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Let S ⊆ V (G) and κG(S) denote the maximum number r of edge-disjoint trees T1, T2, · · · ,
Tr in G such that V (Ti)

⋂
V (Tj) = S for any i, j ∈ {1, 2, · · · , r} and i 6= j. For an

integer k with 2 ≤ k ≤ n, the generalized k-connectivity of a graph G is defined as
κk(G) = min{κG(S)|S ⊆ V (G) and |S| = k}. The generalized k-connectivity is a gen-
eralization of the traditional connectivity. In this paper, the generalized 3-connectivity of
the (n, k)-bubble-sort graph Bn,k is studied for 2 ≤ k ≤ n− 1. By proposing an algorithm
to construct n− 1 internally disjoint paths in Bn−1,k−1, we show that κ3(Bn,k) = n− 2 for
2 ≤ k ≤ n−1, which generalizes the known result about the bubble-sort graph Bn [Applied
Mathematics and Computation 274 (2016) 41-46] given by Li et al., as the bubble-sort
graph Bn is the special (n, k)-bubble-sort graph for k = n− 1.

Keywords: Generalized connectivity; fault-tolerance; interconnection network; (n, k)-bubble-
sort graph.

1 Introduction

For an interconnection network, one mainly concerns about the reliability and fault toler-
ance. An interconnection network is usually modelled as a connected graph G = (V,E),
where nodes represent processors and edges represent communication links between pro-
cessors. The connectivity κ(G) of a graph G is an important parameter to evaluate the
reliability and fault tolerance of a network. It is defined as the minimum number of ver-
tices whose deletion results in a disconnected graph. In addition, Whitney [16] defines the
connectivity from local point of view. That is, for any subset S = {u, v} ⊆ V (G), let κG(S)
denote the maximum number of internally disjoint paths between u and v in G. Then
κ(G) = min{κG(S)|S ⊆ V (G) and |S| = 2}. As a generalization of the traditional connec-
tivity, Chartrand et al. [2] introduced the generalized k-connectivity in 1984. This parameter
can measure the reliability of a network G to connect any k vertices in G. Let S ⊆ V (G) and
κG(S) denote the maximum number r of edge-disjoint trees T1, T2, . . . , Tr in G such that
V (Ti)

⋂
V (Tj) = S for any i, j ∈ {1, 2, . . . , r} and i 6= j. For an integer k with 2 ≤ k ≤ n,

the generalized k-connectivity of a graph G is defined as κk(G) = min{κG(S)|S ⊆ V (G)
and |S| = k}. The generalized 2-connectivity is exactly the traditional connectivity. Li [8]
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derived that it is NP-complete for a general graph G to decide whether there are k internally
disjoint trees connecting S, where k is a fixed integer and S ⊆ V (G). Some results [6, 10]
about the upper and lower bounds of the generalized connectivity are obtained. In addition,
there are some results of the generalized k-connectivity for some classes of graphs and most
of them are about k = 3. For example, Chartrand et al. [3] studied the generalized con-
nectivity of complete graphs; Li et al. [11] characterized the minimally 2-connected graphs
with generalized connectivity κ3 = 2; Li et al. [4] studied the generalized 3-connectivity of
Cartesian product graphs; Li et al. [9] studied the generalized 3-connectivity of graph prod-
ucts; Li et al. [12] studied the generalized connectivity of the complete bipartite graphs; Li
et al. [7] studied the generalized 3-connectivity of the star graphs and bubble-sort graphs;
Li et al. [5] studied the generalized 3-connectivity of the Cayley graph generated by trees
and cycles and Lin and Zhang [13] studied the generalized 4-connectivity of hypercubes etc.

In this paper, we focus on the (n, k)-bubble-sort graph, denoted by Bn,k. The complete
graph Kn and the bubble-sort graph Bn are special (n, k)-bubble-sort graphs Bn,k for k = 1
and k = n − 1, respectively. In [3], it was shown that κ3(Kn) = n − 2 for n ≥ 3 and
in [7], it was shown that κ3(Bn) = n − 2 for n ≥ 3. Following, we study the generalized
3-connectivity of Bn,k for 2 ≤ k ≤ n − 1 and it is shown that κ3(Bn,k) = n − 2, which
generalizes the known results about bubble-sort graphs [7].

The paper is organized as follows. In section 2, some notation and definitions are
given. In section 3, the connectivity of (n, k)-bubble-sort graphs Bn,k is determined for
2 ≤ k ≤ n − 1. In addition, the generalized 3-connectivity of Bn,k is determined for
2 ≤ k ≤ n− 1 and an algorithm for constructing n− 1 internally disjoint paths in Bn−1,k−1

was proposed. In section 4, the paper is concluded.

2 Preliminary

Let G = (V,E) be a simple, undirected graph. Let |V (G)| be the size of vertex set and
|E(G)| be the size of edge set. For a vertex v in G, we denote by NG(v) the neighbourhood of
the vertex v in G andNG[v] = NG(v)

⋃
{v}. Let U ⊆ V (G), denoteNG(U) =

⋃
v∈U

NG(v)−U .

Let dG(v) denote the degree of the vertex v in G and δ(G) denote the minimum degree of
the graph G. The subgraph induced by V ′ in G, denoted by G[V ′], is a graph whose vertex
set is V ′ and the edge set is the set of all the edges of G with both ends in V ′. A graph is
said to be k-regular if for any vertex v of G, dG(v) = k. Two xy- paths P and Q in G are
internally disjoint if they have no common internal vertices, that is V (P )

⋂
V (Q) = {x, y}.

Let Y ⊆ V (G) and X ⊂ V (G) \ Y , the (X,Y )-paths is a family of internally disjoint paths
starting at a vertex x ∈ X, ending at a vertex y ∈ Y and whose internal vertices belong
neither to X nor Y . If X = {x}, the (X,Y )-paths is a family of internal disjoint paths
whose starting vertex is x and the terminal vertices are distinct in Y , which is referred to
as a k-fan from x to Y . For terminologies and notation not undefined here we follow the
reference [1].

Let Γ be a finite group and S be a subset of Γ, where the identity of the group does
not belong to S. The Cayley graph Cay(Γ, S) is a digraph with vertex set Γ and arc
set {(g, g.s)|g ∈ Γ, s ∈ S}. If S = S−1, then Cay(Γ, S) is an undirected graph, where
S−1 = {s−1|s ∈ S}.

Let [n] = {1, 2, · · · , n} and Sym(n) denote the group of all permutations on [n]. Let
(p1p2 · · · pn) denote a permutation on [n] and (ij), which is called a transposition, denote the
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transposition that swaps the objects at positions i and j, that is, (p1 · · · pi · · · pj · · · pn)(ij) =
(p1 · · · pj · · · pi · · · pn). For the Cayley graph Cay(Sym(n), T ), where T is a set of transpo-
sitions of Sym(n). Let G(T ) be the graph on n vertices {1, 2, . . . , n} such that there is an
edge ij in G(T ) if and only if transposition (ij) ∈ T [15]. The graph G(T ) is called the

transposition generating graph of Cay(Sym(n), T ). It is well known that if G(T ) ∼= Pn,
where Pn is a path with n vertices, then Cay(Sym(n), T ) is called an n-dimensional bubble

sort graph and denoted by Bn.
As a generalization of Bn, the (n, k)-bubble-sort graph, denoted by Bn,k, was introduced

by Shawash [14] in 2008. The (n, k)-bubble-sort graph Bn,k is defined as follows.

Definition 1. Given two positive integers n and k with n > k, let [n] denote the set

{1, 2, · · · , n} and Pn,k be a set of arrangements of k elements in [n]. The (n, k)-bubble-sort
graph Bn,k has vertex set Pn,k, and two vertices u = a1a2 · · · ak and v = b1b2 · · · bk are

adjacent if and only if one of the following conditions hold.

(a) There exists an integer m ∈ [2, k] such that am−1 = bm, am = bm−1 and ai = bi for all

i ∈ [k] \ {m− 1,m}.

(b) ai = bi for all i ∈ [k] \ {1} and a1 6= b1.

For two distinct i and j, where i ∈ [n] and j ∈ [k]. Let V j:i
n,k be the set of vertices

in Bn,k with the jth position being i, that is, V j:i
n,k = {p|p = p1p2 · · · pj · · · pk ∈ Pn,k and

pj = i}. For a vertex v = p1p2 · · · pi · · · pn, we call pi the element at position i of the

vertex v. For a fixed position j ∈ [k], {V j:i
n,k|1 ≤ i ≤ n} forms a partition of Vn,k. Let Bj:i

n,k

denote the subgraph of Bn,k induced by V j:i
n,k. Then for each j ∈ [k], Bj:i

n,k is isomorphic
to Bn−1,k−1. Thus, Bn,k can be recursively constructed from n copies of Bn−1,k−1. It is

easy to check that each Bj:i
n,k is a subgraph of Bn,k and Bn,k can be decomposed into n

subgraphs Bj:i
n,ks according to the jth position. By the symmetry of Bn,k and for simplicity,

we shall take j as the last position k and use Bi
n,k to denote Bk:i

n,k. For convenience, let

Bn,k = B1
n,k

⊕
B2

n,k

⊕
· · ·

⊕
Bn

n,k, where
⊕

just denotes the corresponding decomposition

of Bn,k. Obviously, any vertex u of Bi
n,k has k−1 neighbors in Bi

n,k and one neighbor outside

of Bi
n,k, which is called the outside neighbour of u. Let E(i, j) be the set of edges between

14 41

24  34 21 31

   42 12   43      13

32 23

Figure 1: The (4, 2)-bubble-sort graph B4,2
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Bi
n,k and Bj

n,k, that is, E(i, j) = {(p, q) ∈ E(Bn,k)|p ∈ V (Bi
n,k) and q ∈ V (Bj

n,k)}. Clearly,

E(i, j) is a matching between Bi
n,k and Bj

n,k and |E(i, j)| = (n−2)!
(n−k)! . By the definition of

Bn,k, Bn,1 is isomorphic to Kn and Bn,n−1 is isomorphic to Bn. It follows that Bn,k is a
generalization of the bubble-sort graph Bn. The (4, 2)-bubble-sort graph B4,2 is depicted
in Figure 2.

3 The generalized 3-connectivity of the (n, k)-bubble-sort graph

In this section, the generalized 3-connectivity of the (n, k)-bubble-sort graph Bn,k will be
proved. To prove the result, the following lemmas are useful.

Lemma 1. Let Bn,k = B1
n,k

⊕
B2

n,k

⊕
. . .

⊕
Bn

n,k for n ≥ k + 1 and 1 ≤ k ≤ n − 1. Then

the following results hold.

(1) For any vertex u of Bi
n,k, it has exactly one outside neighbour.

(2) For any copy Bi
n,k, no two vertices in Bi

n,k have a common outside neighbour. In

addition, |N(Bi
n,k)| =

(n−1)!
(n−k)! and |N(Bi

n,k)
⋂

V (Bj
n,k)| =

(n−2)!
(n−k)! for i 6= j.

Proof. (1) By the definition of Bn,k, the result holds clearly.
(2) Let u, v ∈ V (Bi

n,k) and u 6= v. If they have a common outside neighbour w, then
u and v are the two outside neighbours of w which lie in the same copy, which contradicts
with (1). Thus, no two vertices in Bi

n,k have a common outside neighbour.

Since |V (Bi
n,k)| =

(n−1)!
(n−k)! and no two vertices in Bi

n,k have a common outside neighbor,

|N(Bi
n,k)| =

(n−1)!
(n−k)! and |N(Bi

n,k)
⋂

V (Bj
n,k)| =

(n−2)!
(n−k)! for i 6= j.

Lemma 2. ([10]) Let G be a connected graph and δ be its minimum degree. Then κ3(G) ≤ δ.
Further, if there are two adjacent vertices of degree δ, then κ3(G) ≤ δ − 1.

Lemma 3. ([10]) Let G be a connected graph with n vertices. If κ(G) = 4k + r, where k
and r are two integers with k ≥ 0 and r ∈ {0, 1, 2, 3}, then κ3(G) ≥ 3k + ⌈ r2⌉. Moreover,

the lower bound is sharp.

Lemma 4. ([1]) Let G = (V,E) be a k-connected graph, and let X and Y be subsets of

V (G) of cardinality at least k. Then there exists a family of k pairwise disjoint (X,Y )-paths
in G.

Lemma 5. ([1]) Let G = (V,E) be a k-connected graph, let x be a vertex of G, and let

Y ⊆ V \ {x} be a set of at least k vertices of G. Then there exists a k-fan in G from x to

Y , that is, there exists a family of k internally disjoint (x, Y )-paths whose terminal vertices

are distinct in Y .

Next, we determine the connectivity of Bn,k for k = 2.

Lemma 6. κ(Bn,2) = n− 1 for n ≥ 3.

Proof. Let Bn,2 = B1
n,2

⊕
B2

n,2

⊕
. . .

⊕
Bn

n,2. Let F be a minimum vertex cut of Bn,2 and
u ∈ V (Bn,2). Since NBn,2

(u) is a vertex cut of Bn,2 and |NBn,2
(u)| = n− 1, |F | ≤ n− 1.
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Next, we show that |F | ≥ n − 1. Suppose to the contrary, that is, |F | ≤ n − 2. Let
Fi = F

⋂
V (Bi

n,2) for each i ∈ {1, 2, · · · , n}. Without loss of generality, let |F1| ≥ |F2| ≥

· · · ≥ |Fn|. Then |F
n−1

| = |Fn | = 0. By Lemma 1(2), Bn,2[V (Bn−1
n,2 )

⋃
V (Bn

n,2)] is connected.

Let C be a component of Bn,2 − F that does not contain Bn,2[V (Bn−1
n,2 )

⋃
V (Bn

n,2)] as a

subgraph and ci = |V (C)
⋂

V (Bi
n,2)| for each i ∈ {1, 2, · · · , n − 2}. Then there exists an

integer l ∈ {1, 2, · · · , n − 2} such that cl > 0. Let u ∈ V (Bl
n,2)

⋂
V (C) and u′ ∈ V (Bj

n,2),

where u′ is the outside neighbour of u in Bj
n,2, j ∈ [n] and l 6= j.

If u′ ∈ V (Bj
n,2) \ V (C), then u′ ∈ Fj . It implies that |Fj | ≥ 1.

If u′ ∈ V (C), then N
B

j
n,2

(V (Bn−1
n,2 )

⋃
V (Bn

n,2)) ⊆ Fj . Otherwise, the component that

contains Bn,2[V (Bn−1
n,2 )

⋃
V (Bn

n,2)] will be C as Bj
n,2

∼= Kn−1, which is a contradiction. By

Lemma 2, |N
B

j
n,2

(V (Bn−1
n,2 )

⋃
V (Bn

n,2)| = 2. It implies that |Fj | ≥ 2.

Recall that Bl
n,2 is a complete graph, then |F | = |F1

⋃
· · ·

⋃
Fn| ≥ |V (Bl

n,2)| − cl + cl =
n− 1, a contradiction. Thus, |F | ≥ n− 1.

Next, we determine the connectivity of Bn,k for 2 ≤ k ≤ n− 1.

Lemma 7. κ(Bn,k) = n− 1 for 2 ≤ k ≤ n− 1.

Proof. Let F be a minimum vertex cut of Bn,k and u ∈ V (Bn,2). Since NBn,k
(u) is a vertex

cut of Bn,k and |NBn,k
(u)| = n− 1, |F | ≤ n− 1.

Next, we show that κ(Bn,k) ≥ n − 1. We prove the result by induction on k. When
n ≥ 3 and k = 2, by Lemma 6, the result holds. Suppose that the result holds for Bn′,k−1,
where 2 ≤ k − 1 ≤ n′ − 2. Now we consider Bn,k for 3 ≤ k ≤ n − 2. Let Fi = F

⋂
V (Bi

n,k)
for each i ∈ {1, 2, · · · , n}. Without loss of generality, let |F1| ≥ |F2| ≥ · · · ≥ |Fn|. Suppose
to the contrary, that is, |F | ≤ n− 2. Thus, |Fn−1| = |Fn| = 0.

If |F1| = n−2, then |Fi| = 0 for each i ∈ {2, 3, · · · , n}. By Lemma 1(2), Bn,k[
⋃n

i=2 V (Bi
n,k)]

is connected. As any vertex in B1
n,k \ F1 has an outside neighbour, Bn,k − F is connected,

a contradiction.
If |F1| ≤ n − 3, then |Fi| ≤ n − 3 for each i ∈ {2, 3, · · · , n}. By induction, Bi

n,k − Fi

is connected for each i ∈ {1, 2, · · · , n}. As |Fn| = 0 and there are (n−2)!
(n−k)! independent

edges between Bi
n,k and Bn

n,k. Note that (n−2)!
(n−k)! − |Fi| ≥

(n−2)!
(n−3)! − |Fi| ≥ 1 for each i ∈

{1, 2, · · · , n−1}. Then there exists at least one edge between Bi
n,k−Fi and Bn

n,k. It implies
that Bn,k − F is connected, a contradiction. Thus, |F | ≥ n− 1.

To prove the main result, the following lemmas are useful.

Lemma 8. Let Bn,k = B1
n,k

⊕
B2

n,k

⊕
. . .

⊕
Bn

n,k and H = Bn,k[V (Bn,k) \ V (Bi
n,k)] for

some i ∈ [n]. If 2 ≤ k ≤ n− 1, then κ(H) = n− 2.

Proof. Without loss of generality, letH = Bn,k[V (Bn,k)\V (Bn
n,k)], that is,H = B1

n,k

⊕
B2

n,k⊕
. . .

⊕
Bn−1

n,k . As there is some vertex v ∈ V (H) whose outside neighbour belongs to Bn
n,k,

δ(H) = n− 2. Hence, κ(H) ≤ δ(H) = n− 2.
Next, we show that κ(H) ≥ n − 2. To prove the result, we just need to show that for

any two distinct vertices v1 and v2 of H, there exist at least n− 2 internally disjoint paths
between them. The result is proved by considering the following two cases.
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Case 1. v1 and v2 belong to the same copy of Bn−1,k−1.
Without loss of generality, let v1, v2 ∈ V (B1

n,k). By Lemma 7, κ(B1
n,k) = n− 2. Hence,

there are n− 2 internally disjoint paths between v1 and v2 in B1
n,k.

Case 2. v1 and v2 belong to different copies of Bn−1,k−1.
Without loss of generality, let v1 ∈ V (B1

n,k) and v2 ∈ V (B2
n,k).

Subcase 2.1. 3 ≤ k ≤ n− 1
By Lemma 1(2), there are (n−2)!

(n−k)! independent edges between B1
n,k and B2

n,k. Choose n−2

vertices u1, u2, u3, · · · , un−2 from B1
n,k such that the outside neighbour u′i of ui belongs to

B2
n,k for each i ∈ {1, 2, · · · , n − 2}. This can be done as (n−2)!

(n−k)! ≥ n − 2 for k ≥ 3 and

n ≥ k + 1. Let S = {u1, u2, u3, · · · , un−2} and S′ = {u′1, u
′
2, u

′
3, · · · , u

′
n−2}. By Lemma 7,

κ(B1
n,k) = κ(B2

n,k) = n− 2. If v1 /∈ S, by Lemma 5, there exists a family of n− 2 internally
disjoint (v1, S)-paths P1, P2, · · · , Pn−2 whose terminal vertices are distinct in S. Note that
if v1 ∈ S, then there is a (v1, S) path that contains the only vertex v1. Similarly, if v2 /∈ S′,
by Lemma 5, there exists a family of n−2 internally disjoint (v2, S

′) paths P ′
1, P

′
2, · · · , P

′
n−2

whose terminal vertices are distinct in S′. Note that if v2 ∈ S′, there is a (v2, S
′) path that

contains the only vertex v2. Let P̂i = Pi

⋃
uiu

′
i

⋃
P ′
i for each i ∈ {1, 2, · · · , n − 2}, then

n− 2 disjoint paths between v1 and v2 are obtained in H.
Subcase 2.2. k = 2 and n ≥ 3
By Lemma 1(2), there is exactly one edge between Bi

n,k and Bj
n,k for i 6= j and i, j ∈

{1, 2, · · · , n−1}. Choose n−2 vertices u1, u2, u3, · · · , un−2 from B1
n,k such that the outside

neighbour u′i of ui belongs to Bi+1
n,k for each i ∈ {1, 2, · · · , n− 2}, and choose n− 3 vertices

w2, w3, · · · , wn−2 from B2
n,k such that the outside neighbour w′

i of wi belongs to Bi+1
n,k for

each i ∈ {2, 3, · · · , n− 2}. Let S = {u1, u2, u3, · · · , un−2} and S′ = {u′1, w2, w3, · · · , wn−2}.
Note that Bi

n,k
∼= Kn−1 for each i ∈ {1, 2, · · · , n}. If v1 /∈ S, then S = NB1

n,k
(v1). If v1 ∈ S,

let v1 = u1. Then S\{u1} ⊆ NB1

n,k
(v1). Similarly, if v2 /∈ S′, then S′ = NB2

n,k
(v2). If v2 ∈ S′,

let v2 = u′1. Then S′ \ {u′1} ⊆ NB2

n,k
(v2). Recall that B

i
n,k

∼= Kn−1 for i ∈ [n− 1], then u′iw
′
i

is an edge in Bi+1
n,k for each i ∈ {2, 3, · · · , n− 2}. Let P1 = v1u1u

′
1v2 and Pi = v1uiu

′
iw

′
iwiv2

for each 2 ≤ i ≤ n− 2, then n− 2 disjoint paths between v1 and v2 are obtained in H.
Hence, κ(H) = n− 2.

Lemma 9. Let Bn,2 = B1
n,2

⊕
B2

n,2

⊕
. . .

⊕
Bn

n,2. For any vertex v ∈ V (Bi
n,2) for 1 ≤ i ≤

n, let NBi
n,2

[v] = NBi
n,2

(v)
⋃
{v}. Then |NBi

n,2
[v]| = n− 1 and the n− 1 outside neighbours

of vertices in NBi
n,2

[v] belong to different copies of Bn−1,1.

Proof. Let v ∈ V (Bi
n,2), then dBi

n,2
(v) = n − 2. Thus, |NBi

n,2
[v]| = n − 1 holds clearly.

Without loss of generality, assume i = 2 and v = 12. Then NBi
n,2

[v] = {32, 42, · · · , n2}. Let

S be the set of outside neighbours of the vertices in NBi
n,2

[v], then S = {21, 23, 24, · · · , 2n}.

Hence, the outside neighbours are contained in B1
n,2, B

3
n,2, · · · , B

n
n,2, respectively. The result

is desired.
Following, we prove the generalized 3-connectivity of Bn,k for k = 2.

Theorem 1. κ3(Bn,2) = n− 2 for n ≥ 3.

Proof. As Bn,2 is (n − 1)-regular. By Lemma 2, κ3(Bn,2) ≤ δ − 1 = n − 2. To complete
the result, it suffices to show that κ3(Bn,2) ≥ n− 2. We prove the result by induction on n.
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For n = 3, B3,2 is connected. Then κ3(B3,2) ≥ 1 = n− 2.
For n = 4, by Lemma 3 and Lemma 7, κ3(Bn,2) ≥ ⌈32⌉ = 2 = n− 2.
Next, suppose that n ≥ 5. Let Bn,2 = B1

n,2

⊕
B2

n,2

⊕
. . .

⊕
Bn

n,2 and v1, v2, v3 be any
three distinct vertices of Bn,2. For convenience, let S = {v1, v2, v3}. We prove the result by
considering the following three cases.

Case 1. v1, v2 and v3 belong to the same copy of Bn−1,1.
Without loss of generality, let v1, v2, v3 ∈ V (B1

n,2). By the inductive hypothesis, κ3(B
1
n,2)

≥ n − 3. That is, there are n − 3 internally disjoint trees T1, T2 · · · , Tn−3 connecting S
in B1

n,2. Let v′1, v
′
2 and v′3 be the outside neighbours of v1, v2 and v3, respectively. Then

{v′1, v
′
2, v

′
3} ⊆ V (Bn,2)\V (B1

n,2). As Bn,2[V (Bn,2)\V (B1
n,2)] is connected, there exists a tree

T connecting v′1, v
′
2 and v′3 in Bn,2[V (Bn,2) \ V (B1

n,2)]. Let Tn−2 = T
⋃

v1v
′
1

⋃
v2v

′
2

⋃
v3v

′
3,

then it is a tree connecting S and V (Tn−2)
⋂

V (B1
n,2) = S. Hence, there exist n−2 internally

disjoint trees connecting S in Bn,2 and the result is desired.
Case 2. v1, v2 and v3 belong to two different copies of Bn−1,1.
Without loss of generality, let v1, v2 ∈ V (B1

n,2) and v3 ∈ V (B2
n,2). By Lemma 7,

κ(B1
n,2) = n− 2. Hence, there exist n− 2 internally disjoint paths P1, P2, . . . , Pn−2 between

v1 and v2 in B1
n,2. Choose n − 2 distinct vertices x1, x2, . . . , xn−2 from P1, P2, . . . , Pn−2

such that xi ∈ V (Pi) for each i ∈ {1, 2, · · · , n − 2}. Note that at most one of these paths
has length 1. If there is one path with length 1, say P1 and let x1 = v1. Let x′i be the
outside neighbour of xi for each i ∈ {1, 2, · · · , n − 2}. Let X ′ = {x′1, x

′
2, · · · , x

′
n−2}, then

X ′ ⊂ V (Bn,2) \ V (B1
n,2). By Lemma 1, |X ′| = n− 2. By Lemma 8, Bn,2[V (Bn,2) \ V (B1

n,2)]
is n − 2 connected. By Lemma 5, there exist n − 2 internally disjoint (v3,X

′)-paths
P ′
1, P

′
2, . . . , P

′
n−2 in Bn,2[V (Bn,2)\V (B1

n,2)] whose terminal vertices are distinct in X ′. Note
that if v3 ∈ X ′, then there is a (v3,X

′)-path that contains exactly one vertex v3. Let
Ti = Pi

⋃
xix

′
i

⋃
P ′
i for each i ∈ {1, 2, · · · , n − 2}. Then n − 2 internally disjoint trees

connecting S in Bn,2 are obtained.
Case 3. v1, v2 and v3 belong to three different copies of Bn−1,1, respectively.
Without loss of generality, let v1 ∈ V (B1

n,2), v2 ∈ V (B2
n,2) and v3 ∈ V (B3

n,2). Let
NBi

n,2
[vi] = NBi

n,2
(vi)

⋃
{vi} for i = 1, 2, 3. By Lemma 9, for each i ∈ {1, 2, 3} and j ∈

{4, 5, · · · , n}, there exists one vertex in NBi
n,2

[vi], say uji , such that the outside neighbour

(uji )
′ of uji belongs to Bj

n,2. As B
j
n,2 is connected, we can find a tree T̂j connecting (uj1)

′, (uj2)
′

and (uj3)
′ for each j ∈ {4, 5, · · · , n}. Let Tj = T̂j

⋃
uj1(u

j
1)

′
⋃

uj2(u
j
2)

′
⋃

uj3(u
j
3)

′
⋃

v1u
j
1

⋃
v2u

j
2⋃

v3u
j
3 as Bn−1,1

∼= Kn−1, then n−3 internally disjoint trees connecting S are obtained. Let

B̂i
n,2 = Bi

n,2−({u4i , u
5
i , · · · , u

n
i }\{vi}). Then there are at most n−3 vertices deleted fromBi

n,2

for each i ∈ {1, 2, 3}. As Bi
n,2 is n− 2 connected, B̂i

n,2 is still connected. For i, j ∈ {1, 2, 3}

and i 6= j, there is exactly an edge between Bi
n,2 and Bj

n,2. Thus, Bn,2[
⋃3

i=1 V (B̂i
n,2)] is

connected and there is a tree Tn−2 connecting S. Hence, there exist n−2 internally disjoint
trees connecting S in Bn,2 and the result is desired.

Next, we prove the generalized 3-connectivity of Bn,k for 3 ≤ k ≤ n− 1.

Theorem 2. κ3(Bn,k) = n− 2 for 3 ≤ k ≤ n− 1.

Proof. As Bn,k is (n − 1)-regular. By Lemma 2, κ3(Bn,k) ≤ δ − 1 = n − 2. To complete
the result, it suffices to show that κ3(Bn,k) ≥ n− 2. We prove the result by induction on n.

For n = 3, B3,k is connected. Then κ3(B3,k) ≥ 1 = n− 2.
For n = 4, by Lemma 3 and Lemma 7, κ3(Bn,k) ≥ ⌈32⌉ = 2 = n− 2.
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Next, suppose that n ≥ 5. Let Bn,k = B1
n,k

⊕
B2

n,k

⊕
. . .

⊕
Bn

n,k and v1, v2, v3 be any
three distinct vertices of Bn,k. For convenience, let S = {v1, v2, v3}. We prove the result by
considering the following three cases.

Case 1. v1, v2 and v3 belong to the same copy of Bn−1,k−1.
Case 2. v1, v2 and v3 belong to two different copies of Bn−1,k−1.
Case 3. v1, v2 and v3 belong to three different copies of Bn−1,k−1, respectively.
The proofs of Case 1 and Case 2 are the same as the proof of Case 1 and Case 2 in

Theorem 1. Thus, only the Case 3 is considered.
Without loss of generality, let v1 ∈ V (B1

n,k), v2 ∈ V (B2
n,k) and v3 ∈ V (B3

n,k). Let
v1 = p1p2 · · · pk−11 and vi = pip2 · · · pk−11 for k + 1 ≤ i ≤ n, where pk+1, pk+2, · · · , pn
are distinct elements in [n] \ {p1, p2, · · · , pk−1, 1}. We now present the algorithm, called
(n-1)IDP, that constructs n−1 internally disjoint paths P 1

2 , P
1
3 , · · · , P

1
n in B1

n such that the
outside neighbour of each terminal vertex of the n − 1 paths belong to different copies of
Bn−1,k−1.

Algorithm 1 (n-1)IDP(k)

Input: n, k, where 3 ≤ k ≤ n− 1, v1 = p1p2 · · · pk−11;
Output: n− 1 pairwise disjoint path P 1

2 , P
1
3 , · · · , P

1
k , P

1
k+1, · · · , P

1
n ;

1: for i = 2 to k − 1 do

2: P 1
i = v1, t = v1;

3: for j = i to k − 1 do

4: t = t(j − 1, j) // where (j − 1, j) is a transposition
5: P 1

i = P 1
i

⋃
t;

6: end for

7: end for

8: P 1
k = v1;

9: for i = k + 1 to n do

10: P 1
i = v1vi, t = vi = pip2 · · · pk−11;

11: for j = 1 to k − 2 do

12: t = t(j, j + 1) // where (j, j + 1) is a transposition
13: P 1

i = P 1
i

⋃
t;

14: end for

15: end for

By the above algorithm, there are the following n−1 paths P 1
2 , P

1
3 , · · · , P

1
n starting at the

vertex v1 in B1
n,k, where pk+1, pk+2, · · · , pn are distinct elements in [n]\{p1, p2, · · · , pk−1, 1}.

P 1
2 = (p1p2p3 · · · pk−11)(i2p1p3 · · · pk−11)(p2p3p1 · · · pk−11) · · · (p2p3 · · · pk−1p11);

P 1
3 = (p1p2p3 · · · pk−11)(p1p3p2 · · · pk−11) · · · (p1p3 · · · pk−1p21);

· · ·
P 1
k−1 = (p1p2p3 · · · pk−2pk−11)(p1p2p3 · · · pk−1pk−21);

P 1
k = (p1p2p3 · · · pk−11);

P 1
k+1 = (p1p2p3 · · · pk−11)(pk+1p2p3 · · · pk−11)(p2pk+1p3 · · · pk−11)(p2p3pk+1 · · · pk−11) · · · (p2

p3p4 · · · pk+11);

P 1
k+2 = (p1p2p3 · · · pk−11)(pk+2p2p3 · · · pk−11)(p2pk+2p3 · · · pk−11)(p2p3pk+2 · · · pk−11) · · · (p2

p3p4 · · · pk+21);
· · ·
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P 1
n = (p1p2p3 · · · pk−11)(pnp2p3 · · · pk−11)(p2pnp3 · · · pk−11)(p2p3pn · · · pk−11) · · · (p2p3p4 · · · pn

1).

Claim 1. For every a, b ∈ {2, 3, · · · , n} and a 6= b, V (P 1
a )

⋂
V (P 1

b ) = {v1}.

The proof of the Claim 1. Without loss of generality, suppose that a < b.
If a, b ∈ {2, 3, · · · , k}, then for any vertex y ∈ V (P 1

a ) \ {v1}, the a − 1 elements at
positions 1, 2, · · · , a− 1 of y are p1p2 · · · pa−2pa. However, for any vertex z ∈ V (P 1

b ) \ {v1},
the a− 1 elements at positions 1, 2, · · · , a− 1 of z are p1p2 · · · pa−2pa−1. As pa 6= pa−1, then
y 6= z. Hence, the claim holds.

If a, b ∈ {k + 1, · · · , n}, then for any vertex y ∈ V (P 1
a ) \ {v1}, it is the permuta-

tion of {pa, p2 · · · , pk−1, 1}. For any vertex z ∈ V (P 1
b ) \ {v1}, it is the permutation of

{pb, p2 · · · , pk−1, 1}. As pa, pb ∈ [n] \ {p1, p2 · · · , pk−1, 1} and pa 6= pb, then y 6= z. Thus,
the claim holds.

If a ∈ {2, 3, · · · , k} and b ∈ {k + 1, · · · , n}, then for any vertex y ∈ V (P 1
a ) \ {v1}, it

is the permutation of {p1, p2 · · · , pk−1, 1} and for any vertex z ∈ V (P 1
b ) \ {v1}, it is the

permutation of {pb, p2 · · · , pk−1, 1}. As pb ∈ [n] \ {p1, p2 · · · , pk−1, 1}, then p1 6= pb and
y 6= z. Thus, the claim holds.

The proof of the Claim 1 is complete.

Claim 2. Let X1 = {u1i |u
1
i is the terminal vertex of the path P 1

i for each i ∈ {2, 3, · · · , n}}.
Then the outside neighbours of vertices in X1 belong to different copies of Bn−1,k−1, respec-

tively.

The proof of the Claim 2. By Lemma 1(2), the outside neighbours of vertices in X1 are
in B2

n,k, B
3
n,k, · · · , B

n
n,k, respectively. The proof of the Claim 2 is complete.

Without loss of generality, suppose that the outside neighbour (u1i )
′ of u1i is in Bi

n,k for
each i ∈ {2, 3, 4, · · · , n}. Otherwise, we can reorder the paths accordingly.

Similarly, let v2 = p1p2p3 · · · pk−12, then there are n − 1 paths P 2
1 , P

2
3 , · · · , P

2
n starting

at the vertex v2 in B2
n,k. Let X2 = {u21, u

2
3, · · · , u

2
n} such that u2i is the terminal vertex of

the path P 2
i and the outside neighbour (u2i )

′ of u2i is in Bi
n,k for each i ∈ {1, 3, 4, · · · , n}.

In addition, there are n − 1 paths P 3
1 , P

3
2 , · · · , P

3
n starting at the vertex v3 in B3

n,k. Let

X3 = {u31, u
3
2, · · · , u

3
n} such that u3i is the terminal vertex of the path P 3

i and the outside
neighbour (u3i )

′ of u3i is in Bi
n,k for each i ∈ {1, 2, 4, · · · , n}.

Obviously, the outside neighbour (u31)
′ of u31 is in B1

n,k and the outside neighbour (u32)
′

of u32 is in B2
n,k. As B1

n,k is connected, there is a ((u31)
′, v1)-path P̂1 in B1

n,k. Let t1 be the

first vertex of the path P̂1 which is in
⋃

l∈{2,3,··· ,n} V (P 1
l ). Similarly, there is a ((u32)

′, v2)-

path P̂2 in B2
n,k as B2

n,k is connected. Let t2 be the first vertex of the path P̂2 which is in⋃
l∈{1,3,··· ,n} V (P 2

l ).
To prove the result for 3 ≤ k ≤ n− 1, the following two subcases are considered.
Subcase 3.1. t1 ∈

⋃
l∈{2,3} V (P 1

l ) and t2 ∈
⋃

l∈{1,3} V (P 2
l ).

In this case, the induced subgraph Bn,k[V (P 3
1 )

⋃
V (P 1

2 )
⋃

V (P 1
3 )

⋃
V (P̂1[(u

3
1)

′, t1])] of

Bn,k contains a (v3, v1)-path, where P̂1[(u
3
1)

′, t1] is the subpath of P̂1 starting at (u31)
′ and

ending at t1. Similarly, the induced subgraphBn,k[V (P 3
2 )

⋃
V (P 2

1 )
⋃

V (P 2
3 )

⋃
V (P̂2[(u

3
2)

′, t2])]

of Bn,k contains a (v3, v2)-path, where P̂2[(u
3
2)

′, t2] is the subpath of P̂2 starting at (u32)
′ and
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· · ·
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′
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′

(u3

j )
′

u
3
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2 u
3

j
u
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ju
1
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Figure 2: The illustration of Subcase 3.1 for t1 ∈ V (P 1
3 ) and t2 ∈ V (P 2

3 )

ending at t2. The union of the (v3, v1)-path and the (v3, v2)-path forms a tree T1 connecting
S in Bn,k. See Figure 2.

In addition, as (u1j )
′, (u2j )

′, (u3j )
′ ∈ V (Bj

n,k) for each j ∈ {4, 5, · · · , n} and Bj
n,k is con-

nected, there is a tree T ′
j connecting (u

1
j )

′, (u2j )
′ and (u3j )

′ inBj
n,k. Let Tj = T ′

j

⋃
P 1
j

⋃
P 2
j

⋃
P 3
j

⋃

u1j(u
1
j )

′
⋃

u2j(u
2
j )

′
⋃

u3j(u
3
j )

′ for each j ∈ {4, 5, · · · , n}. Combining the trees Tjs for 4 ≤ j ≤ n
and the tree T1, and n− 2 internally disjoint trees connecting S in Bn,k are obtained.

Subcase 3.2. t1 ∈
⋃

l∈{4,5,··· ,n} V (P 1
l ) or t2 ∈

⋃
l∈{4,5,··· ,n} V (P 2

l ).

Without loss of generality, let t1 ∈ V (P 1
4 ). Note that v1 = p1p2 · · · pk−11. By the

assumption that the outside neighbor of the terminal vertex in P 1
i is in Bi

n,k for i ∈
{2, 3, . . . , k}, one has that v1 = 23 · · · k1. It implies that pi = i+ 1 for 1 ≤ i ≤ k − 1.

If k ≥ 4, we obtain that pk−1 6= 2 and p3 = 4. For any vertex v ∈ V (P 1
4 ), v is a

permutation of {p1, p2, · · · , pk−1, 1}. Next, we consider the path P 1
2 . Note that u12 is the

terminal vertex of P 1
2 and u12 = p2p3 · · · pk−1p11 = 34 · · · k21. We can extend the path P 1

2

starting from u12 as follows: (3456 · · · k21)(3546 · · · k21) · · · (35 · · · 26k41). Let û
1
2 = 35 · · · 241

and the extended path starting at v1 and ending at û12 be P̂ 1
2 . Then the outside neighbour

of û12 is in B4
n,k.

If k = 3 and t1 6= v1, then v1 = 231 and 4 ∈ [n] \ {p1, p2, 1} = {4, 5, . . . , n} and the
vertex t1 is a permutation of {4, p2, 1} = {4, 3, 1}. Note that u12 = p221 = 321. Now, we

extend the path P 1
2 starting from u12 to P̂ 1

2 , where P̂ 1
2 = P 1

2 (421)(241). Let û12 = 241. Now

replacing P 1
2 with P̂ 1

2 , The outside neighbor of terminal vertex û12 of P̂ 1
2 is in B4

n,k.
Next, we prove the following claim.

Claim 3. V (P̂ 1
2 )

⋂
V (P 1

j ) = {v1} for each j ∈ {3, 4, · · · , n} for k ≥ 3.

The proof of Claim 3. For k ≥ 4, we prove the result by contradiction. Suppose
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that there exists l ∈ {3, 4, · · · , n} such that |V (P̂ 1
2 )

⋂
V (P 1

l )| ≥ 2. Assume that u ∈

V (P̂ 1
2 )

⋂
V (P 1

l ) and u 6= v1. Since V (P 1
2 )

⋂
V (P 1

l ) = {v1}, u /∈ V (P 1
2 ). Thus, u ∈ V (P̂ 1

2 ) \
V (P 1

2 ).
If u 6= û12, then the element at position k− 1 of u is 2. However, the element at position

k − 1 of each vertex in V (P 1
l ) is pk−1 or k. As k 6= 2 and pk−1 6= 2, a contradiction.

Next, suppose u = û12. The k = 4 and u = u14. However, the element at position k − 2
of u14 is ik−1, a contradiction.

For k = 3, let x ∈ V (P 1
m) for 4 ≤ m ≤ n, then it is a permutation of {m, 3, 1}. However,

for any vertex y ∈ V (P̂ 1
2 \ P 1

2 ), it is a permutation of {4, 2, 1}. Thus, x 6= y. The proof of
the claim is complete.

Similarly, if t2 ∈ V (P 2
ℓ ) and ℓ ∈ {4, 5, · · · , n}, we can extend the path P 2

2 to obtain

the extended path, say P̂ 2
2 , such that the outside neighbour of the terminal vertex of the

extended path P̂ 2
2 is in Bℓ

n,k and there is only one common vertex v2 between the extended

path and other paths Pjs in B2
n,k.

Since the induced subgraph Bn,k[V (P 3
1 )

⋃
V (P̂1[(u

3
1)

′, t1])
⋃

V (P 1
4 )] contains a (v3, v1)-

path, say D1. Similarly, the induced subgraph Bn,k[V (P 3
2 )

⋃
V (P̂2[(u

3
2)

′, t2])
⋃

V (P 1
4 )] con-

tains a (v3, v2)-path, say D2. A tree, say T1, by combining D1 and D2 is obtained and the
tree T1 connects S in Bn,k.

Similar as subcase 3.1 just by replacing P 1
4 with P̂ 1

2 as t1 ∈ V (P 1
4 ) or replacing P 2

ℓ

with P̂ 2
2 if t2 ∈ V (P 2

ℓ ) for ℓ ∈ {4, 5, · · · , n}, there is a tree Tj connecting S
⋃

V (Bj
n,k) for

each j ∈ {4, 5, · · · , n} and Tjs are internally disjoint S-trees. Combining the trees Tjs for
4 ≤ j ≤ n and the tree T1, n− 2 internally disjoint trees connecting S in Bn,k are obtained.
Thus, the result is desired.

4 Concluding remarks

The generalized k-connectivity is a generalization of traditional connectivity. In this paper,
we focus on the (n, k)-bubble-sort graph, denoted by Bn,k. We study the generalized 3-
connectivity of Bn,k and show that κ3(Bn,k) = n − 2 for 2 ≤ k ≤ n − 1. So far, there are
few results about the generalized k-connectivity for larger k. We are interested in this topic
and we would like to study in this direction to show the corresponding results of Bn,k for
k ≥ 4.
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