that has only one vertex x of degree 3 and
that has exactly three leaves, which are of distance i, j and k from x, respectively. Observe that
S1,1,1 = K1,3. A graph Si,j,k is said to be a subdivided claw. We let S be the class of graphs each
connected component of which is either a subdivided claw or a path.

Like Lemma 1, the following lemma is also well known and follows from Lemma 2, by choosing
appropriate values for k.

Lemma 3 ([22]). Let {H1, . . . ,Hp} be a finite set of graphs. If Hi /∈ S for i = 1, . . . , p then the
class of (H1, . . . ,Hp)-free graphs has unbounded clique-width.

We say that G is bipartite if its vertex set can be partitioned into two (possibly empty) independent
sets B and W . We say that (B,W ) is a bipartition of G. Let H be a bipartite graph with a fixed
partition (BH ,WH). A bipartite graph G is strongly H-free if no bipartition of G contains an induced
copy of H in a way that respects the bipartition of H (as we do not need this notion in this paper,
we refer to [19] for a more formal discussion of it) Lozin and Volz [23] characterized all bipartite
graphs H for which the class of strongly H-free bipartite graphs has bounded clique-width. Recently,
we proved a similar characterization for H-free bipartite graphs; we will use this result in Section 5.
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Lemma 4 ([19]). Let H be a graph. The class of H-free bipartite graphs has bounded clique-width if
and only if one of the following cases holds:

– H = sP1 for some s ≥ 1
– H ⊆i K1,3 + 3P1

– H ⊆i K1,3 + P2

– H ⊆i P1 + S1,1,3

– H ⊆i S1,2,3.

From the same paper we will also need the following lemma.

Lemma 5 ([19]). Let H ∈ S . Then H is (2P1+2P2, 2P1+P4, 4P1+P2, 3P2, 2P3)-free if and only
if H = sP1 for some integer s ≥ 1 or H is an induced subgraph of one of the graphs in {K1,3 +3P1,
K1,3 + P2, P1 + S1,1,3, S1,2,3}.

We say that a graph G is complete multipartite if V (G) can be partitioned into k independent sets
V1, . . . , Vk for some integer k, such that two vertices are adjacent if and only if they belong to two
different sets Vi and Vj . The next result is due to Olariu [52] (the graph P1 + P3 is also called the
paw).

Lemma 6 ([52]). Every connected (P1 + P3)-free graph is either complete multipartite or K3-free.

Every complete multipartite graph has clique-width at most 2. Also, the definition of clique-width
directly implies that the clique-width of any graph is equal to the maximum clique-width of its
connected components. Hence, Lemma 6 immediately implies the following (well-known) result.

Lemma 7. For any graph H , the class of (P1 + P3, H)-free graphs has bounded clique-width if and
only if the class of (K3, H)-free graphs has bounded clique-width.

Kratsch and Schweitzer [39] proved that the GRAPH ISOMORPHISM problem is GRAPH
ISOMORPHISM-complete for the class of (K4, P1 + P4)-free graphs. It is a straightforward exer-
cise to simplify their construction and use analogous arguments to prove that the class of (K4,
P1 + P4)-free graphs has unbounded clique-width. Recall that Schweitzer [40] proved that any graph
class that allows a so-called simple path encoding has unbounded clique-width, implying this result as
a direct consequence.

Lemma 8 ([40]). The class of (K4, P1 + P4)-free graphs has unbounded clique-width.

3 New Classes of Bounded Clique-width

In this section we identify two new graph classes that have bounded clique-width, namely the classes
of (P1 + P3, P1 + S1,1,2)-free graphs and (P1 + P3,K1,3 + 3P1)-free graphs.

We first prove that the class of (P1 + P3, P1 + S1,1,2)-free graphs has bounded clique-width. To
do so we use a similar approach to that used by Dabrowski, Lozin, Raman and Ries [18] to prove that
the classes of (K3, S1,1,3)-free and (K3,K1,3 + P2)-free graphs have bounded clique-width.

Theorem 1. The class of (P1 + P3, P1 + S1,1,2)-free graphs has bounded clique-width.

Proof. Let G be a (P1 + P3, P1 + S1,1,2)-free graph. By Lemma 7 we may assume G is (K3,
P1 + S1,1,2)-free. Without loss of generality, we may also assume that G is connected (as otherwise
we could consider each connected component of G separately). If G is bipartite, then G has bounded
clique-width by Lemma 4. For the remainder of the proof we assume that G is not bipartite, that is, G
contains an induced odd cycle C = v1v2 · · · vkv1. Because G is K3-free, k ≥ 5.
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First, suppose that k ≥ 7. We claim that G = C. Indeed, suppose not. Since G is connected, G
must have a vertex x /∈ V (C) that is adjacent to a vertex ofC. SinceG isK3-free, x cannot be adjacent
to any two consecutive vertices of the cycle C. Since C is an odd cycle, x must therefore have two
consecutive non-neighbours on the cycle. Without loss of generality we assume that x is adjacent to v1
and non-adjacent to vk−1 and vk. Then x must be adjacent to v4, otherwise G[v1, x, v2, vk, vk−1, v4]
would be isomorphic to P1 + S1,1,2. Now x cannot be adjacent to v3 or v5, since G is K3-free.
However, then G[v1, x, vk, v2, v3, v5] would be a P1+S1,1,2, which is a contradiction. Hence, G = C
and as such has clique-width at most 4 by Lemma 1.

From now on we assume that k = 5. Every vertex not on C has at most two neighbours on the
cycle, and if it has two, then these neighbours on C cannot be consecutive vertices of C (since G is
K3-free). We now partition the vertices of G not in C into sets, depending on their neighbourhood
in C. We let X denote the vertices with no neighbours on the cycle. We let Vi denote the set of all
vertices not on the cycle C that are adjacent to both vi−1 and vi+1, where subscripts are interpreted
modulo 5. We let Wi denote the set of all vertices that are adjacent to vi but to no other vertices of C.
We say that a set Vi or Wi is large if it contains at least two vertices, otherwise we say that it is small.
We say that a set in {Vi,Wi} and a set in {Vj ,Wj} are consecutive if vi and vj are consecutive vertices
on C, otherwise, we say that they are opposite. Note that each Vi and each Wi is an independent set,
since G is K3-free. We now investigate the possible adjacencies between vertices of these sets through
a series of eight claims.

1. X is an independent set and every vertex in X is adjacent to every vertex in Vi and Wi. Suppose
there is a vertex x ∈ X . Since G is connected, there must be a vertex y 6∈ V (C) with a neighbour
on the cycle. We may assume without loss of generality that y is adjacent to v1, but not to v2, v3
or v5. Then x must be adjacent to y, otherwise G[v1, y, v5, v2, v3, x] would be isomorphic to
P1 + S1,1,2. Hence every vertex in X is adjacent to every vertex in Vi and Wi for all i. Because
of the fact that if X is non-empty then some Vi or Wi must also be non-empty and the fact that G
is K3-free, X must be an independent set.

2. If Vi and Vj are opposite then no vertex of Vi is adjacent to a vertex of Vj . This follows from the
fact that any two such vertices have a common neighbour on C and the fact that G is K3-free.

3. If Vi and Vj are consecutive and Vj is large then every vertex of Vi is adjacent to every vertex
of Vj . Without loss of generality, let i = 1, j = 2. Suppose y ∈ V1 is not adjacent to z1, z2 ∈ V2.
Then G[v1, z1, z2, v2, y, v4] is a P1 + S1,1,2. Now suppose that y is adjacent to z1, but not to z2,
then G[y, v2, z1, v5, v4, z2] is isomorphic to P1 + S1,1,2, which is a contradiction.

4. If Vi and Wj are consecutive then one of them must be empty. Suppose, for contradiction, that
there exist vertices x ∈ V1 and y ∈W2. Then x and y are non-adjacent, as G is K3-free. However,
then G[v5, v1, x, v4, v3, y] is isomorphic to P1 + S1,1,2, which is a contradiction.

5. If Vi and Wj are opposite and Wj is large then no vertex of Vi has a neighbour in Wj . Let y ∈ V1
and z1, z2 ∈ W3. If y is adjacent to both z1 and z2, then G[y, z1, z2, v2, v1, v4] is isomorphic to
P1 + S1,1,2. So y is adjacent to at most one vertex of W3, say y is adjacent to z1, but not to z2.
Then G[v5, v1, v4, y, z1, z2] is isomorphic to P1 + S1,1,2, which is a contradiction.

6. Every vertex in Vi has at most one non-neighbour in Wi and vice versa. If y1 ∈ V1 has two non-
neighbours z1, z2 ∈W1 then the graphG[v1, z1, z2, v2, y1, v4] is isomorphic to P1+S1,1,2, which
is a contradiction. If z1 ∈W1 has two non-neighbours y1, y2 ∈ V1 then G[v2, y1, y2, v1, z1, v4] is
isomorphic to P1 + S1,1,2, which is again a contradiction.

7. If Wi and Wj are consecutive and Wj is large then Wi is empty. Without loss of general-
ity, let i = 1 and j = 2. Suppose, for contradiction, that y ∈ W1 and z1, z2 ∈ W2. If y
is adjacent to both z1 and z2 then G[y, z1, z2, v1, v5, v3] is isomorphic to P1 + S1,1,2. With-
out loss of generality, we therefore assume that y is not adjacent to z1. If y is not adjacent
to z2 then G[v2, z1, z2, v1, y, v4] is isomorphic to P1 + S1,1,2. If y is adjacent to z2, then
G[v2, v3, z1, z2, y, v5] is isomorphic to P1 + S1,1,2. Hence in all three cases we have a con-
tradiction.
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8. If Wi and Wj are opposite then every vertex of Wi must be adjacent to every vertex of Wj .
Without loss of generality, let i = 1, j = 3, x ∈ W1, and y ∈ W3. If x and y are not adjacent,
then G[v1, v2, x, v5, v4, y] is isomorphic to P1 + S1,1,2, which is not possible.

We now do as follows. First, we remove the vertices of C and all small sets Vi or Wi if they exist.
In this way we remove at most 5+5+5 = 15 vertices. Hence,G has bounded clique-width if and only
if the resulting graph G′ has bounded clique-width, by Fact 1. We then consider the remaining sets
X,Vi and Wi in G′. We complement the edges between the vertices in X and the vertices not in X .
If Vi and Vj are consecutive, we complement the edges between them. If Wi and Wj are opposite,
we complement the edges between them. Finally, for any pair Vi and Wi, we complement the edges
between them. Then G′ has bounded clique-width if and only if the resulting graph G∗ has bounded
clique-width, by Fact 3. If two vertices are adjacent in G∗, then they must be members of some Vi
and Wi, respectively. By construction, G∗[Vi ∪Wi] is a (not necessarily perfect) matching. Thus G∗

has clique-width at most 2, completing the proof. ut

Next, we prove that the class of (P1 + P3,K1,3 + 3P1)-free graphs has bounded clique-width. To
do so we first prove Lemma 9, which says that the class of (P1 + P3,K1,3 + 2P1)-free graphs has
bounded clique-width. We then use this result to prove Theorem 2, which says that the larger class of
(P1 + P3,K1,3 + 3P1)-free graphs also has bounded clique-width.

Lemma 9. The class of (P1 + P3,K1,3 + 2P1)-free graphs has bounded clique-width.

Proof. Let G be a (P1 + P3,K1,3 + 2P1)-free graph. By Lemma 7, we may assume G is (K3,
K1,3 + 2P1)-free. Let x be an arbitrary vertex in G. Let N1 = N(x) and N2 = V (G) \ N [x].
Since G is K3-free, N1 must be an independent set. Since G is (K1,3 + 2P1)-free, G[N2] must be
(K1,3 + P1)-free. Then G[N2] must have bounded clique-width by Theorem 1.

Suppose that |N1| ≤ 2. Then we delete x and the vertices of N1 and obtain a graph of bounded
clique-width, namely G[N2]. By Fact 1, we find that G also has bounded clique-width. Hence we may
assume that |N1| ≥ 3.

We prove the following claim.

Claim 1. Let S ⊆ N2 with |S| ≤ k for some k. If G[N2 \ S] is complete bipartite, then the clique-
width of G is bounded by a function of k. In particular, this includes the case where G[N2 \ S] is an
independent set.

To prove Claim 1, suppose that G[N2 \ S] is complete bipartite. No vertex in N1 has a neighbour in
both partition classes of G[N2 \ S], due to the fact that G is K3-free. Because N1 is an independent
set, this means that G[N1 ∪ (N2 \ S)] is bipartite, in addition to being (K3,K1,3 + 2P1)-free. Hence,
G[N1 ∪ (N2 \ S)] has bounded clique-width by Lemma 4. Then by Fact 1, G = G[N1 ∪ (N2 \ S) ∪
S ∪ {x}] has clique-width bounded by some function of |S|. This proves Claim 1.

We will use Claim 1 later in the proof and now proceed as follows. We fix three arbitrary vertices
x1, x2, x3 ∈ N1; such vertices exist because |N1| ≥ 3. Let y1, y2, y3 be three arbitrary vertices of N2.
We will show that at least one of them is adjacent to at least one of x1, x2, x3. Because G is K3-free,
two of y1, y2, y3 are not pairwise adjacent, say y1y2 /∈ E(G). If both y1 and y2 have no neighbour
in {x1, x2, x3}, then G[x, x1, x2, x3, y1, y2] is isomorphic to K1,3 + 2P1, a contradiction. Hence, all
vertices of N2 except at most two have at least one neighbour in {x1, x2, x3}. Then, by Fact 1, we may
assume without loss of generality that all vertices of N2 have at least one neighbour in {x1, x2, x3}.

Let A consist of those vertices of N2 that are adjacent to x1. Let B consist of those vertices of N2

that are adjacent to x2 but not to x1. Let C = N2 \ (A ∪B). Note that every vertex in C is adjacent
to x3 but not to x1 or x2. Moreover, A,B,C are three independent sets due to the fact that G is
K3-free. If C contains at least three vertices, say c1, c2, c3, then G[x3, c1, c2, c3, x1, x2] is isomorphic
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to K1,3 + 2P1. Thus |C| ≤ 2. If |A| ≤ 7, then |A ∪ C| ≤ 9. Moreover, G[N2 \ (A ∪ C)] = G[B] is
complete bipartite, because B is an independent set. Hence, we may apply Claim 1. From now on we
assume that |A| ≥ 8, and similarly, that |B| ≥ 8.

At least one vertex of any pair from B must be adjacent to at least one vertex of any triple from A;
otherwise these five vertices, together with x1, induce a subgraph isomorphic to K1,3 + 2P1, since A
and B are independent sets and x1 is adjacent to all vertices of A and to none of B. Fix three vertices
a1, a2, a3 ∈ A. Then at most one vertex of B has no neighbours in {a1, a2, a3}. Because |B| ≥ 8,
this means that at least one of a1, a2, a3 must have at least three neighbours in B. By repeating this
argument with different choices of a1, a2, a3, we find that all but at most two vertices in A have at
least three neighbours in B. So, at least six vertices in A have at least three neighbours in B, and vice
versa.

Let a ∈ A be adjacent to at least three vertices b1, b2, b3 of B. If a is not adjacent to some b4 ∈ B,
then G[a1, b1, b2, b3, b4, x] is isomorphic to K1,3 + 2P1. Hence, every vertex of A with at least three
neighbours in B is adjacent to all vertices of B. By reversing the roles of A and B, we find that every
vertex in B with at least three neighbours in A must be adjacent to all vertices of A. Because there
are at least six vertices in A with at least three neighbours in B, and vice versa, we conclude that all
vertices of A are adjacent to all vertices of B, that is, G[N2 \ C] = G[A ∪B] is complete bipartite.
Because |C| ≤ 2, we may apply Claim 1 to complete the proof. ut

Theorem 2. The class of (P1 + P3,K1,3 + 3P1)-free graphs has bounded clique-width.

Proof. Let G be a (P1 + P3,K1,3 + 3P1)-free graph. By Lemma 7, we may assume G is (K3,
K1,3 + 3P1)-free. Suppose that G contains a vertex of degree at most 18. If we remove this vertex
and its neighbours, we obtain a (K3,K1,3 + 2P1)-free graph, which has bounded clique-width by
Lemma 9. Hence, G also has bounded clique-width, by Fact 1. From now on we assume that G has
minimum degree at least 19 (the reason for choosing this number becomes clear later).

Let x ∈ V (G). Let N1 = N(x) and N2 = V (G) \ N [x]. Note that |N1| ≥ 19 and fix three
arbitrarily-chosen vertices x1, x2, x3 ∈ N1. Let Y be the set of vertices in N2 that have no neighbour
in {x1, x2, x3}. We will need the following claim.

Claim 1. |Y | ≤ 5.

We prove Claim 1 as follows. Suppose that there are three vertices y1, y2, y3 ∈ N2 that are pairwise
non-adjacent. Then at least one of y1, y2, y3 must be adjacent to at least one of x1, x2, x3, as otherwise
G[x, x1, x2, x3, y1, y2, y3] would be isomorphic toK1,3+3P1. HenceG[Y ] is 3P1-free. BecauseG[Y ]
is also K3-free, we apply Ramsey’s Theorem and find that |Y | ≤ R(3, 3) − 1 = 6 − 1 = 5. This
proves Claim 1.

We proceed as follows. Let N ′2 = N2 \Y . Let A consist of those vertices of N ′2 that are adjacent to x1.
LetB consist of those vertices ofN ′2 that are adjacent to x2 but not to x1. Let C = N ′2 \ (A∪B). Note
that every vertex in C is adjacent to x3, but not to x1 or x2. Moreover, A,B,C are three independent
sets due to the fact that G is K3-free.

We need the following claim.

Claim 2. Let S, T ∈ {A,B,C} with S 6= T , |S| ≥ 9 and |T | ≥ 9. Then there exist vertices s ∈ S
and t ∈ T such that G[(S \ {s}) ∪ (T \ {t})] is a complete bipartite graph minus a matching.

We prove Claim 2 as follows. Suppose S = A and T = B with |A| ≥ 9 and |B| ≥ 9. Let a, a′, a′′ ∈ A
and b, b′, b′′ ∈ B be pairwise distinct. Recall that A and B are independent sets. Then at least one of
a, a′, a′′ must be adjacent to at least one of b, b′, b′′, as otherwise the graph G[x1, a, a′, a′′, b, b′, b′′]
would be isomorphic to K1,3 + 3P1. This means that at most two vertices in B have no neighbour in
{a, a′, a′′}. Hence, as |B| ≥ 9, at least one of a, a′, a′′ has at least three neighbours in B. Repeating

10



this argument with different choices of a, a′, a′′, we find that all but at most two vertices in A have at
least three neighbours in B.

Every vertex a′ ∈ A that is adjacent to at least three vertices ofB, say b1, b2, b3, must be adjacent to
all but at most one vertex of B, since if a′ is not adjacent to b4, b5 ∈ B, then G[a′, b1, b2, b3, x, b4, b5]
would be a K1,3 + 3P1. Because all but at most two vertices in A have at least three neighbours in B,
this means that all but at most two vertices ofA are adjacent to all but at most one vertex ofB. Because
|A| ≥ 9 > 7, this means that every vertex of B except at most one has at least three neighbours in A.
Let b ∈ B be this exceptional vertex; if it does not exist then we pick b ∈ B arbitrarily. If b′ ∈ B \ {b},
let a1, a2, a3 be three of its neighbours in A. Then b′ cannot be non-adjacent to two vertices, say a4, a5
in A, otherwise G[b′, a1, a2, a3, x, a4, a5] would be a K1,3 + 3P1. Thus every vertex in B \ {b} is
adjacent to all but at most one vertex of A. Since |B \ {b}| ≥ 8 > 5, every vertex in A, except at most
one has at least three neighbours in B \ {b} and as stated above must therefore be adjacent to all but at
most one vertex of B. We let a ∈ A denote this exceptional vertex; if it does not exist, then we pick
a ∈ A arbitrarily. Because A and B are independent sets, we conclude that G[(A \ {a}) ∪ (B \ {b})]
is a complete bipartite graph minus a (not necessarily perfect) matching. If a different pair of sets in
{A,B,C} both have at least nine vertices, the claim follows by the same arguments.

We now consider three different cases.

Case 1. At least two sets out of A,B,C have less than nine vertices.
Suppose |A| ≤ 8 and |B| ≤ 8. Recall that C,N1 are independent sets and that G is (K1,3 +3P1)-free.
Then G[V (G) \ ({x} ∪A ∪B ∪ Y )] = G[C ∪N1] is bipartite and (K1,3 + 3P1)-free. Consequently,
it has bounded clique-width by Lemma 4. We have |Y | ≤ 5 by Claim 1. Then |{x} ∪A ∪B ∪ Y | ≤
1 + 8 + 8 + 5 = 22. Hence, G has bounded clique-width by Fact 1. If a different pair of sets in
{A,B,C} both have less than nine vertices, we apply the same arguments.

Case 2. Exactly one set out of A,B,C has less than nine vertices.
Suppose |C| ≤ 8. Hence |A| ≥ 9 and |B| ≥ 9. By Claim 2 we find that there exist two vertices a ∈ A
and b ∈ B such that G[(A \ {a}) ∪ (B \ {b})] is a complete bipartite graph minus a matching. Let
x′ ∈ N1. Suppose, for contradiction, that x′ is adjacent to a vertex a′ ∈ A \ {a} and to a vertex
b′ ∈ B \{b}. Then x′ is not adjacent to any other vertices of (A\{a})∪ (B \{b}), otherwiseG would
not beK3-free. Recall thatN1 is an independent set. HenceN(x′) ⊆ {a, b, a′, b′, x}∪C∪Y . We have
|Y | ≤ 5 by Claim 1. Hence, |N(x′)| ≤ 5+8+5 = 18, which is a contradiction since G has minimum
degree at least 19. We conclude that no vertex in N1 has neighbours in both A \ {a} and B \ {b}.
BecauseN1 is independent andG is (K1,3+3P1)-free, this means thatG[V (G)\({a, b, x}∪C∪Y )] =
G[N1 ∪ (A \ {a}) ∪ (B \ {b})] is bipartite and (K1,3 + 3P1)-free. Consequently, it has bounded
clique-width by Lemma 4. Because |{a, b, x} ∪ C ∪ Y | ≤ 3 + 8 + 5 = 16, we conclude that G has
bounded clique-width by Fact 1. If |A| ≤ 8 or |B| ≤ 8, we repeat the above arguments with A and B
replaced by B and C, or A and C, respectively.

Case 3. None of the sets A,B,C has less than nine vertices.
By Claim 2, we find that there exist vertices a, a′, b, b′, c, c′ such that G[(A \ {a}) ∪ (B \ {b})],
G[(A\{a′})∪(C\{c})], andG[(B\{b′})∪(C\{c′})] are complete bipartite graphs minus a matching.
HenceG[(A\{a, a′})∪(B\{b, b′})],G[(A\{a, a′})∪(C\{c, c′})], andG[(B\{b, b′})∪(C\{c, c′})]
are also complete bipartite graphs minus a matching. Because |A| ≥ 9 > 2, |B| ≥ 9 > 3 and
|C| ≥ 9 > 4, there exist vertices a1 ∈ A \ {a, a′}, b1, b2 ∈ B \ {b, b′} and c1, c2, c3 ∈ C \ {c, c′}.
Then a1 is adjacent to at least one of b1, b2 and to at least two of c1, c2, c3. Moreover, b1 and b2 are
each adjacent to at least two of c1, c2, c3. Hence G is not K3-free. This contradiction completes the
proof. ut
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4 New Classes of Unbounded Clique-width

In order to prove our results, we first present a general construction for obtaining graph classes of
unbounded clique-width. We then show how we can use our construction to obtain two new classes
of unbounded clique-width. Our construction generalizes the constructions used by Golumbic and
Rotics [20],3 Brandstädt et al. [9] and Lozin and Volz [23] to prove that the classes of square grids,
K4-free co-chordal graphs and 2P3-free graphs, respectively, have unbounded clique-width. It can
also be used to show directly that the classes of k-subdivided walls have unbounded clique-width
(Lemma 2).

Theorem 3. For m ≥ 0 and n > m+ 1 the clique-width of a graph G is at least b n−1m+1c+ 1 if V (G)
has a partition into sets Vi,j(i, j ∈ {0, . . . , n}) with the following properties:

1. |Vi,0| ≤ 1 for all i ≥ 1.
2. |V0,j | ≤ 1 for all j ≥ 1.
3. |Vi,j | ≥ 1 for all i, j ≥ 1.
4. G[∪nj=0Vi,j ] is connected for all i ≥ 1.
5. G[∪ni=0Vi,j ] is connected for all j ≥ 1.
6. For i, j, k ≥ 1, if a vertex of Vk,0 is adjacent to a vertex of Vi,j then i ≤ k.
7. For i, j, k ≥ 1, if a vertex of V0,k is adjacent to a vertex of Vi,j then j ≤ k.
8. For i, j, k, ` ≥ 1, if a vertex of Vi,j is adjacent to a vertex of Vk,` then |k−i| ≤ m and |`−j| ≤ m.

Proof. Fix integers n,m withm ≥ 0 and n > m+1, and letG be a graph with a partition as described
above. For i > 0 we let Ri = ∪nj=0Vi,j be a row of G and for j > 0 we let Cj = ∪ni=0Vi,j be a
column of G. Note that G[Ri] and G[Cj ] are non-empty by Property 3. They are connected graphs by
Properties 4 and 5, respectively.

Consider a k-expression for G. We will show that k ≥ b n−1m+1c + 1. As stated in Section 2, this
k-expression can be represented by a rooted tree T , whose leaves correspond to the operations of
vertex creation and whose internal nodes correspond to the other three operations (see Fig. 1 for an
example). We denote the subgraph of G that corresponds to the subtree of T rooted at node x by G(x).
Note that it is possible that G(x) is not an induced subgraph of G, as missing edges can be added by
operations corresponding to ηi,j nodes higher up in T .

Recall that ⊕ represents the disjoint union operation in the definition of clique-width. Let x be a
deepest (i.e. furthest from the root) ⊕ node in T such that G(x) contains an entire row or an entire
column of G (the node x may not be unique). Let y and z be the children of x in T . Colour all vertices
in G(y) blue and all vertices in G(z) red. Colour all remaining vertices of G yellow. Note that a vertex
of G appears in G(x) if and only if it is coloured either red or blue and that there is no edge in G(x)
between a red and a blue vertex. Due to our choice of x, the graph G contains a row or a column none
of whose vertices are yellow, but no row or column of G is entirely blue or entirely red. Without loss
of generality, assume that G contains a non-yellow column.

Because G contains a non-yellow column, each row of G contains a non-yellow vertex, by
Property 3. Since no row is entirely red or entirely blue, every row of G is therefore coloured with at
least two colours. Let Ri be an arbitrary row. Since G[Ri] is connected, there must be two adjacent
vertices vi, wi ∈ Ri in G, such that vi is either red or blue and wi has a different colour than vi. Note
that vi and wi are therefore not adjacent in G(x) (recall that if wi is yellow then it is not even present
as a vertex of G(x)).

3 The class of (square) grids was first shown to have unbounded clique-width by Makowsky and Rotics [24].
The construction of [20] determines the exact clique-width of square grids and narrows the clique-width of
non-square grids to two values.
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Now consider indices i, k ≥ 1 with k > i + m. By Properties 6 and 8, no vertex of Ri is
adjacent to a vertex of Rk \ Vk,0 in G. Therefore, since |Vk,0| ≤ 1 by Property 1, we conclude
that either vi and wi are not adjacent to vk in G, or vi and wi are not adjacent to wk in G. In
particular, this implies that wi is not adjacent to vk in G or that wk is not adjacent to vi in G.
Recall that vi and wi are adjacent in G but not in G(x), and the same holds for vk and wk. Hence,
a ηi,j node higher up in the tree, makes wi adjacent to vi but not to vk, or makes wk adjacent
to vk but not to vi. This means that vi and vk must have different labels in G(x). We conclude that
v1, v(m+1)+1, v2(m+1)+1, v3(m+1)+1, . . . , v(b n−1

m+1c)(m+1)+1 must all have different labels in G(x).

Hence, the k-expression of G uses at least b n−1m+1c+ 1 labels. ut

We now use Theorem 3 to determine two new graph classes that have unbounded clique-width.

Theorem 4. The class of (P6, 2P1 + P2)-free graphs has unbounded clique-width.

Proof. Let n ≥ 1 be an integer. Using the notation of Theorem 3, we construct a graph Gn as follows.
We define vertex subsets

V0,0 = ∅
Vi,0 = {bi} for i ≥ 1

V0,j = {wj} for j ≥ 1

Vi,j = {bi,j , ri,j , wi,j} for i, j ≥ 1.

We define edge subsets

E1 = {bi,jri,j , ri,jwi,j | i, j ∈ {1, . . . , n}}
E2 = {bkwi,j | i, j, k ∈ {1, . . . , n}, i ≤ k}
E3 = {wkbi,j | i, j, k ∈ {1, . . . , n}, j ≤ k}.

Let V (Gn) be the union of the sets Vi,j for i, j ∈ {0, . . . , n}, and let E(Gn) = E1 ∪ E2 ∪ E3. Note
that in Gn the constructed sets Vi,j fulfil the conditions of Theorem 3 when m = 0. Therefore Gn has
clique-width at least n.

We now define the sets

B1 = {bi | i ∈ {1, . . . , n}}
W1 = {wj | j ∈ {1, . . . , n}}
B2 = {bi,j | i, j ∈ {1, . . . , n}}
R2 = {ri,j | i, j ∈ {1, . . . , n}}
W2 = {wi,j | i, j ∈ {1, . . . , n}}.

Let Hn be the graph obtained from Gn by complementing the edges between B2 and W2. By Fact 3,
the class of graphs {Hn}n≥1 has unbounded clique-width. Note that Hn[B1 ∪W2] and Hn[B2 ∪W1]
are 2P2-free bipartite graphs. We claim that every Hn is (P6, 2P1 + P2)-free.

First we show that Hn is (2P1 + P2)-free. For contradiction, suppose that 2P1 + P2 is present as
an induced subgraph. Consider one of the vertices of degree 3 in the 2P1 + P2. It cannot be in B1

or W1 since those vertices have neighbourhoods that are independent sets. It cannot be a vertex in R2,
since those vertices have degree 2. Therefore one of these vertices must be in B2 and the other in W2.
Therefore the other two vertices in the diamond must both be in R2, which is a contradiction, since
every vertex in B2 has a unique neighbour in R2. Therefore Hn is indeed (2P1 + P2)-free.

We now show that Hn is P6-free. For contradiction, suppose that P6 is present as an induced
subgraph. We will first show that no vertex of the P6 may contain a vertex of R2. Indeed, if one of the
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vertices in the P6 is in R2, it must be an end-vertex of the P6 (since the neighbourhood of any vertex
in R2 induces a P2, but P6 does not contain a K3). Let x1, . . . , x6 be the vertices of the P6, in order.
Note that x2, x3, x4, x5 6∈ R2. Suppose that x1 ∈ R2. Without loss of generality, we may assume
x2 ∈ W2. If x3 ∈ B1, then we must have x4 ∈ W2. But then there is no possible choice for x5: we
cannot have x5 ∈ R2 (as noted above), we cannot have x5 ∈ B2 (since then x2 would be adjacent
to x5) and we cannot have x5 ∈ B1, since then x6 would be in W2 and Hn[x2, x3, x5, x6] would
be a 2P2, contradicting the fact that Hn[B1 ∪W2] is a 2P2-free bipartite graph. Thus if x1 ∈ R2,
x2 ∈ W2 then x3 ∈ B2 (since every vertex in W2 has a unique neighbour in R2). Now x4 6∈ W1

(otherwise x5 would be in B2, which would mean that x2 would be adjacent to x5) and x4 6∈ R2 (as
explained above), so x4 ∈W2. But this cannot happen, since x5 6∈ R2 (as explained above), x5 6∈ B2

(since x5 is not adjacent to x2), so x5 ∈ B1, so x6 ∈W2, contradicting the fact that x3 and x6 are not
adjacent. We conclude that no P6 in Hn can include a vertex of R2.

By symmetry, we may therefore assume that every induced P6 contains at least three vertices in
W1 ∪ B2. In this case, it must have at least two vertices in B2 since W1 is an independent set. If
the P6 also has a vertex in W2 then it must have exactly one vertex in W2, two in B2, none in B1 and
three in W1, which is impossible, by a parity argument. Thus the whole of the P6 must be contained
in Hn[W1 ∪ B2], which leads to Hn[W1 ∪ B2] containing a 2P2, which contradicts the fact that
Hn[W1 ∪B2] is a 2P2-free bipartite graph. This completes the proof. ut

Theorem 5. The class of (3P2, P2 + P4, P6, P1 + P4)-free graphs has unbounded clique-width.

Proof. Let n ≥ 1 be an integer. Using the notation of Theorem 3, we construct a graph Gn as follows.
We define vertex subsets

V0,0 = ∅
Vi,0 = {bi} for i ≥ 1

V0,j = {wj} for j ≥ 1

Vi,j = {xi,j} for i, j ≥ 1.

We define edge subsets

E1 = {bibj | i, j ∈ {1, . . . , n}, i 6= j}
E2 = {wiwj | i, j ∈ {1, . . . , n}, i 6= j}
E3 = {bkxi,j | i, j, k ∈ {1, . . . , n}, i ≤ k}
E4 = {wkxi,j | i, j, k ∈ {1, . . . , n}, j ≤ k}.

Let V (Gn) be the union of the sets Vi,j for i, j ∈ {0, . . . , n}, and let E(Gn) = E1 ∪ E2 ∪ E3 ∪ E4.
Note that inGn the constructed sets Vi,j fulfil the conditions of Theorem 3 whenm = 0. ThereforeGn

has clique-width at least n.
We define the sets

B = {bi | i ∈ {1, . . . , n}}
W = {wi | i ∈ {1, . . . , n}}
X = {xi,j | i, j ∈ {1, . . . , n}}.

Note that two vertices inB (respectivelyX) cannot each have private neighbours inX (respectivelyB).
(When considering a pair of vertices v1, v2, a private neighbour of v1 is a vertex adjacent to v1, but
not to v2.) We will show that every Gn is (3P2, P2 + P4, P6, P1 + P4)-free.

First we show that Gn is (3P2)-free. For contradiction, suppose that Gn contains an induced 3P2.
Then, since X is an independent set and both B and W are cliques, at most one of the P2 components
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could occur in Gn[B ∪X] and at most one of the P2 components could occur in Gn[W ∪X]. Since
no vertex of B is adjacent to a vertex of W , we find that Gn therefore cannot contain an induced 3P2.

We now show that Gn is (P2 + P4)-free. For contradiction, suppose that Gn contains an in-
duced P2 +P4. Since X is an independent set, we may assume that the P4 contains at least one vertex
of B. The P4 can have at most two vertices in B and if it has two such vertices, one of them must be
the end-vertex of the P4; otherwise the two vertices in B would each have a private neighbour in X
which cannot happen. Thus if the P4 has a vertex in B then it must have a vertex in X and another
in W (since X is an independent set). Thus the P4 must have both a vertex in B and a vertex in W .
Then an independent P2 cannot be found since B and W are cliques and X is an independent set.

We now show that Gn is P6-free. For contradiction, suppose that Gn contains an induced P6.
Any P6 can contain at most two vertices of B (respectively W ), at most one of which can be adjacent
to any vertex of X in the P6. Let v1, . . . , v6 be the vertices of the P6 in order. If the P6 contains two
vertices of B (respectively W ), then these two vertices must be adjacent and one of them must be an
end-vertex of the P6. In this case, assume without loss of generality that v1, v2 ∈ B. Then v3 ∈ X , so
v4 ∈ W . Since v4 is a middle-vertex of the P6, neither v5, v6 6∈ W . This means v5, v6 ∈ X , which
cannot happen since X is an independent set. This contradiction means that at most one vertex of
the P6 can be in each of B and W , so at least four vertices of the P6 are members of X . This is
impossible since X is an independent set. Thus Gn is indeed P6-free.

Finally, we show that Gn is (P1 + P4)-free. For contradiction, suppose that Gn contains an
induced P1 + P4. If the dominating vertex of the P1 + P4 is in X then, since no vertex in B is
adjacent to a vertex in W , the other vertices must either be all in B or all be in W , which is a
contradiction. Thus the dominating vertex must be (without loss of generality) in B and the other
vertices in the P1 + P4 must therefore all be in B ∪X . At most two of the other vertices can be in X
(since X is an independent set and P4 has independence number 2) and at most two of them can
be in B (since B is a clique). So exactly three vertices of the P1 + P4 must be in B and two must
be in X . Since X is an independent set and B is a clique, the two vertices in X must be the two
vertices of degree 2 in the P1 + P4. However, this means that each of these two vertices in X has a
private neighbour in B, which is a contradiction. This shows that Gn is indeed (P1 + P4)-free, which
completes the proof. ut

5 Classifying Classes of (H1,H2)-Free Graphs

In this section we study the boundedness of clique-width of classes of graphs defined by two forbidden
induced subgraphs. Recall that this study is partially motivated by the fact that it is easy to obtain
a full classification for the boundedness of clique-width of graph classes defined by one forbidden
induced subgraph, as shown in the next theorem. This classification does not seem to have previously
been explicitly stated in the literature.

Theorem 6. Let H be a graph. The class of H-free graphs has bounded clique-width if and only if H
is an induced subgraph of P4.

Proof. First suppose that H is an induced subgraph of P4. Then the class of H-free graphs is a
subclass of the class of P4-free graphs. The class of P4-free graphs is precisely the class of graphs of
clique-width at most 2 [48].

Now suppose that H is a graph such that the class of H-free graphs has bounded clique-width. By
Fact 2, the class of H-free graphs has bounded clique-width. By Lemma 3, H,H ∈ S . Since H ∈ S ,
the graph H must be (K3, C4)-free. Thus H must be a 2P2-free forest whose maximum independent
set has size at most 2. Therefore H must be one of the following graphs: P1, 2P1, P1 +P2, P2, P3, P4.
All these graphs are induced subgraphs of P4. ut
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We are now ready to systematically consider classes of graphs defined by two forbidden induced
subgraphs. Given four graphs H1, H2, H3, H4, we say that the class of (H1, H2)-free graphs and
the class of (H3, H4)-free graphs are equivalent if the pair (H3, H4) can be obtained from the pair
(H1, H2) by some combination of the following operations:

1. reversing the order of the two graphs in the pair;
2. complementing both graphs in the pair;
3. if one of the graphs in the pair is K3, replacing it with P1 + P3 or vice versa.

By Fact 2 and Lemma 7, if two classes are equivalent then one has bounded clique-width if and only if
the other one does. Given this definition, we now give a partial classification of the (un)boundedness of
the clique-width for classes defined by two forbidden induced subgraphs. This includes both already-
known results and our new results. We will later show that (up to equivalence) our classification leaves
only 13 open cases.

Theorem 7. Let G be a class of graphs defined by two forbidden induced subgraphs. Then:

(i) G has bounded clique-width if it is equivalent to a class of (H1, H2)-free graphs such that one
of the following holds:
1. H1 or H2 ⊆i P4;
2. H1 = sP1 and H2 = Kt for some s, t;
3. H1 ⊆i P1 + P3 and H2 ⊆i K1,3 + 3P1, K1,3 + P2, P1 + S1,1,2, P6 or S1,1,3;
4. H1 ⊆i 2P1 + P2 and H2 ⊆i 2P1 + P3, 3P1 + P2 or P2 + P3;
5. H1 ⊆i P1 + P4 and H2 ⊆i P1 + P4 or P5;
6. H1 ⊆i 4P1 and H2 ⊆i 2P1 + P3;
7. H1, H2 ⊆i K1,3.

(ii) G has unbounded clique-width if it is equivalent to a class of (H1, H2)-free graphs such that one
of the following holds:
1. H1 6∈ S and H2 6∈ S;
2. H1 /∈ S and H2 6∈ S;
3. H1 ⊇i K1,3 or 2P2 and H2 ⊇i 4P1 or 2P2;
4. H1 ⊇i 2P1 + P2 and H2 ⊇i K1,3, 5P1, P2 + P4 or P6;
5. H1 ⊇i 3P1 and H2 ⊇i 2P1 + 2P2, 2P1 + P4, 4P1 + P2, 3P2 or 2P3;
6. H1 ⊇i 4P1 and H2 ⊇i P1 + P4 or 3P1 + P2.

Proof. We first consider the bounded cases. Statement (i).1 follows from Theorem 6. To prove
Statement (i).2 note that if H1 = sP1 and H2 = Kt for some s, t then by Ramsey’s Theorem,
all graphs in the class of (H1, H2)-free graphs have a bounded number of vertices and therefore
the clique-width of graphs in this class is bounded. By the definition of equivalence, when proving
Statement (i).3, we may assume that H1 = K3. Then Statement (i).3 follows from Fact 2 combined
with the fact that (K3, H)-free graphs have bounded clique-width if H is K1,3 + 3P1 (Theorem 2),
K1,3 + P2 [18], P1 + S1,1,2 (Theorem 1), P6 [10] or S1,1,3 [18]. Statement (i).4 follows from Fact 2
and the fact that (2P1 + P2, 2P1+P3)-free, (2P1 + P2, 3P1+P2)-free and (2P1 + P2, P2+P3)-free
graphs have bounded clique-width [17]. Statement (i).5 follows from Fact 2 and the fact that both
(P1 + P4, P1 + P4)-free graphs [12] and (P5, P1 + P4)-free graphs [13] have bounded clique-width.
Statement (i).6 follows from Fact 2 and the fact that (2P1 + P3,K4)-free graphs have bounded
clique-width [7]. Statement (i).7 follows from the fact that (K1,3,K1,3)-free graphs have bounded
clique-width [5,14].

We now consider the unbounded cases. Statements (ii).1 and (ii).2 follow from Lemma 3 and
Fact 2. Statement (ii).3 follows from the fact that the classes of (C4,K1,3,K4, 2P1 + P2)-free [9],
(K4, 2P2)-free [9] and (C4, C5, 2P2)-free graphs (or equivalently, split graphs) [24] have unbounded
clique-width. Statement (ii).4 follows from Fact 2 and the fact that (C4,K1,3,K4, 2P1 + P2)-free [9],
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(5P1, 2P1 + P2)-free [16], (2P1 + P2, P2 + P4)-free (see arXiv version of [17]) and (P6, 2P1 + P2)-
free (Theorem 4) graphs have unbounded clique-width. To prove Statement (ii).5, suppose H1 ⊇i 3P1

and H2 ⊇i 2P1 +2P2, 2P1 +P4, 4P1 +P2, 3P2 or 2P3. Then H1 6∈ S , so H2 ∈ S , otherwise we are
done by Statement (ii).2. By Lemma 5, H2 is not an induced subgraph of any graph in {K1,3 + 3P1,
K1,3 + P2, P1 + S1,1,3, S1,2,3}. The class of (H1, H2)-free graphs contains the class of complements
of H2-free bipartite graphs. By Fact 2 and Lemma 4, this latter class has unbounded clique-width.
Statement (ii).6 follows from the Fact 2 and the fact that the classes of (K4, P1 + P4)-free graphs
(Lemma 8) and (4P1, 3P1 + P2)-free graphs [16] have unbounded clique-width. ut

As we will prove in Theorem 8, the above classification leaves exactly 13 open cases (up to
equivalence).

Open Problem 1 Does the class of (H1, H2)-free graphs have bounded clique-width when:

1. H1 = 3P1, H2 ∈ {P1 + P2 + P3, P1 + 2P2, P1 + P5, P1 + S1,1,3, P2 + P4, S1,2,2, S1,2,3};
2. H1 = 2P1 + P2, H2 ∈ {P1 + P2 + P3, P1 + 2P2, P1 + P5};
3. H1 = P1 + P4, H2 ∈ {P1 + 2P2, P2 + P3} or
4. H1 = H2 = 2P1 + P3.

Note that the two pairs (3P1, S1,1,2) and (3P1, S1,2,3), or equivalently, the two pairs (K3, S1,2,2)
and (K3, S1,2,3) are the only pairs that correspond to open cases in which both H1 and H2 are
connected. We also observe the following. Let H2 ∈ {P1 +P2 +P3, P1 +2P2, P1 +P5, P1 +S1,1,3,
P2 + P4, S1,2,2, S1,2,3}. Lemma 4 shows that all bipartite H2-free graphs have bounded clique-width.
Moreover, the graph P1 + 2P2 is an induced subgraph of H2. Hence, for investigating whether the
boundedness of the clique-width of bipartite H2-free graphs can be extended to (K3, H2)-free graphs,
the H2 = P1 + 2P2 case is the starting case.

Theorem 8. Let G be a class of graphs defined by two forbidden induced subgraphs. Then G is not
equivalent to any of the classes listed in Theorem 7 if and only if it is equivalent to one of the 13 cases
listed in Open Problem 1.

Proof. It is easy to verify that none of the classes listed in Open Problem 1 are equivalent to classes
listed in Theorem 7.

Let H1, H2 be graphs and let G be the class of (H1, H2)-free graphs. Suppose G is not equivalent
to any class listed in Theorem 7. Then H1 ∈ S or H2 ∈ S, otherwise Theorem 7.(ii).1 applies.
Similarly, H1 ∈ S or H2 ∈ S. If Hi, Hi ∈ S for some i ∈ {1, 2}, then Hi ⊆i P4 (as shown in the
proof of Theorem 6), in which case Theorem 7.(i).1 applies.

Due to the definition of equivalence, for the remainder of the proof we may assume without loss of
generality that H1, H2 ∈ S, but neither is an induced subgraph of P4. Furthermore, we may assume
that neither H1 nor H2 is isomorphic to P1 + P3, as in this case the definition of equivalence would
allow us to replace P1 + P3 by 3P1. Also note that the situation for H1 and H2 is symmetric, i.e. if
we exchanged these graphs, the resulting class would be equivalent.

Suppose that 3P1 6⊆i H1. Then we must have that H1 = 2P2 (as H1 6⊆i P4). If H2 ⊇i K1,3, 4P1

or 2P2 then Theorem 7.(ii).3 applies. Since H2 ∈ S, we may therefore assume that H2 is a linear
forest which is (4P1, 2P2)-free. This means that H2 is an induced subgraph of P1 +P4, in which case
Theorem 7.(i).5 applies (since 2P2 ⊆i P5).

We therefore assume that 3P1 ⊆i H1, H2. Now H1, H2 must be (2P1+2P2, 2P1+P4, 4P1+P2,
3P2, 2P3)-free, otherwise Theorem 7.(ii).5 would apply. Since H1, H2 ∈ S, by Lemma 5, each of
H1, H2 must either contain no edges or be an induced subgraph of (possibly different) graphs in
{K1,3 + 3P1,K1,3 + P2, P1 + S1,1,3, S1,2,3}. The induced subgraphs of graphs in {K1,3 + 3P1,
K1,3 + P2, P1 + S1,1,3, S1,2,3} are listed in Table 1.
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Graph Name Graph Name Graph Name

S1,2,3 P1 + S1,1,3 K1,3 + 3P1

S1,1,3 P1 + S1,1,2 K1,3 + P2

S1,2,2 K1,3 + 2P1 P6

P1 + P5 P2 + P4 P1 + P2 + P3

3P1 + P3 6P1

S1,1,2 K1,3 + P1 P5

P1 + P4 P2 + P3 2P1 + P3

P1 + 2P2 3P1 + P2 5P1

K1,3 P4 P1 + P3

2P2 2P1 + P2 4P1

P3 P1 + P2 3P1

P2 2P1 P1

Table 1: The induced subgraphs of S1,2,3, S1,1,3+P1,K1,3+3P1 and K1,3+P2, arranged by number
of vertices.

18



First suppose thatH1 contains no edges. ThenH2 must contain an edge, otherwise Theorem 7.(i).2
would apply. We first assume that H1 = 3P1. If H2 ⊆i K1,3 + 3P1,K1,3 + P2, P1 + S1,1,2, P6

or S1,1,3, then Theorem 7.(i).3 applies. This leaves the cases where H2 ∈ {P1 + P2 + P3, P1 + 2P2,
P1 + P5, P1 + S1,1,3, P2 + P4, S1,2,2, S1,2,3}, all of which are stated in Open Problem 1.1. Now
assume H1 = kP1 for k ≥ 4. If H2 ⊇i K1,3, P1 + P4, 3P1 + P2 or 2P2, Theorem 7.(ii).3 or 7.(ii).6
applies. Otherwise, H2 must be a (P1 + P4, 3P1 + P2, 2P2)-free linear forest, which (by assumption)
is not an edgeless graph. As H2 6⊆i P4 and H2 6= P1 + P3, this means that H2 ∈ {2P1 + P2,
2P1 + P3}. In both these cases, if k = 4 then H2 ⊆i 2P1 + P3, so Theorem 7.(i).6 applies; if k ≥ 5
then 2P1 + P2 ⊆i H2, so Theorem 7.(ii).4 applies.

By symmetry, we may therefore assume that neither H1 nor H2 are edgeless. As stated above, in
this case we may assume that both H1 and H2 are induced subgraphs of (possibly different) graphs
in {K1,3 + 3P1,K1,3 + P2, P1 + S1,1,3, S1,2,3}. Combining this with our previous assumptions that
neither H1 nor H2 is equal to P1 + P3 or an induced subgraph of P4 means that H1, H2 ∈ {K1,3,
K1,3+P1,K1,3+2P1,K1,3+3P1,K1,3+P2, P1+P2+P3, P1+2P2, P1+P4, P1+P5, P1+S1,1,2,
P1+S1,1,3, 2P1+P2, 2P1+P3, 3P1+P2, 3P1+P3, P2+P3, P2+P4, P5, P6, S1,1,2, S1,1,3, S1,2,2,
S1,2,3} (see also Table 1 and recall that 3P1 ⊆i H1, H2). In particular, this shows that the number of
open cases is finite.

Suppose H1 is not a linear forest. Then K1,3 ⊆i H1. If H2 ⊇i 2P1 + P2, 4P1 or 2P2 then
Theorem 7.(ii).3 or 7.(ii).4 applies. The only remaining choice for H2 is K1,3. Then, by symmetry, we
may assume that H1 is isomorphic to K1,3, in which case Theorem 7.(i).7 applies.

We may now assume that H1 and H2 are both linear forests, each containing at least one edge. In
other words, H1, H2 ∈ {P1 +P2 +P3, P1 +2P2, P1 +P4, P1 +P5, 2P1 +P2, 2P1 +P3, 3P1 +P2,
3P1+P3, P2+P3, P2+P4, P5, P6}. Note that both of these graphs must therefore either be isomorphic
to P5 or contain 2P1 + P2 as an induced subgraph. If H1 = P5 then H2 must be (4P1, 2P2)-free
otherwise Theorem 7.(ii).3 applies. Thus H2 ∈ {P1 + P4, 2P1 + P2}, in which case Theorem 7.(i).5
applies. We may therefore assume that neither H1 nor H2 is isomorphic to P5, and both must therefore
contain 2P1 + P2 as an induced subgraph. Therefore, neither H1 nor H2 may contain 5P1, P2 + P4

or P6 as an induced subgraph, otherwise Theorem 7.(ii).4 would apply. We therefore conclude that
H1, H2 ∈ {P1 + P2 + P3, P1 + 2P2, P1 + P4, P1 + P5, 2P1 + P2, 2P1 + P3, 3P1 + P2, P2 + P3}.

Suppose H1 = 2P1 + P2. If H2 ∈ {P1 + P4, 2P1 + P2}, then Theorem 7.(i).5 would apply. If
H2 ∈ {2P1 +P3, 3P1 +P2, P2 +P3}, then Theorem 7.(i).4 would apply. This leaves the cases where
H2 ∈ {P1 + P2 + P3, P1 + 2P2, P1 + P5}, which appear as Open Problem 1.2. We now assume
neither H1 nor H2 is isomorphic to 2P1 + P2.

SupposeH1 = P1+P4. IfH2 ∈ {P1+P2+P3, P1+P5, 2P1+P3, 3P1+P2} then Theorem 7.(ii).6
would apply. If H2 = P1 + P4, then Theorem 7.(i).5 applies. This leaves the case where H2 ∈
{P1 + 2P2, P2 + P3}, both of which appear in Open Problem 1.3. We may therefore assume that H1

and H2 are not isomorphic to P1 + P4.
We have now that H1 and H2 ∈ {P1 + P2 + P3, P1 + 2P2, P1 + P5, 2P1 + P3, 3P1 + P2,

P2 + P3}. Note that each of these graphs contains either 4P1 or 2P2 as an induced subgraph. If
either H1 or H2 contains an induced 2P2, then in all these cases Theorem 7.(ii).3 would apply. We
may therefore assume that H1, H2 ∈ {2P1 +P3, 3P1 +P2}. However, both these graphs contain 4P1,
so if H1 = 3P1 + P2, then Theorem 7.(ii).6 applies. Therefore H1 = H2 = 2P1 + P3, which is Open
Problem 1.4. This completes the proof. ut
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6 Forbidding Other Patterns

Instead of forbidding one or more graphs as an induced subgraph of some other graphG, we could also
forbid graphs under other containment relations. For example, a graph G is (H1, . . . ,Hp)-subgraph-
free if G has no subgraph isomorphic to a graph in {H1, . . . ,Hp}. In this section we consider this
containment relation and two other well-known containment relations, which we define below.

Let G and H be graphs. Then G contains H as a minor or topological minor if G can be modified
into H by a sequence that consists of edge contractions, edge deletions and vertex deletions, or
by a sequence that consists of vertex dissolutions, edge deletions and vertex deletions, respectively.
If G does not contain any of the graphs H1, . . . ,Hp as a (topological) minor, we say that G is
(H1, . . . ,Hp)-(topological-)minor-free.

When we forbid a finite collection of either minors, subgraphs or topological minors, we can
completely characterize those graph classes that have bounded clique-width. Before we prove these
results we first state four known results, the last of which can be found in the textbook of Diestel [46].
For a graph G, let tw(G) denote the treewidth of G (see, for example, Diestel [46] for a definition).

Lemma 10 ([5]). Let H ∈ S. Then the class of H-subgraph-free graphs has bounded clique-width.

Lemma 11 ([44]). Let G be a graph. Then cw(G) ≤ 3× 2tw(G)−1.

Lemma 12 ([53]). Let H be a planar graph. Then the class of H-minor-free graphs has bounded
treewidth.

Lemma 13. Let H be a graph of maximum degree at most 3. Then any graph that contains H as a
minor contains H as a topological minor.

We are now ready to state the three dichotomy results. These classifications do not seem to have
previously been explicitly stated in the literature.

Theorem 9. Let {H1, . . . ,Hp} be a finite set of graphs. Then the following statements hold:

(i) The class of (H1, . . . ,Hp)-subgraph-free graphs has bounded clique-width if and only if Hi ∈ S
for some 1 ≤ i ≤ p.

(ii) The class of (H1, . . . ,Hp)-minor-free graphs has bounded clique-width if and only if Hi is
planar for some 1 ≤ i ≤ p.

(iii) The class of (H1, . . . ,Hp)-topological-minor-free graphs has bounded clique-width if and only
if Hi is planar and has maximum degree at most 3 for some 1 ≤ i ≤ p.

Proof. We first prove (i). First suppose that Hi ∈ S for some i. Then the class of (H1, . . . ,Hp)-
subgraph-free graphs has bounded clique-width, by Lemma 10. Now suppose that Hi /∈ S for all i. For
j ≥ 0, let Ij be the graph formed from 2P3 by joining the central vertices of the two P3’s by a path of
length j (so I0 = K1,4). SinceHi /∈ S , everyHi contains an induced subgraph isomorphic to someCj

or to some Ij . Let g be the maximum number of vertices of such an induced subgraph inH1+ · · ·+Hp.
Then the class of (H1, . . . ,Hp)-subgraph-free graphs contains the class of g-subdivided walls. Hence,
it has unbounded clique-width by Lemma 2.

We now prove (ii). First suppose that Hi is planar for some i. Then the class of Hi-minor-free
graphs, and thus the class of (H1, . . . ,Hp)-minor-free graphs, has bounded treewidth by Lemma 12.
Consequently, it has bounded clique-width, by Lemma 11. Now suppose that Hi is non-planar for all i.
Because planar graphs are closed under taking minors, every planar graph is (H1, . . . ,Hp)-minor-
free. Hence, the class of (H1, . . . ,Hp)-minor-free graphs contains the class of walls, and thus has
unbounded clique-width by Lemma 2.
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Finally, we prove (iii). First suppose that Hi is a planar graph of maximum degree at most 3 for
some i. By Lemma 13, any Hi-topological-minor-free is Hi-minor-free. Hence, we can repeat the
arguments from above to find that the class of (H1, . . . ,Hp)-free graphs has bounded clique-width.
Now suppose that Hi is either non-planar or contains a vertex of degree at least 4 for all i. Consider
some Hi. First assume that Hi is not planar. Because planar graphs are closed under taking topological
minors, every planar graph, and thus every wall, is Hi-topological-minor-free. Now suppose that Hi

is planar. Then Hi must have maximum degree at least 4. Because every wall has minimum degree
at most 3, it is Hi-topological-minor-free. We conclude that the class of (H1, . . . ,Hp)-topological-
minor-free graphs contains the class of walls, and thus has unbounded clique-width by Lemma 2. ut

7 Consequences for Colouring

One of the motivations of our research was to further the study of the computational complexity of the
COLOURING problem for (H1, H2)-free graphs. Recall that COLOURING is polynomial-time solvable
on any graph class of bounded clique-width by combining results of Kobler and Rotics [27] and
Oum [30]. By combining a number of known results [18,34,35,36,37,54,55,56,57] with new results,
Dabrowski, Golovach and Paulusma [16] presented a summary of known results for COLOURING
restricted to (H1, H2)-free graphs. Combining Theorem 7 with the results of Kobler and Rotics [27]
and Oum [30] and incorporating a number of recent results leads to an updated summary. This updated
summary (and a proof of it) can be found in the recent survey paper of Golovach, Johnson, Paulusma
and Song [58].

From this summary we note that not only the case when H1 = P4 or H2 = P4 but thirteen
other maximal classes of (H1, H2)-free graphs for which COLOURING is known to be polynomial-
time solvable can be obtained by combining Theorem 7 with the results of Kobler and Rotics [27]
and Oum [30] (see also [58]). One of these thirteen classes is one that we obtained in this paper
(Theorem 2), namely the class of (K1,3 + 3P1, P1 + P3)-free graphs, for which COLOURING was not
previously known to be polynomial-time solvable. Note that Dabrowski, Lozin, Raman and Ries [18]
already showed that COLOURING is polynomial-time solvable for (P1 + P3, P1 + S1,1,2)-free graphs,
but in Theorem 1 we strengthened their result by showing that the clique-width of this class is also
bounded.

Theorem 8 shows that there are 13 classes of (H1, H2)-free graphs (up to equivalence) for which
we do not know whether their clique-width is bounded. These classes correspond to 28+6+4+1=39
distinct classes of (H1, H2)-free graphs. As can be readily verified from [58], the complexity of
COLOURING is unknown for only 15 of these classes. We list these cases below:

1. H1 ∈ {3P1, P1 + P3} and H2 ∈ {P1 + S1,1,3, S1,2,3};
2. H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3, P1 + 2P2, P1 + P5};
3. H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3, P1 + 2P2, P1 + P5};
4. H1 = P1 + P4 and H2 ∈ {P1 + 2P2, P2 + P3};
5. H1 = P1 + P4 and H2 ∈ {P1 + 2P2, P2 + P3};
6. H1 = H2 = 2P1 + P3.

Note that Case 1 above reduces to two subcases by Lemma 6. All classes of (H1, H2)-free graphs, for
which the complexity of COLOURING is still open and which are not listed above have unbounded
clique-width. Hence, new techniques will need to be developed to deal with these classes.
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8 Conclusions

We have determined for which pairs (H1, H2) the class of (H1, H2)-free graphs has bounded clique-
width, and for which pairs (H1, H2) it has unbounded clique-width except for 13 non-equivalent cases,
which we posed as open problems. We completely classified the (un)boundedness of the clique-width
of those classes of graphs in which we forbid a finite family of graphs {H1, . . . ,Hp} as subgraphs,
minors and topological minors, respectively. Finally, we showed the implications of our results for the
complexity of the COLOURING problem restricted to (H1, H2)-free graphs. In particular we identified
all 15 additional classes of (H1, H2)-free graphs for which COLOURING could potentially be solved
in polynomial time if their clique-width turns out to be bounded.
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3. Kamiński, M., Lozin, V. V., and Milanič, M. (2009) Recent developments on graphs of bounded clique-width.

Discrete Applied Mathematics, 157, 2747–2761.
4. Corneil, D. G., Habib, M., Lanlignel, J.-M., Reed, B. A., and Rotics, U. (2012) Polynomial-time recognition

of clique-width ≤ 3 graphs. Discrete Applied Mathematics, 160, 834–865.
5. Boliac, R. and Lozin, V. V. (2002) On the clique-width of graphs in hereditary classes. Proc. of ISAAC 2002,

Vancouver, Canada, 21–23 November, Lecture Notes in Computer Science, 2518, pp. 44–54. Springer, Berlin
Heidelberg.
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