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Open data are playing a vital role in different communities, including governments,
businesses, and education. This revolution has had a high impact on the education
field. Recently, Linked Data are being adopted for publishing and connecting data
on the web by exposing and connecting data which were not previously linked.
In the context of education, applying Linked Data to the growing amount of
open data used for learning is potentially highly beneficial. This paper proposes
a system that tackles the challenges of data acquisition and integration from
distributed web data sources into one linked dataset. The application domain
of this work is medical education, and the focus is on integrating educational
content in the form of articles published in online educational libraries and Web
2.0 content that can be used for education. The process of integrating a collection
of heterogeneous resources is to create links that connect the resources collected
from distributed web data sources based on their semantics. The proposed system
harvests metadata from distributed web sources and enriches it with concepts from
biomedical ontologies, such as SNOMED CT, that enable its linking. The final
result of building this system is a linked dataset of more than 10,000 resources
collected from PubMed Library, YouTube channels, and Blogging platforms. The
final linked dataset is evaluated by developing information retrieval methods that
exploit the SNOMED CT hierarchical relations for accessing and querying the
dataset. Ontology-based browsing method has been developed for exploring the
dataset, and the browsing results have been clustered to evaluate its linkages.
Furthermore, ontology-based query searching method has been developed and
tested to enhance the discoverability of the data. The results were promising and
had shown that using SNOMED CT for integrating distributed resources on the

web is beneficial.
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1. INTRODUCTION

Recent advances in open education and the growing
reliance on the web for acquiring knowledge have had
a large impact on education. Nowadays, the web
offers students and educators more choices in how to
learn and teach. For example, academic institutions
have been using the YouTube platform for publishing
educational videos, and some researchers have adopted
blogging for sharing their knowledge with the public.
Therefore, searching for educational content on the web
is no longer restricted to finding books and articles,
and has expanded to include searching for Web 2.0

technologies that support the learning process, such
as videos, blogs, wikis, or pictures [1]. This trend
applies to all fields of education whether its humanities,
scientific, or medical education. The challenge is to be
able to search and find free high quality educational
materials, since hours spent browsing the web for
information is time that could be spent learning. The
increased use of public web resources in learning and
teaching motivates this research and encourage finding a
practical solution that can be applied to ease the search
problem. The work presented in this paper is applied
to the medical education field as a proof of concept
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that can be extended to include different fields if it is
proved to be valid. We address the search problem in
the field of medical education since various technologies
have emerged for enhancing the learning and teaching
experience, and have been incorporated for developing
medical e-curricula [2]. Besides, research in the field of
medical education provided insights into the potential
impact of Web 2.0 technologies on enhancing teaching
and learning [3].

The process of searching any web data source is
thus twofold. Firstly, the search process is made
easier for users if the published content is described
using representative metadata and thus provides what
it needs for matching any search query. Secondly,
the user’s search query must represent the information
the user seeks, and that affects the correctness of
the search results. Different metadata models have
been implemented by organizations such as IEEE
to accommodate the requirements of publishing their
content [4]. With various metadata models having
being proposed, it has become obvious that there is
no ideal standard that accommodates the needs of all
publishing organizations. In medical education, the
spread of educational libraries providing open content
and the massive amount of information published using
Web 2.0 technologies emphasize the importance of data
integration.

The challenge in integrating distributed web sources
is that the datasets are heterogeneous. Databases
consist of different attributes for describing their
data based on the specific metadata schema applied.
Moreover, web content is being published using various
techniques, from old traditional relational databases
to NoSQL databases. Recently, the term “Web of
Data” has emerged after the spread of Linked Data
practices for publishing data on the web [5]. It is now
widely used in different fields, and have changed how
web publishing takes place. Linked Data practice is
used for publishing data on the web and connecting
related data that were not previously linked, and with
the evolution of open data on the web, the adoption
of Linked Data is increasingly turning the web into
a global data space [6]. In education, as any other
field, the use of Linked Data is becoming popular [7].
As a result, large amounts of educational content have
been published on the web using Linked Data. A full
review of Linked Data proposals in the learning domain
is presented in [8] that analyses existing research work
in the literature. Despite the fact that applying Linked
Data in education can be challenging [9], yet it has been
reported about the opportunities it provides for open
and distance learning [10, 8].

In this paper, we present a novel system for
harvesting and interlink different types of Educational
Medical Objects (EMOs) collected from various web
data sources into a linked dataset named the Linked
Educational Medical Objects (LEMO) dataset. This
research illustrates how to tackle the challenges of

data acquisition and integration into appropriate
presentation and organization with web data in
the context of medical education. In particular,
this work focuses on bridging the gap between the
content of online educational libraries and Web 2.0
that are both used in learning. Using Linked
Data practices, the system exposes the heterogeneous
metadata of distributed EMOs and represent them
using an RDF/XML metadata schema named the
LEMO schema [11], and enriches the dataset collected
with content from external ontologies. Using biomedical
ontologies, the EMOs are enriched by annotating
free-text descriptions provided in their metadata
records. Ontology-based annotation allows the system
to discover keyword terms in the collected dataset and
builds dynamic linkages between its components. As
a result, the system successfully establishes linkages
between the distributed EMOs building one coherent
dataset. The content of the dataset used in this
experiment is collected from medical educational
libraries and Web 2.0 platforms. High quality
educational materials found on YouTube and blogs are
automatically linked with content of online medical
libraries. The data sources involved in this experiment
are managed by trustworthy medical educators or
organizations. The final linked dataset is stored in an
RDF triple store where it consists of the EMOs and the
ontology-based enrichments added to their metadata.

The rest of the paper is organized as follows. Section
2 presents background information and related work.
Section 3 describes the methodology for building the
system and its detailed architecture, and details the
RDF triple store used for organizing and enriching
the dataset collected. Detailed explanations of the
dataset components and the linkages subsequently
established are detailed in section 4. Section 5 outlines
the evaluation techniques applied to test the system
and validate its results. In section 6, we present
the experiments conducted and discuss the results of
validating the system. Finally, section 7 presents the
conclusions and future work.

2. RELATED WORK

The internet has been playing an increasing role
in education, and with educational materials being
available at no cost and easily accessed with only a
computer and internet access, learning and teaching
techniques are changing. Recent research has shown
the high impact of using the web in education
[12]. Educational resources include books, articles,
videos, pictures, and any other material that supports
the learning process, and such resources are being
published freely on the web under the open education
movement. New technologies such as Web 2.0 have
been incorporated with traditional learning and have
proved its efficiency in education [13]. Consequently,
the evolution of open data has promising results on
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enhancing the quality and availability of education [14].
In the medical education field, researchers have studied
the potential use of Web 2.0 for active and collaborative
learning [15, 16]. The vast developments in the field of
education emphasize the need for better organisation of
educational data available on the web.

Students and educators are facing problems of
searching and browsing the open data available in order
to satisfy their needs, and searching and connecting
various educational resources to enhance the knowledge
about a topic can be frustrating for them. The
search process mainly depends on the user search
terms initiated and the description provided with the
educational resources available on the web. Organizing
and controlling the publishing of data on the web
has been well researched in the e-learning field.
Metadata for educational materials are defined as
“data describing the context, content, and structure
of records and their management through time” [17],
and with this wide definition of metadata, different
organizations have developed their own standards
for managing their educational resources [18]. In
medical education, several metadata standards have
been developed to organize libraries and repositories of
medical educational materials such as HealthCare LOM
[19], the Health Education Assets Library (HEAL) [20],
and National Library of Medicine (NLM) [21]. Each
metadata standard differs in the elements used for
describing the metadata of the published materials.

Due to the large amount of information on the
web and the lack of adopting one standard for
publishing all types of educational materials, web-scale
integration of educational content is now a widely
researched topic. After the emergence of Linked
Data as a practice for connecting unstructured data
on the web [5], researchers started exploring the
potential of applying Linked Data for education, and
several educational organizations adopted Linked Data
practices for exposing and publishing data. This
has created a rich environment for more projects to
be developed for supporting web educational data
integration [22]. Other projects such as the one
presented in [23] have exploited Linked Data for
connecting the registries of educational ICT tools in
order to help educators in searching for such tools.
In medical education, the work presented in [24]
focused on the issue of interoperability and reuse of
open education materials and proposed a data model
for exposing and publishing a dataset of educational
medical materials that can be easily reused by students
and educators. In other domains such as childhood
education, Linked Data have been implemented to
enrich the data resulted from using a platform for
childhood education and care. Tools has been designed
to enhance educational resources recommendation,
nutritional monitoring, and health monitoring services
based on Linked Data [25]. Other projects targeted the
management of learning materials available on the web.

SemUnit project initiated by French higher education
institutions exploited Linked Data to integrate French
repositories that contain learning materials of high-
quality for different domains [26]. Ontologies have
been incorporated for the enriching the metadata of
learning materials in these repositories such as FOAF
for describing persons and organizations and SKOS
for describing controlled vocabularies in metadata
elements. In another application domain, a work
presented in [27] discussed the advantages of exposing
the content of the Organic.Edunet portal that is a
federation of learning repositories in the domain of
organic agriculture. Furthermore, Linked Data have
been used in building educational materials from open
data on the web, such as the work presented in [28] in
which a full curriculum was built from open educational
resources for training practitioners how to use Linked
Data. Universities and educational institutes have
now started to expose and publish their data using
Linked Data format, and thus it is clear that the
future of education lies in Linked Data. One successful
experience of publishing open data is provided by the
UK Open University, and it is considered a blueprint for
other organisations to open up their data and enables
its sharing and reuse [29].

The use of ontologies and connecting them with
open linked data is also a promising research topic
in the field of open data. Ontologies are used for
semantically enriching unstructured data on the web,
and then using Linked Data, the enriched content can
be exposed and connected with external sources on the
web. Enriching data on the web can be performed either
at the client side of a system or at the server side, and
the work presented in [30] investigated the advantages
and disadvantages of both techniques. Another use
of ontologies is presented in [31] where server side
enrichment of queries was tested by enriching medical
images stored in a library using the MeSH ontology
and enriching the queries with the same ontology
for enhanced search results. Applying semantic
enrichment on User Generated Content (UGC) can also
be beneficial, but usually the metadata describing the
UGC content is not of a high quality. For example,
users’ tags and folksonomies provided for describing
YouTube content is not representative of the content.
One research proposed a solution for enhancing the
discoverability of videos that lack sufficient metadata
and proposed a semantic video search engine named
“yovisto” [32]. It presented an exploratory search
engine that expands the search query with terms
extracted from DBpedia. Furthermore, in another
research both the metadata and the query can be
extended and enriched with Linked Data [33] and that
builds a platform for browsing video annotation. This
work is applied on a repository of videos provided
for the history course at the Open University. Using
ontology enrichment, tag expansion has been applied
in [34] for enhancing the metadata describing YouTube
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FIGURE 1: The LEMO System architecture

videos. In the field of medicine, having well established
biomedical ontologies [35], such as SNOMED CT
ontology and MeSH ontology, has enabled ontology
enrichment of medical data in general. Hence, our
proposed system presented in this research is applied on
the field of medical education. It takes advantage of the
well-established ontologies available for medicine and
apply it for integrating educational medical materials
from distributed sources.

3. METHODOLOGY

The amount of educational content on the web is
increasing and the type of the content continues to vary.
IEEE has launched a metadata IEEE LOM standard in
2002 which defined a Learning Object as “any entity,
digital or non-digital, that may be used for learning,
education or training” [36]. Recently, different types
of educational content have been integrated with the
curriculum taught in schools and universities. In this
paper, we refer to the educational content harvested
from different sources as Educational Medical Objects
(EMOs). Linked Data practice is used for exposing and
linking the EMOs in the system developed; hence the
system is called the Linked Educational Medical Objects
(LEMO) system and the resulting dataset is the LEMO
dataset.

The system developed consists of various components
for collecting data, mapping, and linking them into one
coherent dataset. Figure 1 illustrates the architecture
of the LEMO system.

3.1. Harvesting

The system is designed for collecting and linking diverse
educational objects from distributed sources on the
web. Therefore, we conducted a survey on medical
students and educators to get feedback about their
habits when searching for online content. Other than
the normal search engines such as Google and Bing,
students and educators have the tendency to follow
the publications of specific journals of interest, key

researchers in the field, and specific academic institutes’
publications. Also, they search in some dedicated
libraries which provide open content for their users.

Furthermore, we investigated the methods used for
importing content from the web. Some journals,
academic institutes, and well known researchers started
to have their own Blogs or YouTube channels, and
in some cases both, for sharing their content. The
need for having such delivery channels arise from the
increasing use of different types of educational objects in
the learning process. These delivery channels, YouTube
and Blogs, are bundled with RSS feeds which can
be read easily using an RSS reader. In the LEMO
system, we have developed an endpoint for reading
RSS feeds, which is used for collecting EMOs published
on journal blogs and YouTube channels. Examples of
such sources are Khan academy medicine3 channel, the
blog of emergency medicine cases4, and the blog of The
New England Journal of Medicine (NEJM)5. The size
of the data retrieved using this endpoint is detailed
in later sections. Figure 2 illustrates an example of
an article published in the New England Journal of
Medicine (NEJM). The RSS feeds button highlighted in
the orange rectangle at the top right corner of the figure
is used to identify the RSS feeds URL that can be used
as an input for the RSS feeds harvesting endpoint.

As for the traditional libraries where books and
articles are stored, few of them provide open content
to their users, and even fewer provide the ability for
others to harvest and store their data. One of the
popular repositories in medicine which provides open
content is PubMed library. The library is set up with
a service that provide access to its metadata. This
service is an implementation of the Open Archives
Initiative for Metadata Harvesting (OAI-PMH) which
is a protocol for retrieving metadata from digital
repositories [37]. Since the PubMed library is popularly
used and provides access to its content, we used this

3https://www.youtube.com/user/khanacademymedicine
4http://emergencymedicinecases.com/
5http://www.nejm.org/
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FIGURE 2: An example of blog article published in NEJM that can be harvested using RSS feeds

library for collecting books and articles to complement
our dataset. In the LEMO system, we developed
a second endpoint based on OAI-PMH protocol for
harvesting the library content.

After harvesting data using the developed endpoints,
the LEMO dataset consists of EMOs of different types
collected from various sources, hence we developed a
mapper which maps the various heterogeneous formats
of metadata files harvested into one proposed metadata
schema that accommodates their differences.

3.2. Mapping

All the data harvested by the LEMO system, whether
collected using the RSS reader endpoint or the
OAI-PMH endpoint, are retrieved in XML format.
These files describe the metadata attributes of the
EMOs in the dataset, and a metadata schema that
accommodates the different attributes of all the
heterogeneous metadata files harvested is essential.
Therefore, the LEMO metadata schema was proposed
in [11] after conducting comparative studies between
existing educational metadata schemas used in the
field and analysing the elements required for describing
the different EMOs harvested in the system. The
detailed process of developing the LEMO metadata
schema is beyond the scope of this paper. The work
presented in [11] details experiments of applying the
proposed LEMO metadata for describing different types
of EMOs.

The EMOs harvested from the PubMed are described
using a metadata schema that is based on the DCMI
data model, while the RSS feed records are described
using a simple metadata element set due to the
summarized information provided in when describing
YouTube videos and Blog articles. One limitation we
faced in this work is the incompleteness of the metadata
records for videos and blogs. Searching such metadata
will not be successful and enriching its content will be
less effective. The proposed LEMO metadata schema
is based on Dublin Core Metadata Initiative (DCMI)
standard [38] which consists of a flat structure of 15
elements. This element set covers all the attributes used
for describing the metadata of the EMOs harvested.
The flat structure of DCMI enables further refinements
to be added in the LEMO metadata schema without
compromising the metadata interoperability. The new
refinements added in the LEMO schema focus on
adding attributes which enrich the textual elements
of the EMOs using external ontologies. The LEMO
metadata schema is developed in RDF/XML format
which enables automatic linking of EMOs using URIs
and RDF. The new elements proposed in the LEMO
metadata schema are defined using the prefix “lemo”
while the original DCMI elements are defined using
the prefix “dc”. The new elements proposed in the
LEMO metadata are used for storing the results of the
enrichment process.
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3.3. Enrichment and linking

After harvesting and mapping the data from the web,
the EMOs’ textual elements are enriched by annotating
it with biomedical ontologies. In this process, the input
is the titles and the descriptions of all EMOs harvested.
We specify the ontology to be used for enriching these
textual elements with semantic annotations and the
output of this process is an annotated dataset of EMOs
with keyword terms discovered in its textual elements.

The annotation process is based on existing
ontologies used in the medical field. Ontologies have
been used in libraries for indexing entries and ease
the search process, such as the use of MeSH ontology
for indexing PubMed library entries [39]. In LEMO
system, we adopted different ontologies and tested
them for preliminary results. We experimented with
different ontologies in order to test the feasibility of
the annotation process in connecting EMOs. The work
presented in [40] details the experiments conducted on a
small dataset of around 2000 EMOs. The experiments
compared the results of using two popular ontologies
— MeSH and SNOMED CT for enriching harvested
content.

The enrichment process consists of two main steps:
first, the keyword terms are annotated in the title
and the description of EMOs using SNOMED CT
ontology in order to enrich the metadata of EMOs. The
second step is responsible of weighting and ordering
the keywords annotated in each EMO according to
its importance for that EMO in order to select
a more representative sample of keywords as the
subject keywords categorizing that EMO. These subject
keywords will be the entries of the subject property in
the LEMO metadata schema for each EMO. Algorithm
1 and algorithm 2 explain the steps of terms discovery
and terms filtering respectively.

The algorithms are applied to the LEMO
dataset of size |LEMO| = n where LEMO =
{emo1, emo2, emo3, · · · , emon}. After the enrichment
process, each emoi can be represented by a set of
the keywords discovered in its textual content having
emoi = Ki and Ki = KTi ∪KDi where KTi and KDi

denote the keywords discovered in the title and the de-
scription of emoi respectively. Annotating the LEMO
dataset results in having a large number of keyword
terms K representing the whole LEMO dataset, as
explained in algorithm 1.

The annotation process is applied using the BioPortal
annotator endpoint6 which is provided by the BioPortal
repository as a web service [41]. Using this endpoint,
we send the raw text as an input along with the name
of the ontology used in the enrichment process. The
endpoint examines the text together with the ontology
classes and returns the relevant annotations. Ontologies
are formal representations of knowledge with definition
of concepts and their relations [42], hence the LEMO

6http://bioportal.bioontology.org/annotator

Algorithm 1 Terms Discovery of EMOs

Input : Textual content of EMO elements titles,
descriptions
Output :The set of keywords for all EMO elements
K

for emoi in LEMO do
title ← getTitle(emoi)
desc ← getDescription(emoi)
KTi ← annotateText(title)
KDi ← annotateText(desc)
Ki = KTi ∪KDi

add Ki to the set K
end for

dataset linkages are based on the ontology classes’
relations. The ontology used in enriching the LEMO
dataset in this paper is the SNOMED CT ontology [43],
which can be represented in a graph structure Gsnomed.
The keyword terms K discovered in the LEMO dataset
is a subset of the Gsnomed vertices. As a result, the
relations between LEMO dataset annotations can be
represented in the graph Glemo based on the original
ontology graph. The graph structure representation of
the LEMO dataset keywords K is stored in the LEMO
system and used as the ground reference for further
processing of the LEMO dataset.

The next step of the enrichment is to filter the terms
discovered in each EMO. Using the algorithm proposed
in 2, we filter the terms into a smaller set used as the
entries for the subject property of the EMOs. First, for
each emoi, each keyword term in the set Ki is weighted
based on its number of occurrences in the title or the
description of the EMOs. Higher weights are given to
terms discovered in the title since they give a good
indicator about the subject of the EMOs [44]. Next,
weights are updated based on their location in theGlemo
graph. Since each emoi is represented by a set of Ki,
then based on the Glemo structure, we can represent
each EMO using a graph structure Gemoi . The weights
of the keyword terms of each EMO are updated to the
accumulated weights of its descendent terms. Updating
the weights of the terms to consider their hierarchical
positions in the ontology is beneficial for categorizing
the EMOs into subject keywords. Doing so, terms
which are leaf nodes in the ontology will have lower
weights compared with terms in higher levels of the
ontology. The final step for filtering the terms is to
normalize the weights of each EMO keyword terms Ki

and specify a threshold for each EMO’s set of keywords.
Based on the threshold, the keywords are split and
terms with the highest weights are named KSi and
stored in the dc:subject property for each emoi.

The goal of annotating EMOs using ontologies is to
build relations between these EMOs. Based on the
keywords discovered in each EMO, linkages can be
built between EMOs having the same keyword terms

The Computer Journal, Vol. ??, No. ??, ????



Linked Data for Integrating Web Databases 7

Algorithm 2 Terms Filtering of EMOs

Input : The sets of Ki for each emoi
Output : The sets KSi, keywords chosen as subjects
for each emoi

for emoi in LEMO do
for kij ∈ Ki do

weight ← calculateOccurence(kij )
weight ← weightBasedonHierarchy(kij )
Assign weight → kij

end for

normalizeWeights(Ki)
KSi ← sortAndSplit(Ki)

end for

annotated in their textual content, but this is not
efficient for large datasets. In order to accomplish
more accurate linkages in the LEMO dataset, a link
is considered to be valid between two EMOs emoi and
emoj if they have at least one term in common in their
subject keyword terms stored in their subject property,
i.e. |KSi ∩KSj | >= 1. Links between EMOs based on
the keywords discovered in its titles or its descriptions
are still established but not considered as valid links in
this work.

At this stage, the LEMO dataset is enriched and
links are established between its EMOs based on similar
annotations. Storing and organizing the LEMO dataset
is based on the proposed LEMO metadata schema
extending DCMI metadata schema with new properties
introduced describe the enrichments of the dataset.
Since the LEMO schema is implemented in RDF/XML
format, the full dataset of LEMO and its annotations
are organized in triple store called the LEMO RDF
triple store explained in the next section.

3.4. Storage and organization

The LEMO dataset layered design, illustrated in
figure 3, explains the organization of the LEMO
dataset components. The LEMO dataset is stored in
RDF/XML format using Linked Data practice, and
is beneficial for interlinking the EMOs with external
ontologies. The layered design of the LEMO triple
store in figure 3 demonstrates the components of each
layer and its relation with other layers. This layered
design eases the understanding of the LEMO metadata
properties and their relations. The figure also provides
snippets of XML describing the LEMO metadata
properties used for representing each component of
the LEMO dataset, where the top layer represents
the largest components of the dataset which are the
EMOs themselves, while lower layers represent smaller
components which are added to enrich the content of
the dataset.

The first layer consists of the metadata of the

EMO resources, described using the original DCMI
elements. The values of the title and description
properties are not stored as textual values — instead,
they point to new resources representing the text and
its annotations in the second layer. The collection
of title and description resources of all EMOs in the
dataset are stored in the second layer using new URIs
that link them to the original EMOs. It also links the
titles and the descriptions with their annotations using
the new proposed LEMO metadata properties such as
lemo:lemoTitleAnnotation property. The third layer
stores the annotations discovered in the LEMO dataset.
The collection of resources are described using LEMO
properties which are illustrated in the XML snippet.
The properties are used to store the indices of the
annotated text (lemo:lemoFrom and lemo:lemoTo) and
the class it maps to in the ontology (lemo:lemoClassID,
lemo:lemoClassTerm, · · · , etc.). Finally, the set of
SNOMED CT classes used to annotate the keyword
terms form the fourth layer. In this layer, the ontology
class relations are retrieved based on their original
structure in the SNOMED CT ontolog and stored
using the new LEMO proposed metadata property
lemo:adjacentTo. The results of testing the LEMO
system are stored in the LEMO RDF triple store, and
details about the dataset, its annotations, and linkages
are presented in the next section.

4. LEMO RDF TRIPLE STORE

The final LEMO dataset consists of EMOs of different
types and sizes, described using the LEMO data Model.
The enrichment process annotates the content of the
dataset using the SNOMED CT ontology. The keyword
terms discovered in the title and the description of
the EMOs are then filtered into a smaller number of
terms to categorize the EMOs into subjects. In this
section, the statistics of the resulted LEMO dataset are
detailed. We also compare the results of the linkages
established in the dataset based on different properties
of the LEMO metadata schema: the title, description,
and subject properties.

4.1. Dataset

The components of the LEMO dataset are detailed in
table 1. The table details the number of resources
harvested grouped by type, and the number of keywords
terms resulted from enriching the EMOs using the
SNOMED CT ontology. The majority of the dataset
content is harvested from the PubMed library using
OAI-PMH harvesting endpoint. Also, videos and blogs
were harvested from a list of YouTube channels and
blogging platforms managed by well-known medical
institutes using RSS feeds reader endpoint.

Applying the enrichment process to the harvested
dataset using the SNOMED CT ontology resulted in
large amounts of annotations. The metadata provided
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FIGURE 3: The LEMO triple store layered design

TABLE 1: The LEMO dataset components

Type of
EMOs

Number
of EMOs

SNOMED Keyword Terms
Title Description Total

Article 8742 56708 307431 364139

Video 1259 3297 5348 8645

Blog 461 1494 9766 11260

Total 10462 61499 322545 384044

for videos and blogs is not well documented since
they are user generated content. For example, the
description field of the video might be missing, and the
title field is not descriptive enough for the content of the
video. Thus, the annotations resulted from enriching
videos and blogs are less than the articles annotations,
as shown in table 1. In the LEMO dataset, EMOs of
type video are the least enriched EMOs in the dataset
compared to their size.

The keyword terms discovered are weighted and
filtered into a smaller set of terms representing the
EMOs subject properties. Keyword terms discovered
in the titles are generally repeated in the description
text of any published content on the web. Also, titles
tend to be less detailed than the description in order
to indicate the general topic of the content published.
Table 2 shows that the results of applying term filtering
to the set of keyword terms discovered in the LEMO
dataset, compliant with general practice.

The majority of the keywords, selected after filtering
and weighting as subjects categorizing EMOs, are
keywords annotated in the title. The terms filtering
process was able to filter the large number of terms
annotated and reduce the subjects selected to only 27%

TABLE 2: Terms filtering results

Number of
terms

Number of
subjects

Percentage

Title 61499 47586 77.3%

Description 322545 59010 18.2%

Total 384044 106596 27.7%

of the full terms set, 77% of them being title annotated
keyword terms.

4.2. The ontology

The ontology incorporated in the LEMO system
for enriching the EMOs in the LEMO dataset is
the SNOMED CT ontology. It is an acronym for
Systematized Nomenclature of Medicine - Clinical
Terms (SNOMED CT). The ontology provides a
comprehensive healthcare terminology that contains
interrelated concepts, supported by synonyms and
definitions [45]. The SNOMED CT ontology classes are
used to represent the Term resources annotating the
EMOs are represented as Class resources as detailed in
figure 3. The collection of Class resources and their
relations are denoted by a graph Glemo that represent
the bottom layer of the LEMO triple store in figure
3. Hence, the Glemo graph is considered a subset of
the SNOMED CT ontology that can be denoted as a
graph named Gsnomed. Details about the number of
the concepts or classes in each graph and the depth of
that graph are detailed in table 3. The table presents
a comparison between the SNOMED CT ontology and
the subset of classes stored in the LEMO triple store.

The number of the ontology concepts that are stored

The Computer Journal, Vol. ??, No. ??, ????



Linked Data for Integrating Web Databases 9

TABLE 3: SNOMED CT vs. LEMO store classes

Metrics Gsnomed Glemo

Number of Classes 316031 29283

Maximum Depth 28 25

as Class resources in the RDF store is a small subset
of the SNOMED CT classes as detailed in the table.
The number of EMOs described in the LEMO RDF
store is more than 10,000 EMOs which are annotated
with more than 29,000 concepts from the SNOMED
CT ontology. Harvesting more data from the web
and enriching it might increase the number of ontology
concepts used and increase the size of the subgraph
Gemo representing the relations between the ontology
concepts. The maximum depth represents the length
of the deepest branch in the SNOMED CT taxonomy.
It is organized based on the is-a hierarchical relations
between its concepts. The maximum depth of the Gemo
graph is 25 levels. That means that some concepts
annotating the EMOs are in the lower levels of the
ontology hierarchy.

4.3. Link results

After the subject selection process, links are generated
between EMOs based on their subject property. A link
exists between two EMOs (e.g emoi and emoj), if they
have at least one similar annotated class in their subject
property list of keywords (i.e. |KSi ∩KSj | >= 1). The
links in the LEMO dataset are considered direct links,
therefore, if there is a link from node a to node b the
link will be counted twice instead of once. Links can
be generated based on the keyword terms discovered in
the titles and descriptions of EMOs. However, since the
number of annotations made is very large, the smaller
set of keyword terms, representing the subjects of
EMOs, are considered the basis of the linkage process in
the LEMO system. Figure 4 illustrates the percentage
of the links made based on the keyword terms found
in different properties of EMOs: title, description, and
subject.

FIGURE 4: Percentages of links made based on the
properties of the EMOs

The total number of links made based on all the
keywords annotated is large (more than 50 million).
Keyword terms annotated in the title or description
properties of an EMO can link it to any other EMO
annotated with the same keyword. Hence, most of the
links are generated based on the description annotated
terms since there are more of them than title terms.
Generally, most of the keywords mentioned in the title
will be repeated in the description and annotated in
both. Such keywords will have higher weights and will
be selected as subject keywords for the EMO. The links
considered in this evaluation are the subject based links
only, and links based on the subject property form 20%
of the overall number of links (around 10 million). This
indicates that the average number of links for each EMO
in the dataset is around 100. Thus, the number of
links for each EMO varies based on its annotation. The
quality of the links based on the subject property is
stronger than those based on other fields due to the
terms filtering process.

5. EVALUATION

We evaluated the performance of the LEMO system
by validating the established linkages in the LEMO
dataset. The main goal of the LEMO system was to
build a coherent linked dataset from distributed sources
on the web. Hence, in this section, we explain the
techniques used in validating the linkages built within
the LEMO dataset.

Since the LEMO dataset is large, it is hard to validate
its content using experts’ judgements. The dataset
consists of more than 10,000 EMOs with more than
10 million links connecting these EMOs, as detailed in
section 4. Therefore, we simulated two techniques of
information retrieval for accessing the LEMO dataset:
browsing and querying searching. First, we evaluated
the general behaviour of browsing the LEMO dataset
based on the SNOMED CT ontology classes. We
also conducted clustering experiments in order to
emphasize the strongly linked and weakly linked
communities within the LEMO dataset discovered while
browsing. Secondly, we proposed an ontology based
query technique and performed random queries to test
it. We compared the results of this technique with text
based query results. Next, we describe the details of
each evaluation technique.

5.1. Preliminary ontology based browsing

Browsing is a basic kind of information seeking
behaviour used to satisfy users’ information needs [46].
Browsing the LEMO data set is based on the SNOMED
CT ontology, which is a hierarchical structure of
classes [47] rooted under the node SNOMED CT
concept and can be easily browsed in the BioPortal
repository7. The ontology consists of 19 classes at

7http://bioportal.bioontology.org/ontologies/SNOMEDCT
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FIGURE 5: The link density resulted from browsing first level ontology nodes compared to their length

the first level descending from the root node. The
SNOMED CT ontology demonstrates the hierarchical
relations between the ontology classes from generalized
classes to more specialized ones.

The first step to evaluate the LEMO system is to
compare the results of browsing different levels of the
SNOMED CT ontology. Since the SNOMED CT
ontology is not physically stored the LEMO system, the
subset of its classes which are annotated in the LEMO
dataset forms the LEMO graph Glemo. This subgraph
is stored at the lowest level of the LEMO RDF triple
store as explained in section 3.4. The graph structure
of Glemo is transformed into a tree structure to ease its
navigation for browsing.

Browsing any information system starts at a general
level, then the user navigates into deeper levels of
specialized concepts. Browsing LEMO dataset follows
the same procedure, where top level classes of the
ontology are more generalized than the lower levels. We
simulated the process of browsing the dataset content.
Selecting an ontology class will retrieve all EMOs in the
LEMO dataset which are annotated in this class or any
of its descendent classes as stored in Glemo graph. The
annotations considered in these experiments are those
in the subject property only and we did not consider
the title and description annotations in this evaluation.

In order to get an overview of LEMO dataset density
and distribution over the classes of the SNOMED CT
ontology, we experimented with browsing the various
levels of the Glemo graph. Selecting a class or a node
in the graph will retrieve a subset of linked EMOs
from the LEMO dataset. Assume that the LEMO
dataset is denoted by graph G = (V,E), where V is
the EMOs composing the full dataset, and E is the
edges representing the linkages between these EMOs
based on its subject annotations. Selecting a class
while browsing retrieves a subset of the LEMO dataset
denoted by Vi. This set of EMOs is a subset of V
and Ei denotes its edges, thus it can be represented
by a graph Gi = (Vi, Ei). The density of the retrieved
dataset D(Gi) is calculated as shown in equation 1.

D(Gi) =
|Ei|

|Vi|.(|Vi| − 1)
(1)

The density D(Gi) measures the links density
between the retrieved dataset of EMOs Vi where
D(Gi) ∈ [0, 1]. The larger the density is, the more
related the EMOs retrieved are [48].

In order to get an overview of the LEMO dataset
distribution over the SNOMED CT ontology classes,
we calculated the density of the EMOs retrieved after
browsing the first level nodes (19 classes) of the
ontology. Figure 5 illustrates the density of the results
retrieved when browsing the first level nodes compared
to the length of its descendent tree of classes. As can
be seen in the figure, there is a correlation between
the node length and its link density. The density
results have the tendency to increase when the node
length increase. The relation between the two variables
is measured using the Pearson correlation coefficient
statistical measure [49]. The value of this coefficient
for the values presented in figure 5 is 0.633. This value
indicates a moderate positive correlation between the
length and the density values.

The nodes with longer trees descendent from them
contain larger numbers of classes than other shorter
trees. This indicates that the browsing results are
affected by the number of classes related to the node
chosen. In the next step we conduct further evaluations
on highly dense sets of EMOs. Hence, we took the
average density of all first level nodes as a threshold,
and then narrowed the experiments to include only the
nodes which are above that threshold. Only 9 out of the
19 first level nodes of the LEMO graph are above the
threshold line. The focus now moves to validating the
browsing of these 9 branches only. The dense content
retrieved will be more efficient for showing significant
results for identifying communities.

5.2. Identifying communities based linkages

Browsing the LEMO dataset retrieves sets of EMOs
annotated with one or more classes of the ontology
nodes selected. To test the validity of the annotations
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of the EMOs and the resulting linkages, clustering
the retrieved datasets must result in groups of related
EMOs. Normally, high level browsing will result
in large datasets with fewer connections, while deep
level browsing will result in smaller and more related
datasets. Furthermore, clusters of EMOs retrieved from
the same branch of the ontology hierarchy must be
highly connected compared to clusters retrieved from
different branches of the ontology.

In order to perform validation via clustering, the
EMO linkages can be represented in graph G = (V,E)
where V are the EMOs and E are the edges which
are the links between these EMOs. The graph is
transformed into a similarity matrix of EMOs and their
relations. Since the LEMO dataset is of size |LEMO| =
n where LEMO = {emo1, emo2, emo3, · · · , emon}, and
the linkages between the EMOs are based on the subject
terms similarity, the LEMO dataset linkages can be
represented in a similarity matrix S of size n× n given
as

S =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
... · · ·

...
xn1 xn2 · · · xnn

 (2)

where xij represents the similarity between the subject
property terms of the two EMOs emoi and emoj .
Hence, the value of xij = |KSi ∩KSj |.

In this paper, we applied the agglomerative
hierarchical clustering method in order to analyse the
linkages established. Since the similarity matrix is
based on the ontology classes used for annotations,
hierarchical clustering methods define the hierarchies of
nested clusters [50]. In this method clusters are created
by merging the most similar points in the dataset
into clusters based on a distance matrix, and stops
when all the clusters have merged into one big cluster.
The results of merging the clusters are represented in
a dendrogram, which represents the detailed merging
process composing a hierarchical tree of clusters. At
some level in the tree, some meaningful clusters might
be found. Several measures can be used to decide on
the best number of clusters. The silhouette coefficient
is used in this experiment since it assesses both the
separation and cohesion of clusters [51]. We calculate
the average silhouette coefficient for clusters resulting
from agglomerative hierarchical clustering, and for each
experiment we changed the parameter determining the
number of clusters and compared the results of the
silhouette coefficient. The detailed experiments are
explained in the next section.

The clustering is applied on the datasets retrieved
while browsing the nodes of the Glemo graph. For each
node, we simulated the browsing process for different
levels from 1 to 5. We conducted a comparison between
clusters resulted from different branches of the ontology.
The clusters were compared and evaluated using the

following evaluation measures.

5.2.1. Evaluation measures for cluster quality
In order to measure and compare the efficiency of the
clustering experiments, internal measurements of the
cluster quality were calculated [52]. As noted above,
since the LEMO dataset is large, it is not practical to
validate its linkages by experts in the field of medical
education. The LEMO dataset is represented by the
graph G = (V,E), and based on the similarity matrix
S which represents the LEMO dataset linkages, all
the pairwise distances among the EMOs in the LEMO
dataset are calculated. The internal measures are all
based on the n× n distance matrix W given as

W =

{
δ(xi, xj)

}n
i,j=1

(3)

where

δ(xi, xj) = ‖xi − xj‖ (4)

is the Euclidean distance between xi, xj . That is, the
distance weight wij = W(i, j) for all xi, xj ∈ V .

Given a clustering C = {C1, C2, · · · , Ck} where k is
the number of clusters, and given any subsets S,R ⊂ V ,
define W (S,R) as the sum of the weights w on all edges
with one vertex in S and the other in R, given as

W (S,R) =
∑
xi∈S

∑
xj∈R

wij (5)

Also, given S ⊆ V , we denote by S the
complementary set of vertices, that is, S = V − S.

The internal measures are based on various functions
over the intracluster and intercluster weights. In
particular, the sum of all the intracluster and
intercluster weights over all clusters are given by Win

and Wout respectively. Also, the number of distinct
intracluster edges are denoted by Nin, and intercluster
edges by Nout. Then the total number of distinct pairs
of points N is N = Nin +Nout

The following is an explanation for the internal
measures used for validating the clustering experiments,
followed by the results and a visualization of the results.

1. BetaCV Measure:
The BetaCV measures the quality of the clusters
generated based on the ratio between the
intracluster and intercluster distances. Equation
6 shows how the BetaCV is measured.

BetaCV =
Win/Nin

Wout/Nout
=

Nout

Nin

∑k
i=1 W (Ci, Ci)∑k
i=1 W (Ci, Ci)

(6)

It evaluates the mean intracluster distances to
the mean intercluster distances. The smaller
the BetaCV ratio, the better the clustering. It
indicates that, on average, the distances between
points in the same cluster are smaller than
distances between points in different clusters.
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2. Normalized Cut (NC) Measure:
The normalized cut measure can be used in the
clustering process to determine the best cut for
cluster partitioning. It can also be used as an
internal measure of cluster quality. As for all the
measures, we apply equation 7 on the distance
matrix W. The value of NC is maximized when the
intracluster distances are much smaller compared
to the intercluster distances.

NC =

k∑
i=1

W (Ci, Ci)

W (Ci, V )
(7)

where the volume of cluster Ci, denoted as
W (Ci, V ) = W (Ci, Ci) +W (Ci, Ci). so that

NC =

k∑
i=1

W (Ci, Ci)

W (Ci, V )
=

k∑
i=1

1
W (Ci,Ci)

W (Ci,Ci)
+ 1

(8)

The higher the normalized cut value the better.
The NC value is maximized when the ratio between
the intracluster distances and the volume of the
cluster are as small as possible across all the k
clusters.

3. Modularity:
The modularity objective for graph clustering is
used as the third internal measure calculated
using equation 9. The modularity measures
the difference between the actual and expected
distances within the clusters.

Q =

k∑
i=1

(
W (Ci, Ci)

W (V, V )
−
(
W (Ci, V )

W (V, V )

)2)
(9)

As the equations are based on the distances
matrix, the smaller the modularity measure the
better the clustering. It indicates that the
intracluster distances are low compared to the
expected distances to the other clusters.

4. Davies-Bouldin (DB) Index:
This measure is based on the cluster mean and
variance values, and measures the quality of cluster
separation. Let µi denote the cluster Ci mean,
given by

µi =
1

ni

∑
xj∈Ci

xj (10)

Further, let the variance σµi
denote the spread

of the points around the cluster mean defined in
equation 11.

σµi =
√
var(Ci) (11)

The Davies-Bouldin measure for pair of clusters Ci
and Cj is defined in equation 12.

DBij =
σµi + σµj

δ(µi, µj)
(12)

DBij indicates how compact the clusters are
compared to the distance between their means.
Based on the DBij values for all pairs of clusters,
the Davies-Bouldin Index is defined in equation 13

DB =
1

K

k∑
i=1

max
j 6=i
{DBij} (13)

The smaller the DB value the better the clustering.
The index is calculated based on the largest DBij
ratio for each cluster Ci. Hence, it will give a
good indication about how well the clusters are
separated from each other.

5.3. Ontology based querying

Another method for validating the LEMO system is
query searching. We developed a prototype for an
interface for querying the LEMO triple store based on
the SNOMED CT ontology. Since the LEMO triple
store is not published yet for users access, the query
interface is developed on the local server to experiment
with the algorithm proposed. The search field on the
interface binds the user entries to the SNOMED CT
ontology classes and allows the user to choose a class
from the ontology to search instead of typing free-text
values as illustrated in figure 6. This auto-complete
text box is bound using a SPARQL query that read
the ontology classes from the LEMO triple store. The
results of performing the search process illustrated in
the text box is shown in figure 7. The results retrieved
are combination of EMOs of different types retrieved
from the LEMO triple store via the prototype web
interface developed. A full LEMO website should be
developed for browsing and querying the LEMO dataset
in the future.

An ontology-based query searching algorithm is
proposed in algorithm 3. The method exploits the Term
resources that describe the EMOs annotations and the
ontology concepts used to annotate these Terms in order
to expand the search query and retrieve wider range of
results.

Starting with a query class Q, we build a query vector
QVector based on the class adjacency properties stored
in the Glemo graph, following which EMOs annotated
with any of the classes in the query vector are retrieved.
The classes in the vector query are then weighted based
on the number of co-occurrences with the main class
Q entered by the user. Normalizing the weights of
the query vector classes is performed based on the size
of the search results retrieved. The class Q weight is
equal 1, and other class weights, depend on its co-
occurrence with Q. The result of running this query
are ranked according to its distance from QVector. Each
EMO is represented using a vector of the same length
as QVector and weighted according to the annotation
weights stored in the rdf:value property. The search
results are ranked based on their Euclidean distance
from the query vector QVector.
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FIGURE 6: The ontology-based LEMO search user interface

FIGURE 7: Query results for ”Heart failure”
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Algorithm 3 Ontology-based Query

Input : Ontology class to be queried Q, LEMO
dataset LEMO
Output : Ranked Search Result set of EMOs R

RelClasses← getRelatedClasses(Q) .Stores
adjacent classes to Q

for c ∈ RelClasses do
qResults← getEMOsAnnotatedWith(c)
add qResults to ResSet .ResSet is the final
search results

end for
QVector ← weightQVector(RelClasses) .Weight
related classes to Q
for d ∈ ResSet do
dV ector ← weightDV ector(d) .Weight d
annotations based on QVector

end for
for d ∈ ResSet do

calculatedEuclideanDist(dVector,qVector)
end for

R ← Sort(ResSet) .Sort results ascendingly

In this experiment, we compared the results of query
searching using the ontological based approach against
the text based approach. The set of queries tested are
restricted to one ontology class only, and is compared
against one word text based queries, giving more direct
and easy to compare results. In order to evaluate the
proposed ontology based query algorithm, we use the
overlap coefficient and the Jaccard similarity coefficient
for comparing the similarity of the search results [53].

6. RESULTS AND DISCUSSION

We discuss the results of the evaluation techniques
explained in the previous section, and detail the results
of the experiments conducted.

6.1. Browsing the LEMO dataset

As explained in section 5.1, we simulated the behaviour
of browsing the LEMO dataset based on its annotations
stored in Glemo graph. In this experiment, we focused
on browsing 9 dense nodes and its descendent branches
as shown in figure 5. In any well-established information
retrieval system, the deeper we browse into the dataset
the more related results we should find. We tested the
behaviour of browsing the LEMO dataset at different
levels deep. Selecting classes of the ontology at different
levels results in datasets retrieved which are of different
sizes and density. We calculated the average size of
the datasets Gi retrieved and their density D(Gi) when
selecting all the nodes at the same level. Figure 8
illustrates the results of browsing different levels of

the ontology classes. The results show that browsing
the first level classes of the ontology results in large
datasets retrieved which have low density. A deep
level of browsing results in significantly smaller datasets
retrieved and with higher numbers of links between
their components.

We explained in previous sections the LEMO dataset
distribution over the ontology classes. We illustrated
that browsing specific nodes results in retrieving more
dense datasets. The LEMO dataset was harvested from
distributed sources with no specific topics defined when
harvesting. Hence, small part of the SNOMED CT
ontology concepts were used to annotate the EMOs
in the dataset and that resulted in a distribution of
EMOs over the branches of the ontology. The results of
this experiment are based on browsing the most dense
branch descending from the 9 nodes selected as the most
dense nodes in the ontology represented in Glemo graph.
Browsing the dense branches can allow us to extend
the browsing into deeper levels compared to less dense
branches. We calculated the link density of the datasets
retrieved when browsing these branches. Doing so, we
can illustrate the changes of browsing deeper into the
LEMO dataset. Figure 9 illustrates the density of the
datasets retrieved when browsing 9 out of the 19 nodes
at different levels.

The graph illustrates the link density values between
the results retrieved when browsing each node at
different levels of depth from 1 to 7. From this
experiment, we notice that, for most of the nodes, the
link density values start to decrease after level 5. This
can be due to smaller number of EMOs retrieved at
those levels which are not highly connected to each
other. Other branch results such as “clinical findings”
and “body structure” nodes have link density values
higher than 0.5 at level 7. This indicates that the
EMOs retrieved at that level for such nodes are more
connected and related to each other. It also indicates
that large numbers of EMOs are annotated with the
classes of these nodes since browsing deep levels is still
possible with high density values.

FIGURE 8: Results of browsing different levels
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FIGURE 9: The link density score variation at different levels of browsing

6.2. Comparison of clustering experiments

(a) Level 1 (b) Level 2

(c) Level 3 (d) Level 4

FIGURE 10: The silhouette plots for node 2 (Substance
branch)

The full experiment of clustering the result data when
browsing LEMO is detailed in table 4. The table details
the results of applying clustering on the retrieved EMOs
datasets of size (m) at each trial. At different levels, the
highest silhouette value (s) and its associated number
of clusters (k) are listed. The average silhouette value
and link density of each branch are also detailed. The
silhouette values for each clustering experiment applied
for different levels of browsing for node 2 (Substance
branch) are illustrated in figure 10. The number of
clusters k with the highest silhouette value is chosen
as the best number of clusters for the dataset tested.

We notice that clustering is more efficient with
larger datasets retrieved compared to smaller ones.

The largest dataset was retrieved when browsing
node 3 (Clinical finding), and resulted in more than
8000 EMOs retrieved which are annotated with its
descendent classes. The clustering consistently works
well at deeper levels too. Node 3 has the highest average
silhouette value of all the clustering performed at
different levels, while the lowest average silhouette value
is related to node 9 (Specimen) which has the lowest
number of EMOs retrieved. For further discussion,
the node with the highest average silhouette value is
selected as a case study. The clustering experiment
gives a good indication for the distribution of the LEMO
dataset over the SNOMED CT ontology resulting from
the enrichment process. At some branches, the nodes
did not extend to more than 4 levels as in the cases
of nodes 7 and node 9. This experiment does not give
any validation of the correctness of the linkages made
in LEMO based on its subject annotations. It only
indicates that at different levels of browsing, although
the data retrieved in smaller levels is a subset of those
in the higher levels, the results of the clustering will
change and in some cases improve.

A comparison between two datasets of clusters was
conducted in order to validate the efficiency of the
annotation process. The first dataset contains the
clusters resulting from clustering the most dense node
in the ontology (node 3) at level 6 named node dataset
which consists of 5 clusters. The second dataset is
combined from 5 clusters resulting when browsing deep
levels of different branches named branches dataset.
Both datasets consist of 5 clusters in order to compare
their internal quality measures. The results retrieved
from node 3 at level 6, node dataset, were clustered
using agglomerative hierarchical clustering. The results
retrieved were 568 EMOs clustered into 5 clusters.
Figure 11a illustrates the results. The clusters are
not well separated. The links between EMOs from
different clusters makes visualization of the distinct
clusters hard. Although the data are highly linked, the
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TABLE 4: Experiment of clustering tree branches at different levels

XXXXXXXXXnodes
levels level 1 level 2 level 3 level 4 level 5

m s k m s k m s k m s k m s k
Avg(s)

Link
Density

node 1 6950 0.475 4 6134 0.468 5 2784 0.462 4 801 0.427 3 568 0.462 3 0.459 0.464

node 2 6732 0.478 6 4932 0.442 5 4776 0.420 4 3881 0.385 8 2493 0.408 9 0.427 0.424

node 3 8495 0.529 5 7055 0.552 8 4820 0.548 3 4585 0.554 3 1297 0.549 3 0.546 0.556

node 4 7977 0.477 5 6919 0.466 5 6907 0.465 5 5405 0.443 5 1760 0.361 9 0.442 0.527

node 5 3748 0.5 3 2551 0.508 3 2051 0.509 3 2051 0.509 3 1934 0.506 3 0.506 0.449

node 6 2512 0.44 4 513 0.342 7 245 0.37 5 224 0.4 3 215 0.385 3 0.387 0.459

node 7 1049 0.499 8 341 0.449 6 24 0.387 6 24 0.387 6 - - - 0.431 0.394

node 8 2305 0.536 5 1541 0.481 5 1368 0.47 5 990 0.457 5 457 0.518 6 0.492 0.502

node 9 135 0.342 7 59 0.41 6 59 0.41 6 59 0.41 6 - - - 0.393 0.452

clusters are compact but not well separated. The results
are logical since the dataset contains EMOs retrieved at
a deep level of one node. The second dataset, branches
dataset, is illustrated in figure 11b. It consists of 1322
EMOs combined from 5 clusters of different sizes from
different branches, hence the clusters are well separated
from each other and each cluster is compact and has
weaker linkages to other clusters.

(a) clusters of one branch

(b) clusters of different branches

FIGURE 11: Comparison of visualizing the clusters
resulted from the validation process

Evaluating the internal measures of the two
experiments resulted in the following results detailed in

TABLE 5: Comparison of the evaluation measures

internal evaluation measures

Datasets BetaCV NC Modularity DB

Node dataset 0.6115 0.8567 -0.0144 0.1116

Branches dataset 0.4339 0.8938 -0.0216 0.0621

table 5, which indicate that the branches dataset is
better clustered than the node dataset. The lower the
values of the BetaCV, Modularity, and Davies-Bouldin
indices the better the clustering is, while higher values
for NC indicates better clustering, as explained in the
previous section. The results are fairly close to each
other, suggesting that both clustering results are good,
but in comparison the branches dataset is better
as measured by the results of all the criteria. This
indicates that the ontology-based browsing was able to
retrieve EMOs that are related to each other and have
similar topic based on their Term resources annotation.
The comparison results support this conclusion since
the clusters of different branches are considered of a
better quality than clusters of one branch as detailed in
the table.

6.3. Querying the LEMO dataset

In this section, we present the results of searching
the LEMO dataset. We compared two approaches of
query searching: ontology based searching and text
based searching. As explained in section 5.3, we
proposed an algorithm for query searching based on the
SNOMED CT ontology classes used for annotations.
The algorithm explains the steps of performing a query
search on a local server as the RDF store is not
published for user access. Hence, testing the query
searching interface is not possible with real users.
therefore, to test the validity of this proposed algorithm,
we ran automatic random queries on the LEMO dataset
and compared the results with text based searching.
The set of random queries were restricted to selecting
one ontology concept from the set of ontology classes
stored in the RDF store. The proposed algorithm
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TABLE 6: Ontological-based vs. Text-based query searching results

Query Class Ontology based results (O) Text based results (T) Overlap Coefficient (O ∩ T ) Jaccard Similartiy Coef.

Hepatitis 27 21 100% 0.78

Influenza 30 25 92% 0.71

Muscle 66 65 95% 0.89

Brain 61 49 100% 0.80

Renal Disease 36 4 100% 0.11

Hypoglycemia 49 40 100% 0.82

Vasculitis 87 53 98% 0.59

Leukemia 78 63 95% 0.741

Appendicitis 68 68 100% 1.00

Glomerulonephritis 97 75 100% 0.77

utilizes the relations between the ontology classes used
in the annotation process to enrich the query sent
from the user. A user can query the LEMO dataset
using an auto-complete field which restricts the user to
choosing a single ontology class. The algorithm then
expands the query class into a query vector of related
classes weighted according to its importance. We ran
10 random queries as a simulation of users querying
the LEMO dataset, then compared the search results
against simple text based searching. The sample queries
are detailed in table 6. All the queries are composed of
one syllable class ontology in order to compare with text
based searching. The goal from these random queries
was to evaluate the validity of the proposed algorithm.
Hence, one word syllable classes are chosen in order
to avoid the complexity of text based searching and
perform exact text matching for one word.

The results presented in table 6 detail the size of
the search results when performing ontology based
searching and text based searching. The results are
compared using the overlap coefficient and the Jaccard
similarity coefficient. These measures compare the
coverage of the ontological based approach and the
similarity of the search results in both approaches.
In most of the queries, the ontology based approach
resulted in a larger number of search results retrieved,
due to enriching the query sent with other related
classes in the ontology. Also, the overlap coefficient
results indicate that the ontology based search covers
most of the search results from the text based approach.
In some cases, the overlap coefficient shown is not
100% which indicates that some of the text based
search results are not retrieved using the ontology based
approach. Also, the similarity coefficient indicates that
the ontology based approach can fail to cover all the
results of the text based approach. This might indicate
that the annotation process failed to annotate some
terms in the textual metadata.

The Jaccard similarity coefficient measures pairwise
similarity of the two search results retrieved. The
value of this measure ranges from 0 to 1 where 1
means that the two compared sets are exactly similar.
A low Jaccard coefficient value results when the two
dataset are not similar in their size or content. In this

experiment, low Jaccard coefficient values indicate that
the ontology based approach covers a larger number
of search results than the text based approach. For
example, in the case of “Renal Disease”, although
the overlap coefficient is 100%, the Jaccard similarity
value is low. Notice that the size of the ontology
based search results is larger than that of the text
based approach results, and resulted in expanding
the class “Renal Disease” into a query vector of 24
other related classes (renal vascular disorder, nephritis,
nephrosis and nephrotic syndrome, renal impairment,
cdots). In this case, the search results retrieved include
any EMO annotated with any of the related classes
ranked by relevance to the original query sent. In
another example, searching for “Vasculitis” will expand
the query to include more general classes including
hypersensitivity angiitis, arteritis and phlebitis. The
goal of the proposed algorithm was to utilize the
annotations enriching LEMO in the query searching
process, and the results of this experiment indicate the
effectiveness of the proposed algorithm in discovering
more EMOs about the topic despite some limitations
that can occur in the annotation process.

7. CONCLUSIONS

The wide range of open data available on the web
has made searching for content, that can be used to
learn a particular topic, a time-consuming task. The
work presented in this paper has proposed a practical
solution to the problem identified and applied it the
field of medical education as a proof of concept. The
proposed solution adopts Linked Data practices for
exposing and connecting Educational Medical Objects
(EMOs) of various types. Using SNOMED CT ontology
we annotated and enriched the data collected and
enabled linkages between data items. The main goal
was to build a linked dataset of various types of
EMOs collected from distributed web data sources.
The system proposed in this paper has implemented
methods that create, update, and store Linked Data
in an RDF store that manages all the harvested
EMOs. This resulted in a linked dataset of more
than 10,000 educational materials varying in types
including articles, videos, and blogs. The work can be
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extended to include other educational material types
such as virtual patients, and pictures. The RDF store
content has been evaluated via techniques developed
for accessing and retrieving EMOs from the RDF store.
These techniques have exploited the ontology-based
annotations enriching the metadata in order to enhance
browsing and querying the RDF store. Clustering
the browsing results has identified communities in the
dataset based on the annotations similarities and that
indicates the success of the ontology-based browsing
techniques. Also, ontology based searching has enabled
larger numbers of results to be retrieved compared
to text based searching. The work can be extended
to include larger datasets and can be tested using
different ontologies. At this point, the dataset has
not been published for users’ access, and experiments
were conducted to simulate the user behaviour. Future
work will focus on providing an advanced user interface
for accessing and using the system proposed. The
evaluation methods have been useful for validating the
new techniques and methods proposed in this work
for aggregating and integrating distributed educational
objects from the web. One limitation in the evaluation
of this work is not involving expert users. Further
experiments can be conducted with smaller clusters
of datasets where linkages between the EMOs can be
evaluated with expert users to validate these linkages.
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[18] Devedžic, V. (2006) Semantic web and education.
Springer Science & Business Media.

[19] Smothers, V. (2004). Healthcare learning object meta-
data: Specifications and description document. http:

//www.medbiq.org/sites/default/files/files/

HealthcareLOMSpecifications_pointrelease.pdf.
Online. Accessed on January 13, 2014.

[20] Candler, C. S., Uijtdehaage, S. H., and Dennis, S. E.
(2003) Introducing HEAL: The health education assets
library. Academic Medicine, 78, 249–253.

[21] Lipscomb, C. E. (2000) Medical Subject Headings
(MeSH). Bulletin of the Medical Library Association,
88, 265–266.

[22] Domingue, J., Mikroyannidis, A., and Dietze, S.
(2014) Online learning and linked data: lessons learned
and best practices. Proceedings of the Companion
Publication of the 23rd International Conference on
World Wide Web Companion, pp. 191–192.

[23] Ruiz-Calleja, A., Vega-Gorgojo, G., Asensio-Perez,
J. I., Bote-Lorenzo, M. L., Gomez-Sanchez, E., and
Alario-Hoyos, C. (2012) A Linked Data approach for
the discovery of educational ICT tools in the Web of
Data. Computers & Education, 59, 952–962.

The Computer Journal, Vol. ??, No. ??, ????



Linked Data for Integrating Web Databases 19

[24] Mitsopoulou, E., Taibi, D., Giordano, D., Dietze, S.,
Yu, H. Q., Bamidis, P., Bratsas, C., and Woodham, L.
(2011) Connecting medical educational resources to the
Linked Data cloud: the mEducator RDF Schema, store
and API. Proceedings of Linked Learning 2011: the
1st International Workshop on eLearning Approaches
for the Linked Data Age, 8th Extended Semantic Web
Conference (ESWC2011), pp. 1–15.

[25] Alonso-Roris, V. M., Mı́guez-Pérez, R., Santos-Gago,
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