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José M. Sigarreta Almira(1) and Ismael G. Yero(2)
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Abstract

A subset D of vertices of a graph G is a total dominating set if every vertex of G is
adjacent to at least one vertex of D. The total dominating set D is called a total co-
independent dominating set if the subgraph induced by V −D is edgeless and has at least
one vertex. The minimum cardinality of any total co-independent dominating set is the
total co-independent domination number of G and is denoted by γt,coi(G). In this work
we study some complexity and combinatorial properties of γt,coi(G). Specifically, we prove
that deciding whether γt,coi(G) ≤ k for a given integer k is an NP-complete problem and
give several bounds on γt,coi(G). Also, since any total co-independent dominating set is
also a total dominating set, we characterize all the trees having equal total co-independent
domination number and total domination number.

Keywords: total co-independent domination; total domination; vertex independence; vertex
cover.

AMS Subject Classification Numbers: 05C69

1 Introduction

Problems concerning domination in graphs are one of the most popular and highly investigated
ones in the area of graph theory, and a rich literature in the topic is nowadays known in the
research community. Such problems run from the theoretical point of view till several practical
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applications in real life situations. The most interesting cases of such applications are probably
regarding problems in computer science. One of the most interesting features of domination in
graphs involves the existence of a very high number of variants of domination parameters. A
very common combination of domination is made with vertex independence of graphs, and the
way of combining both concepts groups a considerable number of possibilities. In this work,
we center our attention into precisely study one of these combinations between domination and
independence in graphs, namely the total co-independence domination parameter. We focus
the investigation on some computational complexity aspects of this parameter as well as on
combinatorial properties of it.

Given a graph G with vertex set V (G) and edge set E(G), a set D ⊂ V (G) is a total

dominating set of G if every vertex in V (G) is adjacent to at least one vertex in D. The
total domination number of G is the minimum cardinality of any total dominating set in G
and is denoted by γt(G). A γt(G)-set is a total dominating set of cardinality γt(G). For more
information on total domination we suggest the recent and fairly complete survey [10] and the
book [11]. A set S of vertices is independent if S induced an edgeless graph. An independent set
of maximum cardinality is a maximum independent set of G. The independence number of G is
the cardinality of a maximum independent set of G and is denoted by β(G). An independent
set of cardinality β(G) is called a β(G)-set. Relationships between (total) domination and
independence in graphs have attracted the attention of several researchers in the last years.
Several interesting connection among these parameters include independent dominating sets
[2, 14], partitions into a dominating set and an independent set [13], (total) dominating sets
which intersect every maximal independent set [1, 4, 9], and some other ones more, which we
prefer to not mention here, since it is not the goal of this work.

A total dominating set D of a graph G is called a total co-independent dominating set (or
TC-ID set for short) if the set of vertices of the subgraph induced by V −D is independent and
not empty1. The minimum cardinality of any TC-ID set is the total co-independent domination

number of G and is denoted by γt,coi(G). A TC-ID set of cardinality γt,coi(G) is a γt,coi(G)-set.
These concepts were previously introduced and barely studied in [15]. Moreover, in [12], the same
parameter was introduced under the name of total outer-independent domination number. Since
this article ([12]) is not published in any journal and the other one ([15]) is already published,
we precisely follow the terminology and notation of the latter. Since total domination is not
defined for graphs having isolated vertices, all the graphs considered herein have not isolated
vertices. Moreover, in order to satisfy the total domination property and that the complement
of a TC-ID set is not empty, it is required that 2 ≤ γt,coi(G) ≤ n−1, if n is the order of G. Such
trivial bounds were already noted in the seminal work [15].

Throughout this work we consider G = (V,E) as a simple graph of order n and size m. That
is, graphs that are finite, undirected, and without loops or multiple edges. Given a vertex v
of G, NG(v) represents the open neighborhood of v, i.e., the set of all neighbors of v in G and

1Notice that the condition of V − D to be not empty is not exactly necessary. However, if such condition
is not required, then we readily seen that the only graphs containing a TC-ID set of minimum cardinality with
empty complement are the union of paths P2.
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the degree of v is δ(v) = |NG(v)|. The minimum and maximum degrees of G are denoted by
δ(G) and ∆(G), respectively (or δ and ∆, respectively, for short). If X and Y are two subsets
of V (G), then we denote the set of all edges of G joining a vertex of X with a vertex of Y by
E(X, Y ). For a set S ⊂ V (G), the complement of S is S = V (G) \S. In this work, we represent
an edgeless graph G of order n as Nn. For any other graph theory terminology and notation we
follow the book [11].

Let T be a tree (a connected graph without cycles). A leaf or a pendant vertex of T is a
vertex of degree one (it is similarly defined for non tree graphs). A support vertex of T is a vertex
adjacent to a leaf and a semi-support vertex is a vertex adjacent to a support vertex that is not
a leaf. By an isolated support vertex of T we mean an isolated vertex of the subgraph induced by
the support vertices of T . The set of leaves of T is denoted by L(T ), the set of support vertices
by S(T ), and the set of semi-support vertices by SS(T ). Moreover, S∗(T ) is the set of isolated
support vertices of T .

We first notice that ifH1, H2, . . . , Hr with r ≥ 2, are the connected components of a graphH ,
then any TC-ID set of minimum cardinality in H is formed by a minimum total dominating set
in the subgraphs Hj where |V (Hj)| = 2 and a minimum TC-ID set in the remaining subgraphs
Hi with |V (Hi)| ≥ 3. That is stated in the following result.

Remark 1. Let H1, H2, . . . , Hr with r ≥ 2, be the connected components of a graph H different

from the union of r copies of the path P2. Then

γt,coi(H) =
∑

i∈{1,...,r}
|V (Hi)|=2

γt(Hi) +
∑

j∈{1,...,r}
|V (Hj)|≥3

γt,coi(Hj).

Proof. Let Dj be a γt,coi(Hj)-set for j ∈ {1, . . . , r} such that |V (Hj)| ≥ 3. It is easy see that
(
⋃

i∈{1,...,r}
|V (Hi)|=2

V (Hi)) ∪ (
⋃

j∈{1,...,r}
|V (Hj)|≥3

Dj) is a TC-ID set of H and we have

γt,coi(H) ≤
∑

i∈{1,...,r}
|V (Hi)|=2

γt(Hi) +
∑

j∈{1,...,r}
|V (Hj)|≥3

γt,coi(Hj).

On the other hand, let A be a γt,coi(H). Firstly, we observe that for every i ∈ {1, . . . , r} such
that |V (Hi)| = 2, it is satisfied that A ∩ V (Hi) = V (Hi). Moreover, let Aj = A ∩ V (Hj) for
every j ∈ {1, . . . , r} such that |V (Hj)| ≥ 3. We notice that every Aj must be a TC-ID set of
Hj . In this sense,

γt,coi(H) = |A| =
∑

i∈{1,...,r}
|V (Hi)|=2

|V (Hi)|+
∑

j∈{1,...,r}
|V (Hj)|≥3

|Aj|

≥
∑

i∈{1,...,r}
|V (Hi)|=2

γt(Hi) +
∑

j∈{1,...,r}
|V (Hj)|≥3

γt,coi(Hj),

which completes the proof.
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In concordance with the result above, from now on, we only consider the study of the TC-ID
sets of connected graphs and omit to refer to that fact throughout all our exposition.

2 Complexity of the decision problem

We begin our exposition by considering the problem of deciding whether the total co-independent
domination number of a graph is less than a given integer. That is stated in the following decision
problem.

TOTAL CO-INDEPENDENT DOMINATION PROBLEM
INSTANCE: A non trivial graph G and a positive integer r
PROBLEM: Deciding whether γt,coi(G) is less than r

In order to deal with the complexity of the TOTAL CO-INDEPENDENT DOMINATION
PROBLEM (TC-ID PROBLEM), we make a reduction from a very well known decision problem
concerning the independence number of graphs.

MAXIMAL INDEPENDENT SET PROBLEM
INSTANCE: A non trivial graph G and a positive integer r
PROBLEM: Deciding whether the independence number of G is larger than r

The problem above is one of the classical NP-complete problems appearing in the book [8].
Moreover, it remains NP-complete even when restricted to planar graphs.

Theorem 2. [8] MAXIMAL INDEPENDENT SET PROBLEM is NP-complete even when re-

stricted to planar graphs of maximum degree at most 3.

Now on, in order to present our complexity results we need to introduce a family of graphs
which is next defined. Let T6 be a tree with six vertices having two adjacent vertices u, v of degree
three and the other four u1, u2, v1, v2 vertices are leaves. Clearly, each vertex of degree three has
two adjacent leaves, say u1, u2 ∈ N(u) and v1, v2 ∈ N(v) (see Figure 1 (I)). Given a graph G

of order n and n trees T
(1)
6 , . . . , T

(n)
6 isomorphic to the tree T6, the graph GT is constructed by

adding edges between the ith-vertex of G and the vertex u of the ith-tree T
(i)
6 . See Figure 1 (II)

for an example.
We are now able to prove the NP-completeness of the TC-ID PROBLEM.

Theorem 3. TOTAL CO-INDEPENDENT DOMINATION PROBLEM is NP-complete even

when restricted to planar graphs of maximum degree at most 3.

Proof. The problem is clearly in NP since verifying that a given set is indeed a TC-ID set can be
done in polynomial time. Let us now make a reduction from the MAXIMAL INDEPENDENT
SET PROBLEM. Let G be a not edgeless graph of order n and construct the graph GT as
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v2
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v1

(I) (II)

Figure 1: The graph T6 (I) and a graph GT (II) where G is a complete graph minus one edge.

described above. Let us denote by u(i), v(i) the vertices of degree three in the ith copy T
(i)
6 of the

tree T6 used to generate GT . We shall prove that γt,coi(GT ) = 3n− β(G).
Let A be a β(G)-set and let D be the set of vertices of GT obtained from the complement of

A in G together with the vertices u, v belonging to all the copies of the tree T6 used to generate
GT , that is D = (V (G) \ A) ∪

{
⋃n

i=1{u
(i), v(i)}

}

. This set is clearly a total dominating set and
its complement is an independent set. Thus, D is a TC-ID set in GT and, as a consequence,

γt,coi(GT ) ≤ n− |A|+

∣

∣

∣

∣

∣

n
⋃

i=1

{u(i), v(i)}

∣

∣

∣

∣

∣

= 3n− β(G).

On the other hand, let D′ be a γt,coi(GT )-set. In order to totally dominate the leaves of every

copy of T6 in GT , it must happen that |D′ ∩ V (T
(i)
6 )| ≥ 2 for every i ∈ {1, . . . , n}. Moreover,

V (G) ∩D′ 6= ∅, since otherwise the complement of D′ would not be independent. Moreover the
complement of V (G) ∩D′ in G is an independent set in G. Thus, β(G) ≥ n− |V (G) ∩D′| and
we obtain the following.

γt,coi(GT ) = |D′| = |D′ ∩ V (G)|+

∣

∣

∣

∣

∣

n
⋃

i=1

(

D′ ∩ V (T
(i)
6 )

)

∣

∣

∣

∣

∣

≥ n− β(G) + 2n = 3n− β(G).

As a consequence, it follows that γt,coi(GT ) = 3n− β(G).
Now, for j = 3n − k, it is readily seen that γt,coi(GT ) ≤ j if and only if β(G) ≥ k, which

complete the reduction. We also observe that, if G is a planar graph, then GT is also planar.
Therefore, since the MAXIMAL INDEPENDENT SET PROBLEM is NP-complete even when
restricted to planar graphs of maximum degree at most 3, we also deduce that the TC-ID
PROBLEM is NP-complete even when restricted to planar graphs of maximum degree at most
3 and the proof is completed.

As a consequence of the result above, we deduce the following consequence.

Corollary 4. The problem of computing the total co-independent domination number of graphs

is NP-hard even when restricted to planar graphs of maximum degree at most 3.
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3 Bounding the total co-independent domination number

In order to present the first bounds for γt,coi(G) of any graph G, we need the next concepts. A
set S of vertices of G is a vertex cover of G if every edge of G is incident with at least one vertex
of S. The vertex cover number of G, denoted by α(G), is the smallest cardinality of a vertex
cover of G. We refer to an α(G)-set in G as a vertex cover of cardinality α(G). The following
well-known result, due to Gallai [7], states the relationship between the independence number
and the vertex cover number of a graph.

Theorem 5. [7](Gallai, 1959) For any graph G of order n, α(G) + β(G) = n.

On the other hand, it was shown in [15] the following relationship between γt,coi(G) and β(G).

Theorem 6. [15] For any graph G of order n, γt,coi(G) ≥ n− β(G).

By using the two theorems above, we can easily deduce the lower bound of our next result.
However, an upper bound for γt,coi(G) in terms of the vertex cover number can also be deduced.
We first consider the case whether G is a star graph Sn for which is known that γt,coi(Sn) = 2
and α(Sn) = 1.

Remark 7. For any star graph Sn, γt,coi(Sn) = 2 = 2α(Sn).

In concordance with the remark above, for our next result we exclude the case of star graphs
and see that they behave in a different manner.

Theorem 8. For any graph G of order n different from a star graph,

α(G) ≤ γt,coi(G) ≤ 2α(G)− 1.

Proof. The lower bound follows from Theorems 5 and 6. If α(G) ≥ n/2, then γt,coi(G) ≤ n−1 ≤
2(n/2)− 1 ≤ 2α(G)− 1. Thus, from now on in this proof we consider α(G) < n/2. Now, let C
be an α(G)-set.

We choose two vertices u, v ∈ C with the minimum possible distance between them and
let P be a shortest u − v path. Clearly, V (P ) ∩ C = {u, v} and the distance between u and
v is one or two (notice this also means 2 ≤ |V (P )| ≤ 3). For each vertex x ∈ C − {u, v},
choose a neighbor x′ of x. Then C ∪ V (P ) ∪ {x′ : x ∈ C − {u, v}} is a TC-ID set of cardinality
2|C|+ |V (P )| − 4 ≤ 2α(G)− 1, which completes the proof of the upper bound.

The bounds above are tight. For instance, a characterization of that trees achieving the
equality in the lower bound was given in [3] (note that in [3] the trees T of order n satisfying
equality in the bound γt,coi(T ) = n− β(T ) were characterized, which equals the lower bound of
Theorem 8, in concordance with Theorem 5). The upper bound is attained for an infinite family
of graphs, as we next show. To this end, we need the following operations for edges or induced
paths P3 of a graph G.
Subdivision: Given an edge uv, remove the edge, add a vertex w and the edges uw, wv.
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Inflation of size k: Given an induced path P3 = uvw of G, in which v has degree two, remove
the vertex v and the two incident edges, and replace them with k vertices v1, v2, . . . , vk and edges
uvi, viw for every i ∈ {1, . . . , k}.
Addition of t pendant vertices: Given a vertex x add t new vertices y1, . . . , yt and the edges
xyi for every i ∈ {1, . . . , t}.

Now, a graph Hn,a,b ∈ F1 is a graph obtained from a star graph Sn by making the following
sequence of operations, which we will call as Sequence I.

(a) Apply the operation “Subdivision” to a (1 ≤ a ≤ n) edges of Sn.

(b) Apply the operation “Inflation of size ki” with ki ≥ 2 to b (0 ≤ b ≤ a) paths P
(i)
3 obtained

from (a).

(c) Apply the operation “Addition of qi pendant vertices”, qi ≥ 0, to the b vertices correspond-
ing to leaves of Sn obtained in the step (b).

(d) Apply the operation “Addition of ti pendant vertices”, ti ≥ 1, to the leaves vi belonging
to the remaining a− b paths obtained from (a), which were not “inflated” in (b).

(e) If a = n and b = 0 (notice that in this case Hn,a,b is a tree such that the central vertex of
the original star graph Sn has no adjacent leaves), then apply the operation “Addition of

t pendant vertices”, t ≥ 1, to the vertex corresponding to the central vertex of Sn.

(f) If a = n and b > 0, then apply the operation “Addition of t pendant vertices”, t ≥ 0, to
the vertex corresponding to the central vertex of Sn.

As an example, to obtain the cycle C4 (which belongs to F1) we begin with the star S1 (a
path P2), next we apply the operation “Subdivision” to the unique edge of S1 and then we apply
the operation “Inflation of size 2” to the path P3 obtained in the previous step. Note that
different sequences of operations would lead to the same graph. For instance, the graph P5 can
be obtained from the star S1 by subdividing its unique edge and then adding a pendant vertex to
the leaf corresponding to the subdivision, as well as another pendant vertex to the center of S1

(coincidentally such center is also a leaf). Moreover, the graph P5 is obtained from the star P3 by
subdividing one of its edges and then adding a pendant vertex to the leaf corresponding to such
subdivision. On the other hand, we remark that three integers n, a, b would produce different
graphs Hn,a,b depending on the addition of pendant vertices that would be done. However, since
it is not significant for our work to denote them, we skip to use the notations for the addition
of pendant vertices. A fairly representative graph of the family F1 is given in Figure 2.

Remark 9. For any graph Hn,a,b ∈ F1, α(Hn,a,b) = a + 1 and γt,coi(Hn,a,b) = 2a+ 1.

Proof. For any edge of Sn which was subdivided in step (a), it appears either a path P4 or a
cycle C4 and all these subgraphs have in common only one vertex (the corresponding one to the
center of Sn). Thus, in order to cover all the edges of Hn,a,b, at least a+ 1 vertices are required.

7



Figure 2: A graph H5,5,3 ∈ F1 where the six bolded vertices form an α(H)-set and gray vertices
form a possible set to be added to the bolded vertices to get a γt,coi(H)-set, which has cardinality
eleven.

Moreover, a set given by those a leaves corresponding to the a edges of the star Sn which were
subdivided together with the central vertex form a vertex cover of cardinality a + 1. Thus, the
equality α(Hn,a,b) = a+ 1 follows.

Now, let D be a γt,coi(Hn,a,b)-set. We analyze the following situations for every edge wu
(assume w is the center of Sn) of the star which is initially subdivided.

Case 1: There is only one path between w and u in Hn,a,b. Hence, the edge wu was subdivided
with a vertex, say v, and not inflated, which made a required addition of at least one pendant
vertex, say u′, to the leaf u. Thus, in order to totally dominate u′, |D ∩ {v, u, u′}| ≥ 2.

Case 2: There are at least two paths between w and u in Hn,a,b. Clearly, this means wu
was subdivided and then inflated with at least two vertices, say v1, . . . , vr, r ≥ 2. Moreover,
probably some pendant vertices were added to u. So, in order to totally dominate v1, . . . , vr, u
(and probably other extra leaves adjacent to u), at least two vertices of v1, . . . , vr, u are required.

We next consider the vertex w separately. If a < n, then the vertex w has a least one adjacent
leaf which needs to be totally dominated. Thus, w must belong to D. On the contrary, if a = n,
then we must consider the value b. If b = 0, then no path P3 was inflated (Hn,a,b is a tree) and
so, by step (e), w has at least one adjacent leaf which needs to be totally dominated, which
means w must belong to D again. Finally, we assume b > 0. Thus, at least one path P3 was
inflated and there is a cycle C

(j)
4 to which w belongs. Also, it may happen w has no adjacent

leaves. Now, note that if w /∈ D, then the two vertices of C
(j)
4 adjacent to w must belong to

D, since D is an independent set. Moreover, the fourth vertex of C
(j)
4 must belong to D too, in

order to get the vertices of D totally dominated. As a consequence, at least three vertices of the
cycle are in D, which is equivalent to have in D the vertex w, one of its neighbors in C

(j)
4 and

the vertex of C
(j)
4 which is not adjacent to w.

8



Consequently, we can deduce that for any set of vertices of a subgraph of Hn,a,b, induced by
the vertices obtained in a subdivision of one of the a leaves of Sn and probably the corresponding
addition of some pendant vertices, at least two of these vertices are in D. Moreover, one extra
vertex is required, which could mainly be the central vertex w of Sn. Thus, γt,coi(Hn,a,b) = |D| ≥
2a+ 1.

On the other hand, by using Theorem 8, we obtain that γt,coi(Hn,a,b) ≤ 2α(Hn,a,b)−1 = 2a+1
and the equality follows for γt,coi(Hn,a,b).

Now, a graph H ∈ F2 is a graph obtained from the cycle C6 by making the following sequence
of operations, which we will call as Sequence II.

(a) Apply the operation “Addition of ti pendant vertices”, ti ≥ 0 and i ∈ {1, 2, 3}, to the three
vertices, say v1, v2, v3, of a β(C6)-set, respectively.

(b) If there is a ti = 0 from the above operation and the degree of vi is two, then apply the
operation “Inflation of size k” with k ≥ 2 to one of the two possible paths of order three
between vi and the other two vertices in {v1, v2, v3} − {vi}.

(c) Apply the operation “Inflation of size ki” with ki ≥ 1 and i ∈ {1, 2, 3} to the three possible
paths of order three between v1, v2, v3.

An example of a graph of the family F2 appears in Figure 3.

Figure 3: A graph H ∈ F2 where the three bolded vertices form an α(H)-set and the two gray
vertices form a possible set to be added to the bolded vertices to get a γt,coi(H)-set, which has
cardinality five.

The following result concerning the values of α(H) and γt,coi(H) for graphs H ∈ F2 is
straightforward to observe.
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Remark 10. For any graph H ∈ F2, α(H) = 3 and γt,coi(H) = 5.

According to the Remarks above, we can easily check that the upper bound of Theorem 8
is achieved for any graph G ∈ F1 ∪ F2. Moreover, we next prove that precisely the graphs of
these families are the only ones achieving the upper bound of Theorem 8. To this end, we need
the following two lemmas whose proofs can be made by using some similar techniques as in the
proof of Theorem 8.

Lemma 11. If a graph G contains an α(G)-set which is not independent, then γt,coi(G) ≤
2α(G)− 2.

Proof. Let C be an α(G)-set which is not independent. We choose two adjacent vertices u, v ∈ C.
For each vertex x ∈ C − {u, v}, choose a neighbor x′ of x. Then C ∪ {x′ : x ∈ C − {u, v}} is a
TC-ID set of cardinality 2(|C| − 2) + 2 ≤ 2α(G)− 2.

Lemma 12. If an α(G)-set of a graph G contains four different vertices u1, u2, v1, v2 such that

a shortest u1 − u2 path and a shortest v1 − v2 path have length two and are vertex disjoint, then

γt,coi(G) ≤ 2α(G)− 2.

Proof. Let C be an α(G)-set such that u1, u2, v1, v2 ∈ C. For each vertex x ∈ C−{u1, u2, v1, v2},
choose a neighbor x′ of x and let w1, w2 /∈ C be two vertices such that w1 ∈ N(u1) ∩N(u2) and
w2 ∈ N(v1)∩N(v2), which exist by assumption. Then C∪{w1, w2}∪{x

′ : x ∈ C−{u1, u2, v1, v2}}
is a TC-ID set of cardinality 2(|C| − 4) + 6 ≤ 2α(G)− 2.

Theorem 13. Let G be a graph of order n such that 2α(G) ≤ n. Then γt,coi(G) = 2α(G)− 1 if

and only if G ∈ F1 ∪ F2.

Proof. In one hand, if G ∈ F1∪F2, then it clearly happens that γt,coi(G) = 2α(G)−1 according
to Remarks 9 and 10.

On the second hand, assume γt,coi(G) = 2α(G) − 1 and let D be any α(G)-set. We first
notice that D must induce an independent set according to Lemma 11. We shall now proceed
by proving some partial claims that will further give our required conclusion.

Claim 1: G has no triangles (cycles of order three).
Proof of Claim 1: If there is a triangle, then, in order to cover all its edges, at least two of its
vertices must belong to D. So, this cover is not an independent set. Thus we get a contradiction
by using Lemma 11. (�)

Claim 2: G has no induced cycles of order five or larger than six.
Proof of Claim 2: Suppose G contains a cycle Cr with r = 5 or r ≥ 7. In order to cover all
the edges of Cr, and since r 6= 6, there must be two vertices in D∩V (Cr) at distance one (which
means D is not independent), or there are four different vertices u1, u2, v1, v2 ∈ D ∩ V (Cr) such
that a shortest u1−u2 path and a shortest v1− v2 path have length two and are vertex disjoint.
Thus, we obtain contradictions by using Lemmas 11 and 12. (�)
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As a consequence of the Claims above, we have that G can only contain cycles of order four or
six. We first analyze the case in which G contains a cycle of order six. Let V (C6) = {v1, . . . , v6}
where v1 ∼ v2 ∼ · · · ∼ v6 ∼ v1 (u ∼ v means u, v are adjacent). According to Lemma
11, it must happen D ∩ V (C6) is independent. Thus, without loss of generality we assume
D ∩ V (C6) = {v1, v3, v5}. We consider now several situations.

Suppose v2 has degree larger than two. If v2 ∼ vj with j ∈ {4, 6}, then G has a triangle,
which is not possible. If v2 ∼ v5, then for each vertex x ∈ C − {v1, v3, v5}, choose a neighbor x′

of x and we observe that the set D∪{v2}∪{x′ : x ∈ D−{v1, v3, v5} is a TC-ID set of cardinality
2(|D|−3)+4 ≤ 2α(G)−2, a contradiction. Thus, v2 has a neighbor z /∈ V (C6). Since v2 /∈ D, it
must happen z ∈ D. Since z 6∼ v1 and z 6∼ v3 (otherwise there would be a triangle), we obtain a
contradiction with Lemma 12 by using the vertices z, v1, v3, v5. As a consequence, v2 must have
degree two, and by symmetry also v4, v6 are of degree two too.

Suppose v1 has degree two. Hence, for each vertex x ∈ C −{v1, v3, v5}, we choose a neighbor
x′ of x and observe that the set (D−{v1})∪{v2, v6}∪{x′ : x ∈ D−{v1, v3, v5} is a TC-ID set of
cardinality 2(|D| − 3) + 4 ≤ 2α(G)− 2, a contradiction. So, v1 must have degree at least three
and, by symmetry also v3, v5 are of degree at least three too.

We consider now a vertex x ∈ N(v1)−{v2, v6}. Notice that x 6= v3, v5 (otherwise there would
be a triangle). Also, x 6= v4, by using the same idea as before whether v2 has degree larger than
two and v2 ∼ v5. Suppose x has degree larger than one and let x′ ∈ N(x) − {v1}. Since D
is independent and the edge xx′ must be covered by D, x′ ∈ D. If x′ 6= v3 and x′ 6= v5, then
we obtain a contradiction with Lemma 12 by using the vertices x′, v1, v3, v5 (notice that x′ 6∼ v1
since D is independent). As a consequence, we obtain that any neighbor x of v1 is either of
degree one or has a neighbor in V (C6)− {v1}.

We next consider the latter situation whether x′ ∈ V (C6) − {v1}. Clearly x′ 6= v2, v4, v6.
Suppose x is neighbor of v3 and of v5. We choose a neighbor y′ of y for every y ∈ D−{v1, v3, v5}
and observe that the set D ∪ {x} ∪ {y′ : y ∈ D − {v1, v3, v5} is a TC-ID set of cardinality
2(|D| − 3) + 4 ≤ 2α(G)− 2, a contradiction. Thus, x is a neighbor of either v3 or v5, in which
case, it happens x has degree two. By symmetry, we obtain similar conclusions for v3 and v5.
That is, for any vi with i ∈ {1, 3, 5}, N(vi) is given by leaves or vertices of degree two. In the
latter case, if x ∈ N(vi)− V (C6), then N(x) = {vi, y} where y ∈ D ∩ V (C6)− {vi}.

As a consequence, we observe that G can be obtained from a cycle C6 by the Sequence II of
operations described above, or equivalently G ∈ F2. We may now consider the case in which G
contains a cycle C4, but G does not contain the cycle C6.

Claim 3: G does not contain vertex disjoint cycles.
Proof of Claim 3: We directly obtain a contradiction by Lemma 12, since in this case there
are four different vertices u1, u2, v1, v2 (two of them in one cycle, the other two in the other cycle)
such that a shortest u1 − u2 path and a shortest v1 − v2 path have length two and are vertex
disjoint. (�)

Thus, if G contains more than one cycle C4, then they are not vertex disjoint. Moreover, we
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can next see that not two adjacent vertices of a cycle can be in any other cycle.

Claim 4: If two cycles C4 of G has exactly two vertices in common, then these vertices are not
adjacent.
Proof of Claim 4: Suppose there are two cycles C4 having two adjacent vertices in common.
Assume the cycles are C

(1)
4 = v1v2v3v4v1 and C

(2)
4 = v1v2v5v6v1. Hence, we note that exactly three

vertices of {v1, . . . , v6} must belong to D, otherwise there are two adjacent vertices in D. Indeed,
such vertices are either v1, v3, v5 or v2, v4, v6, say for instance v1, v3, v5. We choose a neighbor x′

of x for every x ∈ D − {v1, v3, v5} and observe that the set D ∪ {v2} ∪ {x′ : x ∈ D − {v1, v3, v5}
is a TC-ID set of cardinality 2(|D| − 3) + 4 ≤ 2α(G)− 2, which is a contradiction. (�)

Now, according to the Claims above, if G contains more than one cycle C4, then only the
following situations can occur.

• Any two cycles have exactly one vertex in common.

• Any two cycles have exactly two vertices in common which are not adjacent.

• Any two cycles have exactly three vertices in common.

We note that the situation in which two cycles of G have exactly three vertices in common can
be understood as G has three cycles with two vertices in common. We now turn our attention
on the following.

Claim 5: There is a vertex w ∈ D such that d(w, x) = 2 for every x ∈ D − {w}.
Proof of Claim 5: We first note that there are at least two vertices w, x ∈ D such that
d(x, w) = 2, otherwise there would be an edge not covered by D. Let h be a vertex adjacent
to w and x. Suppose there is a vertex y ∈ D such that d(w, y) 6= 2 and d(x, y) 6= 2 (note that
d(w, y) 6= 1 and d(x, y) 6= 1). Thus, since there are no cycles of order larger than four in G,
there must happen one of the following situations.

(a) There is a shortest path joining y and h not containing w nor x. Also, y is different
from the neighbor of h, say h′, in such path. In such case, in order to cover the edge hh′, it
must happen h′ ∈ D. Thus, we obtain a contradiction by using Lemma 12 and the vertices
h′, w, x, z where z is a vertex at distance two from x in the x− y path.

(b) Without loss of generality, there is a shortest path joining y and x containing

w. Thus, there must be a vertex y′ ∈ D belonging to this path such that d(y, y′) = 2 (it
cannot be d(y, y′) = 1 since D is independent), otherwise there should be a not covered
edge. Clearly w 6= y′. Thus, we obtain a contradiction by using Lemma 12 and the vertices
y, y′, w, x.

As a consequence, the vertex y has distance two to x or to w. Moreover, if d(w, y) = 2 and
d(x, y) = 2, then we there is a cycle of order six, which is not possible. Thus, y has distance two
to exactly one vertex of x and w. From now on, we assume d(y, w) = 2.
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We next prove that for any vertex z ∈ D − {x, y, w}, it follows d(z, w) = 2 too. If
D = {x, y, w}, then we are done. So, me may suppose there is a vertex z′ ∈ D − {x, y, w}
such that d(z′, w) 6= 2 (clearly d(z′, w) > 2). Consider now the shortest path between z′ and w,
say z′z′1z

′
2 . . . z

′
qw. Notice that q ≥ 2. In order to cover the edge z′1z

′
2, it must be z′2 ∈ D. So, we

obtain a contradiction by using Lemma 12 and the vertices x, w, z′, z′2. Therefore, for any vertex
z ∈ D − {w}, we obtain that d(z, w) = 2 and the claim is proved. (�)

Next step gives some result on the distances between any two vertices x, y ∈ D − {w}.

Claim 6: For any two vertices x, y ∈ D − {w}, any shortest path between x and y passes
through w.
Proof of Claim 6: From Claim 5, we know that d(x, w) = d(y, w) = 2. Thus d(x, y) ≤ 4.
Clearly d(x, y) > 1, since x, y cannot be adjacent. Let x′, y′ ∈ N(w) such that x′ ∈ N(x) and
y′ ∈ N(y). If x ∼ y′ or y ∼ x′ (say x ∼ y′), then we choose a neighbor z′ of z for every
z ∈ D − {w, x, y} and observe that the set D ∪ {y′} ∪ {z′ : z ∈ D − {w, x, y} is a TC-ID set
of cardinality 2(|D| − 3) + 4 ≤ 2α(G) − 2, which is a contradiction. Thus, neither x ∼ y′ nor
y ∼ x′. If there is a vertex z ∈ N(x) ∩ N(y), then wx′xzyy′w is a cycle C6 in G, which is not
possible. Thus d(x, y) 6= 2. By using a similar reasoning, it can be deduced that d(x, y) 6= 3 and
so, d(x, y) = 4. If there is another path of length four between x and y not containing w, then
we have one of the following situations.

• There is a vertex w′ ∈ D such that x′, y′ ∈ N(w′) (note that w′ must be in D in order to
cover the edges w′y′, w′x′). In such case, we obtain a contradiction by using Lemma 12
and the vertices x, w, w′, y.

• There are three vertices x1, y1, w
′′ 6= x′, y′, w such that x1 ∈ N(x), y1 ∈ N(y) and x1, y1 ∈

N(w′′). In such situation, wx′xx1w
′′y1yy

′w is an induced cycle of order eight in G, which
is not possible.

• Similarly to the case above, if either x1 = x′ or y1 = y′, then we obtain an induced cycle
of order six in G, which is also not possible.

Therefore, any shortest path between x and y passes throughout w. (�)

We now give several facts which are consequences of the Claims above, in order to deduce
the structure of the graph G.

• The set V (G)−D is independent (otherwise there is an edge not covered by D).

• If x, y ∈ D − {w}, then N(x) ∩N(y) = ∅.

• If z ∈ N(x) for some x ∈ D − {w}, then either z ∈ N(w) and z has degree two, or z is a
vertex of degree one.
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• If z′ ∈ N(w) is not a vertex of degree one, then there is exactly one vertex x ∈ D such
that N(z′) = {w, x} (equivalently z′ has degree two).

As a consequence of the items above, as well as from the Claims, and all the reasoning till
this point, we observe that D is formed by w and a set of vertices v1, v2 . . . , vr (satisfying the
properties above). Clearly, for any vertex vi, the set of its neighbors are either leaves or vertices of
degree two adjacent to w. Moreover, if vi has only one neighbor of degree two, then it must have
at least one adjacent leaf (otherwise one can find a cover set of smaller cardinality). In this sense,
such set of vertices can clearly be obtained from a leaf of a star by making a subdivision of the
corresponding edge, an inflation of the path P3 obtained from the subdivision and a subsequent
addition of some pendant vertices. On the other hand, if w has some adjacent leaves, then they
could be obtained directly from a star, if subdivisions were not done to all the leaves of the star
or, by a subsequent addition of leaves to the center of the original star, if all its leaves would
have been subdivided. Therefore, it is then concluded that the graph G was obtained from a
star by making the Sequence I of operations previously described, which means G ∈ F1 and the
proof is completed.

We close this section with two bounds for γt,coi(G) in terms of order, size and minimum and
maximum degrees.

Proposition 14. Let G be a graph of order n, minimum and maximum degrees δ and ∆,

respectively. Then γt,coi(G) ≥ nδ
∆+δ−1

.

Proof. Let D be a γt,coi(G)-set. Hence, the subgraph induced by V (G) − D is edgeless. So,
(n − |D|)δ = (|V (G) − D|)δ ≤ E(V (G) − D,D) ≤ |D|(∆ − 1). Furthermore, it follows that
γt,coi(G) ≥ nδ

∆+δ−1
.

Proposition 15. Let G be a graph of order n, size m, minimum and maximum degrees δ and

∆, respectively. Then γt,coi(G) ≥ 2m+nδ
3∆+δ−2

.

Proof. Let D be a γt,coi(G)-set. Hence, the subgraph induced by V (G) − D is edgeless. So,
E(V (G)−D,D)+E(D,D) = m. Now, notice that E(V (G)−D,D) ≤ |D|(∆−1) and E(D,D) ≤
|D|∆−(n−|D|)δ

2
. Adding this inequations, we havem = E(V (G)−D,D)+E(D,D) ≤ |D|∆−(n−|D|)δ

2
+

|D|(∆− 1). Therefore, it follows that γt,coi(G) ≥ 2m+nδ
3∆+δ−2

.

The two bounds above are attained for instance for the double stars Sk,k (each non leaf vertex
is adjacent to k leaves), which has order 2(k + 1), size m = 2k + 1, minimum degree δ = 1,
maximum degree ∆ = k + 1 and γt,coi(Sk,k) = 2.

4 The case of trees

In order to easily proceed with our exposition, and based on the following known bound, from
now on we say that a tree T belongs to the family Tγt , if γt,coi(T ) = γt(T ). Moreover, we assume
in this section that |S(T )| ≥ 2, since the case |S(T )| = 0 (T is a P2 and γt,coi(T ) is not defined)
and |S(T )| = 1 (T is a star graph Sn and γt,coi(T ) = 2) are straightforward to study.

14



Theorem 16. [15] For any graph G, γt,coi(G) ≥ γt(G).

It is now our goal to characterize the family of trees achieving the equality in the bound
above. To this end, we observe the following basic results, which can easily be obtained by using
some known properties of minimum total dominating sets.

Proposition 17. [6] If S is a minimal total dominating set of a connected graph G = (V,E),
then each v ∈ S has at least one of the following two properties.

(i) There exists a vertex w ∈ V − S such that N(w) ∩ S = {v}.

(ii) The subgraph induced by S − {v} contains an isolated vertex.

The next remark is one useful consequence of the proposition above.

Remark 18. Let D be a γt,coi(T )-set of cardinality γt(T ). Then, for every v ∈ D, at least one

of the following conditions is satisfied.

(i) There exists a vertex u ∈ D such that N(u) ∩D = {v}.

(ii) There exists a vertex w ∈ V −D such that N(w) ∩D = {v}.

We may recall to notice that condition (ii) implies that vertex v is a support, because the
set D is independent.

Lemma 19. Let T ∈ Tγt and let D be a γt,coi(T )-set containing no leaves. Then for every

v ∈ V (T )− (D ∪ L(T )) there exist a leaf h such that d(v, h) ≤ 3.

Proof. Let v ∈ V (T )− (D ∪ L(T )). Since |N(v)| ≥ 2, we consider N(v) = {v1, v2, . . . , vr} with
r ≥ 2. Clearly, N(v) ⊂ D since D is independent. For every vi, with i ∈ {1, . . . , r}, by Remark
18, vi is adjacent to a leaf or there exist a vertex si ∈ D such that N(si) ∩ D = {vi}. Hence,
as si ∈ D, N(si) ⊂ V (T ) − D. We assume that for every i ∈ {1, . . . , r}, vi is not adjacent to
a leaf h, otherwise d(v, h) = 2. Now, we suppose that (N(si) − {vi}) ∩ L(T ) = ∅. Also note
that, by condition above, the vertices belonging to N(si) are totally dominated by other vertices
of D. So, we observe that the set (D − {s1, s2, . . . , sr}) ∪ {v} is a total dominating set of T of
cardinality smaller than |D|, a contradiction. Furthermore, there exist i ∈ {1, . . . , r} such that
(N(si)− {vi}) ∩ L(T ) 6= ∅. Thus, for any h ∈ (N(si)− {vi}) ∩ L(T ), it follows d(v, h) = 3, and
this completes the proof.

From this point, the set of leaves having distance three with respect to at least one other leaf
is denoted by L3(T ), and given a γt,coi(T )-set D, we denote by V2,3(T ) ⊂ V (T ) − D the set of
vertices having distance two or three to some leaf and by V6(T ) ⊂ V (T )−D the set of vertices
having distance three to some vertex of V2,3(T ).

In order to provide a constructive characterization of the trees belonging to the family Tγt ,
we need the following five operations F1, F2, F3, F4 and F5 on a tree T (by attaching a path P to
a vertex v of T we mean adding the path P and joining v to a vertex of P ). Moreover, through
all the next results we make use of the fact that any tree T always contains a γt,coi(T )-set which
does not contain leaves.

15



Operation F1: Attach a path P1 to a vertex of T , which is in some γt,coi(T )-set.

Operation F2: Attach a path P1 to a vertex of T , which is in L3(T ).

Operation F3: Attach a path P2 to a vertex of T , which is in L3(T ).

Operation F4: Attach a path P3 to a vertex of T , which is in V2,3(T ).

Operation F5: Attach a path P3 to a vertex of T , which is in V6(T ).

Let F be the family of trees defined as F = {T | T is obtained from P4 by a finite sequence
of operations F1, F2, F3, F4 or F5}. The Figure 4 contains a fairly representative example of a
tree T ∈ F . We first show that every tree of the family F belongs to the family Tγt .

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

w1 w2u1u2 u3

Figure 4: A tree T obtained from a path P4 = v1 v2 v3 v4, applying the five operations F1, F2,
F3, F4 and F5. Firstly, operations F4 and F5 are applied by adding the path P3 = v5 v6 v7 to the
vertex v4 through the edge v4v5 and the path P3 = v8 v9 v10 to the vertex v7 through the edge
v7v8. Next, we apply the operation F1 twice by attaching the vertices w1 and w2 to the vertices
v3 and v8, respectively. Moreover, we apply the operation F2 by adding the vertex u3 to w2.
Finally, we apply the operation F3 by adding the path P2 = u1 u2 to the vertex w1 through the
edge w1u1.

Lemma 20. If T ∈ F , then T ∈ Tγt .

Proof. We proceed by induction on the number r(T ) of operations required to construct the
tree T . If r(T ) = 0, then T = P4 and T ∈ Tγt . This establishes the base case. Hence, we
now assume that k ≥ 1 is an integer and that each tree T ′ ∈ F with r(T ′) < k satisfies that
T ′ ∈ Tγt . Let T ∈ F be a tree for wich r(T ) = k. Since T can be obtained from a tree T ′ ∈ F
with r(T ′) = k − 1 by one of the operations F1, F2, F3, F4 or F5, we shall prove that T ∈ Tγt , by
considering a γt,coi(T

′)-set D′ containing no leaves and through the following situations.

Case 1. T is obtained from T ′ by operation F1. Let u be the vertex added to T in or-
der to obtain T ′. Since u is a leaf of T and is adjacent to a vertex of D′, the set D′ re-
mains to be a total dominating set in T . Moreover, D′ is a γt(T )-set, since otherwise we
would find a total dominating set in T ′ of cardinality smaller than γt(T

′). On the other
hand, since (V (T ′) − D′) ∪ {u} is independent, we deduce D′ is a TC-ID set in T . Thus,
γt,coi(T ) ≤ |D′| = γt,coi(T

′) = γt(T
′) = γt(T ) (by also using the inductive hypothesis). Thus, by
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Theorem 16, we get the equality γt,coi(T ) = γt(T ), which means T ∈ Tγt .

Case 2. T is obtained from T ′ by operation F2. Assume T is obtained from T ′ by adding
the vertex u and the edge uv where v ∈ L3(T

′). As v ∈ L3(T
′), there exist a path vu1u2h in T ′

where h is a leaf and u1, u2 are support vertices adjacent to v, h, respectively. Now, in T , the
vertices u2, v are supports and belong to any TC-ID set in T . Hence, the set D = D′ ∪ {v} is a
TC-ID set in T , and so

γt(T ) ≤ γt,coi(T ) ≤ γt,coi(T
′) + 1 = γt(T

′) + 1 (1)

(by also using Theorem 16 and the inductive hypothesis). Now, let A be a γt(T )-set containing
no leaves. Notice that the vertex v is a support and so, it belong to A, also the vertex u1 belongs
to A too, because v has degree two. Moreover, note that the set A− {v} is a total dominating
set in T ′, which leads to γt(T

′) ≤ γt(T )− 1. By using this, it follows that all the inequalities in
(1) must be equalities. Thus γt,coi(T ) = γt(T ), and T ∈ Tγt .

Case 3. T is obtained from T ′ by operation F3. Assume T is obtained from T ′ by adding
the path P2 = h1h2 to a vertex v ∈ L3(T

′) through the edge vh1. By using some similar reasons
as in the case above (now we must use D = D′ ∪{v, h1} instead of D = D′ ∪{v}), it is observed
that T ∈ Tγt .

Case 4. T is obtained from T ′ by operation F4. Assume T is obtained from T ′ by adding the
path P3 = h1u1h2 to a vertex v ∈ V2,3(T

′) through the edge vh1. We notice that u1, h1 belong to
any TC-ID set containing no leaves of T . Hence, the set D = D′ ∪ {u1, h1} is a TC-ID set in T .
Thus γt(T ) ≤ γt,coi(T ) ≤ γt,coi(T

′) + 2 = γt(T
′) + 2 (by also using Theorem 16 and the inductive

hypothesis). Now, let A be a γt(T )-set. Since the vertex u1 is a support, it belongs to A and so,
|A∩{h1, u1, h2}| ≥ 2. Moreover, note that |A∩V (T ′)| ≥ γt(T

′). Hence, γt(T ) = |A| ≥ γt(T
′)+2.

Again, as in Case 2, we deduce γt,coi(T ) = γt(T ), which means T ∈ Tγt .

Case 5. T is obtained from T ′ by operation F5. Assume T is obtained from T ′ by adding the
path P3 = h1u1h2 to a vertex v ∈ V6(T

′) through the edge vh1. By using some similar reasons
as in the case above, it can be deduced that γt,coi(T ) = γt(T ), which gives T ∈ Tγt .

We now turn our attention to the opposite direction concerning the lemma above. In this
sense, from now on we shall need the following terminology and notation in our results. Given
a tree T and a set S ⊂ V (T ), by T − S we denote a tree obtained from T by removing from
T all the vertices in S and all its incident edges (if S = {v} for some vertex v, then we simply
write T − v). For an integer r ≥ 2, by Qr we mean a graph which is obtained from a path
Pr+2 = vss1s2 . . . sr by attaching a path P1 to every vertex of Pr+2− v. In Figure 5 we show the
example of Q5.

We next show that every tree of the family Tγt belongs to the family F .
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s

v

s1 s2 s3 s4 s5

Figure 5: The structure of the tree Q5.

Lemma 21. If T ∈ Tγt , then T ∈ F .

Proof. We proceed by induction on the order n ≥ 4 of the trees T ∈ Tγt . If T is a double star,
then T can be obtained from P4 by repeatedly applying operation F1. This establishes the base
case. We assume next that k > 4 is an integer and that each tree T ′ ∈ Tγt with |V (T ′)| < k
satisfies T ′ ∈ F .

Let T be a tree such that T ∈ Tγt and |V (T )| = k. Let D be a γt,coi(T )-set containing no
leaves and let B = V (T )−D. We analyze the following situations.

Case 1: |S(T )| < |L(T )|. We consider a support vertex v that is adjacent to at least two
leaves. Let h ∈ N(v) ∩ L(T ) and T ′ = T − h. Thus, the set D is a γt(T

′)-set too, and by
inductive hypothesis, T ′ ∈ F . Therefore, since T can be obtained from T ′ by operation F1, it
follows T ∈ F .

Case 2: |S(T )| = |L(T )| and |SS(T )| = 0. In this case we note that V (T ) = S(T ) ∪ L(T )
and clearly, S(T ) is a γt,coi(T )-set (moreover |S(T )| ≥ 3 since otherwise T is a double star).
Let s ∈ S(T ) such that |N(s) ∩ S(T )| = 1 (note that such s always exists) and let h ∈ L(T )
be the leaf adjacent to s. We first notice that there exists a leaf having distance three to the
support s. Thus, we deduce that S ′(T ) = S(T ) − {s} is a γt,coi(T

′)-set, where T ′ = T − h. By
induction hypothesis T ′ ∈ F and, since T can be obtained from T ′ by operation F2, we get T ∈ F .

Case 3: |S(T )| = |L(T )| and |SS(T )| > 0. Herein we denote by P (x, y) the set of vertices
of one shortest path between x and y, including x and y. Let h, h′ be two leaves at the maximum
possible distance in T such that there is v ∈ SS(T ) ∩ P (h, h′) with d(v, h) = 2 or d(v, h′) = 2.
Without loss of generality assume that d(v, h) = 2 and let s be the support adjacent to h.
Since |S(T )| = |L(T )| and by the maximality of the path between h and h′, we observe that
N(s) ⊂ S(T ) ∪ {h, v} and also, that every support vertex is adjacent to exactly one leaf. We
have now some possible scenarios.

Case 3.1 |N(s)∩S(T )| = 1. Hence, by the maximality of the path P (h, h′), it must happen
that T has an induced subgraph isomorphic to a graphQr, as previously described, obtained from
the vertices v, s, h and some supports, say s1, s2, . . . sr ∈ S(T ), with the leaves h1, h2, . . . , hr, adja-
cent to the supports s1, s2, . . . sr, respectively, and such that {s1, . . . , sr, h1, . . . , hr}∩P (h, h′) = ∅.

Assume r = 1. Note that s, s1 ∈ D and that h, h1 /∈ D. Let T ′ = T − h. Notice that D is

18



also a TC-ID set in T ′, and so

γt(T
′) ≤ γt,coi(T

′) ≤ γt,coi(T ) = γt(T ) (2)

(by using Theorem 16 and hypothesis). On the other hand, let A be a γt(T
′)-set containing no

leaves. We observe that s1 ∈ A because s1 is a support in T ′, and s ∈ A because δ(s1) = 2.
Thus, clearly A is also a total dominating set in T . Hence γt(T ) ≤ |A| = γt(T

′). Thus, all the
inequalities in the relation (2) must be equalities, from which follows γt,coi(T

′) = γt(T
′) and by

the inductive hypothesis T ′ ∈ F . Since T can be obtained from T ′ by operation F1, we obtain
T ∈ F .

Assume now r ≥ 2. Note that s, s1, . . . , sr ∈ D and that there is a leaf at distance three
from sr. Let T ′ = T − hr. Hence, D − {sr} is a TC-ID set in T ′, and so γt(T

′) ≤ γt,coi(T
′) ≤

γt,coi(T ) − 1 = γt(T ) − 1 (by using Theorem 16 and hypothesis). Moreover, the set D − {sr}
is a γt(T

′)-set, otherwise we would find a total dominating set of T of cardinality smaller than
γt(T ), which is not possible. So, γt(T

′) = γt(T )− 1 which leads to γt,coi(T
′) = γt(T

′), as in the
previous case. Now, by the inductive hypothesis T ′ ∈ F , and since T can be obtained from T ′

by operation F2, we deduce T ∈ F .

Case 3.2 |N(s)∩ S(T )| > 1. An analogous procedure to the one above (Case 3.1) leads to
our desired conclusion, based on the fact that s must have at least two neighbors s′1, s

′′
1 ∈ S(T )

and there are at least two induced subgraphs isomorphic to the graphs Qr′ and Qr′′, which can
be used instead of Qr of Case 3.1.

Case 3.3: |N(s) ∩ S(T )| = 0. Clearly, s has degree two since it has one leaf neighbor, no
support neighbors and cannot have more than one (it has exactly one) semi-support neighbor
due to the maximality of P (h, h′). Also, it must happen v ∈ D, h ∈ B and s ∈ D. Assume
the subgraph induced by P (h, h′) is h s v u1 u2 u3 u4 . . . s

′ h′, where h, h′ ∈ L(T ) and s, s′ ∈ S(T ).
Note that N(v) ⊂ S(T ) ∪ {u1}. We consider again some possible scenarios.

Case 3.3.1: |N(v) ∩ S(T )| > 1. In this case, the vertex v is also totally dominated by
another support sv different from s. Let hv be the leaf adjacent to the support sv. Notice that
D′ = D − {s} is a TC-ID set of T ′ = T − h. Moreover, we note that the vertex s is a leaf in T ′

having distance three to the leaf hv. So, by using a similar procedure as above (Case 3.1 and
r ≥ 2) we obtain T ′ ∈ F . Therefore, due to that T can be obtained from T ′ by operation F2, it
follows T ∈ F .

Case 3.3.2: |N(v)∩S(T )| = 1 and |N(u1)| ≥ 3. Clearly s, v have degree two and belong to
D. We firstly consider the case whether u1 ∈ D. By Remark 18 we note that N(u1)∩L(T ) 6= ∅
or that there is a vertex r ∈ D with N(r)∩D = {u1}. If N(u1)∩L(T ) 6= ∅, then D′ = D−{s} is
a TC-ID in T ′ = T − h set, and by using a similar procedure as above (Case 3.1 and r ≥ 2) we
obtain T ′ ∈ F . Since T can be obtained from T ′ by operation F2, we are able to claim T ∈ F .

On the other hand, assume that N(u1) ∩ L(T ) = ∅ and there is a vertex r ∈ D such that
N(r)∩D = {u1}. We note that, by Remark 18, (N(r)−{u1})∩L(T ) 6= ∅. Hence, D′ = D−{s}

19



is a TC-ID set in T ′ = T − {h, s}. Thus, γt(T
′) ≤ γt,coi(T

′) ≤ γt,coi(T ) − 1 = γt(T ) − 1 (by
using Theorem 16 and hypothesis). Again, by using a similar procedure as above (Case 3.1

and r ≥ 2) we get that γt(T
′) = γt(T )− 1. So, γt,coi(T

′) = γt(T
′), and by inductive hypothesis,

T ′ ∈ F . Also, it can relatively clearly be seen that v is having distance three to a leaf. This
means T can be obtained from T ′ by operation F3, and so T ∈ F .

Now, consider the case in which u1 ∈ B. By the maximality of P (h, h′) and by the fact
that |N(u1)| ≥ 3, there is a leaf distinct to h at distance two or three from u1. Hence, the set
D′ = D − {s, v} is a TC-ID set in T ′ = T − {h, s, v}. Again, by using a similar procedure as
above (Case 3.1 and r ≥ 2) we obtain T ′ ∈ F and, due to that T can be obtained from T ′ by
operation F4, we get T ∈ F .

Case 3.3.3: |N(v) ∩ S(T )| = 1 and |N(u1)| = 2. Clearly s, v, u1 have degree two and
s, v belong to D. We only consider the case whether u1 ∈ B, otherwise u1 ∈ D implies that
u2 is a leaf and T is P5, which can be obtained by operation F2 from P4. As u1 ∈ B, we get
u2 ∈ D. Notice that, as u2 has to be totally dominated, there exist a vertex r ∈ D such that
N(r) ∩D = {u2}. So, by Remark 18 and Lemma 19, it follows (N(r)− {u2}) ⊂ L(T )∪ V2,3(T ).

If (N(r)− {u2}) ∩ L(T )) 6= ∅, then this case is analogous to the Case 3.3.2 and u1 ∈ B. If
(N(r)− {u2}) ⊂ V2,3(T ), then we see that u1 ∈ V6(T ). So, the set D′ = D − {s, v} is a TC-ID
set in T ′ = T −{h, s, v} and again, by using a similar procedure as above (Case 3.1 and r ≥ 2)
we obtain T ′ ∈ F . Finally, due to that T can be obtained from T ′ by operation F5, we have
T ∈ F , which completes the proof.

As an immediate consequence of Lemma 20 and Lemma 21 we have the following character-
ization.

Theorem 22. Let T be a tree. Then T ∈ Tγt if and only if T ∈ F .

We next see that all the operations F1 to F4 are required in the characterization above. First,
we see that operation F1 is required to obtain a double star from the path P4. The operations
F2, F3, F4 are required to obtain the paths P5, P6, P7, respectively, from the path P4, and the
path P10 can only be obtained from P4 by a sequence of operations F4, F5.

Concluding remarks

We have study several combinatorial and complexity properties of the total co-independent
domination number of graphs. As a consequence of the study a couple of questions could be
remarked as a possible future research lines.

• We have proved that computing the total co-independent domination number of graphs is
NP-hard even when restricted to planar graphs of maximum degree at most 3. However,
it would be interesting to find some non trivial families of graphs in which the problem
above can be solved in polynomial time. On the other hand, the bounds of Theorem 8
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together with the fact that the problem of computing the vertex cover number can be
approximated within a factor of 2, allow to claim that the problem of computing the total
co-independent domination number can be approximated within a constant factor. In
this sense, it would be interesting to give some other approximation (or inapproximation)
results on this parameter.

• We have characterized the family of graphs achieving the upper bound of Theorem 8.
According to the construction of such family, it seems one could also characterize the
graphs G for which γt,coi(G) = 2α(G) − k for some values of k like for instance k = 2 or
k = 3. Moreover, it would be of interest to characterize the family of graphs attaining the
lower bound of Theorem 8 (note that for instance the trees satisfying such bound were
characterized in [3]).
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