The generalized connectivity of (n, k)-bubble-sort graphs

Shu-Li Zhao ${ }^{1}$, Rong-Xia Hao ${ }^{1 *}$, Lidong Wu ${ }^{2}$
${ }^{1}$ Department of Mathematics, Beijing Jiaotong University, Beijing 100044, P.R. China
${ }^{2}$ Department of Computer Science, University of Texas at Tyler, Tyler, Texas 75799, USA

Let $S \subseteq V(G)$ and $\kappa_{G}(S)$ denote the maximum number r of edge-disjoint trees T_{1}, T_{2}, \cdots, T_{r} in G such that $V\left(T_{i}\right) \bigcap V\left(T_{j}\right)=S$ for any $i, j \in\{1,2, \cdots, r\}$ and $i \neq j$. For an integer k with $2 \leq k \leq n$, the generalized k-connectivity of a graph G is defined as $\kappa_{k}(G)=\min \left\{\kappa_{G}(S) \mid S \subseteq V(G)\right.$ and $\left.|S|=k\right\}$. The generalized k-connectivity is a generalization of the traditional connectivity. In this paper, the generalized 3-connectivity of the (n, k)-bubble-sort graph $B_{n, k}$ is studied for $2 \leq k \leq n-1$. By proposing an algorithm to construct $n-1$ internally disjoint paths in $B_{n-1, k-1}$, we show that $\kappa_{3}\left(B_{n, k}\right)=n-2$ for $2 \leq k \leq n-1$, which generalizes the known result about the bubble-sort graph B_{n} [Applied Mathematics and Computation 274 (2016) 41-46] given by Li et al., as the bubble-sort graph B_{n} is the special (n, k)-bubble-sort graph for $k=n-1$.

Keywords: Generalized connectivity; fault-tolerance; interconnection network; (n, k)-bubblesort graph.

1 Introduction

For an interconnection network, one mainly concerns about the reliability and fault tolerance. An interconnection network is usually modelled as a connected graph $G=(V, E)$, where nodes represent processors and edges represent communication links between processors. The connectivity $\kappa(G)$ of a graph G is an important parameter to evaluate the reliability and fault tolerance of a network. It is defined as the minimum number of vertices whose deletion results in a disconnected graph. In addition, Whitney [16] defines the connectivity from local point of view. That is, for any subset $S=\{u, v\} \subseteq V(G)$, let $\kappa_{G}(S)$ denote the maximum number of internally disjoint paths between u and v in G. Then $\kappa(G)=\min \left\{\kappa_{G}(S) \mid S \subseteq V(G)\right.$ and $\left.|S|=2\right\}$. As a generalization of the traditional connectivity, Chartrand et al. [2] introduced the generalized k-connectivity in 1984. This parameter can measure the reliability of a network G to connect any k vertices in G. Let $S \subseteq V(G)$ and $\kappa_{G}(S)$ denote the maximum number r of edge-disjoint trees $T_{1}, T_{2}, \ldots, T_{r}$ in G such that $V\left(T_{i}\right) \bigcap V\left(T_{j}\right)=S$ for any $i, j \in\{1,2, \ldots, r\}$ and $i \neq j$. For an integer k with $2 \leq k \leq n$, the generalized k-connectivity of a graph G is defined as $\kappa_{k}(G)=\min \left\{\kappa_{G}(S) \mid S \subseteq V(G)\right.$ and $|S|=k\}$. The generalized 2-connectivity is exactly the traditional connectivity. Li [8]

[^0]derived that it is NP-complete for a general graph G to decide whether there are k internally disjoint trees connecting S, where k is a fixed integer and $S \subseteq V(G)$. Some results [6, 10] about the upper and lower bounds of the generalized connectivity are obtained. In addition, there are some results of the generalized k-connectivity for some classes of graphs and most of them are about $k=3$. For example, Chartrand et al. [3] studied the generalized connectivity of complete graphs; Li et al. [11] characterized the minimally 2-connected graphs with generalized connectivity $\kappa_{3}=2$; Li et al. [4] studied the generalized 3 -connectivity of Cartesian product graphs; Li et al. [9] studied the generalized 3-connectivity of graph products; Li et al. [12] studied the generalized connectivity of the complete bipartite graphs; Li et al. [7] studied the generalized 3-connectivity of the star graphs and bubble-sort graphs; Li et al. [5] studied the generalized 3-connectivity of the Cayley graph generated by trees and cycles and Lin and Zhang [13] studied the generalized 4 -connectivity of hypercubes etc.

In this paper, we focus on the (n, k)-bubble-sort graph, denoted by $B_{n, k}$. The complete graph K_{n} and the bubble-sort graph B_{n} are special (n, k)-bubble-sort graphs $B_{n, k}$ for $k=1$ and $k=n-1$, respectively. In [3], it was shown that $\kappa_{3}\left(K_{n}\right)=n-2$ for $n \geq 3$ and in [7], it was shown that $\kappa_{3}\left(B_{n}\right)=n-2$ for $n \geq 3$. Following, we study the generalized 3 -connectivity of $B_{n, k}$ for $2 \leq k \leq n-1$ and it is shown that $\kappa_{3}\left(B_{n, k}\right)=n-2$, which generalizes the known results about bubble-sort graphs [7.

The paper is organized as follows. In section 2, some notation and definitions are given. In section 3, the connectivity of (n, k)-bubble-sort graphs $B_{n, k}$ is determined for $2 \leq k \leq n-1$. In addition, the generalized 3 -connectivity of $B_{n, k}$ is determined for $2 \leq k \leq n-1$ and an algorithm for constructing $n-1$ internally disjoint paths in $B_{n-1, k-1}$ was proposed. In section 4, the paper is concluded.

2 Preliminary

Let $G=(V, E)$ be a simple, undirected graph. Let $|V(G)|$ be the size of vertex set and $|E(G)|$ be the size of edge set. For a vertex v in G, we denote by $N_{G}(v)$ the neighbourhood of the vertex v in G and $N_{G}[v]=N_{G}(v) \bigcup\{v\}$. Let $U \subseteq V(G)$, denote $N_{G}(U)=\bigcup_{v \in U} N_{G}(v)-U$. Let $d_{G}(v)$ denote the degree of the vertex v in G and $\delta(G)$ denote the minimum degree of the graph G. The subgraph induced by V^{\prime} in G, denoted by $G\left[V^{\prime}\right]$, is a graph whose vertex set is V^{\prime} and the edge set is the set of all the edges of G with both ends in V^{\prime}. A graph is said to be k-regular if for any vertex v of $G, d_{G}(v)=k$. Two $x y$ - paths P and Q in G are internally disjoint if they have no common internal vertices, that is $V(P) \bigcap V(Q)=\{x, y\}$. Let $Y \subseteq V(G)$ and $X \subset V(G) \backslash Y$, the (X, Y)-paths is a family of internally disjoint paths starting at a vertex $x \in X$, ending at a vertex $y \in Y$ and whose internal vertices belong neither to X nor Y. If $X=\{x\}$, the (X, Y)-paths is a family of internal disjoint paths whose starting vertex is x and the terminal vertices are distinct in Y, which is referred to as a k-fan from x to Y. For terminologies and notation not undefined here we follow the reference [1].

Let Γ be a finite group and S be a subset of Γ, where the identity of the group does not belong to S. The Cayley graph $\operatorname{Cay}(\Gamma, S)$ is a digraph with vertex set Γ and arc set $\{(g, g . s) \mid g \in \Gamma, s \in S\}$. If $S=S^{-1}$, then $\operatorname{Cay}(\Gamma, S)$ is an undirected graph, where $S^{-1}=\left\{s^{-1} \mid s \in S\right\}$.

Let $[n]=\{1,2, \cdots, n\}$ and $\operatorname{Sym}(n)$ denote the group of all permutations on $[n]$. Let $\left(p_{1} p_{2} \cdots p_{n}\right)$ denote a permutation on $[n]$ and ($i j$), which is called a transposition, denote the
transposition that swaps the objects at positions i and j, that is, $\left(p_{1} \cdots p_{i} \cdots p_{j} \cdots p_{n}\right)(i j)=$ $\left(p_{1} \cdots p_{j} \cdots p_{i} \cdots p_{n}\right)$. For the Cayley graph $\operatorname{Cay}(\operatorname{Sym}(n), T)$, where T is a set of transpositions of $\operatorname{Sym}(n)$. Let $G(T)$ be the graph on n vertices $\{1,2, \ldots, n\}$ such that there is an edge $i j$ in $G(T)$ if and only if transposition $(i j) \in T$ [15]. The graph $G(T)$ is called the transposition generating graph of $\operatorname{Cay}(\operatorname{Sym}(n), T)$. It is well known that if $G(T) \cong P_{n}$, where P_{n} is a path with n vertices, then $\operatorname{Cay}(\operatorname{Sym}(n), T)$ is called an n-dimensional bubble sort graph and denoted by B_{n}.

As a generalization of B_{n}, the (n, k)-bubble-sort graph, denoted by $B_{n, k}$, was introduced by Shawash [14] in 2008. The (n, k)-bubble-sort graph $B_{n, k}$ is defined as follows.

Definition 1. Given two positive integers n and k with $n>k$, let $[n]$ denote the set $\{1,2, \cdots, n\}$ and $P_{n, k}$ be a set of arrangements of k elements in $[n]$. The (n, k)-bubble-sort graph $B_{n, k}$ has vertex set $P_{n, k}$, and two vertices $u=a_{1} a_{2} \cdots a_{k}$ and $v=b_{1} b_{2} \cdots b_{k}$ are adjacent if and only if one of the following conditions hold.
(a) There exists an integer $m \in[2, k]$ such that $a_{m-1}=b_{m}, a_{m}=b_{m-1}$ and $a_{i}=b_{i}$ for all $i \in[k] \backslash\{m-1, m\}$.
(b) $a_{i}=b_{i}$ for all $i \in[k] \backslash\{1\}$ and $a_{1} \neq b_{1}$.

For two distinct i and j, where $i \in[n]$ and $j \in[k]$. Let $V_{n, k}^{j: i}$ be the set of vertices in $B_{n, k}$ with the j th position being i, that is, $V_{n, k}^{j: i}=\left\{p \mid p=p_{1} p_{2} \cdots p_{j} \cdots p_{k} \in P_{n, k}\right.$ and $\left.p_{j}=i\right\}$. For a vertex $v=p_{1} p_{2} \cdots p_{i} \cdots p_{n}$, we call p_{i} the element at position i of the vertex v. For a fixed position $j \in[k],\left\{V_{n, k}^{j: i} \mid 1 \leq i \leq n\right\}$ forms a partition of $V_{n, k}$. Let $B_{n, k}^{j: i}$ denote the subgraph of $B_{n, k}$ induced by $V_{n, k}^{j: i}$. Then for each $j \in[k], B_{n, k}^{j: i}$ is isomorphic to $B_{n-1, k-1}$. Thus, $B_{n, k}$ can be recursively constructed from n copies of $B_{n-1, k-1}$. It is easy to check that each $B_{n, k}^{j: i}$ is a subgraph of $B_{n, k}$ and $B_{n, k}$ can be decomposed into n subgraphs $B_{n, k}^{j: i}$ s according to the j th position. By the symmetry of $B_{n, k}$ and for simplicity, we shall take j as the last position k and use $B_{n, k}^{i}$ to denote $B_{n, k}^{k: i}$. For convenience, let $B_{n, k}=B_{n, k}^{1} \bigoplus B_{n, k}^{2} \bigoplus \cdots \bigoplus B_{n, k}^{n}$, where \bigoplus just denotes the corresponding decomposition of $B_{n, k}$. Obviously, any vertex u of $B_{n, k}^{i}$ has $k-1$ neighbors in $B_{n, k}^{i}$ and one neighbor outside of $B_{n, k}^{i}$, which is called the outside neighbour of u. Let $E(i, j)$ be the set of edges between

Figure 1: The (4, 2)-bubble-sort graph $B_{4,2}$
$B_{n, k}^{i}$ and $B_{n, k}^{j}$, that is, $E(i, j)=\left\{(p, q) \in E\left(B_{n, k}\right) \mid p \in V\left(B_{n, k}^{i}\right)\right.$ and $\left.q \in V\left(B_{n, k}^{j}\right)\right\}$. Clearly, $E(i, j)$ is a matching between $B_{n, k}^{i}$ and $B_{n, k}^{j}$ and $|E(i, j)|=\frac{(n-2)!}{(n-k)!}$. By the definition of $B_{n, k}, B_{n, 1}$ is isomorphic to K_{n} and $B_{n, n-1}$ is isomorphic to B_{n}. It follows that $B_{n, k}$ is a generalization of the bubble-sort graph B_{n}. The (4,2)-bubble-sort graph $B_{4,2}$ is depicted in Figure 2,

3 The generalized 3-connectivity of the (n, k)-bubble-sort graph

In this section, the generalized 3-connectivity of the (n, k)-bubble-sort graph $B_{n, k}$ will be proved. To prove the result, the following lemmas are useful.

Lemma 1. Let $B_{n, k}=B_{n, k}^{1} \bigoplus B_{n, k}^{2} \bigoplus \ldots \bigoplus B_{n, k}^{n}$ for $n \geq k+1$ and $1 \leq k \leq n-1$. Then the following results hold.
(1) For any vertex u of $B_{n, k}^{i}$, it has exactly one outside neighbour.
(2) For any copy $B_{n, k}^{i}$, no two vertices in $B_{n, k}^{i}$ have a common outside neighbour. In addition, $\left|N\left(B_{n, k}^{i}\right)\right|=\frac{(n-1)!}{(n-k)!}$ and $\left|N\left(B_{n, k}^{i}\right) \bigcap V\left(B_{n, k}^{j}\right)\right|=\frac{(n-2)!}{(n-k)!}$ for $i \neq j$.

Proof. (1) By the definition of $B_{n, k}$, the result holds clearly.
(2) Let $u, v \in V\left(B_{n, k}^{i}\right)$ and $u \neq v$. If they have a common outside neighbour w, then u and v are the two outside neighbours of w which lie in the same copy, which contradicts with (1). Thus, no two vertices in $B_{n, k}^{i}$ have a common outside neighbour.

Since $\left|V\left(B_{n, k}^{i}\right)\right|=\frac{(n-1)!}{(n-k)!}$ and no two vertices in $B_{n, k}^{i}$ have a common outside neighbor, $\left|N\left(B_{n, k}^{i}\right)\right|=\frac{(n-1)!}{(n-k)!}$ and $\left|N\left(B_{n, k}^{i}\right) \bigcap V\left(B_{n, k}^{j}\right)\right|=\frac{(n-2)!}{(n-k)!}$ for $i \neq j$.
Lemma 2. ([10]) Let G be a connected graph and δ be its minimum degree. Then $\kappa_{3}(G) \leq \delta$. Further, if there are two adjacent vertices of degree δ, then $\kappa_{3}(G) \leq \delta-1$.

Lemma 3. (10]) Let G be a connected graph with n vertices. If $\kappa(G)=4 k+r$, where k and r are two integers with $k \geq 0$ and $r \in\{0,1,2,3\}$, then $\kappa_{3}(G) \geq 3 k+\left\lceil\frac{r}{2}\right\rceil$. Moreover, the lower bound is sharp.

Lemma 4. ([1]) Let $G=(V, E)$ be a k-connected graph, and let X and Y be subsets of $V(G)$ of cardinality at least k. Then there exists a family of k pairwise disjoint (X, Y)-paths in G.

Lemma 5. ([1]) Let $G=(V, E)$ be a k-connected graph, let x be a vertex of G, and let $Y \subseteq V \backslash\{x\}$ be a set of at least k vertices of G. Then there exists a k-fan in G from x to Y, that is, there exists a family of k internally disjoint (x, Y)-paths whose terminal vertices are distinct in Y.

Next, we determine the connectivity of $B_{n, k}$ for $k=2$.
Lemma 6. $\kappa\left(B_{n, 2}\right)=n-1$ for $n \geq 3$.
Proof. Let $B_{n, 2}=B_{n, 2}^{1} \bigoplus B_{n, 2}^{2} \bigoplus \ldots \bigoplus B_{n, 2}^{n}$. Let F be a minimum vertex cut of $B_{n, 2}$ and $u \in V\left(B_{n, 2}\right)$. Since $N_{B_{n, 2}}(u)$ is a vertex cut of $B_{n, 2}$ and $\left|N_{B_{n, 2}}(u)\right|=n-1,|F| \leq n-1$.

Next, we show that $|F| \geq n-1$. Suppose to the contrary, that is, $|F| \leq n-2$. Let $F_{i}=F \bigcap V\left(B_{n, 2}^{i}\right)$ for each $i \in\{1,2, \cdots, n\}$. Without loss of generality, let $\left|F_{1}\right| \geq\left|F_{2}\right| \geq$ $\cdots \geq\left|F_{n}\right|$. Then $\left|F_{n-1}\right|=\left|F_{n}\right|=0$. By Lemma $1(2), B_{n, 2}\left[V\left(B_{n, 2}^{n-1}\right) \cup V\left(B_{n, 2}^{n}\right)\right]$ is connected. Let C be a component of $B_{n, 2}-F$ that does not contain $B_{n, 2}\left[V\left(B_{n, 2}^{n-1}\right) \cup V\left(B_{n, 2}^{n}\right)\right]$ as a subgraph and $c_{i}=\left|V(C) \bigcap V\left(B_{n, 2}^{i}\right)\right|$ for each $i \in\{1,2, \cdots, n-2\}$. Then there exists an integer $l \in\{1,2, \cdots, n-2\}$ such that $c_{l}>0$. Let $u \in V\left(B_{n, 2}^{l}\right) \bigcap V(C)$ and $u^{\prime} \in V\left(B_{n, 2}^{j}\right)$, where u^{\prime} is the outside neighbour of u in $B_{n, 2}^{j}, j \in[n]$ and $l \neq j$.

If $u^{\prime} \in V\left(B_{n, 2}^{j}\right) \backslash V(C)$, then $u^{\prime} \in F_{j}$. It implies that $\left|F_{j}\right| \geq 1$.
If $u^{\prime} \in V(C)$, then $N_{B_{n, 2}^{j}}\left(V\left(B_{n, 2}^{n-1}\right) \bigcup V\left(B_{n, 2}^{n}\right)\right) \subseteq F_{j}$. Otherwise, the component that contains $B_{n, 2}\left[V\left(B_{n, 2}^{n-1}\right) \cup V\left(B_{n, 2}^{n}\right)\right]$ will be C as $B_{n, 2}^{j} \cong K_{n-1}$, which is a contradiction. By Lemma 2 $\mid N_{B_{n, 2}^{j}}\left(V\left(B_{n, 2}^{n-1}\right) \bigcup V\left(B_{n, 2}^{n}\right) \mid=2\right.$. It implies that $\left|F_{j}\right| \geq 2$.

Recall that $B_{n, 2}^{l}$ is a complete graph, then $|F|=\left|F_{1} \bigcup \cdots \bigcup F_{n}\right| \geq\left|V\left(B_{n, 2}^{l}\right)\right|-c_{l}+c_{l}=$ $n-1$, a contradiction. Thus, $|F| \geq n-1$.

Next, we determine the connectivity of $B_{n, k}$ for $2 \leq k \leq n-1$.
Lemma 7. $\kappa\left(B_{n, k}\right)=n-1$ for $2 \leq k \leq n-1$.
Proof. Let F be a minimum vertex cut of $B_{n, k}$ and $u \in V\left(B_{n, 2}\right)$. Since $N_{B_{n, k}}(u)$ is a vertex cut of $B_{n, k}$ and $\left|N_{B_{n, k}}(u)\right|=n-1,|F| \leq n-1$.

Next, we show that $\kappa\left(B_{n, k}\right) \geq n-1$. We prove the result by induction on k. When $n \geq 3$ and $k=2$, by Lemma 6, the result holds. Suppose that the result holds for $B_{n^{\prime}, k-1}$, where $2 \leq k-1 \leq n^{\prime}-2$. Now we consider $B_{n, k}$ for $3 \leq k \leq n-2$. Let $F_{i}=F \bigcap V\left(B_{n, k}^{i}\right)$ for each $i \in\{1,2, \cdots, n\}$. Without loss of generality, let $\left|F_{1}\right| \geq\left|F_{2}\right| \geq \cdots \geq\left|F_{n}\right|$. Suppose to the contrary, that is, $|F| \leq n-2$. Thus, $\left|F_{n-1}\right|=\left|F_{n}\right|=0$.

If $\left|F_{1}\right|=n-2$, then $\left|F_{i}\right|=0$ for each $i \in\{2,3, \cdots, n\}$. By Lemma $\mathbb{1}(2), B_{n, k}\left[\bigcup_{i=2}^{n} V\left(B_{n, k}^{i}\right)\right]$ is connected. As any vertex in $B_{n, k}^{1} \backslash F_{1}$ has an outside neighbour, $B_{n, k}-F$ is connected, a contradiction.

If $\left|F_{1}\right| \leq n-3$, then $\left|F_{i}\right| \leq n-3$ for each $i \in\{2,3, \cdots, n\}$. By induction, $B_{n, k}^{i}-F_{i}$ is connected for each $i \in\{1,2, \cdots, n\}$. As $\left|F_{n}\right|=0$ and there are $\frac{(n-2)!}{(n-k)!}$ independent edges between $B_{n, k}^{i}$ and $B_{n, k}^{n}$. Note that $\frac{(n-2)!}{(n-k)!}-\left|F_{i}\right| \geq \frac{(n-2)!}{(n-3)!}-\left|F_{i}\right| \geq 1$ for each $i \in$ $\{1,2, \cdots, n-1\}$. Then there exists at least one edge between $B_{n, k}^{i}-F_{i}$ and $B_{n, k}^{n}$. It implies that $B_{n, k}-F$ is connected, a contradiction. Thus, $|F| \geq n-1$.

To prove the main result, the following lemmas are useful.
Lemma 8. Let $B_{n, k}=B_{n, k}^{1} \oplus B_{n, k}^{2} \oplus \ldots \bigoplus B_{n, k}^{n}$ and $H=B_{n, k}\left[V\left(B_{n, k}\right) \backslash V\left(B_{n, k}^{i}\right)\right]$ for some $i \in[n]$. If $2 \leq k \leq n-1$, then $\kappa(H)=n-2$.

Proof. Without loss of generality, let $H=B_{n, k}\left[V\left(B_{n, k}\right) \backslash V\left(B_{n, k}^{n}\right)\right]$, that is, $H=B_{n, k}^{1} \oplus B_{n, k}^{2}$ $\oplus \ldots \bigoplus B_{n, k}^{n-1}$. As there is some vertex $v \in V(H)$ whose outside neighbour belongs to $B_{n, k}^{n}$, $\delta(H)=n-2$. Hence, $\kappa(H) \leq \delta(H)=n-2$.

Next, we show that $\kappa(H) \geq n-2$. To prove the result, we just need to show that for any two distinct vertices v_{1} and v_{2} of H, there exist at least $n-2$ internally disjoint paths between them. The result is proved by considering the following two cases.

Case 1. v_{1} and v_{2} belong to the same copy of $B_{n-1, k-1}$.
Without loss of generality, let $v_{1}, v_{2} \in V\left(B_{n, k}^{1}\right)$. By Lemma 7, $\kappa\left(B_{n, k}^{1}\right)=n-2$. Hence, there are $n-2$ internally disjoint paths between v_{1} and v_{2} in $B_{n, k}^{1}$.

Case 2. v_{1} and v_{2} belong to different copies of $B_{n-1, k-1}$.
Without loss of generality, let $v_{1} \in V\left(B_{n, k}^{1}\right)$ and $v_{2} \in V\left(B_{n, k}^{2}\right)$.
Subcase 2.1. $3 \leq k \leq n-1$
By Lemma $1(2)$, there are $\frac{(n-2)!}{(n-k)!}$ independent edges between $B_{n, k}^{1}$ and $B_{n, k}^{2}$. Choose $n-2$ vertices $u_{1}, u_{2}, u_{3}, \cdots, u_{n-2}$ from $B_{n, k}^{1}$ such that the outside neighbour u_{i}^{\prime} of u_{i} belongs to $B_{n, k}^{2}$ for each $i \in\{1,2, \cdots, n-2\}$. This can be done as $\frac{(n-2)!}{(n-k)!} \geq n-2$ for $k \geq 3$ and $n \geq k+1$. Let $S=\left\{u_{1}, u_{2}, u_{3}, \cdots, u_{n-2}\right\}$ and $S^{\prime}=\left\{u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, \cdots, u_{n-2}^{\prime}\right\}$. By Lemma 7 , $\kappa\left(B_{n, k}^{1}\right)=\kappa\left(B_{n, k}^{2}\right)=n-2$. If $v_{1} \notin S$, by Lemma 5, there exists a family of $n-2$ internally disjoint $\left(v_{1}, S\right)$-paths $P_{1}, P_{2}, \cdots, P_{n-2}$ whose terminal vertices are distinct in S. Note that if $v_{1} \in S$, then there is a $\left(v_{1}, S\right)$ path that contains the only vertex v_{1}. Similarly, if $v_{2} \notin S^{\prime}$, by Lemma 55 there exists a family of $n-2$ internally disjoint $\left(v_{2}, S^{\prime}\right)$ paths $P_{1}^{\prime}, P_{2}^{\prime}, \cdots, P_{n-2}^{\prime}$ whose terminal vertices are distinct in S^{\prime}. Note that if $v_{2} \in S^{\prime}$, there is a $\left(v_{2}, S^{\prime}\right)$ path that contains the only vertex v_{2}. Let $\widehat{P}_{i}=P_{i} \bigcup u_{i} u_{i}^{\prime} \bigcup P_{i}^{\prime}$ for each $i \in\{1,2, \cdots, n-2\}$, then $n-2$ disjoint paths between v_{1} and v_{2} are obtained in H.

Subcase 2.2. $k=2$ and $n \geq 3$
By Lemman(2), there is exactly one edge between $B_{n, k}^{i}$ and $B_{n, k}^{j}$ for $i \neq j$ and $i, j \in$ $\{1,2, \cdots, n-1\}$. Choose $n-2$ vertices $u_{1}, u_{2}, u_{3}, \cdots, u_{n-2}$ from $B_{n, k}^{1}$ such that the outside neighbour u_{i}^{\prime} of u_{i} belongs to $B_{n, k}^{i+1}$ for each $i \in\{1,2, \cdots, n-2\}$, and choose $n-3$ vertices $w_{2}, w_{3}, \cdots, w_{n-2}$ from $B_{n, k}^{2}$ such that the outside neighbour w_{i}^{\prime} of w_{i} belongs to $B_{n, k}^{i+1}$ for each $i \in\{2,3, \cdots, n-2\}$. Let $S=\left\{u_{1}, u_{2}, u_{3}, \cdots, u_{n-2}\right\}$ and $S^{\prime}=\left\{u_{1}^{\prime}, w_{2}, w_{3}, \cdots, w_{n-2}\right\}$. Note that $B_{n, k}^{i} \cong K_{n-1}$ for each $i \in\{1,2, \cdots, n\}$. If $v_{1} \notin S$, then $S=N_{B_{n, k}^{1}}\left(v_{1}\right)$. If $v_{1} \in S$, let $v_{1}=u_{1}$. Then $S \backslash\left\{u_{1}\right\} \subseteq N_{B_{n, k}^{1}}\left(v_{1}\right)$. Similarly, if $v_{2} \notin S^{\prime}$, then $S^{\prime}=N_{B_{n, k}^{2}}\left(v_{2}\right)$. If $v_{2} \in S^{\prime}$, let $v_{2}=u_{1}^{\prime}$. Then $S^{\prime} \backslash\left\{u_{1}^{\prime}\right\} \subseteq N_{B_{n, k}^{2}}\left(v_{2}\right)$. Recall that $B_{n, k}^{i} \cong K_{n-1}$ for $i \in[n-1]$, then $u_{i}^{\prime} w_{i}^{\prime}$ is an edge in $B_{n, k}^{i+1}$ for each $i \in\{2,3, \cdots, n-2\}$. Let $P_{1}=v_{1} u_{1} u_{1}^{\prime} v_{2}$ and $P_{i}=v_{1} u_{i} u_{i}^{\prime} w_{i}^{\prime} w_{i} v_{2}$ for each $2 \leq i \leq n-2$, then $n-2$ disjoint paths between v_{1} and v_{2} are obtained in H.

Hence, $\kappa(H)=n-2$.
Lemma 9. Let $B_{n, 2}=B_{n, 2}^{1} \bigoplus B_{n, 2}^{2} \bigoplus \ldots \bigoplus B_{n, 2}^{n}$. For any vertex $v \in V\left(B_{n, 2}^{i}\right)$ for $1 \leq i \leq$ n, let $N_{B_{n, 2}^{i}}[v]=N_{B_{n, 2}^{i}}(v) \bigcup\{v\}$. Then $\left|N_{B_{n, 2}^{i}}[v]\right|=n-1$ and the $n-1$ outside neighbours of vertices in $N_{B_{n, 2}^{i}}[v]$ belong to different copies of $B_{n-1,1}$.

Proof. Let $v \in V\left(B_{n, 2}^{i}\right)$, then $d_{B_{n, 2}^{i}}(v)=n-2$. Thus, $\left|N_{B_{n, 2}^{i}}[v]\right|=n-1$ holds clearly. Without loss of generality, assume $i=2$ and $v=12$. Then $N_{B_{n, 2}^{i}}[v]=\{32,42, \cdots, n 2\}$. Let S be the set of outside neighbours of the vertices in $N_{B_{n, 2}^{i}}[v]$, then $S=\{21,23,24, \cdots, 2 n\}$. Hence, the outside neighbours are contained in $B_{n, 2}^{1}, B_{n, 2}^{3}, \cdots, B_{n, 2}^{n}$, respectively. The result is desired.

Following, we prove the generalized 3-connectivity of $B_{n, k}$ for $k=2$.
Theorem 1. $\kappa_{3}\left(B_{n, 2}\right)=n-2$ for $n \geq 3$.
Proof. As $B_{n, 2}$ is $(n-1)$-regular. By Lemma 2, $\kappa_{3}\left(B_{n, 2}\right) \leq \delta-1=n-2$. To complete the result, it suffices to show that $\kappa_{3}\left(B_{n, 2}\right) \geq n-2$. We prove the result by induction on n.

For $n=3, B_{3,2}$ is connected. Then $\kappa_{3}\left(B_{3,2}\right) \geq 1=n-2$.
For $n=4$, by Lemma 3 and Lemma $7 \kappa_{3}\left(B_{n, 2}\right) \geq\left\lceil\frac{3}{2}\right\rceil=2=n-2$.
Next, suppose that $n \geq 5$. Let $B_{n, 2}=B_{n, 2}^{1} \oplus B_{n, 2}^{2} \oplus \ldots \oplus B_{n, 2}^{n}$ and v_{1}, v_{2}, v_{3} be any three distinct vertices of $B_{n, 2}$. For convenience, let $S \stackrel{=}{=}\left\{v_{1}, v_{2}, v_{3}\right\}$. We prove the result by considering the following three cases.

Case 1. v_{1}, v_{2} and v_{3} belong to the same copy of $B_{n-1,1}$.
Without loss of generality, let $v_{1}, v_{2}, v_{3} \in V\left(B_{n, 2}^{1}\right)$. By the inductive hypothesis, $\kappa_{3}\left(B_{n, 2}^{1}\right)$ $\geq n-3$. That is, there are $n-3$ internally disjoint trees $T_{1}, T_{2} \cdots, T_{n-3}$ connecting S in $B_{n, 2}^{1}$. Let $v_{1}^{\prime}, v_{2}^{\prime}$ and v_{3}^{\prime} be the outside neighbours of v_{1}, v_{2} and v_{3}, respectively. Then $\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\} \subseteq V\left(B_{n, 2}\right) \backslash V\left(B_{n, 2}^{1}\right)$. As $B_{n, 2}\left[V\left(B_{n, 2}\right) \backslash V\left(B_{n, 2}^{1}\right)\right]$ is connected, there exists a tree T connecting $v_{1}^{\prime}, v_{2}^{\prime}$ and v_{3}^{\prime} in $B_{n, 2}\left[V\left(B_{n, 2}\right) \backslash V\left(B_{n, 2}^{1}\right)\right]$. Let $T_{n-2}=T \bigcup v_{1} v_{1}^{\prime} \bigcup v_{2} v_{2}^{\prime} \bigcup v_{3} v_{3}^{\prime}$, then it is a tree connecting S and $V\left(T_{n-2}\right) \bigcap V\left(B_{n, 2}^{1}\right)=S$. Hence, there exist $n-2$ internally disjoint trees connecting S in $B_{n, 2}$ and the result is desired.

Case 2. v_{1}, v_{2} and v_{3} belong to two different copies of $B_{n-1,1}$.
Without loss of generality, let $v_{1}, v_{2} \in V\left(B_{n, 2}^{1}\right)$ and $v_{3} \in V\left(B_{n, 2}^{2}\right)$. By Lemma 7 , $\kappa\left(B_{n, 2}^{1}\right)=n-2$. Hence, there exist $n-2$ internally disjoint paths $P_{1}, P_{2}, \ldots, P_{n-2}$ between v_{1} and v_{2} in $B_{n, 2}^{1}$. Choose $n-2$ distinct vertices $x_{1}, x_{2}, \ldots, x_{n-2}$ from $P_{1}, P_{2}, \ldots, P_{n-2}$ such that $x_{i} \in V\left(P_{i}\right)$ for each $i \in\{1,2, \cdots, n-2\}$. Note that at most one of these paths has length 1 . If there is one path with length 1 , say P_{1} and let $x_{1}=v_{1}$. Let x_{i}^{\prime} be the outside neighbour of x_{i} for each $i \in\{1,2, \cdots, n-2\}$. Let $X^{\prime}=\left\{x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{n-2}^{\prime}\right\}$, then $X^{\prime} \subset V\left(B_{n, 2}\right) \backslash V\left(B_{n, 2}^{1}\right)$. By Lemma $1,\left|X^{\prime}\right|=n-2$. By Lemma 图, $B_{n, 2}\left[V\left(B_{n, 2}\right) \backslash V\left(B_{n, 2}^{1}\right)\right]$ is $n-2$ connected. By Lemma 5 there exist $n-2$ internally disjoint $\left(v_{3}, X^{\prime}\right)$-paths $P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{n-2}^{\prime}$ in $B_{n, 2}\left[V\left(B_{n, 2}\right) \backslash V\left(B_{n, 2}^{1}\right)\right]$ whose terminal vertices are distinct in X^{\prime}. Note that if $v_{3} \in X^{\prime}$, then there is a $\left(v_{3}, X^{\prime}\right)$-path that contains exactly one vertex v_{3}. Let $T_{i}=P_{i} \bigcup x_{i} x_{i}^{\prime} \bigcup P_{i}^{\prime}$ for each $i \in\{1,2, \cdots, n-2\}$. Then $n-2$ internally disjoint trees connecting S in $B_{n, 2}$ are obtained.

Case 3. v_{1}, v_{2} and v_{3} belong to three different copies of $B_{n-1,1}$, respectively.
Without loss of generality, let $v_{1} \in V\left(B_{n, 2}^{1}\right), v_{2} \in V\left(B_{n, 2}^{2}\right)$ and $v_{3} \in V\left(B_{n, 2}^{3}\right)$. Let $N_{B_{n, 2}^{i}}\left[v_{i}\right]=N_{B_{n, 2}^{i}}\left(v_{i}\right) \bigcup\left\{v_{i}\right\}$ for $i=1,2,3$. By Lemma 9, for each $i \in\{1,2,3\}$ and $j \in$ $\{4,5, \cdots, n\}$, there exists one vertex in $N_{B_{n, 2}^{i}}\left[v_{i}\right]$, say u_{i}^{j}, such that the outside neighbour $\left(u_{i}^{j}\right)^{\prime}$ of u_{i}^{j} belongs to $B_{n, 2}^{j}$. As $B_{n, 2}^{j}$ is connected, we can find a tree \widehat{T}_{j} connecting $\left(u_{1}^{j}\right)^{\prime},\left(u_{2}^{j}\right)^{\prime}$ and $\left(u_{3}^{j}\right)^{\prime}$ for each $j \in\{4,5, \cdots, n\}$. Let $T_{j}=\widehat{T}_{j} \bigcup u_{1}^{j}\left(u_{1}^{j}\right)^{\prime} \bigcup u_{2}^{j}\left(u_{2}^{j}\right)^{\prime} \cup u_{3}^{j}\left(u_{3}^{j}\right)^{\prime} \cup v_{1} u_{1}^{j} \cup v_{2} u_{2}^{j}$ $\bigcup v_{3} u_{3}^{j}$ as $B_{n-1,1} \cong K_{n-1}$, then $n-3$ internally disjoint trees connecting S are obtained. Let $\widehat{B}_{n, 2}^{i}=B_{n, 2}^{i}-\left(\left\{u_{i}^{4}, u_{i}^{5}, \cdots, u_{i}^{n}\right\} \backslash\left\{v_{i}\right\}\right)$. Then there are at most $n-3$ vertices deleted from $B_{n, 2}^{i}$ for each $i \in\{1,2,3\}$. As $B_{n, 2}^{i}$ is $n-2$ connected, $\widehat{B}_{n, 2}^{i}$ is still connected. For $i, j \in\{1,2,3\}$ and $i \neq j$, there is exactly an edge between $B_{n, 2}^{i}$ and $B_{n, 2}^{j}$. Thus, $B_{n, 2}\left[\bigcup_{i=1}^{3} V\left(\widehat{B}_{n, 2}^{i}\right)\right]$ is connected and there is a tree T_{n-2} connecting S. Hence, there exist $n-2$ internally disjoint trees connecting S in $B_{n, 2}$ and the result is desired.

Next, we prove the generalized 3 -connectivity of $B_{n, k}$ for $3 \leq k \leq n-1$.
Theorem 2. $\kappa_{3}\left(B_{n, k}\right)=n-2$ for $3 \leq k \leq n-1$.
Proof. As $B_{n, k}$ is $(n-1)$-regular. By Lemma 2, $\kappa_{3}\left(B_{n, k}\right) \leq \delta-1=n-2$. To complete the result, it suffices to show that $\kappa_{3}\left(B_{n, k}\right) \geq n-2$. We prove the result by induction on n.

For $n=3, B_{3, k}$ is connected. Then $\kappa_{3}\left(B_{3, k}\right) \geq 1=n-2$.
For $n=4$, by Lemma 3 and Lemma $7, \kappa_{3}\left(B_{n, k}\right) \geq\left\lceil\frac{3}{2}\right\rceil=2=n-2$.

Next, suppose that $n \geq 5$. Let $B_{n, k}=B_{n, k}^{1} \oplus B_{n, k}^{2} \oplus \ldots \oplus B_{n, k}^{n}$ and v_{1}, v_{2}, v_{3} be any three distinct vertices of $B_{n, k}$. For convenience, let $S=\left\{v_{1}, v_{2}, v_{3}\right\}$. We prove the result by considering the following three cases.

Case 1. v_{1}, v_{2} and v_{3} belong to the same copy of $B_{n-1, k-1}$.
Case 2. v_{1}, v_{2} and v_{3} belong to two different copies of $B_{n-1, k-1}$.
Case 3. v_{1}, v_{2} and v_{3} belong to three different copies of $B_{n-1, k-1}$, respectively.
The proofs of Case 1 and Case 2 are the same as the proof of Case 1 and Case 2 in Theorem 1. Thus, only the Case 3 is considered.

Without loss of generality, let $v_{1} \in V\left(B_{n, k}^{1}\right), v_{2} \in V\left(B_{n, k}^{2}\right)$ and $v_{3} \in V\left(B_{n, k}^{3}\right)$. Let $v_{1}=p_{1} p_{2} \cdots p_{k-1} 1$ and $v_{i}=p_{i} p_{2} \cdots p_{k-1} 1$ for $k+1 \leq i \leq n$, where $p_{k+1}, p_{k+2}, \cdots, p_{n}$ are distinct elements in $[n] \backslash\left\{p_{1}, p_{2}, \cdots, p_{k-1}, 1\right\}$. We now present the algorithm, called (n-1)IDP, that constructs $n-1$ internally disjoint paths $P_{2}^{1}, P_{3}^{1}, \cdots, P_{n}^{1}$ in B_{n}^{1} such that the outside neighbour of each terminal vertex of the $n-1$ paths belong to different copies of $B_{n-1, k-1}$.

```
Algorithm 1 ( \(\mathrm{n}-1\) )IDP(k)
Input: \(n, k\), where \(3 \leq k \leq n-1, v_{1}=p_{1} p_{2} \cdots p_{k-1} 1\);
Output: \(n-1\) pairwise disjoint path \(P_{2}^{1}, P_{3}^{1}, \cdots, P_{k}^{1}, P_{k+1}^{1}, \cdots, P_{n}^{1}\);
    for \(i=2\) to \(k-1\) do
        \(P_{i}^{1}=v_{1}, t=v_{1} ;\)
        for \(j=i\) to \(k-1\) do
            \(t=t(j-1, j) / /\) where \((j-1, j)\) is a transposition
            \(P_{i}^{1}=P_{i}^{1} \cup t ;\)
        end for
    end for
    \(P_{k}^{1}=v_{1} ;\)
    for \(i=k+1\) to \(n\) do
        \(P_{i}^{1}=v_{1} v_{i}, t=v_{i}=p_{i} p_{2} \cdots p_{k-1} 1 ;\)
        for \(j=1\) to \(k-2\) do
            \(t=t(j, j+1) / /\) where \((j, j+1)\) is a transposition
            \(P_{i}^{1}=P_{i}^{1} \bigcup t ;\)
        end for
    end for
```

By the above algorithm, there are the following $n-1$ paths $P_{2}^{1}, P_{3}^{1}, \cdots, P_{n}^{1}$ starting at the vertex v_{1} in $B_{n, k}^{1}$, where $p_{k+1}, p_{k+2}, \cdots, p_{n}$ are distinct elements in $[n] \backslash\left\{p_{1}, p_{2}, \cdots, p_{k-1}, 1\right\}$.
$P_{2}^{1}=\left(\underline{p_{1}} p_{2} p_{3} \cdots p_{k-1} 1\right)\left(i_{2} \underline{p_{1}} p_{3} \cdots p_{k-1} 1\right)\left(p_{2} p_{3} \underline{p_{1}} \cdots p_{k-1} 1\right) \cdots\left(p_{2} p_{3} \cdots p_{k-1} \underline{p_{1}} 1\right) ;$
$P_{3}^{1}=\left(\overline{p_{1}} \underline{p_{2}} p_{3} \cdots p_{k-1} 1\right)\left(p_{1} \bar{p}_{3} \underline{p_{2}} \cdots p_{k-1} 1\right) \cdots\left(\overline{\left.p_{1} p_{3} \cdots p_{k-1} \underline{p_{2}} 1\right) ; ~}\right.$
$P_{k-1}^{1}=\left(p_{1} p_{2} p_{3} \cdots \underline{p}_{k-2} p_{k-1} 1\right)\left(p_{1} p_{2} p_{3} \cdots p_{k-1} \underline{p_{k-2}} 1\right) ;$
$P_{k}^{1}=\left(p_{1} p_{2} p_{3} \cdots p_{k-1} 1\right) ;$
$P_{k+1}^{1}=\left(p_{1} p_{2} p_{3} \cdots p_{k-1} 1\right)\left(\underline{p_{k+1}} p_{2} p_{3} \cdots p_{k-1} 1\right)\left(p_{2} \underline{p_{k+1}} p_{3} \cdots p_{k-1} 1\right)\left(p_{2} p_{3} \underline{p_{k+1}} \cdots p_{k-1} 1\right) \cdots\left(p_{2}\right.$ $\left.p_{3} p_{4} \cdots p_{k+1} 1\right) ;$
$P_{k+2}^{1}=\left(p_{1} p_{2} p_{3} \cdots p_{k-1} 1\right)\left(\underline{p_{k+2}} p_{2} p_{3} \cdots p_{k-1} 1\right)\left(p_{2} \underline{p_{k+2}} p_{3} \cdots p_{k-1} 1\right)\left(p_{2} p_{3} \underline{p_{k+2}} \cdots p_{k-1} 1\right) \cdots\left(p_{2}\right.$ $\left.p_{3} p_{4} \cdots \underline{p_{k+2}} 1\right) ;$

$$
\text { 1). } P_{n}^{1}=\left(p_{1} p_{2} p_{3} \cdots p_{k-1} 1\right)\left(\underline{p_{n}} p_{2} p_{3} \cdots p_{k-1} 1\right)\left(p_{2} \underline{p_{n}} p_{3} \cdots p_{k-1} 1\right)\left(p_{2} p_{3} \underline{p_{n}} \cdots p_{k-1} 1\right) \cdots\left(p_{2} p_{3} p_{4} \cdots \underline{p_{n}}\right.
$$

Claim 1. For every $a, b \in\{2,3, \cdots, n\}$ and $a \neq b, V\left(P_{a}^{1}\right) \bigcap V\left(P_{b}^{1}\right)=\left\{v_{1}\right\}$.
The proof of the Claim 1. Without loss of generality, suppose that $a<b$.
If $a, b \in\{2,3, \cdots, k\}$, then for any vertex $y \in V\left(P_{a}^{1}\right) \backslash\left\{v_{1}\right\}$, the $a-1$ elements at positions $1,2, \cdots, a-1$ of y are $p_{1} p_{2} \cdots p_{a-2} p_{a}$. However, for any vertex $z \in V\left(P_{b}^{1}\right) \backslash\left\{v_{1}\right\}$, the $a-1$ elements at positions $1,2, \cdots, a-1$ of z are $p_{1} p_{2} \cdots p_{a-2} p_{a-1}$. As $p_{a} \neq p_{a-1}$, then $y \neq z$. Hence, the claim holds.

If $a, b \in\{k+1, \cdots, n\}$, then for any vertex $y \in V\left(P_{a}^{1}\right) \backslash\left\{v_{1}\right\}$, it is the permutation of $\left\{p_{a}, p_{2} \cdots, p_{k-1}, 1\right\}$. For any vertex $z \in V\left(P_{b}^{1}\right) \backslash\left\{v_{1}\right\}$, it is the permutation of $\left\{p_{b}, p_{2} \cdots, p_{k-1}, 1\right\}$. As $p_{a}, p_{b} \in[n] \backslash\left\{p_{1}, p_{2} \cdots, p_{k-1}, 1\right\}$ and $p_{a} \neq p_{b}$, then $y \neq z$. Thus, the claim holds.

If $a \in\{2,3, \cdots, k\}$ and $b \in\{k+1, \cdots, n\}$, then for any vertex $y \in V\left(P_{a}^{1}\right) \backslash\left\{v_{1}\right\}$, it is the permutation of $\left\{p_{1}, p_{2} \cdots, p_{k-1}, 1\right\}$ and for any vertex $z \in V\left(P_{b}^{1}\right) \backslash\left\{v_{1}\right\}$, it is the permutation of $\left\{p_{b}, p_{2} \cdots, p_{k-1}, 1\right\}$. As $p_{b} \in[n] \backslash\left\{p_{1}, p_{2} \cdots, p_{k-1}, 1\right\}$, then $p_{1} \neq p_{b}$ and $y \neq z$. Thus, the claim holds.

The proof of the Claim 1 is complete.
Claim 2. Let $X^{1}=\left\{u_{i}^{1} \mid u_{i}^{1}\right.$ is the terminal vertex of the path P_{i}^{1} for each $\left.i \in\{2,3, \cdots, n\}\right\}$. Then the outside neighbours of vertices in X^{1} belong to different copies of $B_{n-1, k-1}$, respectively.

The proof of the Claim 2. By Lemman(2), the outside neighbours of vertices in X^{1} are in $B_{n, k}^{2}, B_{n, k}^{3}, \cdots, B_{n, k}^{n}$, respectively. The proof of the Claim 2 is complete.

Without loss of generality, suppose that the outside neighbour $\left(u_{i}^{1}\right)^{\prime}$ of u_{i}^{1} is in $B_{n, k}^{i}$ for each $i \in\{2,3,4, \cdots, n\}$. Otherwise, we can reorder the paths accordingly.

Similarly, let $v_{2}=p_{1} p_{2} p_{3} \cdots p_{k-1} 2$, then there are $n-1$ paths $P_{1}^{2}, P_{3}^{2}, \cdots, P_{n}^{2}$ starting at the vertex v_{2} in $B_{n, k}^{2}$. Let $X^{2}=\left\{u_{1}^{2}, u_{3}^{2}, \cdots, u_{n}^{2}\right\}$ such that u_{i}^{2} is the terminal vertex of the path P_{i}^{2} and the outside neighbour $\left(u_{i}^{2}\right)^{\prime}$ of u_{i}^{2} is in $B_{n, k}^{i}$ for each $i \in\{1,3,4, \cdots, n\}$. In addition, there are $n-1$ paths $P_{1}^{3}, P_{2}^{3}, \cdots, P_{n}^{3}$ starting at the vertex v_{3} in $B_{n, k}^{3}$. Let $X^{3}=\left\{u_{1}^{3}, u_{2}^{3}, \cdots, u_{n}^{3}\right\}$ such that u_{i}^{3} is the terminal vertex of the path P_{i}^{3} and the outside neighbour $\left(u_{i}^{3}\right)^{\prime}$ of u_{i}^{3} is in $B_{n, k}^{i}$ for each $i \in\{1,2,4, \cdots, n\}$.

Obviously, the outside neighbour $\left(u_{1}^{3}\right)^{\prime}$ of u_{1}^{3} is in $B_{n, k}^{1}$ and the outside neighbour $\left(u_{2}^{3}\right)^{\prime}$ of u_{2}^{3} is in $B_{n, k}^{2}$. As $B_{n, k}^{1}$ is connected, there is a $\left(\left(u_{1}^{3}\right)^{\prime}, v_{1}\right)$-path \widehat{P}_{1} in $B_{n, k}^{1}$. Let t_{1} be the first vertex of the path \widehat{P}_{1} which is in $\bigcup_{l \in\{2,3, \cdots, n\}} V\left(P_{l}^{1}\right)$. Similarly, there is a $\left(\left(u_{2}^{3}\right)^{\prime}, v_{2}\right)$ path \widehat{P}_{2} in $B_{n, k}^{2}$ as $B_{n, k}^{2}$ is connected. Let t_{2} be the first vertex of the path \widehat{P}_{2} which is in $\bigcup_{l \in\{1,3, \cdots, n\}} V\left(P_{l}^{2}\right)$.

To prove the result for $3 \leq k \leq n-1$, the following two subcases are considered.
Subcase 3.1. $t_{1} \in \bigcup_{l \in\{2,3\}} V\left(P_{l}^{1}\right)$ and $t_{2} \in \bigcup_{l \in\{1,3\}} V\left(P_{l}^{2}\right)$.
In this case, the induced subgraph $B_{n, k}\left[V\left(P_{1}^{3}\right) \bigcup V\left(P_{2}^{1}\right) \bigcup V\left(P_{3}^{1}\right) \bigcup V\left(\widehat{P}_{1}\left[\left(u_{1}^{3}\right)^{\prime}, t_{1}\right]\right)\right]$ of $B_{n, k}$ contains a $\left(v_{3}, v_{1}\right)$-path, where $\widehat{P}_{1}\left[\left(u_{1}^{3}\right)^{\prime}, t_{1}\right]$ is the subpath of \widehat{P}_{1} starting at $\left(u_{1}^{3}\right)^{\prime}$ and ending at t_{1}. Similarly, the induced subgraph $B_{n, k}\left[V\left(P_{2}^{3}\right) \bigcup V\left(P_{1}^{2}\right) \bigcup V\left(P_{3}^{2}\right) \bigcup V\left(\widehat{P}_{2}\left[\left(u_{2}^{3}\right)^{\prime}, t_{2}\right]\right)\right]$ of $B_{n, k}$ contains a $\left(v_{3}, v_{2}\right)$-path, where $\widehat{P}_{2}\left[\left(u_{2}^{3}\right)^{\prime}, t_{2}\right]$ is the subpath of \widehat{P}_{2} starting at $\left(u_{2}^{3}\right)^{\prime}$ and

Figure 2: The illustration of Subcase 3.1 for $t_{1} \in V\left(P_{3}^{1}\right)$ and $t_{2} \in V\left(P_{3}^{2}\right)$
ending at t_{2}. The union of the $\left(v_{3}, v_{1}\right)$-path and the $\left(v_{3}, v_{2}\right)$-path forms a tree T_{1} connecting S in $B_{n, k}$. See Figure 2.

In addition, as $\left(u_{j}^{1}\right)^{\prime},\left(u_{j}^{2}\right)^{\prime},\left(u_{j}^{3}\right)^{\prime} \in V\left(B_{n, k}^{j}\right)$ for each $j \in\{4,5, \cdots, n\}$ and $B_{n, k}^{j}$ is connected, there is a tree T_{j}^{\prime} connecting $\left(u_{j}^{1}\right)^{\prime},\left(u_{j}^{2}\right)^{\prime}$ and $\left(u_{j}^{3}\right)^{\prime}$ in $B_{n, k}^{j}$. Let $T_{j}=T_{j}^{\prime} \cup P_{j}^{1} \cup P_{j}^{2} \cup P_{j}^{3} \cup$ $u_{j}^{1}\left(u_{j}^{1}\right)^{\prime} \cup u_{j}^{2}\left(u_{j}^{2}\right)^{\prime} \cup u_{j}^{3}\left(u_{j}^{3}\right)^{\prime}$ for each $j \in\{4,5, \cdots, n\}$. Combining the trees $T_{j} s$ for $4 \leq j \leq n$ and the tree T_{1}, and $n-2$ internally disjoint trees connecting S in $B_{n, k}$ are obtained.

Subcase 3.2. $t_{1} \in \bigcup_{l \in\{4,5, \cdots, n\}} V\left(P_{l}^{1}\right)$ or $t_{2} \in \bigcup_{l \in\{4,5, \cdots, n\}} V\left(P_{l}^{2}\right)$.
Without loss of generality, let $t_{1} \in V\left(P_{4}^{1}\right)$. Note that $v_{1}=p_{1} p_{2} \cdots p_{k-1} 1$. By the assumption that the outside neighbor of the terminal vertex in P_{i}^{1} is in $B_{n, k}^{i}$ for $i \in$ $\{2,3, \ldots, k\}$, one has that $v_{1}=23 \cdots k 1$. It implies that $p_{i}=i+1$ for $1 \leq i \leq k-1$.

If $k \geq 4$, we obtain that $p_{k-1} \neq 2$ and $p_{3}=4$. For any vertex $v \in V\left(P_{4}^{1}\right), v$ is a permutation of $\left\{p_{1}, p_{2}, \cdots, p_{k-1}, 1\right\}$. Next, we consider the path P_{2}^{1}. Note that u_{2}^{1} is the terminal vertex of P_{2}^{1} and $u_{2}^{1}=p_{2} p_{3} \cdots p_{k-1} p_{1} 1=34 \cdots k 21$. We can extend the path P_{2}^{1} starting from u_{2}^{1} as follows: $(3 \underline{4} 56 \cdots k 21)(35 \underline{4} 6 \cdots k 21) \cdots(35 \cdots 26 \underline{k} 41)$. Let $\widehat{u}_{2}^{1}=35 \cdots 241$ and the extended path starting at v_{1} and ending at \widehat{u}_{2}^{1} be \widehat{P}_{2}^{1}. Then the outside neighbour of \widehat{u}_{2}^{1} is in $B_{n, k}^{4}$.

If $k=3$ and $t_{1} \neq v_{1}$, then $v_{1}=231$ and $4 \in[n] \backslash\left\{p_{1}, p_{2}, 1\right\}=\{4,5, \ldots, n\}$ and the vertex t_{1} is a permutation of $\left\{4, p_{2}, 1\right\}=\{4,3,1\}$. Note that $u_{2}^{1}=p_{2} 21=321$. Now, we extend the path P_{2}^{1} starting from u_{2}^{1} to \widehat{P}_{2}^{1}, where $\widehat{P}_{2}^{1}=P_{2}^{1}(421)(241)$. Let $\widehat{u}_{2}^{1}=241$. Now replacing P_{2}^{1} with \widehat{P}_{2}^{1}, The outside neighbor of terminal vertex \widehat{u}_{2}^{1} of \widehat{P}_{2}^{1} is in $B_{n, k}^{4}$.

Next, we prove the following claim.
Claim 3. $V\left(\widehat{P}_{2}^{1}\right) \bigcap V\left(P_{j}^{1}\right)=\left\{v_{1}\right\}$ for each $j \in\{3,4, \cdots, n\}$ for $k \geq 3$.
The proof of Claim 3. For $k \geq 4$, we prove the result by contradiction. Suppose
that there exists $l \in\{3,4, \cdots, n\}$ such that $\left|V\left(\widehat{P}_{2}^{1}\right) \bigcap V\left(P_{l}^{1}\right)\right| \geq 2$. Assume that $u \in$ $V\left(\widehat{P}_{2}^{1}\right) \bigcap V\left(P_{l}^{1}\right)$ and $u \neq v_{1}$. Since $V\left(P_{2}^{1}\right) \bigcap V\left(P_{l}^{1}\right)=\left\{v_{1}\right\}, u \notin V\left(P_{2}^{1}\right)$. Thus, $u \in V\left(\widehat{P}_{2}^{1}\right) \backslash$ $V\left(P_{2}^{1}\right)$.

If $u \neq \widehat{u}_{2}^{1}$, then the element at position $k-1$ of u is 2 . However, the element at position $k-1$ of each vertex in $V\left(P_{l}^{1}\right)$ is p_{k-1} or k. As $k \neq 2$ and $p_{k-1} \neq 2$, a contradiction.

Next, suppose $u=\widehat{u}_{2}^{1}$. The $k=4$ and $u=u_{4}^{1}$. However, the element at position $k-2$ of u_{4}^{1} is i_{k-1}, a contradiction.

For $k=3$, let $x \in V\left(P_{m}^{1}\right)$ for $4 \leq m \leq n$, then it is a permutation of $\{m, 3,1\}$. However, for any vertex $y \in V\left(\widehat{P}_{2}^{1} \backslash P_{2}^{1}\right)$, it is a permutation of $\{4,2,1\}$. Thus, $x \neq y$. The proof of the claim is complete.

Similarly, if $t_{2} \in V\left(P_{\ell}^{2}\right)$ and $\ell \in\{4,5, \cdots, n\}$, we can extend the path P_{2}^{2} to obtain the extended path, say \widehat{P}_{2}^{2}, such that the outside neighbour of the terminal vertex of the extended path \widehat{P}_{2}^{2} is in $B_{n, k}^{\ell}$ and there is only one common vertex v_{2} between the extended path and other paths $P_{j} s$ in $B_{n, k}^{2}$.

Since the induced subgraph $B_{n, k}\left[V\left(P_{1}^{3}\right) \bigcup V\left(\widehat{P}_{1}\left[\left(u_{1}^{3}\right)^{\prime}, t_{1}\right]\right) \bigcup V\left(P_{4}^{1}\right)\right]$ contains a $\left(v_{3}, v_{1}\right)$ path, say D_{1}. Similarly, the induced subgraph $B_{n, k}\left[V\left(P_{2}^{3}\right) \cup V\left(\widehat{P}_{2}\left[\left(u_{2}^{3}\right)^{\prime}, t_{2}\right]\right) \bigcup V\left(P_{4}^{1}\right)\right]$ contains a $\left(v_{3}, v_{2}\right)$-path, say D_{2}. A tree, say T_{1}, by combining D_{1} and D_{2} is obtained and the tree T_{1} connects S in $B_{n, k}$.

Similar as subcase 3.1 just by replacing P_{4}^{1} with \widehat{P}_{2}^{1} as $t_{1} \in V\left(P_{4}^{1}\right)$ or replacing P_{ℓ}^{2} with \widehat{P}_{2}^{2} if $t_{2} \in V\left(P_{\ell}^{2}\right)$ for $\ell \in\{4,5, \cdots, n\}$, there is a tree T_{j} connecting $S \cup V\left(B_{n, k}^{j}\right)$ for each $j \in\{4,5, \cdots, n\}$ and $T_{j} s$ are internally disjoint S-trees. Combining the trees $T_{j} s$ for $4 \leq j \leq n$ and the tree $T_{1}, n-2$ internally disjoint trees connecting S in $B_{n, k}$ are obtained. Thus, the result is desired.

4 Concluding remarks

The generalized k-connectivity is a generalization of traditional connectivity. In this paper, we focus on the (n, k)-bubble-sort graph, denoted by $B_{n, k}$. We study the generalized 3connectivity of $B_{n, k}$ and show that $\kappa_{3}\left(B_{n, k}\right)=n-2$ for $2 \leq k \leq n-1$. So far, there are few results about the generalized k-connectivity for larger k. We are interested in this topic and we would like to study in this direction to show the corresponding results of $B_{n, k}$ for $k \geq 4$.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 11731002), the Fundamental Research Funds for the Central Universities (No. 2016JBM071, 2016JBZ012) and the 111 Project of China (B16002).

References

[1] J. Bondy and U. Murty, Graph Theory, Springer, 2008.
[2] G. Chartrand, S.F. Kapoor, L. Lesniak, D.R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2 (1984) 1-6.
[3] G. Chartrand, F. Okamoto and P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55 (4) (2010) 360-367.
[4] H. Li, X. Li and Y. Sun, The generalized 3-connectivity of Cartesian product graphs, Discret. Math. Theor. Comput. Sci. 14 (1) (2012) 43-54.
[5] S. Li, Y. Shi and J. Tu, The generalized 3-connectivity of Cayley graphs on Symmetric Groups generated by trees and cycles, Graph. Combinator., 33 (2017) 1195-1209.
[6] H. Li, X. Li, Y. Mao and Y. Sun, Note on the generalized connectivity, Ars Comb. 114 (2014) 193-202.
[7] S. Li, J. Tu and C. Yu, The generalized 3-connectivity of star graphs and bubble-sort graphs, Appl. Math. Comput. 274 (2016) 41-46.
[8] S. Li and X. Li, Note on the hardness of generalized connectivity, J. Comb. Optim. 24 (2012) 389-396.
[9] H. Li, Y. Ma, W. Yang and Y. Wang, The generalized 3-connectivity of graph products, Appl. Math. Comput. 295 (2017) 77-83.
[10] S. Li, X. Li and W. Zhou, Sharp bounds for the generalized connectivity $\kappa_{3}(G)$, Discret. Math. 310 (2010) 2147-2163.
[11] S. Li, W. Li, Y. Shi and H. Sun, On the mininmally 2-connected graphs with generalized connectivity $\kappa_{3}=2$, J. Comb. Optim. 34 (2017) 141-164.
[12] S. Li, W. Li and X. Li, The generalized connectivity of complete bipartite graphs, Ars Comb. 104 (2012) 65-79.
[13] S. Lin and Q. Zhang, The generalized 4-connectivity of hypercubes, Discret. Appl. Math. 220 (2017) 60-67.
[14] N. Shavash, Relationships among popular interconnection networks and their common generalization, Ph.D. thesis, Oakland University, 2008.
[15] H.-Z. Shi and J.-B. Lu, On conjectures of interconnection networks, Comput. Eng. Appl. 44 (2008) 199-200.
[16] H. Whitney, Congruent graphs and connectivity of graphs, Am. J. Math., 54 (1932) 150-168.

[^0]: *Corresponding author. Email:17118434@bjtu.edu.cn(S.-L. Zhao), rxhao@bjtu.edu.cn (R.-X. Hao), lw@uttyler.edu(L. Wu)

