Optimized Service Level Agreement
Establishment in Cloud Computing

LEONILDO J. M. DE AZEVEDO, JULIO C. ESTRELLA, Luis H. V.
NAKAMURA, MARCOS J. SANTANA, REGINA H. C. SANTANA,
CLAuDIO F. MoTTA TOLEDO!, BRUNO G. BATISTA? AND STEPHAN
REIFF-MARGANIEC?

I Institute of Mathematics and Computer Sciences, University of Sdo Paulo, SP, Brazil
?Federal University of Itajuba, Itajuba, MG, Brazl
I University of Leicester, Leicester, UK
Email: leonildo.azevedo@usp.br; {jcezar, nakamura, mjs, rcs, claudio } @icme.usp.br;
brunoguazzelli@Qunifei.edu.br; srm13Qleicester.ac.uk

Nowadays, the access to a cloud computing environment is provided on-demand,
offering transparent services to clients. Although the cloud allows an abstraction
of the behavior of the infrastructure in the service providers (involving logical
and physical resources), the Service Level Agreements (SLAs) fulfilment remains a
challenge, because depending on the service demand and the system configuration,
the providers may not be able to meet the clients requirements. In this
way, mechanisms that take account of load balancing and resource provisioning
algorithms to provide an efficient load distribution in the available resources
are necessary. However, the studies in the literature do not effectively address
the problem of the resource provisioning to meet clients requirements using
optimization techniques, restricting the analysis to a limited set of objectives. This
paper proposes algorithms to address the computational resource provisioning
problem using optimization techniques on-the-fly. The techniques optimize the use
of the resources available in the cloud infrastructure, aiming to fulfill the clients
requirements defined in the SLAs, and ensuring the efficient use of resources.

Keywords: Cloud Computing; Service Level Agreement; Optimization

Received 00 January 2017; revised 00 Month 2017

INTRODUCTION

the software and hardware scalability and their use on-

In recent years, cloud computing has been one of the
most widely discussed topics in Information Technology
(IT). According to the National Institute of Standards
and Technology (NIST), the term ”Cloud computing”
can be defined as follows:

“Cloud computing is a model for enabling convenient,
on-demand network access to a shared pool of con-
figurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly
provisioned and released with minimal management ef-
fort or service provider interaction” [1].

Cloud computing can also be regarded as an
extension of other paradigms such as standard grade
and utilitarian computing; this enables business
applications to be viewed as sophisticated services
which can be accessed by means of a network (the
Internet) [2].

Moreover it involves two essential factors: Comput-
ing and Business. Computing is provided by cur-
rent technologies such as virtualization, which allows

demand. However, these resources must be provided
in a suitable way and in accordance with the business
models established between clients and cloud providers.

Cloud Computing is conceptually divided between
three basic services models: Software as a Service
(SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS). These models
set out the capacities of the cloud services and how they
can be rendered to clients. This approach can be seen
as a division of rendered services in abstract layers [3].

The SaaS is concerned with the capacity of the
provider to offer applications that can be hosted in a
cloud infrastructure [1]. The applications are supplied
as a service and they are accessible through a range of
client devices. Some examples of these applications, at
a business level, include: Salesforce, Google Apps for
personal applications, Gmail, Facebook and Twitter [4].

The use of PaaS is related to the capacity of the
provider to enable the client to develop applications
in a cloud infrastructure, which are created using

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

2 L. J. M. AZEVEDO ET AL

different programming languages, libraries, services
and tools supported by the provider. PaaS offers
to the developers a platform that facilitates the
implementation and installation of applications (Web
Applications or SaaS) and, thus avoids the cost and
complexity of both purchasing and managing the
hardware and software layers [5]. Examples of PaaS
are Google App Engine (GAE) and Windows Azure of
Microsoft.

TaaS supplies the client with processing capacity,
storage, networks and other basic computational
resources. The client is able to install and
execute software which may include operational and
applications systems. The client does not manage
or control the infrastructure, but he has control over
operational systems, storage, installed applications
and a limited control over selected components of
the network such as firewalls. The IaaS providers
usually offer a virtual infrastructure rather than
real hardware. These services can be supplied by
standardized interfaces for PaaS and SaaS. Some
examples are Amazon Web Services (AWS) with
processing services (e.g. Elastic Compute Cloud - EC2)
and storage facilities (e.g. Simple Storage Service - S3)
[6].

Cloud Computing is a vast and complex computing
paradigm that is closely bound to the business dealings
of its clients. It has always been a challenging task
to provide clients with a suitable infrastructure for
rendering services. Different clients require different
resources depending on their hosted applications or
demands made by users for these applications. For
example, a particular client may have a CPU-Bound
application while another client has a Memory-Bound
application. Omne client might have an application
with a large number of simultaneous accesses, whereas
another client might have an application with only a
few random accesses.

The Cloud providers generally make several configu-
rations of virtualized resources such as CPU, Memory
and Disc which compose the Virtual Machines (VMs)
available in the cloud environment. Some configura-
tions of virtual machines are predefined. For example,
Amazon works with different classes of VMs?* and the
user can decide what is the best amount and capacity of
the virtual machines to ensure that the system operates
in a suitable way.

One advantage of Cloud Computing is that the
providers offer monitoring services which allow the
computational capacity to be extended or reduced. This
is carried out on the basis of a parameter configuration
and simple scaling policies. Thus, when there is a
great demand for services, computational resources can
be added automatically to meet the increase in the
service demand. On the other hand, if there is a low
demand, the resources can be automatically reallocated

4https://aws.amazon.com/ec2/instance-types

saving costs for clients, who usually pay per hour.
However, these dynamic scaling systems, supplied by
providers, take into account only the demand or the
rate of use when making a decision about to increase
or decrease resources. The exact threshold of when a
reshaping of the infrastructure should be carried out
is a matter of great interest in academic studies and
industry applications.

Another problem is how to quantify the volume of
resources (i.e. the number of virtual machines) that
must be either initiated or disconnected. It is not a
trivial task to carry out this kind of reconfiguration in
a run-time, not only with the aim of meeting demands,
but also to undertake this procedure in an efficient way.
In this context, other objectives must be satisfied such
as the reduction of costs, whilst ensuring the quality of
services defined by the Service Level Agreement (SLA)
for Cloud, as established between provider and clients.

In this paper, our concern is with the IaaS service
model and thus we have set out to create and evaluate
optimization algorithms that fully comply with SLAs.
Three optimization algorithms are proposed aiming to
overcome the challenges previously highlighted, based
on the problem described in Section 3. First, we
describe a deterministic algorithm that is able to
search the problem solution space exhaustively. A
Simulated Annealing, a Tabu Search and a Multi-
Population Genetic Algorithm are also proposed to
search the solution space more efficiently. The
specific novel contributions of the paper are: 1) an
SLA generator that produces sample SLAs based on
evaluating proposed property values through simulating
respective configurations in CloudSim simulator; 2)
a novel Multi-Population Genetic Algorithm (MPGA)
that finds optimal SLAs through meta heuristics;
and 3) an experimental evaluation of four alternative
optimization algorithms.

The paper is structured as follow. A literature review
is conducted in Section 2, which addresses optimization
within cloud computing. In Section 3, the problem
that will be tackled and solved in this study is defined
precisely. Section 4, presents another contribution of
this study, an SLA generator. Section 5 describes the
methods employed for the solution of the problem. In
Section 6, the design of the experiments and an analysis
of the results achieved by the proposed algorithms are
reported. Finally, the conclusions and some guidelines
for future work are presented in Section 7.

2. LITERATURE REVIEW

The cloud is a highly scalable environment in which the
demand for services can change unexpectedly. Thus,
the automatic allocation of resources to meet this
demand is becoming an issue of great interest in both
the academic and industrial world.

Correct provisioning and resource management
allows an efficient use of available computational

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

OPTIMIZED SERVICE LEVEL AGREEMENT ESTABLISHMENT IN CLOUD COMPUTING 3

resources and the whole infrastructure which comprises
the Cloud, since it carries out a more efficient mapping
between the workload and the resources [7]. For
example, the task of providing more computational
resources to a client becomes more feasible and they can
be provided easily since the resources are virtualized.
Moreover, from the standpoint of the clients, the
resources can be regarded as unlimited and they can
be provided according to the client necessity. However,
it should be remembered that the allocation of more
resources has an influence on the final cost. This cost
has to be passed on to the client and it requires effective
management mechanisms on the provider side [8].

There are several studies in the literature that ana-
lyze and propose mechanisms for resource management
in a cloud environment. However, most of them ad-
dress the monitoring phase of the SLA. It is important
to note that, in this paper, we address the establish-
ment phase and, to date, we have not found papers in
the literature that address such problem.

Dynamic policies are extremely important for our
study since providers such as Amazon allow the client to
define the type of resource scalability that they want to
contract by adjusting the number of instances (VMs)
that must be allocated or dislocated [9]. In this way,
the client is responsible for predicting and defining the
best configuration for an efficient resource provisioning
in the contracted infrastructure. However, the client
prediction and definition of the number of resources
cannot be an efficient configuration, harming the QoS
(Quality of Service) and the use of the infrastructure.

The studies in the literature that address resource
provisioning can be divided into four approaches: based
on the policy, based on the heuristic, multiple-criteria
and optimization.

The approach based on policy is the simplest
approach for resource management, in which the
decision is made based on a condition. This approach
is used when there is a limited number of scenarios to
modify. Thus, this approach is not feasible for the cloud
context, due to the high complexity and the various
parameters involved in a cloud environment [10] [11].

In the heuristic-based approach, a set of heuristics
are previously set to be applied in some scenarios.
These strategies are relatively simple, in which various
heuristics can be developed and added at run time.
However, this approach is limited to the prediction of
specific scenarios in a period of time. In this way, SLA
violations can occur in scenarios that are not included in
the prediction. We find several papers in the literature
that apply the heuristic-based approach to the resource
provisioning problem. Some studies apply heuristics for
automatic initialization of VMs in case of the number of
allocated VMs achieves a percentage of utilization [12].
Another study conducted by [13] uses meta-heuristics
to reduce the use of resources, aiming at energy saving.

The study carried out by [7] is the study that
is closest to our research presented in this paper.

The authors proposed a reconfiguration module called
ReMM (Resource Management Module). The ReMM
seeks to satisfy both clients and providers, maintaining
the QoS defined in the SLA and ensuring the efficient
use of resources. For this, a heuristic based on current
business models is applied changing the number of
available resources on-the-fly. However, the authors do
not apply optimization techniques.

The optimization approach uses an approach similar
to heuristic methods, which is applied in detection
and treatment of SLA violations. In this context,
the detection can occur through analysis of a system
performance model or occurrence of faults, in order
to adjust the capacity of the contracted VMs.
Usually, optimization approaches use machine learning
methods, analysis of temporal series and fault tolerance
techniques to detect SLA violations [14] [15] [16].
However, the great complexity of the methods to give
an answer is a big problem, resulting in delays to solve
specific problems. Therefore, the application of this
approach during execution time becomes a challenge.

Finally, multi-criteria, as the name suggests, is an
approach that allows the analysis of multiple criteria or
situations in a problem [17]. Solutions for the resource
provisioning problem based on multi-criteria tend to be
decentralized, analysing each early criteria or situation
independently [18] [19]. This approach suffers from the
same problem of optimization due to its complexity.

There are many complex challenges in cloud
computing that can be addressed by optimization
techniques. For example, a) the problems in the
allocation of virtual machines in a real machine [20];
b) energy saving [21]; ¢) scalability and load balancing
of applications in virtual machines [22]; d) the use of
resources to reduce costs, while still guaranteeing a
satisfactory performance, the compliance of the SLA
and the efficient use of resources [23] [7].

All these problems require optimal or sub-optimal
solutions which can be achieved through techniques that
are conceptualized in the optimization area. This study
seeks to tackle the problem of resources provisioning
in a suitable way by employing a heuristic and a
meta-heuristic. The proposed methods aim to achieve
results that can guarantee the SLA, the system self-
management and the QoS for clients of a provider in
the cloud.

3. PROBLEM STATEMENT

In a cloud environment, when a well-designed
mechanism for provisioning resources is employed,
the applications can operate more efficiently with
a reduction in costs, a better use of the available
infrastructure and a better performance at peak
moments when there are variations in the demand
for services [7]. However, the provisioning process
is complex [24]. According to [25], it requires the
definition of better configurations of software and

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

4 L. J. M. AZEVEDO ET AL

hardware to ensure compliance with the SLAs as well
as to address the need to maximize efficiency and the
use of the system.

The management of an SLA is a task composed of
several phases, such as negotiation, implementation,
monitoring, violation management, reporting, and
finalization [26]:

e Negotiation: define the terms of services abd
include monetary aspects;

e Establishment: requests from clients are
assigned to the provider resources;

e Monitoring: it is important to periodically
monitor the resources and the status of the
execution;

e Violation management: if have a violation, a
decision should be take. The decision should be
suitable for the context of the violation alert;

e Reporting and Termination: provide SLA
reports with integrity and provides a method for
parties to the agreement terminate the SLA.

Figure 1 illustrates the sequence in which these
steps are performed [26]. In this paper, we treat
the establishment (implementation) phase, in which
the clients requests are set up to the contracted
resources (established in the SLA). The ideal scenario
is that in which the contracted resources can meet the
requirements assigned by the client.

Take action to Ye
resolve violation s
SLA Violation
SLA Negotiation —-{ Establishment ’—b SLA Monitoring

-

SLA report Service termination

FIGURE 1. SLA management life cylcle [26].

There are several challenges related to provisioning
of resources and ensuring requirements using a cloud
infrastructure. These problems involve load and
performance modelling, virtualization, refinement and
monitoring of applications in the virtualized resources
[27]. In addition, there are unpredictable circumstances
that can impair the efficiency and interfere in the ability
to ensure the requirements during the execution time.
Among these the following can be cited [28]:

e Estimation error: the combination of errors be-
tween the computational resources and applica-
tions can lead to an under- or over-estimate of
client demands, which can have a considerable im-
pact on the contracted QoS and the cost of the
service;

e Dynamic loading: the Cloud is an environment
with different kinds of clients who require different

types of services. For this reason, different load
peaks can occur depending on the day and time
of year or the popularity of an application. These
factors give rise to serious problems when estimates
are made for the behaviour of the loading and
resource definition;

e Unexpected behaviour: availability, load,
throughput, resource utilization, and network
connections can vary in an unpredictable manner in
large-scale computing environments such as cloud.
This instability in the system can make it difficult
to determine the nature of the resources during the
provisioning in an efficient way.

Providers such as Amazon EC2 and Microsoft Azure
employ a methodology for provisioning resources in
which the clients are responsible for giving a precise
estimate of the necessary resources and selecting the
request to be contracted themselves [29].

It should be remembered that the clients do not
always have the technical knowledge to handle the
provisioning of resources, whereas this task can be
burdensome for them. Therefore, the application
of some kind of optimization techniques for the
provisioning of resources can make this process an
automated task. This can ensure the maximum use of
computational resources and hence, the clients do not
need to pay for more resources than they really need.
They will pay a fair price for the contracted service,
with the required QoS.

4. SLA GENERATOR

Considering the papers available in the literature
dealing with SLAs, all of them use private instances,
i.e., they generate SLAs in accordance with the QoS
attributes taken into consideration. Furthermore, these
studies use a small amount of SLAs to perform the
experiments. For this reason, another contribution of
this paper is the development of a SLAs generator.

In this context, based on some related works [7]
[26] we identified and used four QoS attributes most
common, as follows (note that we use four common
factors here, future work will investigate methods to
deal with a larger set of factors):

e Capacity (C): refers to the number of virtual
machines contracted by the client. Three types
of VMs are considered: Small, Medium and
Large. These instances were modelled based
on the configuration of the M3 instances offered
by Amazon EC2 (m3.medium, m3.large and
m3.xlarge)®. A data center infrastructure can
have a large number of VMs with a wide range
of different configurations. The capacity was
obtained by Equation 1, in which n is the number
of virtual machines:

Shttps://aws.amazon.com/ec2/instance-types/

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

OPTIMIZED SERVICE LEVEL AGREEMENT ESTABLISHMENT IN CLOUD COMPUTING 5

=n
C= ZCapacity(VMi) (1)

i=1
e Response Time (RT): refers to the response
time of the application expected by the client. This
is defined through the execution of the application
within the contracted infrastructure. The response

time can be obtained by Equation 2 [30]:

S2'=" ResponseTime(V M;)
n

RT = (2)

e Availability (A): involves an infrastructure that
is ready to use. In this context, availability can be
obtained in two ways. In the first (Method I), the
availability can be calculated as a rate defined by
the number of machines considering the probability
of some error (1/n). For example, if four VMs are
instantiated, the probability of an error occurring
would be 1/4 (25%) and the system availability
would be 75%. In the second way (Method II),
a counting device could be created to find out the
percentage of requests met with success and the
percentage that failed — the percentage of requests
that were successful will be the "percentage of
availability”. In this study, availability will be
calculated using both Method I and II. The Method
I will be applied in the SLA establishment, while
Method II will be applied during the monitoring
process, in which the degree of availability can be
obtained by Equation 3 [30]:

A = TIIZT Availability (V M;) (3)

e Cost per hour (Cost/h): the monetary value
stipulated in the SLA refers to how much the client
is going to pay per hour for the service, while
making use of the VM. The financial cost per hour
can be obtained through Equation 4 [30]:

=n
Cost/h = Z Cost(VM;) (4)
i=1

These four QoS attributes allows estimating the
minimum and the maximum values for each one. In
these way, from these values, a discrete distribution
was carried out among them, allowing the combinations
between the attributes and the SLAs definition.

The CloudSim simulator was used to model and con-
figure the environment based on the Amazon instances
and to generate the SLAs [28]. The client applications
simulates a file repository service and a image rendering
(more information are presented in Section 5), in which
was generated a minimum workload, so that the less
powerful instance could process it, and the maximum
value was dynamic, varying according to the amount
of SLAs generated. Furthermore, an deadline was de-
fined for the application response time, cost per hour,
availability and capability.

The intervals follow a discrete order for all attributes
and these values were combined to provide the SLAs.
The Algorithm 1 describes this implementation and
Table 1 shows some examples of SLAs generated.

Algorithm 1 SLA generator

1: procedure SLA(Minimum and Maximum values from QoS
factors)
2: for w = minimum cost until w < maximum cost do
3: for x = minimum workload until x < maximum workload
do
4: for y = minimum response time y < until maximum
response time do
5 for z = minimum available until z < maximum
available do
6: accept < execute(CloudSim[w,x,y,z])
T if accept then SLAs.add(SLA[w, x, y, z])
8: end if
9: end for
10: end for
11: end for
12: end for//return a SLA list
13: return SLAs
14: end procedure

In order to evaluate the SLA generated, in line 5
of the Algorithm 1, CloudSim is executed with the
generated QoS factors. If none of the factors exceeds
20% of the value returned by CloudSim, the SLA is
added to the list. This test is realised in order to avoid
infeasible SLAs ©. At the work of [7] it is considered a
limited of 10%, in this work we decided relax for 20%
to test the algorithms comportment and generate more
SLAs.

In this paper, we assume that the provisioning of
resources should be carried out automatically and
dynamically on the basis of the requirements made by
clients in the SLA, with a fair price and considering the
service demand.

5. METHODOLOGY

In this paper, we proposed an optimization module,
which is used in the initial stage of the SLA negotiation,
before the provisioning process. Thus, the optimization
algorithms are applied to find out the resources that
should be allocated to the client, aiming to avoid the
SLA violation. Figure 2 illustrates the interaction of the
architecture with the optimization algorithm. After the
SLA negotiation and resource provisioning, there is the
monitoring phase, and in case of violation of the SLA,
the optimization framework is triggered and it sets the
decision to be taken. This adjustment is not part of the
presented work, but is source for future investigation.
In this paper, we concentrate on establishing SLAs in
the first place.

Problems such as task scheduling and resource
provisioning are considered NP-hard [31]. Many
problems in this complexity class are solved by integer
programming and branch-and-bound approaches [32].
However, these are not suitable to solve decision
problems that have continuous adaptation [33].

6 Are considered infeasible SLAs whether it is impossible to the
provider to provide this SLA

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

6 L. J. M. AZEVEDO ET AL

TABLE 1. Examples of SLAs generated

Capacity | Response Availability | Cost/h | Workload**
Time (sec.) (%) (U$)
SLA 1 X* 100 70 0,2 80500
SLA 2 X* 150 70 0,53 100000
SLA 3 X* 180 80 0,6 125000
SLA 4 X* 200 90 0,7 170000

xThe capacity is the goal to be achieved by the algorithms to meet the QoS attributes of the SLA, since the client has

insufficient knowledge to precisely make such a decision.

#*Cloudlet length: in the CloudSim simulator the workload is given in MIPS (Millions of Instructions Per Second). In this
way, the Cloudlet number refers to the number of instructions that the processor is going to execute.

/_—-_-_-_-_-_-_-_-_-_-_\~
] \
Optimization Algorithms Framework Business Model '
|]
! Balancing Resource Allocation - 1
| Algorithms Algorithms Capacity |
Planning ~—
']
\ Ba'lar'lcin'g Optimization of /
. Optimization resource provisioning
*
\—-—--—-—-_-—-_—-—-—-—-/
 /
slancer module Reconfiguration Monitoring data
e e o \
(ReMM)

Ontology data

Virtual Virtual
Machines Machines
3 3
E@ : 3l LC N

W o W

LSy ‘ C3iiy ’

Monitoring
Module

Legend

= . = Scope of this project

Other project scope

FIGURE 2. Management and provisioning of resources in an architecture with optimization algorithms.

In this context, we have chosen to investigate
optimization algorithms based on metaheuristics once
these methods present good performance solving real-
world problems within a reasonable computation time.
There are several metaheurisitcs available in the
literature [34], but we decided to apply two local search
and one evolutionary algorithm. The option for local
search is the need to achieve quickly good solutions. In
this case, we will start from one random solution looking
for better ones in its neighbourhood. However, we also
choose to evaluate the performance of one evolutionary
algorithm despite the time spent evolving populations
of solutions. Therefore, classical local search techniques
such as simulated annealing and tabu search were
selected, while the evolutionary algorithm is a multi-
population version of the genetic algorithm.

The optimization algorithms were developed with

the help of the Professional Optimization Framework
(ProOF) tool [35]. The ProOF is intended to guide
the implementation of heuristics, metaheuristics, exact
and hybrid methods for optimization problems. It
provides a framework base for encoding algorithms and
setting experiments. The first step was the integration
of the ProOF and CloudSim functionalities. Next,
the problem was encoded within the framework as
well as four optimization methods were designed to
solve it: Deterministic Algorithm, Simulated Annealing
(SA), Tabu Search (TS) and Multi-Population Genetic
Algorithm (MPGA).

These methods aim optimizing the number of virtual
machines contracted by the client as described in
Section 4. Thus, the representation of the solution
(encoding) is defined by a triple (s,m,l), which
represents the number of Virtual Machines type Small,

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

OPTIMIZED SERVICE LEVEL AGREEMENT ESTABLISHMENT IN CLOUD COMPUTING 7

Medium and Large, respectively, that will try to satisfy
the clients’ requests.

The clients define the desired Capacity (C€) as well
as Time (7°), Availability (A°) and Cost/hour (C/h€).
However, it is hard to satisfy all these requirements
without conflicts. For example, the requested C¢ may
not be satisfied with the desired cost C/h® or may
not run an application within time 7°°. Therefore, the
methods described in this section will try to find the
best arrangement of VMs (s*,mx,{*) ables to closely
satisfy the values set for C', T, A° and C//h°.

This is done by evaluating a possible representation
(s’,m/,l') using CloudSim simulator, which will return
the related values for C¢, T A C/h®. If these
parameter values are not compatible with those defined
in the SLA (C°, T¢, A°, C/h*), another representation
of the solution (s’,m',l') must be evaluated. This
compatibility is estimated by Equation 5.

f(Pl]) =

C* T*

ce — C*
A*

T¢ —-T*
"

‘AC_A*
+

C/he — C/h*
C/h*

(5)

The proposed equation is an adaptation of the
Manhattan Distance [36] to estimate how close the
solution is to the SLA input values. There is a total
of four objectives with different scale of values, so Gap
values are calculated for each objective.

The first algorithm developed is the so-called
deterministic algorithm since it evaluates exhaustively
all possible combinations for (s,m,l) as described by
Algorithm 2. The deterministic algorithm provides
a baseline for performance and results comparison.
The method generates and evaluates all possible
combinations for triples (s,m,l) from lines 3-7 by
keeping track of the best one. The procedure
Generate(s,m, 1) creates a different combination within
the domain of values for (s,m,l) on each iteration,
which is evaluated next by FEwvaluate(s,m,l) using
Equation 5. Finally, the best triple (s,m,l) (optimal
solution) is returned at line 9.

Algorithm 2 Deterministic algorithm

1: procedure SLA(C¢,T¢, A¢,C/h°)

2 //Sweep all the search space

3 repeat

4: //generate a capacity to be evaluated

5 Generate(s, m, 1)

6 Evaluate(s, m, 1)

7 until Until all (s,m,l) possibilities within the

interval have been generated
//return a better configuration found to satisfy
the SLA of the client
9: return SLA* : C*,T*, A*,C/h*
10: end procedure

i

Algorithm 3 describes the MPGA. This method
is a genetic algorithm (GA) which operates with a
population hierarchically structured in trees as first

proposed by [37]. MPGA has been applied to solve
different optimization problems in the literature [38,
39, 40, 41] with relevant results reported. Figure 3
illustrates the population structure. The position of
the individuals (nodes) in the clusters indicates their
position within the hierarchy. In each cluster, the
followers has worse fitness value than their leader.
Thus, the best individual will be the root in such tree
while the worst individuals are the leaves. The method
evolves several populations and, after the evolution
steps, the best individuals found migrates from one
population to the next. Algorithm 3 was based on the
hybrid genetic algorithm described in [40].

Algorithm 3 MPGA algorithm

1: procedure MPGA(C*,T¢, A¢,C/h®)
2 for ¢ + 1 to nPopulation do

3 InitializePopulation(P)

4 Evalutate(P[i])

5: end for

6 repeat

7 for i + 1 to nPopulation do

8 repeat

9: for i <+ 1 to PJi].Size*crossRate do
10 Selection(P[i])

11: Crossover(PJi])

12: Mutation(P[i])

13: Evaluate(P[i])

14: Structure(P[i])

15: end for

16: until Pfi] has converged

17: executeMigration(P[i])

18: restartPop(P[(i mod nPopulation)+1])
19: end for
20: until time limit has been reached
21: return s

22: end procedure

Best Individual

Leader

Populations

Migration

FIGURE 3. Population structure and migration.

Each individual represents a possible VM con-
figuration (s,m,l) for the client. =~ The procedure
Initialize Population(P) generates random individuals

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

8 L. J. M. AZEVEDO ET AL

(s, m, 1) with min < (s+m+1) < max, where the possi-
ble range is defined by [min, max]. A total of 5 individ-
uals is generated for each population and evaluated next
(lines 2-4). This amount of individuals aims to reduce
the fitness evaluation Evalutate(P[i]) since it will exe-
cute simulations using CloudSim. Next, the evolution-
ary process starts until convergence has been reached
(lines 6-20), generating a total of P[i].Size % crossRate
new individuals at each evolution. Selection(P]i]) ran-
domly selects a follower individual as one parent and its
leader as the other parent. The crossover operator gen-
erates a new individual from these two parents, where
two operators were implemented: blx-a (blend alpha
crossover) and uniform crossover [42].

The uniform crossover exchanges genes between
parents, i.e, individuals A and B are selected and each
gene in the offspring has 50% of probability to come
from parent A or parent B [42]. In Figure 4, the
offspring (s',m/,l') presents s’ = s'm’ = m' from
parent A and I’ = m? from parent B. The blx-a
crossover defines each gene 7 by sampling its new value
in the range « € [0, 1] with offspring (s', m/,1’) given by
s=a-s't+(1—-a-s?),m =a-m'+(1—-a -m?),
I!'=a-1'+ (1 —a-I?) as shown by Figure 5. One of
these two crossover operators is randomly selected each
time the crossover must be applied. The new individual
may present (s +m + 1) < min or maz < (s +m+1),
and an adjustment is made over its last value [.

Parent 1 S8 m? [*
Offspring ‘ s'=st m' = m? I'=1? ’

Parent 2 ‘ s2 m?2 [2 ’

FIGURE 4. Uniform crossover.

Offspring

s'zaest+(l-a)s?2 m=aem!t+ (1-aym?| |'=aelt+ (1-0)R

FIGURE 5. Blx-a crossover.

The mutation operator can be applied if mutation
rate is satisfied, which means to randomly generate
A € {0,1} with A < mutRate. In this case, one of
the six mutation operators proposed next is randomly
selected to be applied:

e Reset Position: resets a position of the

arrangement (s, m,1);

¢ Reset Individual: similar to reset position,
however, in this case resets all arrangements
(s,m,1);

e Swap: exchanges values of two positions of the
arrangement (s, m,1);

e Proximity: subtracts the value of a position of
the arrangement (s, m,[) and increases in another;

e Incremental Position: adds or subtracts the
value of a position of the arrangement (s, m,l),
respecting the maximum and minimum limit;

e Incremental Individual: similar to the incre-
mental position, however, increments or subtracts
the value of the all positions of the arrangement
(s,m,1).

The new individual is evaluated next and the
procedure Structure(P[i]) may include it in the
hierarchical structure (line 14). A new individual is
included when has fitness values better than the worst
parent. In this case, Structure(Pli]) will also update
the new individual position through the tree hierarchy.
For instance, if this individual is also better than the
best individual found so far, it will be rearranged to
become the root node in the tree.

The evolutionary steps carried on population PJi]
converge when no new individual is inserted after
Pli].Size = crossRate attempts. At this point, a copy
of the best individual of P[i] is sent by executeMigra-
tion(P[i]) to the next population to be evolved. Finally,
restart Population(P[(imodnPopulation) + 1]) restarts
the next population, except by its best individual and
the migrated one. MPGA stops when the time limit is
reached.

The second algorithm is an adaptation of the
Simulated Annealing proposed by [43]. This method
was developed based on the thermodynamic principles
acting as a local search technique. Solutions in the
neighbourhood of the current one can be evaluated
through a temperature function 7' = ﬁ, in which
« is a variable of the method acting as the cooling
reason. There are also other parameters of control,
such as the number of iterations (SAmax) to look for
solutions and the initial temperature (Tp). Algorithm
4 shows the proposed SA. In this case, s stands for
(s,m,l) and f(P[i]) (Equation 5) is represented by f(s).

For each temperature 7', a total of SAmaz solutions
is generated in the neighbourhood of the current
solution (s). The procedure generateNeighbour(s)
randomly select one of the six mutation operators,
previously described for the MPGA, to generate a
neighbouring solution s’ from s. If the solution s’ is
better (lines 9-11), it becomes the current solution s
(line 12). Such solution may also update the best one
found so far (lines 13-14). Otherwise, there is a chance
to accept a worse neighbouring solution s’ as current
one, based on A and T values by following expression
e~2/T (lines 17-20). This likelihood is larger during
high temperature T, which decrease using the cooling

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

OPTIMIZED SERVICE LEVEL AGREEMENT ESTABLISHMENT IN CLOUD COMPUTING 9

Algorithm 4 SA algorithm

Algorithm 5 Tabu Search algorithm

1: procedure SA(C¢, T, A°,C/h*)

2: sk <— s // better solutlon

3 T < Ty // current temperature

4: IterT < 0 // number of iteration in T
5: repeat

6 while 7" > 0.001 do

7 while IterT < SAmaz do

8 TterT < IterT + 1

9 s’ + generateNeighbour(s)

10 A« f(s)) — f(s)

11: if A <0 then

12: s+ s

13: if f(s') < f(s*) then
14: s% 8

15: end if

16: else

17: x € 10,1]

18:

19: if 2 < e 2/T then
20: s+ s

21: end if

22: end if

23: end while

24: T« 1+aT*\/T

25: IterT < 0

26: end while

27: S < S*

28: T+ Ty

29: until time limit has been reached
30: return s

31: end procedure

reason (line 24). If the time limit has not been reached,
the temperature is reheated and the search continues in
the neighbourhood of the current solution (lines 27-28).

Tabu Search (TS) is another local search method
proposed by [44] with a memory structure that allows
to escape from local optimum values. This can be done
by forbidding search movements recently applied which
can lead to neighborhoods previously explored. The
mutation operators from MPGA are also applied here
as movements of T'S to generate neighbouring solutions.
Algorithm 5 describes the method. In this case, s
represents (s,m,!), f(P[i]) (Equation 5) is replaced by
f(s), BetterIter is the last iteration where the best
solution was updated, T'L stands for tabu list and
BTmax is the maximum number of iterations without
improvement in the best solution.

The local search goes on while the time limit is not
reached and there is a recent improvement over the
best solution found so far (lines 3-7). Initially, the
six mutation operators are applied over the current
solution s and the best neighbouring solution s’ found
is selected next (line 9). If s’ is better than s, the
current solution is replaced by s’ and the movement

1: procedure TABU(C®,T¢, A, C/h*)
2 Sk < S

3 repeat

4: Betterlter <+ 0

5: Iter <0

6 TL <+ ()

7 while Iter — Betterlte < T'Smax do
8 Iter <+ Iter +1

9: s+ selectBestNeighbor(s)
10: A+ f(s')—f(s)
11: if A <0 then

12: s+ s

13: Update(T'L)

14: if f(s) < f(s%) then
15: Sk < S

16: Betterlter < Iter
17: end if

18: end if

19: end while
20: S < S*
21: until time limit has been reached
22: return s

23: end procedure

TABLE 2. Specification of instances

Instances |Virtual Core/Main Memory (GB)|Disk SSD

m3.medium 1 3.75 1x4
m3.large 2 7.5 1 x 32
m3.xlarge 4 15 2 x 40

(mutation operator) that generates s’ becomes tabu
(line 13). Thus, this movement can not be applied again
to generate a neighbouring solution. If the size of TL is
exceeded, the FIFO (First In, First out) police is used to
insert and remove movements from it. The parameter
Betterlter is set by the current iteration Iter when a
new best solution is reached, so it becomes possible to
continue the local search in the neighbourhood of sx
(lines 14-16).

6. COMPUTATIONAL RESULTS

The aim of the experiments shown in this section is
to analyze which computational resources should be
provided to fulfilment the SLA. The experiments were
carried out in the CloudSim Simulator 3.0.3 3 version”,
with the aid of a computer with an AMD Phenom(tm)
1T X6 1090T Processor, 16 GB of RAM memory, 1.5 TB
of disc storage and the Ubuntu 14.04.3 LTS operational
system with a kernel version 3.13.0.

The environment was configured for the execution
of three types of VM instances described in Table 2,
modelled based on Amazon instances.

Two benchmarks were modelled in the experiments
to simulate a file repository service (Apache Benchmark
[45]) and a image rendering (Smallpt Benchmark [46]),

"http://www.cloudbus.org/cloudsim/

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

10 L. J. M. AZEVEDO ET AL

respectively. Furthermore, we used the SLA generator
described in Section 3, which generated 131 SLAs.
The first experiment evaluates the performance of
the deterministic method. The method was executed
in 10 scenarios for a client SLA, ranging from data
centers with 10 to 100 VMs. The aim is to find
the best set of resources configuration, satisfying the
SLA or at least returning the closest result of the
best one if the SLA is infeasible. Owing to this
method ensures the best possible solution set, the
response variable was the response time. Figure 6
shows the results. This experiment was executed with
Apache and Smallpt, however, for both benchmarks
the determinist algorithm obtained the same result,
i.e, the workload does not influence on the algorithm
performance. The optimal solution is always obtained,
but the deterministic method takes polynomial time
which makes it infeasible for a commercial application.

Minutes

100,00 =~ Deterministic Time

0 10 20 30 4 5 60 70 8 9 100 110
Number of VMs

FIGURE 6. Response time of the deterministic model.

To evaluate the other methods, CloudSim was
configured to run with a limited amount of resources
(100 VMs), divided evenly between VMs of small,
medium and large types. In this way, it is possible to
simulate a real cloud environment. For experiments in
this environment, the SLA generator creates 100 clients
that allocate resources in the cloud at different times
(5 clients by time), as shown in Figure 7. As clients
establish the SLAs, the optimization algorithms are
executed to determine the best configurations.

@ End of
negotiations

5 clients

5 clients

Time 1 Time 2 Time 3 Time N

o

Start of

negotiations 5 clients

5 clients

FIGURE 7. Timeline of SLA negotiations between client
and provider.

For each set of clients, the optimization algorithms
were executed 10 times and the solution with the best
fitness was chosen. The execution was carried out in

TABLE 3. Algorithms settings

Characteristics SA Tabu MPGA
Time execution (minutes) 5 5 5
Temperature (max-min) 1000-0.001 - -
alpha 0.95 - 0.2
Operators All All All
SAmax
TSmax
TL
Neighborhood
Tabu Max
Individuals
Populations
Mutation rate
Crossover rate

Vo w
=
o
'

[T RSy gy

a distributed way (simultaneously) and each algorithm
has been implemented and evaluated separately. That
is, the same experiment was replicated for all
algorithms. Table 3 shows the settings for each
algorithm. These values were empirically defined, based
on previous settings reported in the literature for such
methods ([40]) and best results achieved from some
tuning tests executed by us. Figure 8 brings the results
for each experiment in the Apache Benchmark.

Note that in Figure 8, with the exception of SA
method, the lines are overlapped, which means that
the tabu search and MPGA found the optimal solution.
However, at a closer look obtained by expanding a
random section of the graph, it becomes visible that
the tabu search does not arrive at optimum, but found
an almost as good solution.

Figure 9 shows the results obtained for each
experiment in the Smallpt benchmark. In this
experimentation it is possible see that the behaviour
of determinist and MPGA algorithm does not change,
while SA has the worst performance among them.

Another analysis conducted between the methods was
to assess the reliability of answers, because all methods
are stochastic. For this, we randomly extracted a
sample of 5 clients from the 100 evaluated. As each
client was run 10 times for each method, we got the full
set of data to analyse.

In Figure 10, we show a blox pot graph, where
are the results of this analysis. The center of the
distribution is indicated by the median line in the
center of the square, the dispersion is represented by the
amplitude of the graph and outliers appear as distant
points. Therefore, it is possible to see that the MPGA
obtained the most reliable results, reaching the best
results in all executions. The tabu search was almost as
good as MPGA, however presented some outliers, while
simulate annealing had several variations.

Owing to the MPGA method obtained the best
results, we conducted a convergence time analysis, in
which we took again five random clients. Figures 11
and 12 show the results of this analysis to the MPGA
and Tabu search. The convergence time of the MPGA
ranged between 45 and 135 seconds; a shorter time than
5 minutes defined as stop criterion and significantly
lower than the 3.5h taken by the deterministic method.

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

OPTIMIZED SERVICE LEVEL AGREEMENT ESTABLISHMENT IN CLOUD COMPUTING 11

1(x)

—B— Fitness Optimum
SA

—i— TABU

—p— MPGA

YRSl ppPRARERRlSE TN SER P

Clients

FIGURE 8. Performance of simulate annealing, tabu search and MPGA in relation to the deterministic method with the

Apache Benchmark.

1.2

0.8

A*‘ o~ Deterministic
- £ MPGA
= sA
0.4 . TABU
b’
a4

0.0

(%)

1 5 9 1317212529 3337 4145495357 616569 7377 81 8589 93 97101
Clients

FIGURE 9. Performance of simulate annealing, tabu
search and MPGA in relation to the deterministic method
with Smallpt benchmark.

client A client B client C client D client E
20-
L]
15- >
.
-
173 2 o
Q40-
= e
i @ .
. ..
. oo
om “us omm b wme W% ==
- tree
05" ape oun
00-
T & T & D T & P T & ¥ & D
S @9 ,‘OQ S) :§v S 9 ;OQ S @9 "OQ 9 o
& & 8 &8 & g & &3
Methods

FIGURE 10. Reliability analysis of the methods.

In the other hand, Tabu search has worse convergence
results, where it does not found the optimal solution to
client 1 and 3.

1.04
'y
0.87 . e e
. . o
* * . A Methods
0.64 . ¢ client1
§ L A client2
s 4 client3
(i . .
0.4 | clientd
] L clients
0.2+
L] L |

0.0+

120 135 150

<-
>
&

0 15 30 4 60 75
Time (s)

FIGURE 11. Convergence analysis of the MPGA.

1.04
.
Iy
¢
0.84
. A A
o TS
* Methods
0.64 o ¢ clientt
] a client2
£ ¢ g ¢ Y & client3
w [T]
0.44 ® client4
clients
0.24 L]
|
L s T
0.04

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210
Time (s)

FIGURE 12. Convergence analysis of the Tabu.

7. CONCLUSIONS

Providing service to the clients of the Cloud with
an efficient infrastructure, that respects the SLA and

THE COMPUTER JOURNAL,

Vol. 72, No. 77, 1777

12 L. J. M. AZEVEDO ET AL

its QoS attributes, while at the same time trying to
reduce costs, is not a trivial task. Within the domain
of cloud computing, the most wide-ranging problems
can be mapped out in solutions that generally involve
optimization based on their complexity and the large
number of resources that can be scalable.

This paper addressed one of these challenges, namely
to provide compliance with the SLAs defined between
clients and providers. Our proposal mapped some of
the QoS attributes that determine the criteria for the
SLA and based on this, we designed and analyzed
algorithms that allow an optimized configuration of the
cloud infrastructure. The results evidenced that the
algorithm based on meta-heuristics Tabu search and
MPGA were efficient and applicable as solutions to the
problem.

As future work, we intend to implement the second
stage of this study, that is the monitoring phase,
in which, if the SLA is not being fulfilled, the
renegotiation process between the client and provider
will be considered to establish a new infrastructure
configuration. Other QoS attributes will be added in
the SLA and new constraints to the problem, such as
defining a maximum cost threshold that the client is
able to afford.

ACKNOWLEDGEMENTS

Authors would like to thank the financial support from
CNPq, CAPES and FAPESP (processes IDs: 11/12670-
5, 15/11623-4 and 16/14219-2) for funding the bulk of
this research project.

REFERENCES

[1] Mell, P. and Grance, T. (2017). The nist
definition of cloud computing. Available at:
http://csre.nist.gov/publications/nistpubs/800-
145/SP800-145.pdf. Last Access: 06/27/2017.

[2] (2009) Cloud computing and emerging {IT} platforms:
Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems,
25, 599 - 616.

[3] Buyya, R., Broberg, J., and Goscinski, A. M. (2011)
Cloud Computing Principles and Paradigms. Wiley
Publishing.

[4] Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., and
Ghalsasi, A. (2011) Cloud computing - the business
perspective. Decision Support Systems, 51, 176 — 189.

[5] Intel-Corporation (2017). Cloud computing tax-
onomy and ecosystem analysis. Available at:
http://www.intel.com/content /dam/doc/case-
study/intel-it-cloud-computing-taxonomy-ecosystem-
analysis-study.pdf. Last Access: 06/27/2017.

[6] Patidar, S., Rane, D., and Jain, P. (2012) A survey
paper on cloud computing. Advanced Computing
Communication Technologies (ACCT), 2012 Second
International Conference on, pp. 394-398.

[7] Batista, B. G., Estrella, J. C., Ferreira, C. H. G.,
Leite Filho, D. M., Nakamura, L. H. V., Reiff-
Marganiec, S., Santana, M. J., and Santana, R. H. C.

(2015) Performance evaluation of resource management
in cloud computing environments. PloS one, 10, 21.

[8] Coutinho, E. F., de Carvalho Sousa, F. R., Rego, P.
A. L., Gomes, D. G., and de Souza, J. N. (2015)
Elasticity in cloud computing: a survey. annals
of telecommunications-annales des télécommunications,
70, 289-309.

[9] Amazon (2017). Dynamic scaling. Available at:
http://docs.aws.amazon.com/AutoScaling/latest /Deve
loperGuide/as-scale-based-on-demand.html. Last Ac-
cess: 06/27/2017.

[10] Huebscher, M. C. and McCann, J. A. (2008) A
survey of autonomic computing—degrees, models, and
applications. ACM Computing Surveys (CSUR), 40, 7.

[11] Yuchao, Z., Bo, D., and Fuyang, P. (2012) An adaptive
qos-aware cloud. Cloud Computing Technologies,
Applications and Management (ICCCTAM), 2012
International Conference on, pp. 160—163.

[12] Emeakaroha, V. C., Brandic, I., Maurer, M., and
Breskovic, I. (2011) Sla-aware application deployment
and resource allocation in clouds. Computer
Software and Applications Conference Workshops
(COMPSACW), 2011 IEEE 35th Annual, pp. 298-303.

[13] Kessaci, Y., Melab, N., and Talbi, E.-G. (2014) A multi-
start local search heuristic for an energy efficient vms
assignment on top of the opennebula cloud manager.
Future Generation Computer Systems, 36, 237-256.

[14] Eyraud-Dubois, L. and Larchevéque, H. (2013)
Optimizing resource allocation while handling sla
violations in cloud computing platforms. Parallel
& Distributed Processing (IPDPS), 2013 IEEE 27th
International Symposium on, pp. 79-87.

[15] Jiang, J., Lu, J., Zhang, G., and Long, G. (2013) Op-
timal cloud resource auto-scaling for web applications.
Cluster, Cloud and Grid Computing (CCGrid), 2013
13th IEEE/ACM International Symposium on, pp. 58—
65.

[16] Wang, X., Du, Z., and Chen, Y. (2012) An adaptive
model-free resource and power management approach
for multi-tier cloud environments. Journal of Systems
and Software, 85, 1135-1146.

[17] (2010) Multi-criteria decision making approaches for
supplier evaluation and selection: A literature review.
FEuropean Journal of Operational Research, 202, 16 —
24.

[18] Yazir, Y. O., Matthews, C., Farahbod, R., Neville,
S., Guitouni, A., Ganti, S., and Coady, Y. (2010)
Dynamic resource allocation in computing clouds using
distributed multiple criteria decision analysis. Cloud
Computing (CLOUD), 2010 IEEE 3rd International
Conference on, pp. 91-98.

[19] Yazir, Y. O., Akbulut, Y., Farahbod, R., Guitouni,
A., Neville, S. W., Ganti, S., and Coady, Y. (2012)
Autonomous resource consolidation management in
clouds using impromptu extensions. Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference
on, pp. 614-621.

[20] Masdari, M., Nabavi, S. S., and Ahmadi, V. (2016)
An overview of virtual machine placement schemes in
cloud computing. Journal of Network and Computer
Applications, 66, 106—127.

THE COMPUTER JOURNAL,

Vol. 7?7, No. 77, 7777

OPTIMIZED SERVICE LEVEL AGREEMENT ESTABLISHMENT IN CLOUD COMPUTING 13

21]

(22]

29]

Beloglazov, A., Abawajy, J., and Buyya, R. (2012)
Energy-aware resource allocation heuristics for efficient
management of data centers for cloud computing.
Future Generation Computer Systems, 28, 755 — 768.
L.D.,, D. B. and Krishna, P. V. (2013) Honey bee
behavior inspired load balancing of tasks in cloud
computing environments. Applied Soft Computing, 13,
2292 — 2303.

Byun, E.-K., Kee, Y.-S., Kim, J.-S., and Maeng,
S. (2011) Cost optimized provisioning of elastic
resources for application workflows. Future Generation
Computer Systems, 27, 1011 — 1026.

Jennings, B. and Stadler, R. (2015) Resource
management in clouds: Survey and research challenges.
Journal of Network and Systems Management, 23, 567—
619.

Guzek, M., Bouvry, P., and Talbi, E.-G. (2015) A sur-
vey of evolutionary computation for resource manage-
ment of processing in cloud computing. Computational
Intelligence Magazine, IEEE, 10, 53—67.

Faniyi, F. and Bahsoon, R. (2016) A systematic review
of service level management in the cloud. ACM
Computing Surveys (CSUR), 48, 43.

Mustafa, S., Nazir, B., Hayat, A., Madani, S. A., et
al. (2015) Resource management in cloud computing:
Taxonomy, prospects, and challenges. Computers &
Electrical Engineering, 47, 186-203.

Calheiros, R. N., Ranjan, R., and Buyya, R. (2011) Vir-
tual machine provisioning based on analytical perfor-
mance and qos in cloud computing environments. Par-
allel Processing (ICPP), 2011 International Conference
on, pp. 295-304.

Huu, T. T. and Montagnat, J. (2010) Virtual resources
allocation for workflow-based applications distribution
on a cloud infrastructure. Cluster, Cloud and
Grid Computing (CCGrid), 2010 10th IEEE/ACM
International Conference on, pp. 612—-617.

Ko, J. M., Kim, C. O., and Kwon, I.-H. (2008) Quality-
of-service oriented web service composition algorithm
and planning architecture. Journal of Systems and
Software, 81, 2079-2090.

Kumbhare, A., Simmhan, Y., and Prasanna, V. K.
(2013) Exploiting application dynamism and cloud
elasticity for continuous dataflows. Proceedings of
the International Conference on High Performance
Computing, Networking, Storage and Analysis 57.
Woeginger, G. J. (2003) Exact algorithms for
np-hard problems: A survey. Combinatorial
Optimization—Fureka, You Shrink!, pp. 185-207.
Kumbhare, A. G., Simmhan, Y., Frincu, M.,
and Prasanna, V. K. (2015) Reactive resource
provisioning heuristics for dynamic dataflows on cloud
infrastructure. Cloud Computing, IEEE Transactions
on, 3, 105-118.

Glover, F. and Kochenberger, G. (2006) Handbook
of Metaheuristics International Series in Operations
Research & Management Science.

Arantes, M. d. S. (2014) Ambiente para desenvolvi-
mento de métodos aplicados a problemas de otimizagao.
Master’s thesis. Programa de Pés-Graduagdo em
Ciéncias de Computagado e Mateméatica Computacional
— Instituto de Ciéncias Matematicas e de Computagao,
Universidade de Sdo Paulo.

(36]

37]

(38]

(39]

(40]

[41]

(42]

(43]

(44]

(45]

[46]

(47]

Black, P. E. (2004) Dictionary of algorithms and
data structures. National Institute of Standards and
Technology Gaithersburg.

Franca, P. M., Mendes, A., and Moscato, P. (2001)
A memetic algorithm for the total tardiness single
machine scheduling problem. Furopean Journal of
Operational Research, v, 132, 377-2217.

L. Buriol, P. M. F. and Moscato, P. (2004) A
new memetic algorithm for the asymmetric traveling
salesman problem. Journal of Heuristics, Kluwer
Academic Publishers, Hingham, MA, USA, 10, 1381-
1231.

Moscato, P., Mendes, A., and Berretta, R. (2007)
Benchmarking a memetic algorithm for ordering
microarray data. Biosystems, 88, 56 — 75.

Toledo, C. F. M., da Silva Arantes, M., De Oliveira,
R. R. R., and Almada-Lobo, B. (2013) Glass container
production scheduling through hybrid multi-population
based evolutionary algorithm. Applied Soft Computing,
13, 1352-1364.

da Silva Arantes, J., da Silva Arantes, M., Toledo,
C. F. M., Junior, O. T., and Williams, B. C. (2017)
Heuristic and genetic algorithm approaches for UAV
path planning under critical situation. International
Journal on Artificial Intelligence Tools, 26, 1-30.
Eiben, A. and Smith, J. (2007) Introduction to
FEvolutionary Computing Natural Computing Series.
Springer Berlin Heidelberg.

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P.; et al.
(1983) Optimization by simmulated annealing. science,
220, 671-680.

Glover, F. (1986) Future paths for integer programming
and links to artificial intelligence. Computers &
operations research, 13, 533-549.

Apache benchmarking. Available from:
https://openbenchmarking.org/test/pts/apache.
Accessed: 06-27-2017.

Smallpt benchmarking. Available from:

https://openbenchmarking.org/test/pts/smallpt.
Accessed: 06-27-2017.

Takahashi, M. and Kita, H. (2001) A crossover operator
using independent component analysis for real-coded
genetic algorithms. Fwvolutionary Computation, 2001.
Proceedings of the 2001 Congress on, pp. 643-649.
IEEE.

THE COMPUTER JOURNAL,

Vol. 72,

No. 7?7, 7777

