
Reuse Detector: Improving the
management of STT-RAM SLLCs
R. RODRÍGUEZ-RODRÍGUEZ1, J. DÍAZ2, F. CASTRO1, P. IBÁÑEZ2, D.

CHAVER1, V. VIÑALS2, JUAN CARLOS SAEZ1, M. PRIETO-MATIAS1, LUIS
PIÑUEL1, T. MONREAL3, J.M. LLABERÍA3

1ArTeCS Group, Facultad de Informatica, University Complutense of Madrid, 2Computer Architecture
Group, University of Zaragoza, 3Computer Architecture Department, Polytechnic University of

Catalonia
Email: rrodriguezr@ucm.es, jdmaag@unizar.es, fcastror@ucm.es, imarin@unizar.es, dani02@ucm.es,

victor@unizar.es, jcsaezal@ucm.es, mpmatias@ucm.es, lpinuel@ucm.es, teresa@ac.upc.edu,
llaberia@ac.upc.edu

Various constraints of Static Random Access Memory (SRAM) are leading to consider new memory
technologies as candidates for building on-chip shared last-level caches (SLLCs). Spin-Transfer
Torque RAM (STT-RAM) is currently postulated as the prime contender due to its better energy
efficiency, smaller die footprint and higher scalability. However, STT-RAM also exhibits some
drawbacks, like slow and energy-hungry write operations, that need to be mitigated before it can be
used in SLLCs for the next generation of computers. In this work we address these shortcomings
by leveraging a new management mechanism for STT-RAM SLLCs. This approach is based
on the previous observation that although the stream of references arriving at the SLLC of a
Chip MultiProcessor (CMP) exhibits limited temporal locality, it does exhibit reuse locality, i.e.,
those blocks referenced several times manifest high probability of forthcoming reuse. As such,
conventional STT-RAM SLLC management mechanisms, mainly focused on exploiting temporal
locality, result in low efficient behavior. In this paper, we employ a cache management mechanism
that selects the contents of the SLLC aimed to exploit reuse locality instead of temporal locality.
Specifically, our proposal consists in the inclusion of a Reuse Detector between private cache
levels and the STT-RAM SLLC. Its mission is to detect blocks that do not exhibit reuse, in order
to avoid their insertion in the SLLC, hence reducing the number of write operations and the
energy consumption in the STT-RAM. Our evaluation using multiprogrammed workloads in both
a quad-core and a eight-core system reveals that our scheme reports on average, energy reductions
of 40% (quad-core) and 35% (eight-core) in the SLLC, an additional 6.5% (in both quad and
eight-core) energy reduction in the main memory, and improving performance by 3% (quad-
core) and 7% (eight-core) compared to a STT-RAM SLLC baseline where no reuse detector is
employed. More importantly, our approach outperforms DASCA, the state-of-the-art STT-RAM
SLLC management, reporting energy savings in the range of 6-11% higher than those of DASCA,
delivering higher performance in the range of 1.5-9%, and an additional improvement in DRAM
energy consumption in the range 2-9% higher than DASCA –all these ranges depending on the

specific scenario and the kind of applications used–.

Keywords: STT-RAM, Reuse Detector, Reuse Locality, Writes Reduction, Energy Savings, Performance

1. INTRODUCTION

In the last years chip multiprocessors have become majority
on many off-the-shelf systems, such as high performance
servers, desktop systems, mobile devices and embedded
systems. In all of them the designers usually include a
multilevel memory hierarchy, where the shared last-level
cache (SLLC) plays an important role in terms of cost,
performance and energy consumption. As for the cost,
the SLLC generally occupies a chip area similar or even
bigger than that of cores. Regarding performance and
energy consumption, the SLLC is the last resource before
accessing the main memory, which delivers higher energy

consumption and lower performance as it is located outside
the chip.

The technologies currently employed in building SLLCs
are mainly SRAM or embedded DRAM. However, they
both reveal as power-hungry, especially for the large sizes
required as the number of cores increases. One way of
mitigating this problem is to employ emerging non-volatile
memory technologies. Among them, Spin-Transfer Torque
RAM (STT-RAM) is clearly the prime contender. STT-
RAM removes almost all the static power consumption and,
compared to SRAM, provides higher density and therefore
much higher capacity within the same budget. Moreover,
it delivers higher read efficiency in terms of latency and

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



2 RODRIGUEZ-RODRIGUEZ ET AL

energy. Nevertheless, some obstacles restrict the adoption
of STT-RAM as last-level cache for the next generation
of CMPs: its write operation is slower and requires more
energy than an SRAM cache. These constraints may lead
to a performance drop and even to almost cancel the energy
savings derived from the minimal static power consumption
of STT-RAM.

In addition, previous research states that conventional
SLLC designs are inefficient since they waste most storage
space [1, 2]. This is due to the fact that SLLC management
policies often lead to store dead blocks, i.e., blocks that
will not be referenced again before eviction. Indeed, it
is frequent that blocks were dead the very first time they
enter into the SLLC. This is mainly because the cache
levels closer to the processor exploit most of the temporal
locality, which therefore becomes largely filtered before
accessing the SLLC. With the goal of avoiding this effect
and hence increasing the hit rate, various mechanisms that
modify the SLLC insertion and replacement policies have
been proposed recently.

This work addresses the shortcomings aforementioned
by focusing on improving the efficiency, in terms of
both performance and energy, of a non-inclusive and non-
exclusive STT-RAM SLLC in a chip multiprocessor system.
Notably, we present a new mechanism of content selection
for last-level caches that benefits from the reuse locality that
SLLC references exhibit [3, 4]. This locality lies in the
following principle: when a block is referenced twice in
the last level cache (i.e. it is reused), this block has a good
chance of being referenced again in the near future. Our
approach pursues to insert in the SLLC only those blocks
that exhibit reuse at that level. For this purpose, we propose
to include a new hardware resource between the SLLC and
the private cache levels –referred to as Reuse Detector–
which determines for each block evicted from the private
cache levels if it has been reused or not at the SLLC. If the
block is determined to having been reused, it is inserted (or
it updates) in the SLLC. Otherwise, the block bypasses the
SLLC and is sent directly to main memory.

Our proposal is evaluated in a quad and eight-core
systems running multiprogrammed workloads, and our
experimental results reveal that the reuse detector avoids
the insertion of low-utility blocks in the STT-RAM SLLC,
making it easier to retain most of reused blocks. This
enables us to reduce the amount of the slow and energy-
hungry writes to the STT-RAM SLLC, which translates
into energy consumption reduction and system performance
improvement, outperforming other recent approaches.

The rest of the paper is organized as follows: Section
2 motivates our work and explains some necessary
background. Section 3 presents our proposal to improve
the STT-RAM LLC management. Sections 4 and 5 detail
the experimental framework used and the obtained results,
respectively. Section 6 recaps some related work and finally,
Section 7 concludes the paper.

(a) (b)

FIGURE 1. (a) STT-RAM memory cell structure. (b) STT-RAM
equivalent circuit.

2. BACKGROUND AND MOTIVATION

In this section we first motivate the need of a new SLLC
management scheme by describing the main limitations of
conventional management and SRAM technology. Then we
briefly describe the DASCA scheme, which is the closest
approach to our work and the state-of-the-art STT-RAM
SLLC management scheme [1].

2.1. SRAM and STT-RAM technologies

As stated above, various emerging technologies are currently
considered to replace SRAM as the building-block for
SLLCs, being STT-RAM the best placed to overcome
SRAM constraints, such as energy consumption and read
operation latency.

The main difference between STT-RAM and SRAM is
that the information carrier of the former is a Magnetic
Tunnel Junction (MTJ) instead of electric charges. An MTJ
contains two ferromagnetic layers (denoted as free and fixed
layers) and one tunnel barrier layer, see Figure 1(a). The
fixed layer has a fixed magnetic direction while the free
layer can change its magnetic direction by passing a current
through the MTJ. If the two ferromagnetic layers have
different directions, the MTJ resistance is high, indicating a
“1" state; if the two layers have the same direction, the MTJ
resistance is low, indicating a “0" state. A read operation
to an MTJ is performed by applying a small voltage
difference between two electrodes of the MTJ and sensing
the current flow (see Figure 1(b), where the STT-RAM cell
is represented as a variable resistor). A write operation is
performed by applying a large voltage difference between
two electrodes for a given duration called write pulse width.

Table 1 shows the key features of an 1-bank 1MB LLC
implemented with SRAM and STT-RAM 22 nm technology,
modeled with CACTI 6.5 [5] and NVSim [6], respectively.
As shown, an STT-RAM cache exhibits smaller die footprint
and better efficiency in read operations than an SRAM
cache. More importantly, an STT-RAM cache consumes
almost two orders of magnitude less static power compared
to SRAM. Conversely, the STT-RAM cache exhibits a
significant drawback that needs to be mitigated: the poor
write performance both in terms of latency and energy
consumption.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



REUSE DETECTOR: IMPROVING THE MANAGEMENT OF STT-RAM SLLCS 3

Parameter SRAM STT-RAM Ratio SRAM/STT-RAM
Area (mm2) 0.94 0.35 2.68
Read Latency (ns) 8.75 5.61 1.56
Write Latency (ns) 8.75 16.5 0.53
Read Energy (nJ) 0.56 0.32 1.75
Write Energy (nJ) 0.56 1.31 0.43
Leakage Power (mW) 190.58 3.09 61.67

TABLE 1. Area, latency and energy consumption for 22 nm
SRAM and STT-RAM 1MB caches.

2.2. SLLC management techniques

Regardless of implementation technology, last-level caches
usually suffer from the same problem: they keep data
assuming that recently referenced lines are likely to appear
in the near future (temporal locality). Nevertheless, various
recent studies point out that the reference stream entered
in the SLLC does not usually exhibit temporal locality.
Notably, in [3] the authors observe that this reference
stream exhibits reuse locality instead of temporal locality.
Essentially, that term describes the property that the second
reference to a line is a good indicator of forthcoming reuse
and also that recently reused lines are more valuable than
other lines reused longer.

The studies carried out in [3, 4, 7] demonstrate,
considering a large amount of multiprogrammed workloads
and different multiprocessor configurations, two important
aspects: first, most lines in the SLLC are dead (they will not
receive any further hits during their lifetime in the SLLC)
and second, most SLLC hits come from a small subset
of lines. We have performed our own analysis about the
behavior of the blocks evicted from the SLLC, in terms
of the amount of accesses they receive before eviction, in
the scenario depicted in Figure 4 but, as a starting point,
employing just one core (detailed configuration is shown in
Table 2). Figure 2 illustrates this behavior, grouping the
blocks into three different categories: no reuse, just one
reuse or more than one reuse (multiple reuse).

400.perl
ben

ch

401.bzip
2

403.gcc

410.bwave
s

429.m
cf

433.m
ilc

434.ze
usm

p

435.gromacs

436.ca
ctu

sA
DM

437.le
sli

e3
d

444.nam
d

445.gobmk

450.so
plex

454.ca
lcu

lix

456.hmmer

459.G
em

sF
DTD

462.lib
quan

tum

464.h264ref

465.to
nto

470.lb
m

471.omnetp
p

473.as
tar

481.w
rf

482.sp
hinx3

483.xala
ncb

mk

Aver
ag

e
0

0.2

0.4

0.6

0.8

1

No Reuse Multiple Reuse 1 Reuse

FIGURE 2. Breakdown of blocks replaced from the LLC
according to the number of accesses they receive before eviction.

As shown, our experimental results confirm that most
lines in the LLC are dead. Notably, around 70% of the
blocks do not receive any further access since the moment
they enter the LLC. Only around 5% of the blocks just
receives one further hit (i.e. one reuse) and around 25%
exhibit more than one reuse.

Consequently, getting blocks with just one use (the block

fill, so no reuse) to bypass the LLC when they are evicted
from the previous level caches, and just storing blocks with
reuse (at least two LLC accesses), should allow to hold the
small fraction of blocks with multiple reuses, increasing the
LLC hit rate and improving system performance.

Furthermore, Figure 3 shows that most LLC hits are
to blocks having multiple reuses, which together with the
aforementioned fact that most blocks inserted in the LLC do
not experience any reuse, highly justify the idea of a content
selector based on reuse detection between private caches and
LLC.

400.perl
ben

ch

401.bzip
2

403.gcc

410.bwave
s

429.m
cf

433.m
ilc

434.ze
usm

p

435.gromacs

436.ca
ctu

sA
DM

437.le
sli

e3
d

444.nam
d

445.gobmk

450.so
plex

454.ca
lcu

lix

456.hmmer

459.G
em

sF
DTD

462.lib
quan

tum

464.h264ref

465.to
nto

470.lb
m

471.omnetp
p

473.as
tar

481.w
rf

482.sp
hinx3

483.xala
ncb

mk

Aver
ag

e
0

0.2

0.4

0.6

0.8

1

Multiple Reuse 1 Reuse

FIGURE 3. Breakdown of block hits at the LLC according to the
number of accesses they have received before read.

2.3. DASCA scheme

In [1], the authors propose Dead Write Prediction Assisted
STT-RAM Cache Architecture (DASCA) to predict and
bypass dead writes (writes to data in last level caches not
referenced again during the lifetime of corresponding cache
blocks) for write energy reduction. In this work dead writes
are classified into three categories: dead-on-arrival fills,
dead-value fills and closing writes, as a theoretical model for
redundant write elimination. On top of that they also present
a dead write predictor based on a state-of-the-art dead block
predictor [2]. Thus, DASCA bypasses a write operation to
the SLLC only if it is predicted not to incur extra cache
misses.

Notably, DASCA adds a specific field to each line
at the private levels to store the PC (program counter)
of the instructions writing a block, being this PC only
updated upon write operations. Also, a PC-signature table
(prediction table) is included in the design in order to
make the prediction about dead writes (this table is updated
according to the mechanism shown in the Table 2 of the
paper itself [1]). Specifically, the mechanism samples a
few cache sets and keeps track of PC information only for
those sets. Predictions are made via the predictor table,
made up of saturating counters similar to those used in a
bimodal branch predictor, being the counters indexed by the
signatures stored in the sampler entries. Thus, this PC-based
predictor correlates dead blocks with addresses of memory
instructions (signatures), so that different signatures are used
depending on the kind of dead write predicted.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



4 RODRIGUEZ-RODRIGUEZ ET AL

3. DESIGN

In this section we first describe the baseline system we start
from. Then we describe in detail the proposed design built
on top of that.

3.1. Baseline system

The memory hierarchy used in the baseline multi-core
system includes two private levels (L1 and L2) and a last-
level cache shared among all the cores (SLLC). All caches
are write-back, write-allocate and LRU. L1 and L2 are
inclusive while the SLLC is non inclusive.

The baseline management of this memory hierarchy is as
follows: When a block is requested to Main Memory (MM),
it is copied to the private cache levels of the requester core,
but not to the SLLC. During its lifetime at the private levels
of the core, the block can be requested by other cores, in
which case a copy will be sent from a private L2 cache
to the L1-L2 caches of the requesting core, as dictated by
the directory-based coherency mechanism (please refer to
Section 5 for more details on the coherency mechanism).

When a block is evicted from an L2 cache, the SLLC
is checked: In case the block is not present there (either
because it has not been inserted yet or because it has
already been inserted and evicted by the SLLC replacement
mechanism), it is inserted in the SLLC, otherwise if the
block is already in the SLLC, the block is updated or just
discarded, depending respectively on whether the block is
dirty or clean. Thus, in our hierarchy, SLLC insertions never
come from MM but from an L2, in a similar way to an
exclusive policy. Note however that our mechanism differs
from an exclusive policy in that, as a result of a hit in the
SLLC, the block is copied to the private cache levels of the
requester core, but maintained in the SLLC.

3.2. The Reuse Detector

As explained earlier, several works have demonstrated that
a notable percentage of the blocks inserted/updated in the
SLLC are in fact useless, as they are dead-blocks (i.e. blocks
which will not be referenced any more during their lifetime
in the SLLC) [1, 2]. These useless blocks are harmful, as
they evict other blocks which could potentially be useful in
the future, and moreover, they increase the amount of writes
to the SLLC, which in the context of NVMs (Non-Volatile
Memories) is far from convenient, as explained in previous
sections.

In this paper we leverage the technique for reducing the
amount of dead-blocks inserted/updated in the SLLC [7] to
improve the efficiency of a STT-RAM SLLC. In [7], the
authors present a proposal that, in an exclusive memory
hierarchy, reduces the amount of blocks inserted in a
conventional SLLC by around 90%. We apply this technique
to a different context, i.e., to a non-inclusive STT-RAM
SLLC design within a memory hierarchy where L1-L2 are
inclusive. The exclusion policy employed in [7] implies that,
upon a SLLC hit, the block is copied to the private cache
levels and removed from the SLLC. In our case, the block is

inserted in the SLLC at the end of its usage in the private
caches and remains in the SLLC until eviction. For our
purpose, we include an intermediate element between each
private L2 cache and the SLLC (Figure 4). A block evicted
from the private L2 caches is targeted to the corresponding
element, which we denote as Reuse Detector (RD), instead
of accessing directly to the SLLC as it would do in the
baseline system. The RD decides whether to send the block
to the SLLC or not (i.e. to bypass the shared last-level
cache), by means of a prediction about the future usefulness
of the block. We must highlight that, being the RD out of the
block request path to the SLLC, it does not impact the SLLC
hit or miss latencies.

Private
caches

core1

CPU

...
Private
caches

coren

Reuse
Detector

Reuse
Detector

LLC (STT-RAM)
Shared Cache

1MB/core 16 ways

DRAM
Main Memory

Off chip memory

FIGURE 4. Placement of a Reuse Detector between each private
L2 level and STT-RAM SLLC.

For accomplishing the RD prediction, we apply Alberi-
cio's concept of reuse locality [3, 4]. As such, if the evicted
block from the L2 has never been requested to the SLLC
since the time it entered the cache hierarchy (i.e. it has never
been reused at the SLLC), the block is predicted as a dead-
block and thus it bypasses the SLLC, directly updating MM
(if the block is dirty) or being just discarded (if it is clean).
Otherwise, if the block has been reused (i.e. it has been re-
quested to the SLLC at least once since the time it entered
the cache hierarchy) and thus it is predicted as a non-dead-
block, it is inserted/updated in the SLLC.

The RD consists of a FIFO buffer and some management
logic. The buffer stores the addresses of the blocks evicted
by the private levels in order to maintain their reuse state.
Moreover, an extra bit, called reuse bit, is added to each
cache line in the private levels. This bit distinguishes if
the block was inserted at the private cache levels from
the SLLC or from another private cache level (reuse bit
is 1), or main memory (reuse bit is 0). In the following
sections, we analyze in detail the Reuse Detector operation
and implementation.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



REUSE DETECTOR: IMPROVING THE MANAGEMENT OF STT-RAM SLLCS 5

3.2.1. Reuse Detector operation
As we said in a previous section, our proposal aims to reduce
the amount of writes to the STT-RAM SLLC and to improve
the management of SLLC blocks, which translate into
system performance improvement and energy consumption
reduction on the system.

Figure 5 shows a flow diagram of a block request from a
core to its associated private caches. If the request hits in
L1 or L2 the reuse bit is untouched, and the block is copied
in L1 if it was not there (inclusive policy). Otherwise, the
request is forwarded to the SLLC. If the access hits in the
SLLC, the block is provided to the core and copied in the
private levels with the reuse bit set. If the access misses
in the SLLC but the coherency mechanism informs that
the block is present in another private cache, the block is
provided by that cache. In this case, the access is recognized
as a reuse, so the reuse bits are also set. Finally, if no copy
of the block is present in the cache hierarchy, it is requested
to MM and copied in L1-L2 with the reuse bit unset.

Request from a Core
to their L1-L2 caches

Is Hit?

Forward access
to SLLC

Is Hit?

Set Reuse Bit

Update L1 and L2

Access Coherency
Mechanism

Is copy in any
private cache?

Request to
private cache

Forward access
to Main Memory

Reuse bit not
modified. Update

L1 if required

n

y

y

n

y

n

FIGURE 5. Block request and reuse bit management.

Figure 6 shows a flow diagram of a block eviction from
an L2 cache (if required, the corresponding L1 cache is
invalidated). When a block is evicted from a last private level
cache, its reuse bit is checked. If the reuse bit is set, it means
that the block was inserted into the private caches either from
the SLLC or from another private cache after checking the
SLLC and the coherency mechanism. In any case, the block
is considered as having been reused, and it should be inserted
in the SLLC (if not present yet) or just updated (if the block
is dirty but it is already present in the SLLC). Note that if
the block is clean and already present in the SLLC, it can
just be discarded. If the reuse bit is unset (i.e. the block was
brought into the private caches directly from main memory)
but the block's tag is found in the RD buffer, the block is also
considered as having been reused, and thus it is handled as
in the previous situation. Finally, if the reuse bit is unset and
its tag is not present in the RD buffer, it means that the block
is considered as not having been reused yet. Based again on

Albericio's observations [3, 4], the block should bypass the
SLLC, as it is predicted as a dead-block, and it should be
sent to MM (if the block is dirty) or just discarded (if it is
clean). Note that in all cases the coherency mechanism must
be updated.

Last-Private-Level
Cache Block Eviction

is Reuse
Bit Set?

Is tag
in RD?

Store tag in RD

Is Block
Clean?

Update Directory

Write Block in
Main Memory

Send Block
to SLLC

Is Block
Clean?

Is Block
already

in SLLC?

Write Block
to SLLC

Update Directory

Discard

n

n

y

y

n

n

y

y

y

n

FIGURE 6. Block eviction from a private cache and SLLC
insertion.

3.2.2. Example
For the sake of clarifying the Reuse Detector operation,
in this subsection we provide a straightforward example
illustrating the flow of five memory blocks (A, B, C, D
and E) through the different cache levels under a given
access pattern. In this example, we consider a dual-core
system (Core0 and Core1) with private first level caches
(L10 and L11), a shared second level cache (SLLC), and the
corresponding Reuse Detectors between both cache levels.
In the example we assume a simplified configuration where:
1) direct-mapped L1s, 2-way set associative RDs and 4-way
set associative SLLC are considered; 2) all memory blocks
map to the same L1 frame and to the same RD and SLLC
set; and 3) initially, all caches and RDs are empty. Next,
we detail the access sequence of our example and show
the contents of the memory hierarchy after each access in
Figure 7. Note that we specify as a subindex the dirty bit
followed by the reuse bit (Xd,r) for each block X in the
private cache levels, and only the dirty bit (Xd) for each block
X in the SLLC.

1. Core0 requests a word within block A for reading: The
access misses in L10, it is forwarded to the SLLC, and
given that the access to SLLC also misses and the block

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



6 RODRIGUEZ-RODRIGUEZ ET AL

is not present in any other private cache, it is forwarded
to MM. According to Figure 5, block A is copied to
L10 with its reuse bit unset, and the requested word is
provided to Core0.

2. Core1 requests a word within block A for reading:
The access misses in L11 and SLLC. However, the
coherency mechanism informs that the block is at L10,
so the request is forwarded to that cache. According to
Figure 5, the block is copied to L11 and both reuse bits
are set, as we recognize this access as an SLLC reuse.

3. Core1 requests a word within block B for reading: The
access misses in L11 and SLLC, and the block is not
present in any other private cache, so the request is
forwarded to MM. According to Figure 5, block B is
copied to L11 (replacing block A) with its reuse bit
unset, and the requested word is provided to Core1.
According to Figure 6, given that block A had its reuse
bit set, it is inserted into the SLLC.

4. Core1 requests a word within block C for reading:
Block C is inserted in L11 and block B is replaced. As
the reuse bit of block B was unset and its tag was not
in RD1, according to Figure 6 the tag is stored in RD1
and, given that the block is clean, it is not inserted in
the SLLC but just discarded.

5. Core1 requests a word within block B for reading: This
access is handled analogously to the previous access.

6. Core1 requests a word within block D for reading:
Block D is inserted in L11 and block B is replaced. As
the reuse bit of block B was unset but its tag was present
in RD1, according to Figure 6 block B is inserted in the
SLLC.

7. Core0 writes to a word within block A: The access hits
in L10. The dirty bit for the block is set.

8. Core0 requests a word within block E for reading:
Block E is inserted in L10 and block A is replaced. As
the dirty bit of block A is set and A is already present
in the SLLC, the block is updated at this level.

3.2.3. Implementation details
Although a typical set-associative design could be used for
the RD implementation, where a whole block tag, a validity
bit and some information related with the replacement
policy is included for each line, as in [7] we use two
techniques aimed at reducing the required space: sectoring
and compression. A sector is a set of consecutive memory
blocks aligned to the sector size. Storing sector tags in
the RD allows to merge in a single line of the RD the
information related with several blocks. Note that for each
entry it is necessary to store a presence bit. For example,
with a sector comprising 4-blocks, each line is made up of a
tag derived from the sector address, a validity bit, some bits
storing the replacement state and 4 presence bits.

The compression of the tags is achieved based on the
following process: let t be the amount of bits of the full
tag and c the amount of bits of the compressed tag, being
t>c. We first divide the full tag into several pieces, each of
size c (the last piece is filled with 0s if necessary). Then,

we xor all the pieces, obtaining the compressed tag. Note
that each compressed tag is shared among various sectors,
thus false positives are possible where non-reused blocks
are delivered to the SLLC. This situation does not cause a
functional problem, but it may degrade system performance,
so the value of c must be chosen carefully.

As for the storage overhead of the RD implementation,
i.e., the total amount of extra bits required compared to
the baseline, we need the following hardware: The RD has
1024 sets and 16 ways (our simulations reveal that this value
provides similar performance to that of higher associativity
values), and a sector size of 2 blocks. Each RD entry
requires 14 bits (10 for the compressed tag, 2 for the block
presence, 1 for the replacement policy and 1 validity bit)
as Figure 8 illustrates. Given that the amount of entries in
the RD is 8K, the total extra storage required per core is 14
KB, which represents a negligible 1.3% of an 1MB last level
cache.

Finally, as RD replacement policy we use a 1-bit FIFO.
Again based on our simulations, this scheme delivers a
similar performance as other policies that would require
more storage. In a FIFO policy, age information is updated
only when a new address is inserted, and not during
subsequent hits. This approach is fully consistent with the
main RD buffer goal of detecting the first reuse of a block.

3.3. Reuse Detector vs DASCA

In this section we briefly discuss the main differences
between the RD approach and the DASCA scheme, which
will be further extended and analyzed in the evaluation
section. As for the operation of both approaches, note
that the DASCA mechanism tries to predict dead writes
based on a PC-based predictor. For this purpose, the
PC signature of each block that accesses the SLLC must
be recorded. Conversely, the RD scheme tries to predict
dead-blocks based on their reuse state. Our prediction is
based on the addresses of the accessed data instead of the
instruction addresses used in DASCA. Also, in our approach
we directly store the mentioned addresses while in the
DASCA scheme the authors employ a PC-signatures table
which is trained by an auxiliary cache that works in parallel
with the conventional cache.

Focusing on the specific implementation of the DASCA
scheme for the evaluation of this proposal, it is worthy
to note that our approach employs a memory hierarchy
where L1 and L2 are inclusive while the SLLC (L3) is
non inclusive, whereas the original DASCA scheme is
evaluated in [1] employing a memory hierarchy with just two
cache levels and assuming non-inclusive caches by default,
although the authors also propose a bypassing scheme that
supports both inclusive and non-inclusive caches. Therefore,
and looking for a fair comparison between RD and DASCA,
we implement DASCA using exactly the same three-level
non-inclusive non-exclusive hierarchy employed in the RD
approach. As a result of that, the only high-level change
with respect to the original version of DASCA lies in that
one of the three possible cases they use to classify the dead

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



REUSE DETECTOR: IMPROVING THE MANAGEMENT OF STT-RAM SLLCS 7

1st L10 A0,0 L11 2nd L10 A0,1 L11 A0,1

Access Access
RD0 RD1 RD0 RD1

SLLC SLLC

Main Memory A B C D E Main Memory A B C D E

3rd L10 A0,1 L11 B0,0 4th L10 A0,1 L11 C0,0

Access Access
RD0 RD1 RD0 RD1 B

SLLC A0 SLLC A0

Main Memory A B C D E Main Memory A B C D E

5th L10 A0,1 L11 B0,0 6th L10 A0,1 L11 D0,0

Access Access
RD0 RD1 B C RD0 RD1 B C

SLLC A0 SLLC A0 B0

Main Memory A B C D E Main Memory A B C D E

7th L10 A1,1 L11 D0,0 8th L10 E0,0 L11 D0,0

Access Access
RD0 RD1 B C RD0 RD1 B C

SLLC A0 B0 SLLC A1 B0

Main Memory A B C D E Main Memory A B C D E

FIGURE 7. Example of the Reuse Detector operation.

CompressedTag

Bits 13-4

S1

Bit 3

S0

Bit 2

RPL

Bit 1

V

Bit 0

FIGURE 8. Reuse Detector entry.

writes (“dead-value fills”, blocks that receive a writeback
request from lower-level caches right after the block is filled,
but before any read operation, i.e., the filled block data
are overwritten before being read), can not exist since they
are removed by the inclusion mechanism we employ in
our approach. Notably, this is due to the fact that, in our
configuration, all the insertions in the SLLC are motivated
by an L2 block eviction, and, as L1 and L2 are inclusive,
these evicted blocks are only located in the SLLC after the
eviction from L2. If after that the processor generates a
write request on one of these blocks, a write hit occurs, and
consequently the block is copied to the private cache levels
and therefore this block in the SLLC can not be written
again in the SLLC before being read. Hence, we consider
this evaluation as fair, since this way we are evaluating
DASCA under the same conditions as our approach, so that

we are not giving an advantage to our RD by the fact that it
directly avoids the “dead-value fills” with the inclusiveness
management.

4. EXPERIMENTAL FRAMEWORK

For our experiments we use the gem5 simulator [8] and
we employ the ruby memory model, specifically the
MOESI_CMP-directory coherence policy provided by the
simulator. It is worth noting that we focus on a MOESI
policy since protocols with owned state (e.g. MOESI and
MOSI) are able to reduce the number of writes to the LLC, as
demonstrated by Chang et.al. [9]. We modify the coherence
protocol, encoding the proposed reuse detector. We simulate
both a single and a multi-core scenario. For the sake of a
better accuracy in both execution modes, an O3 processor
type (detailed mode of simulation) was used.

The main features of both the processor and the
memory hierarchy are shown in Table 2. The network
used is a crossbar modeled with Garnet [10], a detailed
interconnection network model inside gem5. As explained
above, for the evaluation of our proposed RDs we implement

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



8 RODRIGUEZ-RODRIGUEZ ET AL

Architecture x86
CPUS 1/4/8, 2GHz
Pipeline 8 Fetch, 8 Decode, 8 Rename, 8 Issue/Execute/Writeback, 8 Commit
Registers Integer (256), Floating Point (256)
Buffers Reorder Buffer (192), Instruction Queue (64)
Branch Predictor TournamentBP
Functional Units IntALU=6, IntMulDiv=2, FPALU=4, FPMultDiv=2, SIMD-Unit=4, RdWrPort=4, IprPort=1
Private Cache L1 D/I 32 KB, 8 ways, LRU replacement, Block Size 64B, Access Latency 2 cycles, SRAM
Private Cache L2 D/I 256 KB, 16 ways, LRU replacement, Block Size 64B, Access Latency 5 cycles, SRAM
Interconnection Crossbar network, modeled using Garnet, latency 3 cycles
Shared Cache L3 1 bank/1MB/core, 16 ways, LRU replacement, Block Size 64B, R/W Latency 6/17 cycles, STT-RAM
DRAM 2 Ranks, 8 Banks, 4kB Page Size, DDR3 1066MHz
DRAM Bus 2 channels with a 8 bus of 8 bits

TABLE 2. CPU and Memory Hierarchy specification.

them in the cache hierarchy modifying the coherence
protocol. For modeling the DRAM main memory we
use DRAMSIM2 [11]. We adapt the LLC read and
write latencies according to the STT-RAM target. Both
latencies and energy consumption values are obtained from
NVSim [6] for a 1MB (1 bank) cache and are illustrated in
Table 1. For scaling the LLC to larger sizes, we multiply the
leakage power by the number of cores.

Our experiments make use of the SPEC CPU2006
benchmark suite [12]. When we evaluate our proposal
in a single core scenario (LLC 1MB size) we employ
reference inputs and simulate 1 billion instructions from
the checkpoint determined using PinPoints [13]. Note that
results from 4 out of 29 benchmarks are not considered
in the evaluation section due to experimental framework
constraints. We also report results of 28 multiprogrammed
mixes employing SPEC CPU2006 programs in both 4 and
8-CMP systems with 4 and 8MB SLLC sizes, respectively.
In both cases, we fast forward 100M instructions, warm up
caches for 200M instructions and then report results for at
least 500M instructions per core.

For selecting the aforementioned multiprogrammed
mixes, we employ the following methodology: we execute
each benchmark alone, using an LLC of 1MB and with-
out any reuse detector, and we measure the amount of LLC
writes that it generates. We then obtain for each bench-
mark the number of writes to LLC per 1000 instructions ratio
(WPKI). Based on these values, we include each benchmark
into the high, medium or low category. Specifically, the high
category includes benchmarks with a WPKI higher than 8,
the medium one those with a WPKI satisfying 1<WPKI < 8
and finally, in the low category we include the programs
with a WPKI lower than 1. Table 3 shows this classification.
Based on this classification, and as detailed in Section 5, we
build some mixes made up of programs with high WPKI,
some with medium WPKI, some with low WPKI, and some
combining applications from different WPKI categories try-
ing to fill most of the combinations high-medium, high-low,
medium-low and high-medium-low. Tables 4 and 5 show the
built mixes for the 4-core and 8-core CMP systems, respec-
tively.
Energy model: The DRAM energy is obtained directly
from the simulator. For computing the LLC energy we

employ a model that includes both dynamic and static
contributions. The static component is calculated using
NVSim [6], which reports the leakage number for 1MB
LLC. Thus, we multiply that number by the execution
time and the number of cores to obtain the total static
energy. In the case of the dynamic component, we again use
NVSim for determining the dynamic energy consumption
per access to the LLC. Then, we compute the dynamic
energy consumption as follows:

Dynamic Energy = HLLC ∗HELLC +WLLC ∗WELLC+

MLLC ∗MELLC

(1)

where HLLC, WLLC and MLLC denote the number of hits,
writes and misses in the LLC respectively, and HELLC,
WELLC and MELLC correspond to the energy consumption
of a hit, a write and a miss in the LLC respectively.

5. EVALUATION

This section compares how well RD and DASCA behave
when managing an STT-RAM LLC, both in terms of
performance and energy consumption of LLC and main
memory. Single, four and eight core systems are discussed
in Sections 5.1, 5.2, and 5.3, respectively.

5.1. Evaluation in a single-core scenario

First, we show the number of writes to the LLC that each
evaluated proposal involves as well as the performance
delivered. Then, we focus on the involved energy
consumption in both the STT-RAM and the main memory
according to the model detailed in Section 4. Finally, we
discuss the obtained results. All the graphs shown in this
section report individual data for each benchmark, adding
at the right end the geometric mean of all data (labeled
as GMEAN) and the geometric mean of the eight most
write-intensive benchmarks, according to Table 3 (labeled
as HIGH).

5.1.1. Write filtering
Figure 9 illustrates the number of writes to the STT-RAM
LLC generated by the DASCA scheme and our proposal

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



REUSE DETECTOR: IMPROVING THE MANAGEMENT OF STT-RAM SLLCS 9

High Medium Low
lbm, mcf, libquantum, bwaves, bzip2, soplex, gcc, wrf, astar, gromacs, calculix, h264ref, tonto,

milc, cactusADM, zeusmp, lelie3d hmmer, xalancbmk, gobmk, perlbench omnetpp, namd, sphinx3, GemsFDTD

TABLE 3. Benchmark characterization according to the number of LLC writes per Kinstruction (WPKI).

Mixes Applications Mixes Applications
mix.H0 436.cactusADM, 462.libquantum, 429.mcf, 437.leslie3d mix.H1 436.cactusADM, 410.bwaves, 437.leslie3d, 433.milc
mix.H2 429.mcf, 433.milc, 434.zeusmp, 462.libquantum mix.H3 470.lbm, 437.leslie3d, 410.bwaves, 436.cactusADM
mix.M0 483.xalancbmk, 445.gobmk, 450.soplex, 401.bzip2 mix.M1 481.wrf, 483.xalancbmk, 403.gcc, 400.perlbench
mix.M2 403.gcc, 450.soplex, 456.hmmer, 445.gobmk mix.M3 400.perlbench, 445.gobmk, 481.wrf, 473.astar
mix.L0 459.GemsFDTD, 482.sphinx3, 444.namd, 454.calculix mix.L1 471.omnetpp, 435.gromacs, 465.tonto, 464.h264ref
mix.L2 471.omnetpp, 459.GemsFDTD, 482.sphinx3, 454.calculix mix.L3 465.tonto, 444.namd, 435.gromacs, 464.h264ref

mix.HM0 434.zeusmp, 433.milc, 473.astar, 403.gcc mix.HM1 470.lbm, 462.libquantum, 445.gobmk, 437.leslie3d
mix.HM2 434.zeusmp, 445.gobmk, 403.gcc, 433.milc mix.HM3 429.mcf, 450.soplex, 483.xalancbmk, 410.bwaves
mix.HL0 436.cactusADM, 437.leslie3d, 410.bwaves, 471.omnetpp mix.HL1 470.lbm, 471.omnetpp, 410.bwaves, 462.libquantum
mix.HL2 444.namd, 435.gromacs, 470.lbm, 437.leslie3d mix.HL3 459.GemsFDTD, 437.leslie3d, 471.omnetpp, 433.milc
mix.ML0 482.sphinx3, 465.tonto, 435.gromacs, 400.perlbench mix.ML1 456.hmmer, 481.wrf, 464.h264ref, 435.gromacs
mix.ML2 459.GemsFDTD, 400.perlbench, 481.wrf, 444.namd mix.ML3 483.xalancbmk, 450.soplex, 482.sphinx3, 465.tonto

mix.HML0 456.hmmer, 464.h264ref, 471.omnetpp, 429.mcf mix.HML1 433.milc, 459.GemsFDTD, 456.hmmer, 464.h264ref
mix.HML2 459.GemsFDTD, 433.milc, 401.bzip2, 481.wrf mix.HML3 459.GemsFDTD, 437.leslie3d, 483.xalancbmk, 410.bwaves

TABLE 4. SPEC 2006 multiprogrammed mixes for the 4-core CMP.

(using a RD of 8K entries) normalized to a baseline system
without any write reduction/filtering scheme.

As shown, our proposal significantly outperforms
DASCA. Notably, in 20 out of 25 benchmarks evaluated the
Reuse Detector exhibits higher ability in cutting the write
traffic to the STT-RAM LLC. Overall, the block bypass-
ing decisions commanded by RD reduce the number of LLC
writes in the baseline system around 90% whereas DASCA
just achieves a 65% reduction. In addition, if we zoom just in
the 8 programs with highest WPKI numbers (those labeled
as high in Table 3), RD reduces the number of LLC writes
by around 98% with respect to the baseline, while DASCA
cuts the write traffic by 80%.

5.1.2. Performance

Apart from the goal of decreasing the STT-RAM LLC
energy consumption (quantified later in this section), it is
clear that energy efficiency should not come at the expense
of a performance drop. Thus, to further evaluate the benefits
of RD, Figure 10 shows the performance (IPC) delivered.

Overall our scheme performs moderately better than
DASCA: RD delivers 1.9% performance improvement
compared to the baseline while DASCA just improves IPC
by 0.3%. If we focus on the write-intensive applications
RD clearly outperforms DASCA, achieving performance
improvements of 5% and 1.4%, respectively. This reveals,
as we will confirm later in the multi-core environment, that
our approach works especially well for those applications
for which the amount of writes to the LLC is higher, both in
terms of writes reduction and performance improvement.

Mixes Applications
mix.H0 429.mcf, 433.milc, 434.zeusmp, 436.cactusADM, 437.leslie3d, 470.lbm, 410.bwaves, 462.libquantum
mix.H1 436.cactusADM, 462.libquantum, 429.mcf, 437.leslie3d, 436.cactusADM, 410.bwaves, 437.leslie3d, 433.milc
mix.H2 436.cactusADM, 410.bwaves, 437.leslie3d, 433.milc, 429.mcf, 433.milc, 434.zeusmp, 462.libquantum
mix.H3 429.mcf, 433.milc, 434.zeusmp, 462.libquantum, 470.lbm, 437.leslie3d, 410.bwaves, 436.cactusADM
mix.M0 483.xalancbmk, 445.gobmk, 450.soplex, 473.astar, 403.gcc, 400.perlbench, 456.hmmer, 481.wrf
mix.M1 483.xalancbmk, 400.perlbench, 450.soplex, 401.bzip2, 481.wrf, 483.xalancbmk, 403.gcc, 400.perlbench
mix.M2 450.soplex, 483.xalancbmk, 403.gcc, 400.perlbench, 445.gobmk, 450.soplex, 456.hmmer, 445.gobmk
mix.M3 400.perlbench, 445.gobmk, 481.wrf, 473.astar, 481.wrf, 450.soplex, 456.hmmer, 445.gobmk
mix.L0 459.GemsFDTD, 482.sphinx3, 444.namd, 454.calculix, 464.h264ref, 465.tonto, 435.gromacs, 471.omnetpp
mix.L1 459.GemsFDTD, 482.sphinx3, 444.namd, 454.calculix, 471.omnetpp, 435.gromacs, 465.tonto, 464.h264ref
mix.L2 471.omnetpp, 435.gromacs, 465.tonto, 464.h264ref, 465.tonto, 444.namd, 435.gromacs, 464.h264ref
mix.L3 471.omnetpp, 459.GemsFDTD, 482.sphinx3, 454.calculix, 465.tonto, 444.namd, 435.gromacs, 464.h264ref

mix.HM0 436.cactusADM, 437.leslie3d, 462.libquantum, 429.mcf, 483.xalancbmk, 445.gobmk, 450.soplex, 401.bzip2
mix.HM1 434.zeusmp, 433.milc, 470.lbm, 429.mcf, 481.wrf, 456.hmmer, 400.perlbench, 403.gcc
mix.HM2 462.libquantum, 410.bwaves, 433.milc, 436.cactusADM, 450.soplex, 473.astar, 445.gobmk, 400.perlbench
mix.HM3 437.leslie3d, 470.lbm, 436.cactusADM, 434.zeusmp, 445.gobmk, 450.soplex, 403.gcc, 481.wrf
mix.HL0 436.cactusADM, 437.leslie3d, 462.libquantum, 429.mcf, 459.GemsFDTD, 482.sphinx3, 444.namd, 454.calculix
mix.HL1 434.zeusmp, 433.milc, 470.lbm, 429.mcf, 464.h264ref, 465.tonto, 435.gromacs, 471.omnetpp
mix.HL2 462.libquantum, 410.bwaves, 433.milc, 470.lbm, 459.GemsFDTD, 482.sphinx3, 464.h264ref, 465.tonto
mix.HL3 437.leslie3d, 470.lbm, 436.cactusADM, 434.zeusmp, 444.namd, 454.calculix, 435.gromacs, 471.omnetpp
mix.ML0 483.xalancbmk, 445.gobmk, 450.soplex, 401.bzip2, 459.GemsFDTD, 482.sphinx3, 444.namd, 454.calculix
mix.ML1 473.astar, 400.perlbench, 456.hmmer, 481.wrf, 464.h264ref, 465.tonto, 435.gromacs, 471.omnetpp
mix.ML2 483.xalancbmk, 445.gobmk, 403.gcc, 400.perlbench, 459.GemsFDTD, 482.sphinx3, 435.gromacs, 471.omnetpp
mix.ML3 450.soplex, 401.bzip2, 456.hmmer, 481.wrf, 464.h264ref, 465.tonto, 444.namd, 454.calculix

mix.HML0 436.cactusADM, 437.leslie3d, 410.bwaves, 483.xalancbmk, 445.gobmk, 450.soplex, 459.GemsFDTD, 482.sphinx3
mix.HML1 462.libquantum, 429.mcf, 470.lbm, 464.h264ref, 473.astar, 400.perlbench, 444.namd, 454.calculix
mix.HML2 433.milc, 434.zeusmp, 436.cactusADM, 456.hmmer, 481.wrf, 483.xalancbmk, 464.h264ref, 465.tonto
mix.HML3 429.mcf, 433.milc, 437.leslie3d, 444.namd, 450.soplex, 400.perlbench, 435.gromacs, 471.omnetpp

TABLE 5. SPEC 2006 multiprogrammed mixes for the 8-core CMP.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



10 RODRIGUEZ-RODRIGUEZ ET AL

400.perl
ben

ch

401.bzip
2

403.gcc

410.bwave
s

429.m
cf

433.m
ilc

434.ze
usm

p

435.gromacs

436.ca
ctu

sA
DM

437.le
sli

e3
d

444.nam
d

445.gobmk

450.so
plex

454.ca
lcu

lix

456.hmmer

459.G
em

sF
DTD

462.lib
quan

tum

464.h264ref

465.to
nto

470.lb
m

471.omnetp
p

473.as
tar

481.w
rf

482.sp
hinx3

483.xala
ncb

mk

GMEAN
HIG

H

0

0.2

0.4

0.6

0.8

1
DASCA RD

FIGURE 9. Number of writes to the STT-RAM LLC normalized to the baseline: SPEC CPU2006 suite.

400.perl
ben

ch

401.bzip
2

403.gcc

410.bwave
s

429.m
cf

433.m
ilc

434.ze
usm

p

435.gromacs

436.ca
ctu

sA
DM

437.le
sli

e3
d

444.nam
d

445.gobmk

450.so
plex

454.ca
lcu

lix

456.hmmer

459.G
em

sF
DTD

462.lib
quan

tum

464.h264ref

465.to
nto

470.lb
m

471.omnetp
p

473.as
tar

481.w
rf

482.sp
hinx3

483.xala
ncb

mk

GMEAN
HIG

H

0.96

0.98

1

1.02

1.04

1.06

1.08
DASCA RD

FIGURE 10. Performance (Instructions per Cycle) normalized to the baseline: SPEC CPU2006 suite.

5.1.3. Energy savings
Figure 11 shows the total energy savings (adding both the
dynamic and the static components) in the LLC. Overall,
our proposal reports 41% energy reduction compared to
the baseline while DASCA reports 36%. Considering only
the write-intensive programs, the numbers are 65% and
54%, respectively. If we split the total energy savings with
respect to the baseline into the dynamic and static parts,
our proposal achieves 60% of reduction in the dynamic
part considering all the applications (75% for the high
programs), while DASCA obtains 50% (64% for the high
benchmarks). As for the static part RD is able to obtain 2%
energy savings (around 5% for the high programs) while
DASCA just achieves 0.3% (1.4% for the write-intensive
applications). Note that avoiding LLC writes reduces
dynamic energy, whereas increasing performance translates
into static energy savings. It is also worth noting that, as
Figure 12 illustrates, the dynamic energy consumption in the
LLC of the baseline system is, for most of the applications
evaluated, significantly higher than the static contribution.

Finally, we have also explored the impact on the energy
consumption in the DRAM main memory. For the sake of
simplicity, we do not show the results for all the applications.
However, as expected, the DRAM energy reduction follows
the trend of performance improvement. Overall, our
proposal manages to reduce the DRAM energy consumption
by 2.1% (5.3% for the write-intensive programs) with

respect to the baseline while DASCA just improves the
memory energy consumption by 0.2% (1.4% for the high
applications).

5.1.4. Discussion
If we zoom into specific benchmarks, there are some
special cases that deserve further detail to get a deeper
insight. Note that globally, the relative trend shown in
the amount of writes to the LLC between our approach
and DASCA for each benchmark, is mainly held in the
energy consumption differences, although modulated with
the relative performance numbers. However, there are some
few exceptions such as namd, GemsFDTD or omnetpp,
where RD is able to reduce the amount of LLC writes
significantly more than DASCA but the energy savings
and also the performance improvements obtained by both
techniques are almost the same (and quite low compared to
the baseline) in all these three cases. The reason is that these
programs are three of the four benchmarks that exhibit the
lowest values of WPKI, so although the write reductions
that RD achieves in relative terms compared to DASCA
is significant for these applications, the corresponding
reduction in absolute values are very modest, and therefore
the impact on the energy is almost negligible.

Also, in other applications such as mcf , cactusADM
or hmmer, our approach is able to report IPC numbers
significantly higher than in DASCA, while both techniques

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



REUSE DETECTOR: IMPROVING THE MANAGEMENT OF STT-RAM SLLCS 11

400.perl
ben

ch

401.bzip
2

403.gcc

410.bwave
s

429.m
cf

433.m
ilc

434.ze
usm

p

435.gromacs

436.ca
ctu

sA
DM

437.le
sli

e3
d

444.nam
d

445.gobmk

450.so
plex

454.ca
lcu

lix

456.hmmer

459.G
em

sF
DTD

462.lib
quan

tum

464.h264ref

465.to
nto

470.lb
m

471.omnetp
p

473.as
tar

481.w
rf

482.sp
hinx3

483.xala
ncb

mk

GMEAN
HIG

H

0.2

0.4

0.6

0.8

1
DASCA RD

FIGURE 11. Energy consumption in the LLC normalized to the baseline: SPEC CPU2006 suite.

400.perl
ben

ch

401.bzip
2

403.gcc

410.bwave
s

429.m
cf

433.m
ilc

434.ze
usm

p

435.gromacs

436.ca
ctu

sA
DM

437.le
sli

e3
d

444.nam
d

445.gobmk

450.so
plex

454.ca
lcu

lix

456.hmmer

459.G
em

sF
DTD

462.lib
quan

tum

464.h264ref

465.to
nto

470.lb
m

471.omnetp
p

473.as
tar

481.w
rf

482.sp
hinx3

483.xala
ncb

mk
AVG

HIG
H

0

0.2

0.4

0.6

0.8

1

Static Dynamic

FIGURE 12. Breakdown of energy consumption in the LLC into
the static and dynamic contributions for the baseline in the single-
core system.

exhibit quite similar write reduction capabilities. In order to
explain that, first note that there are many different aspects
involved in the system performance delivered. Among
others, one key aspect is that reducing the amount of
writes to the LLC is not sufficient in itself to guarantee
performance improvements: although the main goals when
bypassing blocks from the LLC to main memory are both
to save energy and improve performance by increasing the
hit rate in the LLC, obviously the bypassing may fail in
the sense that a bypassed block could be referenced again
soon, leading to a LLC miss and even a performance drop
with respect to the case where bypassing is not carried
out. Thus, for all these three benchmarks, the experimental
data reveal that with our proposal the amount of hits in the
LLC clearly outperforms both the baseline and the DASCA
mechanism. Notably, the amount of LLC hits experienced
in the cactusADM and mcf programs are 7.23x and 2x the
values obtained in the baseline, while DASCA obtains 1.89x
and 0.89x, respectively. Also, the amount of misses in
the LLC is lower than that of the baseline and DASCA,
with values ranging between 0.77-0.87x those obtained in
the baseline. Considering all the evaluated benchmarks,

RD is able to improve the amount of hits around 7%
with respect to the baseline (40% if we only consider the
write-intensive applications) while DASCA experiments no
increment when considering all the benchmarks and 23% for
the high applications.

At a first glance, the behavior of the libquantum
application may seem somehow strange: Neither RD nor
DASCA are able to significantly reduce the amount of
writes to the LLC, but however this benchmark running
under RD reports a performance improvement of 7% with
respect to the baseline while the performance remains
largely unchanged under DASCA. In addition, and as one
would expect since the number of bypasses is low, the
number of hits in the LLC is practically the same in
the three cases. The reason to explain the performance
improvement lies in the LLC bank contention due to the
write activity: this application is by far the most stalled
one due to write contention. Thus, although the write
reduction is very limited with our scheme, it is enough to
reduce stalls with respect to the baseline by around 8%,
which in absolute numbers implies various millions of these
kind of situations avoided, which leads to the performance
improvement obtained.

Conversely, although other benchmarks such as gromacs,
calculix or wrf exhibit moderate LLC writes reduction
with RD and DASCA, they all perform worse than in the
baseline. For these three programs the amount of hits
experienced in the LLC is, in RD and DASCA, lower
than in the baseline, which suggests that the bypassing
performed is not efficient for these benchmarks. Recall that
the energy savings achieved in the LLC as a consequence
of the reduction in the number of writes performed in this
cache level may be partially offset with the performance
drop derived from the increment in the amount of LLC
misses, as in these three programs occurs. Note also that,
although the write operations are outside the critical path, the
performance improvement derived from avoiding the long
write operations may be mitigated if bank contention exists
between the writes effectively performed.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



12 RODRIGUEZ-RODRIGUEZ ET AL

5.2. Evaluation in a 4-core CMP system

In this section we extend the previous single-core analysis
to a more up-to-date environment: a multi-core scenario
where the LLC is shared among different cores. For this
purpose, we measure again the number of writes to the
SLLC, the performance and the energy consumption in
both the STT-RAM SLLC and the DRAM main memory
for RD and DASCA and report results normalized to the
baseline. However, due to the inherent non-determinism that
all simulators exhibit (especially in multi-core environments,
where the number of instructions executed across different
policies are not stable owing to the random interleaving
among memory accesses of different programs) and for
the sake of higher accuracy, we employ in this scenario
the geometric mean of the number of writes and energy
consumption (per application) but divided by the total
number of instructions executed. Note that, conversely, in
the single-core scenario both kind of metrics match, since
all the benchmarks execute the same amount of instructions
(1B) in all the runs.

We employ 28 mixes made up of applications from the
SPEC CPU2006 suite chosen accordingly to the WPKI
categories illustrated in Table 3. First, we randomly
compose three groups of 4 mixes made up of applications
belonging to just one WPKI category (mixes referred to as
Hi, Mi and Li for high, medium and low WPKI respectively).
Then, we build other 16 mixes merging applications with
WPKI corresponding to different categories and trying to
construct them in a balanced and homogeneous fashion.
Again, the workload name encodes the WPKI categories
of the applications. For example, HL2 is the third mix
we build consisting of 2 applications with high WPKI and
2 applications with low WPKI. The detailed mixes are
illustrated in Table 4. Most graphs in this section report
results considering all the mixes (GMEAN), just the 4 Hi
mixes (HIGH), the 4 Hi and the 4 HMi mixes together
(H+HM), the 4 Hi, the 4 HMi and the 4 HMLi mixes
together (H+HM+HML) and all the mixes including a high
program (SomeH).

5.2.1. Write filtering
Figure 13 illustrates the number of writes to the STT-RAM
SLLC generated by using DASCA and an 8K-entry RD per
core normalized to a baseline STT-RAM without any write
reduction mechanism.

The experimental results reveal that RD exhibits a
significantly greater ability to decrease the amount of writes
to the SLLC than DASCA. Notably, in 25 out of the 28 mixes
evaluated RD outperforms DASCA. Overall, the number of
writes in the baseline system gets reduced to 26% by using
RD, in contrast with DASCA which only achieves a 40%.
As for the write-intensive mixes the RD and DASCA makes
around 22% and 34% of the writes the baseline performs,
respectively.

5.2.2. Performance
In order to evaluate performance when executing multipro-
grammed workloads, we analyze the Instruction Throughput
(IT) and the Weighted Speedup (WS) metrics. The IT metric
is defined as the sum of all instructions committed per cycle
in the entire chip (∑n

i=1 IPCi, being n the number of threads),
while the WS is defined as the slowdown experienced by
each application in a mix, compared to its run under the same
configuration when no other application is running on other
cores (∑n

i=1(IPCshared
i /IPCalone

i )). For the sake of simplic-
ity and since in our context the WS does not constitute a
metric as significant as IT, we do not show the WS results
obtained. Anyway, these results follow an analogous trend
to those obtained when we evaluate the instruction through-
put. Figure 14 illustrates the IT that each evaluated policy
delivers normalized to the baseline.

As shown, RD moderately outperforms DASCA. This is
a key contribution of RD, since our approach, managing to
reduce the amount of writes to the SLLC to a greater extent
than DASCA, is also able to deliver higher performance
(which also allows to report higher energy savings in both
the SLLC and the main memory as shown later). The data
reveal that, overall, RD improves performance by around 3%
compared to the baseline, while DASCA just improves it by
around 1.2%. Moreover, we can observe that, in almost all
of the 28 mixes evaluated (except mainly those mixes made
up of benchmarks with a reduced WPKI, those labeled as
low, where the performance of both techniques essentially
matches that of the baseline), our technique performs better.
Zooming into particular mixes, the results reveal that RD
performs especially better than DASCA in those mixes made
up of write-intensive applications. Thus, our approach
reports a performance improvement of more than 7% when
considering just the Hi mixes while DASCA just reports
1.7% IT improvement with respect to the baseline. Also, RD
delivers significantly higher performance than DASCA and
the baseline for those mixes which contain any application
with high WPKI.

5.2.3. Energy savings
Figure 15 illustrates the energy savings in the SLLC. As
in the single-core scenario, the graph follows a similar
relative trend between our approach and DASCA to that
observed in the write reduction numbers (Figure 13), just
slightly modulated with the performance numbers since,
as shown in Figure 16, the dynamic contribution to the
energy consumption in the SLLC is higher than the static
part (except in the mixes made up of applications with
low WPKI only), so that the ability to reduce the amount
of writes to the SLLC (dynamic contribution) impacts the
total energy consumption more than the ability to improve
performance, which mainly affects the static contribution.
Overall, our proposal reports around 40% energy reduction
in the STT-RAM SLLC compared to the baseline while
DASCA reduces it by around 33%. If we zoom into the
write-intensive mixes, both RD and DASCA are able to
save around 50% and 43% of SLLC energy consumption,

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



REUSE DETECTOR: IMPROVING THE MANAGEMENT OF STT-RAM SLLCS 13

H0 H1 H2 H3
HL0

HL1
HL2

HL3
HM0

HM1
HM2

HM3
HML0

HML1
HML2

HML3 L0 L1 L2 L3 M0 M1 M2 M3
ML0

ML1
ML2

ML3

GMEAN
HIG

H
H+HM

H+HM+HML

SomeH

0.2

0.4

0.6

0.8 DASCA RD

FIGURE 13. Number of writes to the STT-RAM SLLC normalized to the baseline: multiprogrammed workloads.

H0 H1 H2 H3
HL0

HL1
HL2

HL3
HM0

HM1
HM2

HM3
HML0

HML1
HML2

HML3 L0 L1 L2 L3 M0 M1 M2 M3
ML0

ML1
ML2

ML3

GMEAN
HIG

H
H+HM

H+HM+HML

SomeH

0.95

1

1.05

1.1
DASCA RD

FIGURE 14. Instruction throughput normalized to the baseline: multiprogrammed workloads.

respectively. If we break the SLLC energy numbers down
into the static and dynamic contributions, our results reveal
that, overall, RD is able to reduce –considering all mixes–
the static energy part by around 2.7% with respect to the
baseline (around 6% for the write-intensive mixes) while
DASCA reduces the static contribution by 1.2% (1.7% for
the high mixes). In addition, our approach reports dynamic
energy savings of around 56% (61% for the high mixes)
while DASCA numbers are 46% (53% for the high mixes).

Also, we explore the energy savings obtained in the
DRAM main memory, where the leakage contribution has
far greater significance than in the STT-RAM SLLC, so

that the trends obtained essentially follow those of the IT
graph, but inverted (higher performance translates into lower
DRAM energy consumption). Figure 17 illustrates that RD
manages to additionally reduce the energy consumption of
the main memory by around 6.3% on average compared
to the baseline (8.3% for the write-intensive mixes), while
DASCA barely reaches a 4% energy reduction (around 2%
for the high mixes), mainly due to the higher performance
improvement that our proposal exhibits.

H0 H1 H2 H3
HL0

HL1
HL2

HL3
HM0

HM1
HM2

HM3
HML0

HML1
HML2

HML3 L0 L1 L2 L3 M0 M1 M2 M3
ML0

ML1
ML2

ML3

GMEAN
HIG

H
H+HM

H+HM+HML

SomeH

0.4

0.6

0.8

1
DASCA RD

FIGURE 15. Energy consumption in the SLLC normalized to the baseline: multiprogrammed workloads.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



14 RODRIGUEZ-RODRIGUEZ ET AL

H0 H1 H2 H3
HL0

HL1
HL2

HL3
HM0

HM1
HM2

HM3
HML0

HML1
HML2

HML3 L0 L1 L2 L3M0M1M2M3
ML0

ML1
ML2

ML3
AVG

0

0.2

0.4

0.6

0.8

1

Static Dynamic

FIGURE 16. Breakdown of energy consumption in the SLLC
into the static and dynamic contributions for the baseline:
multiprogrammed workloads.

5.2.4. Discussion
For the sake of clarity, we next explain where the
performance improvements of our technique come from.
First, as Figure 13 illustrated earlier, the write reductions
to the SLLC that RD achieves are greater than those
of DASCA. Second, and more importantly, as Figure 14
reveals, the bypasses dictated by RD translate into more
performance than that of DASCA. As in the single-core
scenario, the rationale behind that is related with the hit rate
experimented in the SLLC with both schemes. Figure 18
illustrates the amount of hits in the SLLC per kilo instruction
that each mix experiments normalized to the baseline.

The results reveal that in most of the mixes evaluated the
amount of hits in the SLLC is higher under our approach
than using DASCA. Again, this is especially evident for
the case of the mixes including write-intensive applications
such as H1, H3 and HL2 where the number of hits is 2.87x,
2.45x and 1.37x those of the baseline, respectively. This
is the key to explain our performance improvements: the
efficient management of the SLLC contents by exploiting
the reuse locality. In addition, there are other factors
that also contribute to the throughput gain such as less
write operations to the SLLC, less main memory accesses,
and increased row buffer hit rates. In order to perform
a deeper comparison between RD and DASCA, Table 6
recaps the average values of different metrics involved in
the performance delivered by RD and DASCA, normalized
to those of the baseline. As shown, our scheme improves
DASCA and the baseline (especially in the data from write-
intensive mixes) in all the metrics considered.

As in the single-core scenario, next we zoom into
particular mixes that need further detail to get a better
understanding. First, in some mixes such as H0, HM3 or
HML0 we can observe that the DASCA scheme is able to
reduce the amount of writes to the SLLC and also the energy
consumption in the STT-RAM more than our scheme does
(Figures 13 and 15). Conversely, the RD manages to deliver
more throughput than DASCA (Figure 14). However, these
performance improvements our approach achieves are not
enough to offset the higher energy savings in the SLLC

that the DASCA scheme reports for these mixes as a
consequence of the lower number of writes to the STT-
RAM.

Second, data for mix L2 reveal that the RD is able
to reduce the amount of writes to the SLLC much more
than DASCA with respect to the baseline (81% vs. 48%).
However, this great difference translates into just 22% of
energy savings in RD vs. 13% of DASCA. As shown,
the difference between both policies has been significantly
reduced due to the low contribution of the dynamic energy
to the total energy consumption in the SLLC that this mix
exhibits, as Figure 16 illustrates.

5.2.5. Sensitivity to Reuse Detector size
The RD size is a key design aspect of our proposal. In
order to evaluate its impact we show in Figure 19 the amount
of writes to the SLLC, the Instruction Throughput, and the
energy consumption in both the SLLC and the main memory
for different RD sizes per core, namely 8K, 16K, 32K and
64K entries.

As shown, the major impact is observed on the capability
to reduce the number of writes in the SLLC, ranging from
an average reduction of 74% with respect to the baseline
when an 8K-entry RD per core is employed (78% for the
write-intensive mixes) to a reduction of around 56% for a
64K-entry RD per core (60% for the high mixes). Note
that maybe these data might appear contradictory at first
sight. However, they are not: As the size of RD increases,
it also augments the probability that a block finds its tag in
the RD, so the probability of bypassing decreases, leading
to minor reduction of writes to the SLLC. We can also
observe a moderate impact on the average energy consumed
in the SLLC, with values in the range 60-67% as the size
of RD gets increased: again, note that these numbers follow
a similar trend to that exhibited by the amount of writes.
Finally, the impact over the performance and the energy
consumption of the main memory is much reduced, falling
the average IT variations into a small range of 1% (4% for
the write-intensive mixes) and the average DRAM energy
variations into a range of 1.5% (5% for the write-intensive
mixes).

5.2.6. Overhead analysis
In Section 3.2.3 we outlined that an 8K-entry RD for a 1MB
LLC requires an extra storage of 14KB, which represents
a 1.37% overhead with respect to the LLC size. In this
section we previously noted that for the 4-CMP system
under evaluation (4MB SLLC) we employ an 8K-entry RD
per core. The reason is that we are maintaining for each
evaluated system the 1.37% overhead with respect the SLLC
size. Therefore, in the 8-CMP evaluated later, we also
employ an 8K-entry RD per core. Hence, the total extra
storage (overhead) of RD is 56KB and 112KB for the 4-
CMP and 8-CMP systems respectively, representing in all
the cases a 1.37% overhead with respect to the SLLC size.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



REUSE DETECTOR: IMPROVING THE MANAGEMENT OF STT-RAM SLLCS 15

H0 H1 H2 H3
HL0

HL1
HL2

HL3
HM0

HM1
HM2

HM3
HML0

HML1
HML2

HML3 L0 L1 L2 L3 M0 M1 M2 M3
ML0

ML1
ML2

ML3

GMEAN
HIG

H
H+HM

H+HM+HML

SomeH

0.8

0.85

0.9

0.95

1

1.05 DASCA RD

FIGURE 17. Energy consumption in the DRAM normalized to the baseline: multiprogrammed workloads.

H0 H1 H2 H3
HL0

HL1
HL2

HL3
HM0

HM1
HM2

HM3
HML0

HML1
HML2

HML3 L0 L1 L2 L3 M0 M1 M2 M3
ML0

ML1
ML2

ML3

GMEAN
HIG

H
H+HM

H+HM+HML

SomeH

0.8

1

1.2

1.4

1.6
DASCA RD

FIGURE 18. Amount of LLC hits per kilo instruction normalized to the baseline: multiprogrammed workloads.

5.2.7. DR in a two-level cache hierarchy
We have evaluated the operation of our proposal in a three-
level cache hierarchy since most current processors employ
this configuration. Furthermore, two private levels are more
likely to filter better the temporal locality than using just
one private level. However, for a fair comparison, we

have also evaluated our proposal and the DASCA scheme
in a configuration with just two cache levels. Notably,
we reproduce the same configuration (4-CMP) used by the
authors in [1] when presenting the DASCA technique (32
KB IL1 and DL1 as private caches and a 1MB per core
shared L2 cache). Table 7 illustrates the main results.

Policies
Metrics SLLC

Misses
SLLC
Hits

Row buffer Read
Hit Rate

DRAM
reads

DRAM
Writes

Bank contention in
SLLC

DASCA (All/High) 1.00/1.05 1.04/1.09 1.03/1.00 1.00/1.05 1.03/1.06 0.37/0.15
RD (All/High) 0.95/0.93 1.16/1.63 1.04/1.01 0.97/0.98 0.95/0.94 0.21/0.08

TABLE 6. Average (geomean) values of different metrics normalized to the baseline.

Writes SLLC IT Eng. SLLC Eng. DRAM

0.4

0.6

0.8

1

1.2 8K-All 16K-All 32-All 64K-All 8K-High 16K-High 32K-High 64K-High

FIGURE 19. Writes to SLLC, IT and energy consumption in both SLLC and main memory normalized to the baseline for different RD
sizes per core.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



16 RODRIGUEZ-RODRIGUEZ ET AL

Policies
Metrics Writes

SLLC
Instr.

Throughput
Energy consumpt.

SLLC
Energy consumpt.

DRAM
Hits

SLLC
DASCA (All/High) 0.67/0.79 1.01/1.03 0.81/0.85 0.97/0.96 0.98/1.01
RD (All/High) 0.55/0.75 1.03/1.04 0.74/0.82 0.95/0.95 0.98/1.00

TABLE 7. Average (geomean) values of different metrics normalized to the baseline in a 4-core CMP system with two cache levels.

As shown, RD maintains higher capability than DASCA
(around 12-14% higher) in reducing the amount of writes
to the SLLC. However, as expected, the amount of writes
avoided (and also the hits experienced in the SLLC) is
significantly lower than that exhibited in an scenario with
3 cache levels. Recall that this is due to the fact that
with two cache levels only, most temporal locality has not
been filtered, so that the reuse locality can not be fully
exploitable. Also, as a consequence of this lower capability
in cutting the write traffic to the SLLC, the energy savings
achieved in the shared L2 are significantly lower than those
obtained with three cache levels, although RD still reports
better numbers than DASCA. Finally, RD again improves
the Instruction Throughput to a greater extent than DASCA,
and consequently also delivers higher energy savings in the
main memory. Note that we have also evaluated 28 mixes
in this configuration following the same criteria explained
earlier, but they are not exactly the same as in the three-
level cache hierarchy experiments since the WPKI values
that the benchmarks exhibit do not match those of the three-
levels configuration and therefore some programs changed
the category (high, medium or low) in which they were
classified.

5.3. Evaluation in an 8-core CMP system

In this section we illustrate and analyze the main results
obtained when using RD and DASCA in an 8-core CMP
system with an 8MB SLLC. Like in the previous section, in
this scenario we create 28 mixes following the same criteria
as in a 4-CMP system. The mixes evaluated are shown in
Table 5. Given that a detailed analysis of the 8-core system
would show similar results as the 4-core scenario, in this
section we will not zoom into details but will only describe
the average results and main trends.

5.3.1. Write filtering
Figure 20 illustrates the number of writes to the STT-RAM
SLLC generated with DASCA and with RD (assuming an
8K-entry RD per core). Both schemes are normalized
to a baseline STT-RAM without any content selection
mechanism.

Similarly to the results for the 4-core scenario, the
experimental results reveal that RD just performs 41%
of the writes in the baseline scheme, whereas DASCA
produces 52% of the writes that the baseline did. For
the write-intensive mixes, RD and DASCA reduce the
amount of writes compared to the baseline in 44% and 35%
respectively.

5.3.2. Performance
As we did in Section 5.2.2, we employ the Instruction
Throughput (IT) to evaluate the performance when executing
multiprogrammed workloads. Figure 21 illustrates the
IT that each evaluated policy delivers normalized to the
baseline.

Similarly to the results obtained for a 4-core CMP system,
RD outperforms DASCA in the 8-core scenario. Moreover,
in the 8-core scenario, higher performance improvements
are achieved in both schemes over the baseline. The
results reveal that RD improves performance by around 7%
compared to the baseline, while DASCA improves it by
around 4%. As for write-intensive mixes, RD improves
the baseline by 20% and DASCA by 11%. As shown
in Figure 21, RD significantly overcomes DASCA and
the baseline scheme in those mixes which contain any
application with high WPKI.

5.3.3. Energy savings
Figure 22 illustrates the energy savings in the shared LLC.
In general, the results in the 8-core scenario follow the
trend observed for the 4-core environment. Specifically,
RD reports around 34% energy reduction in the STT-RAM
SLLC compared to the baseline while DASCA reduces
energy by around 29%. In the case of write-intensive mixes,
both RD and DASCA reduce the SLLC energy consumption
by 34% and 28%, respectively. Analyzing the static and
dynamic contributions on the SLLC energy consumption,
overall, RD is able to reduce –for all mixes– the static energy
part by around 6% with respect to the baseline (around
15% for the write-intensive mixes) while DASCA reduces
the static contribution by 4% (10% for the high mixes).
In addition, our approach reports dynamic energy savings
of around 45% (36% for the high mixes) while DASCA
numbers are 38% (30% for the high mixes). Note that mixes
made up of applications with low WPKI exhibit the lowest
energy savings across the board. This is consistent with the
modest write reduction they report and especially with the
high contribution of the static part to the total SLLC energy
consumption that they exhibit, as Figure 23 shows.

Figure 24 illustrates the energy savings obtained in the
DRAM main memory, where it is shown that RD reduces the
energy consumption of the main memory by around 6% on
average compared to the baseline (3% for the write-intensive
mixes), while DASCA reaches a 3% energy reduction and
actually wastes more energy, around 6%, for the high mixes.
This energy waste may look surprising, given that DASCA
is able to reduce the number of writes with respect to the
baseline in more than 35% and to deliver a performance
improvement higher than 10%. However, this can be

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



REUSE DETECTOR: IMPROVING THE MANAGEMENT OF STT-RAM SLLCS 17

H0 H1 H2 H3
HL0

HL1
HL2

HL3
HM0

HM1
HM2

HM3
HML0

HML1
HML2

HML3 L0 L1 L2 L3 M0 M1 M2 M3
ML0

ML1
ML2

ML3

GMEAN
HIG

H
H+HM

H+HM+HML

SomeH

0.2

0.4

0.6

0.8

DASCA RD

FIGURE 20. Number of writes to the STT-RAM LLC normalized to the baseline in the 8-core CMP system.

H0 H1 H2 H3
HL0

HL1
HL2

HL3
HM0

HM1
HM2

HM3
HML0

HML1
HML2

HML3 L0 L1 L2 L3 M0 M1 M2 M3
ML0

ML1
ML2

ML3

GMEAN
HIG

H
H+HM

H+HM+HML

SomeH

0.9

1

1.1

1.2

1.3

DASCA RD

FIGURE 21. Instruction throughput normalized to the baseline in the 8-core CMP system.

explained by the fact that DASCA suffers a very significant
increase in the amount of SLLC misses, which translates into
high values of DRAM accesses (as shown in Table 8 below).

5.3.4. Discussion
As in the 4-core configuration, in this section we explain the
reasons for the higher performance improvement achieved in
our technique (RD) against DASCA in the 8-core scenario.

As we already reasoned in the previous section, the better
performance of RD is due to several factors, being the most

important one the high efficiency achieved from the reuse
locality exploitation. For demonstrating that fact, Figure 25
shows the amount of hits in the SLLC per kilo instruction
that each mix experiments normalized to the baseline. As the
figure shows, our approach achieves in most mixes a higher
or much higher number of hits than DASCA, which confirms
that RD uses a more efficient policy than DASCA.

In addition to the hit rate improvement, there are other
metrics that also justify achieving a better performance, such
as SLLC misses, DRAM reads and writes, row buffer read

H0 H1 H2 H3
HL0

HL1
HL2

HL3
HM0

HM1
HM2

HM3
HML0

HML1
HML2

HML3 L0 L1 L2 L3 M0 M1 M2 M3
ML0

ML1
ML2

ML3

GMEAN
HIG

H
H+HM

H+HM+HML

SomeH

0.4

0.6

0.8

1

DASCA RD

FIGURE 22. Energy consumption in the SLLC normalized to the baseline in the 8-core CMP system.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



18 RODRIGUEZ-RODRIGUEZ ET AL

H0 H1 H2 H3
HL0

HL1
HL2

HL3
HM0

HM1
HM2

HM3
HML0

HML1
HML2

HML3 L0 L1 L2 L3M0M1M2M3
ML0

ML1
ML2

ML3
AVG

0

0.2

0.4

0.6

0.8

1

Static Dynamic

FIGURE 23. Breakdown of energy consumption in the SLLC into
the static and dynamic contributions for the baseline in the 8-core
CMP system.

hit rate and bank contention in the SLLC. All these metrics
are shown in Table 8, for both RD and DASCA and also for
both all and write-intensive mixes. Note that the RD beats
DASCA in all the metrics considered.

5.3.5. Sensitivity to Reuse Detector size
Given that the RD size is a determining factor in our
proposal, and as done in the 4-CMP system, in Figure 26
we show the amount of writes to the SLLC, the Instruction
Throughput, and the energy consumption in both the SLLC
and the main memory for different RD sizes per core,
namely 8K, 16K, 32K and 64K entries.

The trends are very similar to those observed in the 4-
core scenario. Notably, a high impact is observed on the
capability to reduce the number of writes in the SLLC,
especially for the All mixes, whereas a moderate (or even
negligible in some cases) impact is seen on the average
energy consumed in that cache level or main memory and
performance of the overall system.

5.4. RD performance in multi-core scenarios

In this section we briefly inspect the main hints about the
performance of RD when we augment the number of cores.
So far, we have evaluated the RD in systems with one, four
and eight cores. In order to further explore the RD behavior
we have also evaluated our proposal in a system with 16
cores, employing the mixes shown in Table 9.

In Table 10 we recap the main numbers derived from RD
and DASCA evaluation across the different configurations.
Notably, we illustrate the average write reduction capability,
energy savings in the LLC, the performance delivered and
the energy savings in the DRAM.

As shown, although the write reduction capability
decreases for both RD and DASCA when the number of
cores augments, the net energy savings in the LLC remains
largely unchanged (around 35-40%), suffering just a slight
drop for 8 and 16-core systems. However, the performance
improvement increases with the number of cores, reporting
significant improvements especially for the 16-core system.
Finally, the same trend is observed in the energy savings

experienced in the main memory.

6. RELATED WORK

To address the problems of energy consumption and
performance of STT-RAM SLLCs, in the last years different
researchers have proposed solutions aiming to reduce either
the amount of writes or the per-write energy.

A great body of work mainly tries to cut the write traffic to
the STT-RAM: In [14] the authors propose an obstruction-
aware cache management policy called OAP. OAP monitors
the cache to periodically detect LLC-obstruction processes,
and manage the cache accesses from different processes,
so that when an LLC-obstruction is detected the data is
forwarded to the next cache level or Main Memory as
appropriate. In [15] two techniques are proposed to reduce
the number of writes to a last level (L2) STT-RAM cache
and also save energy. The first one adds a small cache
between L1 and L2 –called write-cache (WC)– which is
mutually exclusive with L2 and stores only the dirty lines
evicted from L1. On a cache access, both L2 and WC are
accessed in parallel. The write misses are allocated in WC
and the load misses are allocated in L2. WC reduces the
number of L2 writes by absorbing most of the L1 writebacks.
Other authors propose a coding scheme for STT-RAM last
level cache based on the concept of value locality. They
reduce switching probability in cache by swapping common
patterns with limited weight codes to make writes less often
as well as more uniform [16]. Other techniques [17] rely
on the observation that on average, a large fraction of bytes
and words written to the L2 cache are only zero-valued data.
Based on this, this technique adds additional “all-zero-dat”
flags in the tag arrays at the granularity of a single byte and
a single word. Before any cache write, the data value is
checked. If the all-zero bytes or words are detected, the
corresponding flags are set and only the non-zero bytes or
words are written. During a cache read operation, only the
non-zero bytes or words are read and then the actual data
are constructed by combining the information from the all-
zero flags. Another proposal [18] logically divides the STT-
RAM cache line into multiple partial lines. In L1 cache,
a history bit is kept for each partial line to track which
partial lines have changed. Using this information, when
a dirty L1 block is written to last level cache, only those
partial lines which have been changed are written. Other
authors propose techniques for mitigating the write pressure
caused due to prefetching in STT-RAM based LLC [19].
One of these techniques prioritizes different types of LLC
requests such as load, store, prefetch, or write back, etc.
based on their criticality. The critical requests are assigned
a high priority and hence, they are served earlier. In
multicore systems, the excessive requests generated from a
cache-intensive program may block those generated from a
cache-unintensive program which may lead to its starvation.
To address this, they propose another technique which
prioritizes the requests from a cache-unintensive program,
so that they are served promptly. Also, authors in [9] analyze
the cache coherence protocols impact in the number of write

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



REUSE DETECTOR: IMPROVING THE MANAGEMENT OF STT-RAM SLLCS 19

H0 H1 H2 H3
HL0

HL1
HL2

HL3
HM0

HM1
HM2

HM3
HML0

HML1
HML2

HML3 L0 L1 L2 L3 M0 M1 M2 M3
ML0

ML1
ML2

ML3

GMEAN
HIG

H
H+HM

H+HM+HML

SomeH

0.8

0.9

1

1.1

DASCA RD

FIGURE 24. Energy consumption in the DRAM normalized to the baseline in the 8-core CMP system.

H0 H1 H2 H3
HL0

HL1
HL2

HL3
HM0

HM1
HM2

HM3
HML0

HML1
HML2

HML3 L0 L1 L2 L3 M0 M1 M2 M3
ML0

ML1
ML2

ML3

GMEAN
HIG

H
H+HM

H+HM+HML

SomeH

0.8

0.9

1

1.1

1.2

DASCA RD

FIGURE 25. Amount of SLLC hits per kilo instruction normalized to the baseline in the 8-core CMP system

Writes SLLC IT Eng. SLLC Eng. DRAM

0.2

0.4

0.6

0.8

1

1.2

8K-All 16K-All 32-All 64K-All 8K-High 16K-High 32K-High 64K-High

FIGURE 26. Writes to SLLC, IT and energy consumption in both SLLC and main memory normalized to the baseline for different RD
sizes per core in the 8-core CMP system.

to a LLC based on STT-RAM, showing that the protocols
with a owned state (MOESI and MOSI) reduce the number
of writes to LLC.

Another body of work mainly deals with performance
of STT-RAM caches: In [20] a cache revive technique to
calculate retention time is proposed. Some cache blocks

Policies
Metrics SLLC

Misses
SLLC
Hits

Row buffer Read
Hit Rate

DRAM
reads

DRAM
Writes

Bank contention in
SLLC

DASCA (All/High) 1.07/1.30 0.92/0.84 1.00/0.99 1.07/1.30 1.08/1.21 0.32/0.13
RD (All/High) 0.98/0.96 1.05/1.01 1.02/1.04 1.00/1.06 1.02/1.05 0.19/0.07

TABLE 8. Average (geomean) values of different metrics normalized to the baseline in the 8-core CMP system.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



20 RODRIGUEZ-RODRIGUEZ ET AL

Mixes Applications
mix.H0 429.mcf, 433.milc, 434.zeusmp, 436.cactusADM, 437.leslie3d, 470.lbm, 410.bwaves, 462.libquantum,

436.cactusADM, 462.libquantum, 429.mcf, 437.leslie3d, 436.cactusADM, 410.bwaves, 437.leslie3d, 433.milc
mix.H1 429.mcf, 433.milc, 434.zeusmp, 436.cactusADM, 437.leslie3d, 470.lbm, 410.bwaves, 462.libquantum,

436.cactusADM, 410.bwaves, 437.leslie3d, 433.milc, 429.mcf, 433.milc, 434.zeusmp, 462.libquantum
mix.H4 436.cactusADM, 462.libquantum, 429.mcf, 437.leslie3d, 436.cactusADM, 410.bwaves, 437.leslie3d, 433.milc,

429.mcf, 433.milc, 434.zeusmp, 462.libquantum, 470.lbm, 437.leslie3d, 410.bwaves, 436.cactusADM
mix.H5 436.cactusADM, 410.bwaves, 437.leslie3d, 433.milc, 429.mcf, 433.milc, 434.zeusmp, 462.libquantum,

429.mcf, 433.milc, 434.zeusmp, 462.libquantum, 470.lbm, 437.leslie3d, 410.bwaves, 436.cactusADM
mix.HM0 483.xalancbmk, 445.gobmk, 450.soplex, 473.astar, 403.gcc, 400.perlbench, 456.hmmer, 481.wrf,

429.mcf, 433.milc, 434.zeusmp, 436.cactusADM, 437.leslie3d, 470.lbm, 410.bwaves, 462.libquantum
mix.HM1 483.xalancbmk, 400.perlbench, 450.soplex, 401.bzip2, 481.wrf, 483.xalancbmk, 403.gcc, 400.perlbench,

436.cactusADM, 462.libquantum, 429.mcf, 437.leslie3d, 436.cactusADM, 410.bwaves, 437.leslie3d, 433.milc
mix.HM2 450.soplex, 483.xalancbmk, 403.gcc, 400.perlbench, 445.gobmk, 450.soplex, 456.hmmer, 445.gobmk,

436.cactusADM, 410.bwaves, 437.leslie3d, 433.milc, 429.mcf, 433.milc, 434.zeusmp, 462.libquantum
mix.HM3 400.perlbench, 445.gobmk, 481.wrf, 473.astar, 481.wrf, 450.soplex, 456.hmmer, 445.gobmk,

429.mcf, 433.milc, 434.zeusmp, 462.libquantum, 470.lbm, 437.leslie3d, 410.bwaves, 436.cactusADM
mix.HM4 429.mcf, 433.milc, 434.zeusmp, 462.libquantum, 470.lbm, 437.leslie3d, 410.bwaves, 436.cactusADM,

483.xalancbmk, 445.gobmk, 450.soplex, 473.astar, 403.gcc, 400.perlbench, 456.hmmer, 481.wrf
mix.HM5 436.cactusADM, 410.bwaves, 437.leslie3d, 433.milc, 429.mcf, 433.milc, 434.zeusmp, 462.libquantum,

483.xalancbmk, 400.perlbench, 450.soplex, 401.bzip2, 481.wrf, 483.xalancbmk, 403.gcc, 400.perlbench
mix.HM7 429.mcf, 433.milc, 434.zeusmp, 436.cactusADM, 437.leslie3d, 470.lbm, 410.bwaves, 462.libquantum,

400.perlbench, 445.gobmk, 481.wrf, 473.astar, 481.wrf, 450.soplex, 456.hmmer, 445.gobmk

TABLE 9. Proposed SPEC 2006 multiprogrammed mixes 16 cores.

Scenario
Metrics LLC Write

reduction (%)
(DASCA/RD)

LLC Energy
Savings (%)

(DASCA/RD)

Performance
improvement (%)

(DASCA/RD)

DRAM Energy
Savings (%)

(DASCA/RD)
1 core 65.6 / 89.5 34.0 / 40.7 0.3 / 1.9 0.2 / 2.1
4 cores 59.5 / 73.2 33.2 / 40.1 1.2 / 2.9 3.7 / 6.3
8 cores 47.8 / 59.1 28.7 / 34.1 3.7 / 6.7 3.0 / 6.3
16 cores 36.0 / 42.1 28.6 / 33.6 29.6 / 42.9 6.0 / 16.8

TABLE 10. Average (geomean) values of different metrics normalized to the baseline across different configurations.

retain data even after completion of retention time. The
retention time is chosen so that it will minimize the number
of unrefreshed cache blocks. Other authors propose the
use of STT-RAM to design combinational logic, register
files and on-chip storage (I/D L1 caches, TLBs and L2
cache) [21]. Also, to hide the write latency of STT-RAM,
they propose subbank buffering which allows the writes to
complete locally within each sub-bank, while the reads from
other locations within the array can complete unobstructed.
They show that by carefully designing the pipeline, the
STT-RAM based design can significantly reduce the leakage
power, while also maintaining the performance level close
to the CMOS design. Also, an STT-RAM cache design for
lower level caches where different cache ways are designed
with different retention periods is proposed in [22]. For
example, in a 16-way cache, way 0 is designed with a
fast STT-RAM design with low retention period and the
remaining 15 ways are designed with a slow STT-RAM
design which has higher retention period. Their technique
uses hardware to detect whether a block is read or write
intensive. The write intensive blocks are primarily allocated
to way 0, while the read intensive blocks are allocated to the
other ways. Also, to avoid refreshing dying blocks in way
0, their technique uses data migration to move such blocks
to banks with higher retention period. Finally, a write-buffer
design to address the long write latency of last level (L2)
STT-RAM cache is proposed in [23]. The L2 may receive
a request from both L1 and the write buffer. Since read
latency of STT-RAM is smaller than the write latency and
also reads are performance-critical, the buffer uses a read-
preemptive management policy, which ensures that a read
request receives higher priority than a write request. The
authors also propose a hybrid SRAM and STT-RAM cache

design which aims to move the most write-intensive blocks
to SRAM.

7. CONCLUSIONS

In this paper we have addressed the main constraints
of conventional SRAM last-level caches: power-hungry
operation and inefficient management. In order to overcome
these drawbacks we propose to employ a STT-RAM SLLC
where its contents are selected according to a Reuse
Detector which exploits the reuse locality of the stream of
references arriving at the SLLC. The Reuse Detector is a
hardware component that tracks block reuse and determines,
according to its predicted future utility, if they must be
inserted in the SLLC or bypassed to the main memory. The
Reuse Detector succeeds in managing the STT-RAM SLLC
contents in two complementary ways. First, it is able to
bypass to main memory a significant fraction of the blocks
coming to the SLLC, thus decreasing the amount of the
energy-hungry writes to be performed. Second, it increases
significantly the SLLC hit rate, which leads to moderate
performance improvements. In addition, the energy
consumption in the main memory is also reduced. This
way, our approach is able to outperform other strategies also
oriented to decrease the energy consumption in STT-RAM
SLLCs, such as the DASCA scheme. Although DASCA
exhibits slightly lower ability to cut the write operations to
the SLLCs, this technique, which predicts if a block will not
be reused again instead of predicting if a block is going to
be reused as ours, achieves lower accuracy in the prediction,
hence also significantly lower hit rates at this cache level and
therefore much lower performance improvements. Overall
RD reports on average energy reductions of 40% (quad-

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



REUSE DETECTOR: IMPROVING THE MANAGEMENT OF STT-RAM SLLCS 21

core) and 35% (eight-core) in the SLLC, an additional 6.5%
(in both quad and eight-core) energy reduction in the main
memory, and improves performance by 3% (quad-core) and
7% (eight-core) compared to a STT-RAM SLLC baseline.
More importantly, our approach outperforms DASCA, the
state-of-the-art STT-RAM SLLC management, reporting
energy savings in the range of 6-11% higher than those
of DASCA, delivering higher performance in the range of
1.5-9%, and an additional improvement in DRAM energy
consumption in the range 2-9% higher than DASCA –all
these reanges depending on the specific scenatio and the kind
of applications used–.

ACKNOWLEDGEMENTS

This work has been supported in part by the Spanish
government through the research contracts TIN2012-32180
and TIN2015-65277-R, and by the HIPEAC-4 European
Network of Excellence. It has been also supported by a
grant scholarship from the University of Costa Rica and the
Costa Rican Ministry of Science and Technology MICIT and
CONICIT.

REFERENCES

[1] Ahn, J., Yoo, S., and Choi, K. (2014) Dasca: Dead write
prediction assisted stt-ram cache architecture. IEEE 20th
International Symposium on High Performance Computer
Architecture (HPCA), 2014, pp. 25–36. IEEE.

[2] Khan, S. M., Tian, Y., and Jimenez, D. A. (2010) Sampling
dead block prediction for last-level caches. Proceedings of
the 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, Washington, DC, USA MICRO ’43,
pp. 175–186. IEEE Computer Society.

[3] Albericio, J., Ibáñez, P., Viñals, V., and Llabería, J. M. (2013)
Exploiting reuse locality on inclusive shared last-level caches.
ACM Trans. Archit. Code Optim., 9, 38:1–38:19.

[4] Albericio, J., Ibáñez, P., Viñals, V., and Llabería, J. M. (2013)
The reuse cache: Downsizing the shared last-level cache.
Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, New York, NY, USA
MICRO-46, pp. 310–321. ACM.

[5] (2013). http://www.hpl.hp.com/research/cacti/.
[6] Dong, X. et al. (2012) NVSim: A circuit-level performance,

energy, and area model for emerging nonvolatile memory.
IEEE Transaction on Compter-Aided Design of Integrated
Circuits and Systems, 31, 994–1007.

[7] Díaz, J., Monreal, T., Viñals, V., Ibáñez, P., and Llabería, J. M.
(2015) Selección de contenidos basada en reuso para caches
compartidas en exclusión. Proceedings of the XXVI Jornadas
de Paralelismo JP-2015, pp. 433–442.

[8] Binkert, N. et al. (2011) The gem5 simulator. ACM
SIGARCH Computer Architecture News, 39, 1.

[9] Chang, M.-T., Lu, S.-L., and Jacob, B. (2014) Impact of cache
coherence protocols on the power consumption of stt-ram-
based llc. The Memory Forum Workshop.

[10] Agarwal, N., Krishna, T., Peh, L.-S., and Jha, N. K. (2009)
Garnet: A detailed on-chip network model inside a full-

system simulator. Performance Analysis of Systems and
Software, 2009. ISPASS 2009. IEEE International Symposium
on, pp. 33–42. IEEE.

[11] Rosenfeld, P., Cooper-Balis, E., and Jacob, B. (2011)
Dramsim2: A cycle accurate memory system simulator.
Computer Architecture Letters, 10, 16 –19.

[12] (2013). http://www.spec.org/cpu2006/.
[13] Patil, H., Cohn, R. S., Charney, M., Kapoor, R., Sun,

A., and Karunanidhi, A. (2004) Pinpointing representative
portions of large intel® itanium® programs with dynamic
instrumentation. MICRO, pp. 81–92. IEEE Computer
Society.

[14] Wang, J., Dong, X., and Xie, Y. (2013) Oap: an obstruction-
aware cache management policy for stt-ram last-level caches.
Proceedings of the Conference on Design, Automation and
Test in Europe, pp. 847–852. EDA Consortium.

[15] Rasquinha, M. (2011) Aan energy efficient cache design using
spin torque transfer (STT) RAM. Master of science in
the school of electrical and computer engineering Georgia
Institute of Technology.

[16] Yazdanshenas, S., Ranjbar Pirbast, M., Fazeli, M., and
Patooghy, A. (2013) Coding last level stt-ram cache for high
endurance and low power. , ?

[17] Jung, J., Nakata, Y., Yoshimoto, M., and Kawaguchi,
H. (2013) Energy-efficient spin-transfer torque ram cache
exploiting additional all-zero-data flags. Quality Electronic
Design (ISQED), 2013 14th International Symposium on, pp.
216–222. IEEE.

[18] Park, S. P., Gupta, S., Mojumder, N., Raghunathan,
A., and Roy, K. (2012) Future cache design using stt
mrams for improved energy efficiency: devices, circuits
and architecture. Proceedings of the 49th Annual Design
Automation Conference, pp. 492–497. ACM.

[19] Mao, M., Li, H. H., Jones, A. K., and Chen, Y. (2013)
Coordinating prefetching and stt-ram based last-level cache
management for multicore systems. Proceedings of the 23rd
ACM international conference on Great lakes symposium on
VLSI, pp. 55–60. ACM.

[20] Jog, A., Mishra, A. K., Xu, C., Xie, Y., Narayanan,
V., Iyer, R., and Das, C. R. (2012) Cache revive:
architecting volatile stt-ram caches for enhanced performance
in cmps. Proceedings of the 49th Annual Design Automation
Conference, pp. 243–252. ACM.

[21] Guo, X., Ipek, E., and Soyata, T. (2010) Resistive
computation: avoiding the power wall with low-leakage,
stt-mram based computing. ACM SIGARCH Computer
Architecture News, pp. 371–382. ACM.

[22] Sun, Z., Bi, X., Li, H. H., Wong, W.-F., Ong, Z.-L., Zhu,
X., and Wu, W. (2011) Multi retention level stt-ram cache
designs with a dynamic refresh scheme. Proceedings of
the 44th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 329–338. ACM.

[23] Sun, G., Dong, X., Xie, Y., Li, J., and Chen, Y. (2009)
A novel architecture of the 3d stacked mram l2 cache for
cmps. High Performance Computer Architecture, 2009.
HPCA 2009. IEEE 15th International Symposium on, pp.
239–249. IEEE.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????


