MANCHESTER

1824
The University of Manchester

The University of Manchester Research

A Conceptual Approach for Supporting Traffic Data
Wrangling Tasks

DOI:
10.1093/comjnl/bxy113

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Sampaio, S., Al-Jubairah, M., Permana, H. A., & Sampaio, P. (2018). A Conceptual Approach for Supporting
Traffic Data Wrangling Tasks. The Computer Journal, 62(3), 461-480. https://doi.org/10.1093/comjnl/bxy113

Published in:
The Computer Journal

Citing this paper

Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights

Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy

If you believe that this document breaches copyright please refer to the University of Manchester's Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

OPEN ACCESS

Download date:29. Mar. 2024

https://doi.org/10.1093/comjnl/bxy113
https://research.manchester.ac.uk/en/publications/39623cfb-a983-4552-b919-5b4ba9607eae
https://doi.org/10.1093/comjnl/bxy113

A Conceptual Approach for

Supporting Traffic Data Wrangling
Tasks

SANDRA SAMPAIO'", MASHAEL ALJUBAIRAH', HAPSORO ADI
PERMANA! AND PEDRO SAMPAIO 2!

! Information Management Group,School of Computer Science, University of Manchester,
Manchester M13 9PL, UK
2 Alliance Manchester Business School, University of Manchester, Manchester M1 SWE, UK

Email: *Corresponding author: sandra.sampaio@manchester.ac.uk

Data Wrangling (DW) is the subject of growing interest given its potential to
improve data quality. DW applies interactive and iterative data profiling, cleaning,
transformation, integration and visualization operations to improve the quality of
data. Several domain independent DW tools have been developed to tackle data
quality issues across domains. Using generic data wrangling tools requires a time-
consuming and costly DW process often involving advanced IT knowledge beyond
the skills set of traffic analysts. In this paper, we propose a conceptual approach to
data wrangling for traffic data by creating a domain-specific language for specifying
traffic data wrangling tasks and an abstract set of wrangling operators that serve
as the target conceptual construct for mapping domain-specific wrangling tasks.
The conceptual approach discussed in this paper is tool-independent and platform
agnostic and can be mapped into specific implementations of DW functions
available in existing scripting languages and tools such as R, Python, Trifacta. Our
aim is to enable a typical traffic analyst without expert Data Science knowledge
to be able to perform basic DW tasks relevant to his domain.

Keywords: Data Wrangling, Data Transformation and Quality, Conceptual Wrangling
Approaches

Received 30 September 2017; revised 30 September 2018

INTRODUCTION

a variety of data management methods, and that

Decision makers in different domains such as healthcare,
education and transportation, can gain significant
advantages from the enormous volume of available
data obtained from various data collection methods
such as site-based sensors, cell-phone tracking [1] and
social media. However, data collected via these
methods are prone to data quality problems, such as
inaccuracy, incompleteness and heterogeneity [2] [3].
More recently, data management techniques for data
profiling, cleaning and integration have been adapted
to improve the quality of large amounts of raw data,
in preparation for analysis. The combination of these
data management tasks is often called Data Wrangling
(DW), generally defined as ”the process by which the
data required by an application is identified, extracted,
cleaned and integrated, to yield a data set that is
suitable for exploration and analysis” [4]. According
to IBM [5], data analysts spend around 70% of their
time conducting DW activities. Being an interactive
and iterative process that involves the application of

generally lacks a rigid methodology across application
domains, DW is often regarded as a highly complex job
requiring advanced skills and domain expertise.

Data analysts typically perform DW tasks by using
one or a combination of the two following approaches:
(i) programming their own DW applications, using
languages such as Python, Java and R; and (ii)
interacting with existing DW tools, which often provide
access via a Graphical User Interface (GUI). While
approaches (i) and (ii) provide benefits, they also
have shortcomings. Approach (i), for example, is
often associated with completeness of functionality
for fulfilling the requirements of the application
in consideration; however, it also involves complex
application development, advanced programming skills
and brittle solutions that cannot be easily applied
over data from other sources than the ones for which
the solution was originally designed. On the other
hand, approach (ii) is often associated with ease of
user interaction, limited need for programming skills,

2 S. SAMPAIO ET AL.

provision of generic functionality that cannot be easily
adapted to fulfill specific functional requirements, need
for use of multiple tools to perform a single DW job, and
limited opportunity for optimizing the DW strategy.

To mitigate the limitations identified in approaches
(i) and (ii), we propose a conceptual approach and an
architectural solution for DW that combines advantages
from (i) and (ii), while offering user interaction via
a high-level domain-specific declarative language for
specifying DW tasks. The proposed architecture
combines functionality from multiple DW tools and
access to multiple data sources, by using Web Services
technology [6]. The result is an extensible DW
approach, able to take advantage of DW functionality
implemented within a variety of existing DW tools,
and that provides flexibility to allow data analysts
to add functionality specific to the requirements of
the application in consideration, creating a rich set of
DW functions, that can be combined to accomplish
simple and complex, general and domain-specific DW
tasks. For that, high-level end-user DW requests
are automatically mapped into a set of conceptual
DW constructs, that are ultimately translated into an
execution plan represented as a workflow [7] combining
local as well as remote DW functions implemented
across a multitude of tools. The proposed approach
is tested with use cases from the Urban Traffic domain
[8], in which DW tasks associated with common data
analysis requests by traffic analysts are implemented
using the Taverna platform [9].

An overview of the main DW tools is also provided,
where state-of-the-art DW tools are compared and
contrasted regarding functionality. This overview aids
in the identification of suitable tools and includes
information on the capabilities provided by DW tools to
fulfill DW requests. Data wrangling technology is still
in early stages of development, with a small set of tools
supporting a limited range of functional capabilities, as
seen in our review of existing tools.

After reviewing existing DW languages and tools we
argue that (a) no single tool on its own is likely to
cover the entire spectrum of functionality needed to
implement DW tasks in the urban traffic domain; (b)
there is a wide variety of visual notations and textual-
based language constructs to express data wrangling
functionality; (c) the learning curve to perform DW is
steep mainly due to the need to learn several tools to
complete the task; (d) there is limited opportunity for
applying optimization techniques across tools.

We believe that a set of conceptual data wrangling
operators to be used as an intermediate abstract DW
representation language akin to SQL would address
issues (b,c,d) and in the long run contribute to the
development of comprehensive DW tools addressing
issue (a). If DW tools are to attain levels of industrial
uptake and commercial success comparable to what
relational database languages achieved, it is imperative
that research on DW operations and domain-specific

languages also tackle DW tasks from a conceptual
perspective, aimed at developing widely used DW
constructs and languages. This process can ensure
transferability of DW skills across different tools and
application domains, as it was the case with the
adoption of SQL as the mainstream language for
relational data management [10]. The work reported
in this paper pursues this direction.

Our contributions in this paper include (1) articulat-
ing the importance of developing conceptual DW lan-
guages with a particular emphasis on supporting com-
plex traffic data wrangling tasks; (2) proposing con-
structs for conceptual DW operators and a high-level
domain-specic language for traffic DW; (3) designing a
system architecture to support the conceptual approach
to DW, and (4) providing examples of how the con-
ceptual DW approach could be implemented using the
Taverna workflow management system.

The paper is organized as follows: Section 2 provides
a literature review. Section 3 outlines two examples
in a case study developed to illustrate the complexity
of data wrangling and motivate the importance of the
proposed approach discussed in this paper. Section 4
describes the conceptual DW approach, including the
architecture, its conceptual and physical layers, and a
discussion of the implementation aspects. Section 5
provides conclusions and future work.

2. LITERATURE REVIEW

2.1. Data Wrangling Activities

Data wrangling comprises a set of activities [11] towards
preparing data to accomplish analytical goals. Each
activity of the data wrangling process may require
the application of several operations to reach the
appropriate level of data preparation. Based on the
investigation of the DW definitions described in the
literature [12][13][14][11], the process of data wrangling
involves seven core activities that are applied in an
interactive and iterative fashion [12]. The activities are
the following: data profiling to assess data by providing
statistical descriptions of the dataset and identifying its
quality issues, data identification to check data sources
as to whether they can be used to achieve the analytical
tasks, data eztraction to retrieve data from one or
multiple data sources towards providing the required
information, data cleaning [15] to resolve erroneous
values and address quality issues, data re-structuring
to re-structure the data by changing the dataset
schema or enriching it with additional information, data
integration to aggregate data collected from multiple
sources, data visualization to provide intermediary and
final results of the wrangling process using different data
representation methods.

A CONCEPTUAL APPROACH FOR SUPPORTING TRAFFIC DATA WRANGLING TASKS 3

2.2. Data Wrangling Tools

Due to the iterative and interactive nature of DW
and the complexity involved in the DW process, there
has been a body of research aimed at facilitating DW
via Graphical User Interfaces (GUIs) and Domain-
Specific Languages (DSLs) [16]. For example, in
the work of Kandel et al. [12], the complexity
of conducting DW was decreased, by associating
DW functionality with data visualization constructs,
allowing users to conduct DW via a visual interface.
Tools offering DW functionality, such as Trifacta [17]
and OpenRefine [18], provide concise DSLs combined
with GUIs to isolate users from the complexities
involved in the wrangling process. The DSLs supported
by Trifacta and OpenRefine are limited in scope of
operator functionality and designed for low-level data
manipulations such as regular expressions [19] for text
matching with users required to use the GUI for the
majority of the DW tasks.

In addition, the level of completeness [20] of the
functionality provided by these tools varies based on
the DW requirements associated with the task at hand,
as well as the characteristics of the target data set. For
example, some tools may be suitable for cleaning and
profiling certain types of data but may not perform data
integration [21] of two or more data sets. An overview
and assessment of the available functionality of some of
the state-of-the-art DW tools is provided below. Table
1 summarizes the DW activities supported by each tool.

Tabula [22] is a web-based DW tool developed
with a focus on data format transformations. It
generates Excel, comma-separated values (CSV) or
JavaScript Object Notation (JSON) data file formats
via extracting data tables uploaded in Portable
Document Format (PDF) data file formats.

Mr Data Converter [23] is similar to Tabula in
terms of providing only data format transformation
operations. Mr Data Converter differs from Tabula as
it does not support extracting data from PDF files. Mr
Data Converter provides transformation operations via
uploading files in either Tab-Separated Values (TSV) or
CSV format and can generate output files in a number
of formats such as Actionscript, ASP/VB Script,
MySQL, Ruby, Hypertext Markup Language (HTML),
Extensible Markup Language (XML) or JSON.

Trifacta [17] incorporates operations relating to
all DW activities outlined in Table 1 and supports
a comprehensive set of data profiling and data re-
structuring functionality. Compared to Tabula and
Mr Data Converter, Trifacta does not extract and
transform data from PDF files as Tabula does.
However, there are some overlapping operations
between Trifacta and Mr Data Converter as both can
convert data files from CSV or TSV to JSON. Trifacta
is one of the most popular tools in the data preparation
market, allowing integration with a wide range of data
science [24] and data ingestion [25] technologies.

OpenRefine [18] is a tool designed with a focus on
data profiling [26] and cleaning tasks. It supports the
following DW activities: data profiling, data cleaning
and data re-structuring. Compared to Trifacta,
OpenRefine offers more operations for data cleaning and
string manipulation; but lacks advanced statistical and
re-structuring operations. There are some overlapping
operations between OpenRefine and Trifacta such as
moving and dropping columns, date/time operations
and array operations. 46 OpenRefine is also similar
to Trifacta in its limited support for extracting data
from PDF files. In terms of data format transformation,
the overlapping operations between OpenRefine and
Trifacta relate to converting data formats from either
JSON, CSV or TSV to CSV. OpenRefine’s big data
capabilities have shown limitations to scale to the
Gigabyte order of magnitude as indicated in [27].

Talend Data Preparation [28] focuses on import-
ing, structuring and transforming data via a web-based
visual interface that enables users to develop data
preparation workflows. Although, Talend provides data
visualization operations, these operations are limited in
support for visual analytics charts for profiling data.
Compared to Trifacta and OpenRefine, there are some
overlapping data cleaning and re-structuring function-
ality such as column manipulation operators like re-
name, create or drop, and fill in missing data. Talend is
also similar to OpenRefine in terms of providing func-
tionality for string manipulation, however, Talend Data
Preparation supports fewer operations for Date/Time
manipulation compared to Trifacta and OpenRefine.

R [29] is a data analysis and statistics language
with several DW packages available. R supports
all DW activities outlined in Table 1. R packages
such as dplyr and tidyr include functionality to
support data profiling, data re-structuring and data
integration. R data visualization packages such as
ggplot?2 provide powerful data visualization functions.
R DW packages also support extensive functionality for
data re-structuring and data integration. For example,
there are many operations to allow data analysts to
create and populate new columns and operations to
combine data sets. However, R DW packages lack
native support for Date/Time manipulation operations
typically used when wrangling spatial-temporal data
[30] such as traffic data. The main limitation for R users
relates to the need for using low-level programming
constructs to customize the code for specific purposes
and the steep learning curve associated with learning
the R language and finding the required functions
scattered across several R DW packages in order to
wrangle data.

2.3. Traffic Data Wrangling Challenges

Table 2 illustrates an example of a traffic DW task that
was used to assess the capability of generic DW tools
using the traffic data set depicted in Figure 1. Note

4 S. SAMPAIO ET AL.

that a description of the task is provided in the text
below the table. The example describes how the DW
tools vary in the support for different DW requirements.
In addition, it shows that, with the exception of R,
all are unable to support Step 3 which complements
the time and date information provided in column Date
with day, month, year and hour information, and using
a specific Date/Time format. Although it was possible
to implement this step using R, the used function is
not natively supported in R, and so data analysts are
required to write customized code in order to complete
the task.

The difficulties in finding a tool that offers all the
functionality required to perform DW tasks forces data
analysts to face a steep learning curve to familiarizing
themselves with multiple tools and experience a rather
laborious and complex process in which data often
needs to be transformed /reformatted to be transferred
between different tools. In addition, data analysts
may still have to use low-level programming constructs
implemented in languages such as R, Python or Java
to be able to customize code and solve specific data
quality issues, despite using the DW tools. A typical
example of this case is depicted in Table 2, which
illustrates the capabilities and limitations of six of the
most popular data wrangling tools towards fulfilling the
following traffic data wrangling request: ”Retrieve the
value of the average speed of vehicles passing Chester
Road on a Friday between 17:00 and 18:00”. The
relevant dataset is illustrated in Figure 1. Note that OR
is the abbreviation for OpenRefine, as Mr DC' is for Mr
Data Converter. The version of the Trifacta tool used
in this comparison is the free desktop one obtained from
[17] and the version of Talend Preparation Tool is the
free desktop one obtained from [28]. The comparison
work is organized in steps, where Step 1 checks dataset
sizes; Step 2 assesses dataset formats, e.g., CSV; Step
8 complements and reformats the dataset’s time and
date properties; Step 4 extracts the last four digits
of the Site ID column values, given that only these
four digits out of the 16 are relevant; Step 5 extracts
weekday out of the Date column; Step 6 joins the
dataset of Figure 1 with another dataset containing the
site’s description, using Site ID as joining key; Step 7
filters the data based on weekday, road name and time;
Step 8 calculates the average speed of vehicles, using
the Speed (mph) column.

Particular to traffic data sets, data generated by
Bluetooth-based road sensors often include duplicate
records [15] relating to the same moving object due
to multiple passengers carrying switched-on Bluetooth
devices in a vehicle. For removing duplicates,
multiple attributes need to be considered, such as
vehicle identifier, time/location of detection, and device
MAC address. Attributes such as device MAC
address and vehicle license plate numbers may be
removed from the data set to comply with privacy
regulations complicating the task of identifying and

TABLE 1: Assessing data wrangling tool activity support.

DWA T MrDC OR TW R TL
Data Identification Activity Yes Yes Yes

Data Extraction Activity Yes Yes Yes Yes Yes Yes
Data Profiling Activity Yes Yes Yes Yes

Data Re-structuring Activity Yes Yes Yes Yes Yes Yes

Data Cleaning Activity Yes Yes Yes Yes
Data Integration Activity Yes Yes Yes Yes
Data Visualization Activity Yes Yes Yes Yes

Notation: DWA is the Data Wrangling Activity, T is Tabula,
Mr DC is Mr Data Converter, OR is OpenRefine, TW is Trifacta
Wrangler and TL is Talend.

deleting duplicates from a data set. Tools offering
domain-independent DW functionality (virtually all
tools covered in the literature review) would require
a complex combination of operators to automate the
task of removing duplicates. Missing data is another
common issue found in traffic data sets due to extreme
weather impact on sensors or malfunction. This can
be partially addressed by replacing missing data with
data with similar temporal characteristics; e.g., same
day of the week and hour for the particular road
segment or similar spatial characteristics (nearby roads
with identical traffic volume, speed-limit and road
topology characteristics) [31]. Spatial Joins [32] using
latitude and longitude information are often required
to address missing data problems and are often not
supported by general DW tools. Outliers [33] are also
difficult to address in generic DW tools due to the
need to include domain-specific information regarding
parameter ranges to distinguish between outliers and
noise. Although there are outlier detection operations
supported across several generic DW tools, semantic
data assistance (for example using domain ontologies
[34]) for correlating data with other attributes that are
important to decide whether the value is an outlier is
not supported.

2.4. Conceptual Data Manipulation Languages

Conceptual data manipulation languages are used
to represent or describe data in a high level and
abstract form [35], playing the role of Intermediate
Representation Languages (IRLs) in a language
processing framework [36]. IRLs facilitate the mapping
between source and target languages by providing
language constructs that are platform agnostic, and
that can be easily translated into several target
computational platforms and application programming
interfaces. Consider the building of a compiler for n
source languages (e.g. DW languages for three different
domains: education, health and traffic) and for m target
platforms/languages (e.g. Java, Python or R). In this

A CONCEPTUAL APPROACH FOR SUPPORTING TRAFFIC DATA WRANGLING TASKS 5

TABLE 2: Implementing a DW task using DW tools.

Step No. OR Trifacta Talend Mr DC Tabula R

No. Yes. No. No. No. Yes.
Yes. Yes. Yes. Yes. No. Yes.
No. No. No. No. No. Yes.
Yes. Yes. Yes No No. Yes.

No. Yes.

Yes. Yes. Yes. No. No. Yes.
Yes. Yes. Yes. No. No. Yes.
No. VYes. No. No. No. Yes.

o 1 O Ot = W NN
S
=
0
5
n
.
o

Capabilities and limitations of six of the most popular data

wrangling tools towards fulfilling the following traffic data
wrangling request: ”Retrieve the value of the average
speed of vehicles passing Chester Road on a Friday
between 17:00 and 18:00”.

scenario and without the use of an IRL, n*m is the
total number of language mappings required. With
the use of IRLs placed in the middle between the
high-level languages and the implementation layers, the
mapping of a source language to multiple platforms
using a compiler that maps from the IRL to each
target language is possible. Thus, IRLs provide
flexibility and extensibility when there is a need
to map a multitude of source languages to several
target platforms and APIs. The use of conceptual
data manipulation languages is particularly relevant in
today’s fast, dynamic and continuously evolving big
data platforms [37]. Conceptual data manipulation
languages enable data transformations to be expressed
as high-level abstractions [38], separating the problem
of data transformation and querying from the platform-
specific data format and application programming
interfaces.

Developing a conceptual data manipulation language
to implement DW tasks can benefit both developers and
users of DW tools, by isolating operator functionality
design from platform specific features, simplifying
development and enabling portability to a variety
of target platforms. The search for a minimal set
of operators that can address the majority of data
manipulation requirements is also another important
aspect of language engineering and is based in the
parsimony principle in language design [39].

An early work in conceptual languages for informa-
tion management is the Relational Algebra (RA)[40],
serving as foundation for database query languages, and
in particular for the Structured Query Language (SQL).
Later, with the proposal of new data models, RA has
been extended to address new functionality, for example
object-orientation giving rise to object-relational mod-
els, deductive object-oriented models [41], data quality

extensions [42] and algebras to exploit parallelism [43].

Our research has also been influenced by the work
on the Papyrus Interface Language (PIL) [44] which
serves as an intermediate notation between high-level
database languages such as SQL and QSQL and an
implementation layer notation. The main motivation
and novelty behind PIL was the development of
conceptual operators for representing functionality
related to some forms of exploitation of parallelism
[45] and optimization [46], such as merge operator
for performing simple iteration, aggregate operators
such as sum and average for performing reduction
and group by operator for performing grouping
functionality.

2.5. Conceptual Data Wrangling Approaches

An important direction relating to conceptual data
wrangling involves the development of organisational
repositories including a multitude of data sets where
end users are provided with self-service and agile data
management tools. These data repositories are known
as data lakes [5]. In data lakes, schemas (metadata) are
not created in advance of the creation of data instances
and are produced only when data is retrieved. Query
and information retrieval operations support both SQL
and NoSQL approaches. Key to the success of a data
lake is the development of data wrangling processes
and tools made available to end users, providing data
cleaning, integration and format conversion of raw
data sources into structured data readily available for
ingestion by analytical and business intelligence tools.
This approach often tries to anticipate the majority
of end-user requests to data and therefore provides
extensive development of pre-defined data wrangling
recipes implemented in the data lake. Compared
to other data wrangling approaches discussed in this
section and the approach proposed in this paper, data
lakes perform the process of data procurement before
the data wrangling process in contrast to procuring
data on the fly when requested. Data lakes also encode
several data wrangling recipes in advance based on the
most common data wrangling requests posed by end-
user communities.

A seminal work relating to the development of
conceptual DW language constructs is Potter's Wheel
[47], which incorporates data transformation operations
designed based on data manipulation constructs
introduced in [48], [49]. A subset of Potter's Wheel’s
operations are specified at an abstract level and
defined using formal methods, for example schema
manipulation operations such as Add, Drop and Copy
for creating a new column, removing a column
and copying a column, respectively. In addition,
more advanced operations are also provided such as
Merge and Split operations to concatenate data in
two columns and splitting a column data into two
columns, respectively. These operations provide core

6 S. SAMPAIO ET AL.

functionality, however advanced data manipulation
operations are still required to wrangle traffic data.

DataCommandr [50] is a data processing engine
based on a conceptual model [51], in which data
transformations are defined as functions applied over
data columns. The approach does not assume
the generation of new tables from existing ones,
as in relational algebra. In DataCommandr, set-
oriented operators such as joins and group-by are
explicitly avoided. However, a significant number of
traffic data wrangling requests rely on set-oriented
transformations, and so, it is not obvious how traffic
data wrangling requirements could benefit from this
approach, in that numerous iterations over simple
column-oriented operations would be necessary to fulfill
such requirements.

The VADA data wrangling system [52] focuses
on pay as you go data wrangling, proposing an
innovative architecture capable of incorporating user
feedback/priorities into the data wrangling process.
The functionalities involved in the data wrangling
process are represented as transducers (software
components with input/output dependencies defined
using Datalog [53]). The VADA architecture uses
a knowledge base to represent user requirements,
application domain and metadata. The VADA
approach also supports the high-level specification of
data wrangling tasks with minimal input from end
users.

In the next section, we show data wrangling examples
to articulate the importance of developing conceptual
DW languages with a particular emphasis on supporting
complex traffic data wrangling tasks.

3. TRAFFIC DATA WRANGLING EXAM-
PLES

Ezxample 1 shows a high-level description of a concise
and frequent traffic data analysis request that requires
a number of data wrangling steps when departing from
raw, sensor-collected data before the request can be
fulfilled. For the simplicity and relevance of this request
in traffic analysis, it is used throughout the paper as a
case study.

Example 1: What is the typical Friday Journey
Time (JT) for the fragment of Chester Road
stretching from the Poplar Road to the Hulme
area between 17:00 and 18:007

Chester Road is an arterial road in the city of
Manchester (United Kingdom) that links the city center
to other popular areas, for example, where the Old
Trafford Stadium is located as well as the Trafford
Centre, one of the largest shopping centers in the UK.
The fragment of Chester Road used in this example
has just over three miles in length and links residential
areas to the city center and the Old Trafford stadium.
As the specified time of the day is within rush hour

Site ID Date Lane Name Direction Name Class Name Headway (s) Gap (s) Speed (mph)
‘000000001083 00:01.2 SB_NS South Car 31.691
‘000000001083 00:08.0 SB_MID South Car 40.39
‘000000001083 00:13.0 SB_NS South Car 126 12.304 47.846
‘000000001083 00:14.1 NB_NS North Car 31.691
‘000000001083 00:26.0 NB_NS North Rigid 41632

FIGURE 1: Excerpt of Traffic Data File 1.

Site ID Date Lane Name Direction Name Class Name Headway (s) Gap (s) Speed (mph)
‘000000001415 00:00.1 SW SouthWest Car 46.602
‘000000001415 00:03.1 NE_NS NorthEast Car 36.039
‘000000001415 00:06.2 NE_NS NorthEast Car 3906 2839 32.932
‘000000001415 00:08.0 SW SouthWest Car 34.176
‘000000001415 00:13.1 SW SouthWest Car 3676 4.066 44117

FIGURE 2: Excerpt of Traffic Data File 2.

periods, heavy traffic is expected. The time of the year
when the data was collected is February 2018, when no
holidays or special scheduled events take place.

To prepare or ”"wrangle” the data to answer the
question asked in FEzample 1, three data files need
to be integrated, all of which were obtained from
the Manchester Traffic Authority, TfGM, information
systems. Two of them contain records describing
vehicles detected in February 2018, each generated
from a fixed location on Chester Road where Inductive
Loops constantly collect data. Between these two sites
Journey Time (JT) is to be estimated. Excerpts of
the files are shown in Figures 1 and 2. The third file
contains static data about each site of the city with fixed
sensors and provides information about the length of
the road fragment between two consecutive sites, such
as the ones considered in this section.

In the following paragraphs, a description of the
wrangling process that was carried out to get the
data files ready to answer the case study question
is provided. The wrangling process or "recipe” was
devised step-by-step and interactively using the open
source Trifacta data wrangling tool [17]. This process
is illustrated in Table 3, showing a rather long sequence
of data wrangling steps leading to the answer to the
question. It is worth pointing out that, while 11 steps
are described in the table, each step is composed of
multiple sub-steps, suggesting that a significant amount
of user interaction is required to answer a simple
traffic analysis question departing from the raw data
files provided. In addition, prior to Step 1, complex
processing involving the Datetime column, Date, in the
data files shown in Figures 1 and 2 had to be performed
because a selection operation based on day of the week
and time of the day is required in Example 1, but
the date and time information available from the files
includes only minutes and seconds when a vehicle was
detected. Therefore, iteration over all records of the
file identifying the start of a new hour and a new day
had to be performed. As this functionality is absent
in Trifacta, it was implemented as a separate piece of
Python code, and its result was input into Trifacta.

The rationale behind each data wrangling step in
Table 3 is explained as follows. While no order of
user actions is imposed by the tool, a view of possible

A CONCEPTUAL APPROACH FOR SUPPORTING TRAFFIC DATA WRANGLING TASKS 7

dependencies between actions and some background
in relational databases are required from a user to
successfully wrangle the files.

e Step 1 is required to bring the input files into
context and make them accessible from the same
location. This step is in fact composed of three sub-
steps, each associated with the loading of one of the
files. While it was not necessary to sequentially
upload the files into Trifacta in any particular
order, as suggested in Table 3, it is believed that
the decision to upload them before any other action
is performed does not incur any errors.

e Steps 2, 3 and 4 are associated with the disposal
of irrelevant columns. The decision about which
columns to discard from each of the files should
be based on knowledge of which columns should
be used to answer the question as well as on how
the files are to be integrated in later steps. In
this particular example, a union operation between
the files in Figures 1 and 2 is carried out in Step
5 to generate a single file from the two, and so,
following the removal of columns, the files should
present the same structure. Note that background
in relational databases is useful at this point as the
user should know that the union of two csv files
requires the files to present the same structure.
Because columns are removed one at a time in
Trifacta, each of Steps 2 and 3 is composed of
13 sub-steps since, for each file, 13 columns are
removed.

e Step 5 requires the user to work with a pop-
up window to input parameters for the union
operation involving the files in Figures 1 and 2.
The integrated file is called file; 5.

e Step 6 is associated with the extraction of
information about day of the week from the
Datetime column, and was carried out with the
use of the Trifacta function WEEKDAY. As a result,
a new column, Weekday is generated.

e In Step 7, the Datetime column was split into two
separate columns, one of type Date and another
of type Time, so that the selection predicate
’17:00:00°<= Time < ’18:00:00’ could be later
applied over the Time column. As in the previous
steps, this requires multiple actions from the user
to input parameters to the operation via a pop-up
window.

e Step 8 encompasses all the actions required to
allow the application of a number of selection
predicates over the file, such as Direction Name
= ’North’ or ’NorthEast’, depending on the
site, Weekday = ’Friday’, ’17:00:00°<= Time <
718:00:00°. Note that each selection requires
multiple actions from the user and each action is
typically performed one at a time.

e Step 9 is associated with the join between the
currently active file, file; 5, and the third file

TABLE 3: Data Wrangling with Trifacta for Example
1.

Step | Description

—_

upload the three input files (file1, filez and files)
remove all unwanted columns from file;

remove all unwanted columns from fileo

remove all unwanted columns from fileg

apply a union operation involving file; and files
extract "Weekday’ from ’Date’

apply filters

© 00 ~J O O Wi

apply average on ’Speed’
apply division between 'Average Speed’ and
"LinkLength’

—= =
= o

split the 'Date’ column into 'Date’ and "Time’ columns

apply a join operation between the current file and fileg

uploaded in Step 1, which contains the length of
the road fragment in consideration, LinkLength. As
in Step 5, a pop-up window is offered to the user to
allow parameterization of the operation. This join
is performed as a left join on the site IDs of the
files.

e Finally, Steps 10 and 11 are associated with the
calculation of Journey Time (JT) between the two
road sites, which requires obtaining the average
speed of vehicles going from one site to the other
during the specified time period, Average Speed, as
well as the length of the road fragment, LinkLength.

Despite the number of steps required to prepare the
data to answer the question in Example 1, Trifacta
is perhaps the most popular data wrangling tool,
particularly for its friendly user interface and flexibility
in allowing users to decide what step to do next. Its
generality, though, makes it not ideal for traffic data
wrangling, and the level of flexibility it offers leaves
complex decisions to be made by the traffic analyst.

A second and more complex traffic data wrangling
example is provided in Ezxample 2, where the average
and hourly speed of vehicles on rainy days is compared
against the average and hourly speed of vehicles on dry
days. For simplicity, the availability of the average
hourly speed of vehicles on dry days is assumed, and
the estimation of the average hourly speed of vehicles
on rainy days is made considering only one day of
the week, Friday. To prepare or "wrangle” the data
to answer the question asked in this example, the
traffic data collected for Chester Road (shown in Figure
1) needs to be integrated with two other files. One
of the files contains static data about each site of
the city with fixed sensors, which not only provides
information about the length of the road fragment
between two consecutive sites, used in the previous
example, but also latitude and longitude information
relating to each site, which is needed in this example.
The other file contains weather information provided
by the MET office, the United Kingdom’s national

8 S. SAMPAIO ET AL.

"name": "ALBEMARLE",
"country": "ENGLAND"
"continent": "EUROPE",

"elevation": "146.0",
"Period": [
{
"type": "Day",
"value": "2018-02-02z",
"Rep": [
{
npr. onn,
nHY: mGg. QM
npn. migog",
ngn, migm,
nqn, wyg g,
g mg0000",
g m3n,
npgn, wgm,
"Dp": "11.4",
ngn, mggon
be
{
npns nn,

FIGURE 3: Excerpt of the Weather Data File in JSON
Format.

weather service. An excerpt of this file is shown in
Figure 3. The file contains information about weather
measurement units, observation location, date, time,
and weather related details, such as temperature, wind
direction, and weather conditions. The observation
location is encoded as latitude and longitude; and
date and time are separated into two attributes, where
date is formatted in ISO 8601 standard and time is
represented as minutes calculated after midnight, i.e.
00:00. The weather condition is encoded in numbers
and different ranges of numbers represent different
weather conditions. As there are numerous possible
values representing the actual weather condition, these
values were generalized into several broader weather
conditions.

Example 2: On rainy weekdays, is the average
hourly speed of vehicles on Chester Road,
near Poplar Road, lower than that typically
observed on dry days?

The steps taken to wrangle the data files to answer
the question in Example 2 are described in Table 4.
File; denotes the traffic data file in Figure 1, filey
denotes the static site data file, and file3 denotes the
weather data file in Figure 3.

Using Trifacta to answer the question in Example 2
proved to be challenging for the reasons enumerated
below. In particular, only data wrangling functions
used to, for example, join two data files, group records
based on hour of the day, and calculate the average
speed of vehicles on rainy days could be performed using
Trifacta in a straightforward way. More complex traffic
data wrangling functions, such as the ones enumerated
below, had to be encoded in a programming language
and carried out outside Trifacta.

1. As in Example 1, a separate piece of Python code
implementing the complex processing involving the

TABLE 4: Data Wrangling with Trifacta for Example
2.

Step | Description

1 upload the three input files

2 remove all unwanted columns from file;

3 remove all unwanted columns from fileo

4 remove all unwanted columns from files

5 apply a join between the file; and files
(generating file; 2)

7 derive "Weekday’ from "Date’

6 split the 'Date’ column into 'Date’ and "Time’

8 apply filter (Weekday = ’Friday’)

9 join current file with files

10 apply filters associated with weather conditions

11 group records by hour of the day applying average
on ’'Speed’

Datetime column, Date, in the data files shown in
Figures 1 and 2 was used prior to loading the files
into Trifacta, as a later selection of records based
on day of the week had to be performed.

2. The integration between the traffic data files and
the weather data file required a complex join
operation involving time, latitude and longitude,
which could not be performed using Trifacta. The
reason is the fact that the latitude and longitude for
the traffic observation site were not identical to the
ones for the weather observation site. This was also
true for the date and time properties for the sites.
And so, a spatial-temporal join was implemented
in Python to enable matches between nearby
geographical locations and temporal properties.
This operation was used after the weather data file
was converted from its original json format into csv
format, also outside Trifacta.

3. Some of the available functionality within Trifacta
could not be successfully used in this example
without additional data manipulation outside
Trifacta, described as follows: (i) the facility to join
a json file with a csv file, because of the complex
nesting of elements in the json file causing the
need to manually remove some of the elements;
and (ii) the facility to visually display results using
bar charts, mainly because the histograms that are
automatically provided at the top of each column
in a Trifacta csv file were not detailed enough for
the purposes of the application and could not be
customized.

The examples discussed above show the considerable
semantic gap between the high-level data wrangling
requirements expressed in Erample 1 and Erample 2,
the steps used in the data wrangling recipes as outlined
in tables 3 and 4, respectively, and the execution
of the recipes using a combination of GUI-based
manipulations, available in DW tools, combined with
coding of tasks using programming languages to address

A CONCEPTUAL APPROACH FOR SUPPORTING TRAFFIC DATA WRANGLING TASKS 9

steps that GUI-based tools are unable to perform. And
S0, in this paper, we argue for the principle of separation
of concerns [54] to be applied to the overall problem
of data wrangling, with data wrangling requirements
expressed in a conceptual high-level notation (D?WL),
the DW recipes that need to be performed towards
addressing the high-level requirements to be expressed
in an intermediate conceptual DW operator language
(DWL), and for the intermediate operator language
to be mapped into target application programming
interface functionality of existing DW tools and data
science programming languages. This will support the
separation of three key aspects of the DW process:
(1) describe what needs to be wrangled; (2) organize
the DW sequencing into steps involving simple DW
functions that together form the DW recipe; (3)
executing the recipe in the target data/computational
environment. The following section illustrates the
conceptual data wrangling approach proposed in this

paper.

4. A CONCEPTUAL APPROACH TO
TRAFFIC DATA WRANGLING

4.1. Architecture Overview

Figure 6 illustrates the proposed Data Wrangling (DW)
architecture. The architecture is composed of three
main layers: (1) an external User Interface (UI) layer,
(2) a conceptual operator layer, and (3) a physical layer.
The UI layer enables the submission of expressions
in a domain-specific language (D?*WL) to be input to
the system. As a result of on-going work, the user
will be able to write D?WL expressions with the help
of a graphical user interface (GUI), in addition to
writing the expressions directly using the syntax of
the language. This GUI should also allow the user to
visualize the desired remote or local documents before
inputting them into the system.

Transformation of a user’s D?WL expression into an
executable plan is gradual and takes place within a
component in the UI layer, the parser, as well as a
number of other components in the conceptual operator
and physical layers. The parser is responsible for
validating the submitted expression by checking the
correctness of the syntax, the URLs to input data
sources and any available schema information. For the
examples described in Section 3, no schema information
is used, therefore understanding of the structure of
the documents specified in the input expression is left
to the user, who not only needs to know where the
documents are located, but also have a understanding
of their schema prior to writing an expression. Once the
input expression is validated, it is mapped into an initial
DWL expression, which is then input to the conceptual
operator layer.

In the conceptual operator layer, a number of
DWL expressions are generated from the initial DWL
expression generated during parsing, from which one is

selected to be input to the physical layer. Currently,
the number of expressions considered in this process
is limited and the expressions are generated via the
application of a few heuristics. Examples of heuristics
include application of data filters as early as possible
in the process, possibly before the execution of any
data integration operation. The selection of the best
expression is also heuristic-based.

In the physical layer, the selected DWL expression
is mapped into a workflow composed of calls to web
services. By using descriptions of the services and other
information encoded in the input DWL expression, such
as the order in which services are to be called and the
format of the input data, a physical execution plan is
generated. Considering all servers from which similar
DW functionality is available, the server that offers all
(or most) of the functions required to fulfill the DW
expression is chosen as the main source of functionality
and the location where the expression is to be executed.
This simple heuristic helps avoiding overhead costs
associated with the transmission of intermediate results
through the network, by allowing all or most of a DW
job to be carried out in a single location. However, it
is not always the case that one server will contain all
the necessary functionality to fulfill a DW request and,
so, transmission of input and output between servers is
sometimes inevitable.

This stage of the input transformation is associated
with a number of challenges that are to be addressed
in future work. For example, investigation of the
possibility of using machine learning techniques in the
generation of equivalent DWL expressions from a single
one, and of methods for mapping DWL functions into
appropriate distributed services (services composition)
considering a cost model and service descriptions.

4.2. The Declarative Language Used in the
External Layer

The declarative language, D?WL, is designed for data
analysts with limited or no programming skills and so it
is based on a small number of clauses. The main clauses
are used to define the location and format of input
data sources (the FROM clause), the location and format
of results (the TO clause), the main data wrangling
activities to be carried out (the WRANGLE BY clause),
the data elements to be present in the result data set
(the SELECT clause), and other data wrangling activities
using clauses such as GROUPBY.

Figures 4 and 5 show D?WL expressions for the
traffic data wrangling examples 1 and 2, respectively,
described in Section 3. The expression in Figure
4 uses all the main clauses of the language. In
the SELECT clause shown in line 1, the structure
of the desired result is specified as a single column
and single row table, containing the calculated
JT (JTFri17to18oclock_1085_to_1415) for the road
fragment. The TO clause in line 5 specifies the location

10 S. SAMPAIO ET AL.

and the format of the output. Note that the output
is specified as a csv file that should contain the table
specified in the SELECT clause in line 1. In the FROM
clause, line 2, the URL and format of the files to be
input to the wrangling process are described, in this
case, the two csv traffic data files and the csv file
describing static information about all the fixed sensor
collection sites in the city of Manchester. Similarly
to SQL, in the WHERE clause, line 6, row filters are
described, such as the ones constraining the days of the
week to only Friday, the time of the day to be between
17:00 and 18:00, and the lanes of the road, by selecting
the ones leading in the North direction. Finally, in
the WRANGLE BY clause, line 15, the data integration
operations of join and union, used to generate a single
file from the input ones, are defined. Note that, because
all input files to be integrated are in csv format, which
represent the canonical data manipulation format used
within the system, there is no need to convert the files
into csv prior to integration, which is done using the
TRANSFORM function (shown in Figure 5, line 13). Also
in line 15 of Figure 4, the data wrangling function
ENRICH_TIMESTAMP is used to format and add missing
information to an existing Timestamp or Datetime
column of the input file. This function is able to iterate
over the entire column, adding information such as
calendar dates and hour of the day, departing from an
initial date (provided as an input parameter) and time
(typically midnight). Note the use of another wrangling
function specific to traffic data, JT in the SELECT
clause (line 1), which takes two numerical parameters
as input (road length and speed) to calculate journey
time. Examples of other functions specific to traffic
data wrangling that are available to be used in other
examples include functions to convert speed, road
length and time units, e.g., from kilometers/hour to
miles/hour, etc.

Additional features of the language are illustrated
in the expression in Figure 5. For example, in lines
16, 17 and 18 a spatial temporal join operation is
used to integrate traffic with weather data where
latitude, longitude and time property values need to
be approximated rather than exact, where symbol ~ is
used. Note that the conversion of the weather data
file from json format into csv is requested by using the
TRANSFORM function in line 13. It is worth pointing out
that csv is the canonical data format, thus all input
files that are not in csv need to be converted into csv
format before being integrated and further processed.
Also note in the SELECT clause (line 1) the request to
display the results (24 speed averages for each hour of
the day considering all Fridays of February 2018) as a
bar plot, to be stored in a pdf file, as specified in the
TO clause in line 8.

While data integration operations can be specified
in the WRANGLE BY, WHERE and FROM clauses (e.g., left
joins), the data wrangling operations that represent
extensions to the classic SQL are mostly requested in

—

SELECT JT(LinkLength, AVG(Speed_in_MPH))

FROM http://www informationtraffic.com/rawpvr_2018-02-01_28d_1083 csvas f1,
http:/lwww.informationtraffic. com/rawpvr_2018-02-01_28d_1415.csv as f2,
http:/lwww.informationtraffic. com/StaticSitesInfo.csv as f3

TO http:/lwww.informationtraffic.com/example_1_results.csv

WHERE f1 Direction_Name = North' AND

DAYOFWEEK(DATE(f1.Date)) ='6' AND

TIME(f1.Date) >="17:00:00' AND TIME(f1.Date) < '18:00:00' AND

f2 Direction_Name = 'NorthEast' AND

DAYOFWEEK(DATE(f2.Date)) ='6' AND

TIME(f2 Date) >="17:00:00' AND TIME(f2.Date) < '18:00:00' AND

(f1.Site_ID = 13.StartSite_ID OR f2.Site_ID =13 EndSite_ID) AND

f3.StartSite_ID ='000000001083' AND 3.EndSite_ID = '000000001415'

WRANGLE BY ENRICH_TIMESTAMP(f1.Date, %d/%c/%Y %H:%i.%s',"01/02/2018"),

ENRICH_TIMESTAMP(§2.Date, %d/%c/%Y %H:%.%s',"01/02/2018"),
(f1 UNION2);

W oo~ O U s W N

= s s s e
I T S ST S S =)

FIGURE 4: D?*WL expression for Example 1.

SELECT PLOT(bar, AVG(f1.Speed_in_MPH), m="Hourly Avg Speeds" h, Ynames=(
"00:00", "01:00", "02:00", "03:00", "04:00", "05:00","06:00", "07:00", "08:00","09:00",
"10:00", "11:00","12:00", "13:00", "14:00","16:00", "16:00", "17:00","18:00", "19:00",
"20:00","21:00", "22:00", "23:00"))
FROM http://www.informationtraffic.com/rawpvr_2018-02-01_28d_1083.csv as f1,
htp://www informationtraffic.com/StaticSitesInfo.csv as f2,
http:/www informationweather.com/weatherUK JSON as f3
TO http://www informationtraffic.com/example_2_results pdf
WHERE f1 Direction_Name = North' AND DAYOFWEEK(DATE(f1 Date)) ='6' AND
f1.Site_ID = f2 StartSite_ID AND f3.W = 'wet
WRANGLE BY TRANSFORM(f3, json, csv),
ENRICH_TIMESTAMP(f1.Date, %d/%c/%Y %H','01/02/2018"),
ENRICH_TIMESTAMP(f3.period, %d/%c/%Y %H'),
(f1 JOIN {3 ON (f1 Latitude ~ f3 lat AND 1 Longitude ~ f3.lon AND
DATE(f1 Date) = DATE(f3.period) AND
TIME(f1.Date) ~ TIME(f3.period))) as 4

W~ U s W N

e e =
o s W e O

GROUP BY TIME(f1 Date);

FIGURE 5: D?WL expression for Example 2.

the WRANGLE BY clause.

Compared to the data wrangling processes described
in Section 3 for both examples, the expressions in
Figures 4 and 5 present the user with the advantage
of avoiding the construction of platform-specific data
wrangling strategies step-by-step and, instead, writing
a single expression, or a number of them, to articulate
in a declarative way what information management
and data wrangling tasks are required. Also, the user
is given the advantage of not having to specify DW
tasks in the order they need to be executed, as the
system orders them according to their dependencies.
The choice of the number of expressions to write for
obtaining a result is left to the user and may depend
on the user’s need to visualize intermediate results.
Future work includes the proposal of additional syntax
for expressing the need for visualization of multiple
intermediate results within a single expression. Another

A CONCEPTUAL APPROACH FOR SUPPORTING TRAFFIC DATA WRANGLING TASKS 11

Declarative Data Wrangling Expression (D2WL)

‘ Wrangling and
analysis
Declarative Data Wrangling Language (D2WL) '
Parser 1
3 |
'
I
Intermediate OP: AVG Data wrangling
representation plan
of conceptual _—
operators OP:Outlier OP:Missing \
(owL) Data E
T e !
OP:Sampl | i | H
. Daﬂmp QP.Retne OP:Has OP:Refor !
ving Null matting
Conceptual to Physical Mapping Data wirangling
. plan operator
Physical R sava Python Open-Refine

i) implementations
implementation

of conceptual '

operators in '

target APls H

Data wrangling
execution on

Heterogeneous
data sources

Data sources

FIGURE 6: Data wrangling system architecture.

advantage relates to the provision of combinations of
data wrangling functionalities that would not typically
be found in any single tool, including functions that are
specifically designed to facilitate traffic data wrangling.
It is also worth pointing out that the approach
provides more extensibility and flexibility in the
visualization of results, allowing the user to customize
visualization facilities via a number of parameters.
One potential future direction to explore is the
extension of the notation to incorporate comprehensive
graphical primitives such as the constructs proposed
in the Protovis toolkit [55], and an evaluation of the
complexity of data wrangling tasks achieved and DW
effort savings obtained with the conceptual approach
to data wrangling.

4.3. The Conceptual Operator Layer

Figures 7 and 8 show expressions in DWL into which
the D?WL expressions in Figures 4 and 5, respectively,
are mapped following parsing. A high-level description
of each operator is provided as follows:

e Although it is omitted, for simplicity, in Figure
7, lines 1, 6 and 11, and in Figure 8 in lines 2,
8 and 12, the read operator takes an URL as
input parameter identifying the name, format and
location of the input file, possibly on a remote
server, and brings the file into context. In example
1 (Figure 7), the input files are csv files obtained
from TfGM Information Systems. In example 2
(Figure 8), a json file obtained from the MET Office
data point is also used, in addition to the TfGM
files.

e Operator transform takes a file, a from-format,
and a to-format as input parameters and converts

S w R W

DR N NN RN RN ER R BB B R R R
L T N P R N N T R N A T N S

write(project(join(union(project(select{enrich_timestamp(read(1),

Date,'%d/%c/%Y %H',"01/02/2018")

Direction_Name ="North' AND

DAYOFWEEK(DATE(Date)) ='6' AND

TIME(Date) >="17:00:00' AND TIME(Date) <'18:00:00'>)

<Site_ID, Speed in_MPH>)
project{select{enrich_timestamp(read(f2),

Date,
"%d/%c/%Y %H',
"01/02/2018")

<Direction_Name = 'North' AND

DAYOFWEEK(DATE(Date)) ='6' AND

TIME(Date) >="17-00:00' AND

TIME(Date) < '18:00:00">)

<Site_ID, Speed_in_MPH>))
project(select{read(f3),
StartSite_1D='000000001083' AND EndSite_ID='000000001415'),
<StartSite_ID, EndSite_ID, LinkLength>),
f3.StarSite_ID=f1.Site_ID OR f3.EndSite_id=f2 Site_ID),
<LinkLength, Speed_in_MPH>),
JTiLinkLength AVG(Speed_in MPH)),
http://www.informationtraffic.com/example_1_results.csv)

FIGURE 7: DWL expression for Example 1.

write{
barplot(
group._by(
project(spatialtemporal_join(join(project{select(enrich_timestamp(read(f1),
Date, "%d/%c/%Y %H,
"01/02/2018")
Direction.Mame = "North” AND
DAYOFWEEK(DATE(Date)) = '6')
<Site.ID. Date, Speed in MPH>)
project(select(read(f2),
StartSite 1D, = *000000001083")
<StartSi Latitude.Longitude>).
f1.Site_ID = f2.StartSite_ID)

(transform(read(t3),
ison. gsv)
W='wet),
3.period,"%d/%c/%Y %H')
<period, lat, long>),
f2Latitude ~ f3.1at AND f2 Longitude ~ f3.lon
AND DATE(f1.Date) = DATE(f3.period)
AND TIME(f1.Date) ~ TIME(f3.period)),
<Date, Speed.in MPH>).
AVG(f1.Speed_in_MPH), TIME(f1.Date)),
Avg Speed.in MPH, m="Hourly Avg Speeds”, h,
Ynames=("00:00","01:00","02:00",703:00",704:00",05:00","06:00","07:00","08: 00"
"09:00",710:00","11:00",12:00","13:00"," 14:00"," 15:00"," 16:00"," 17:00",
"18:007,719:00","20:00","21:00","22:00"," 23:007)),
http:/fwww.informationtraffic.com/example_2_results.pdf)

proje ich,

FIGURE 8: DWL expression for Example 2.

the file from its original format (from-format) into
a csv format (to-format). A transform operator
is shown in lines 12 and 13 of Figure 8, where the
conversion is from json format.

Operator enrich_timestamp complements missing
information from a Timestamp or Datetime column
while formatting it according to a desired format
and, possibly, a start date. Its input parameters
are the name of the Datetime column, the desired
format and, in some cases, a start date. In Figure
7 two enrich_timestamp operators appear in lines
1 (with input parameters extending to line 2) and
6 (with input parameters extending to line 7). In
Figure 8 two enrich_timestamp operators appear
in lines 2 (with input parameters extending to lines
3 and 4) and 12 (with input parameters extending
to line 15).

Operator select filters out the input’s rows for

12

S. SAMPAIO ET AL.

which the specified condition evaluates to false.
Its input parameters include an input table and
a boolean expression. In Figure 7, three select
operators appear in lines 1 (with input parameters
extending to lines 3 and 4), 6 (with input
parameters extending to lines 8 and 9) and 11 (with
input parameters extending to line 12). In Figure
8, three select operators appear in lines 2 (with
input parameters extending to lines 5 and 6), 8
(with input parameters extending to line 9) and 12
(with input parameters extending to line 14).
Operator union merges two input tables, passed
as input parameters, with similar structure into a
single one. In Figure 7, one union operator appears
in line 1 (with input parameters extending to line
10).

Operator join has the same semantics as SQL’s
left_join, i.e., it integrates two datasets, dI and
d2 on given key columns to which they are
joined, resulting in a third dataset, which contains
all observations from dI coupled with matching
observations from d2. Its input parameters are the
two tables to be joined and a boolean expression
representing the join condition. In Figure 7, a join
operator appears in line 1 (with input parameters
extending to line 14). In Figure 8, a join operator
appears in line 2 (with input parameters extending
to line 11).

Operator spatialtemporal_join is associated
with spatial temporal functionality to calculate
approximated matches of geographical locations
using latitude and longitude, as well as time
related approximations, as described in Section
3. Its input parameters are the two tables to
be joined and a boolean expression representing
the join condition, which typically involves
latitude and longitude valued columns and,
possibly, time-related columns. In Figure 8, a
spatialtemporal_join operator appears in line 2
(with input parameters extending to line 19).
Operator project selects columns from the input
table to be kept for the next steps of the
processing, while the ones which are not present
in the operator’s input list of column names are
discarded. Both the input table and the list of
column names are passed to the operator as input
parameters. In Figure 7, two project operators
appear in lines 1 (with input parameters extending
to line 5, and to line 15, each), one in line 6 (with
input parameters extending to line 10) and another
one in line 11 (with input parameters extending
to line 13). In Figure8, two project operators
appear in line 2 (with input parameters extending
to line 7 and line 20, each), one in line 8 (with input
parameters extending to line 10) and another one
in line 12 (with input parameters extending to line
16).

Operator group_by groups rows of an input dataset

according to the values in a list of columns, while
applying an aggregate function over one of the
columns. The input dataset, list of columns
and aggregate function are passed to the operator
as input parameters. In Figure 8, a group_by
operator appears in line 1 (with input parameters
extending to line 21).

Operator write writes its input into a file whose
location and type are specified in an URL. Its
input parameters typically include an input table
and an URL, but can also include the output of a
visualization operator that can be written to a pdf
file. In Figure 7, a write operator appears in line
1 (with input parameters extending to line 22). In
Figure 8, a write operator appears in line 1 (with
input parameters extending to line 28).

Operator barplot is a visualisation operator that
draws a barplot from its input parameters, which
include an input table, from which values for the x
and y axis are provided, display orientation, legend,
and labels. In Figure 8a barplot operator appears
in line 2 (with input parameters extending to line
27).

The mapping from a D?WL to a DWL expression

is performed during parsing, where a canonical DWL
expression is generated and input to the conceptual
layer for improvement via the application of a few
heuristics. A few of the most basic mapping rules are
described as follows:

A SELECT clause is mapped into a project
operator, which selects a number of columns from
its input dataset to be displayed as results.

A FROM clause is mapped into one or more read
operators, each associated with an input dataset.
A TO clause has is mapped into the write operator.
A WHERE clause is mapped into one or more select
and/or join operators, where the expressions in
this clause are interpreted as selection and join
predicates.

A WRANGLE BY clause can be mapped into a
variety of conceptual operators, depending on
which DW tasks are specified in this clause,
including transform, enrich_timestamp, union
and spatialtemporal_join.

A GROUP BY clause is mapped into a group_by
operator.

D?WL functions such as JT, AVG, DATE, DAYOFWEEK,
TIME, PLOT, etc. are mapped into their conceptual
counterparts, which have the same name (with
the exception of PLOT, which has a number of
counterparts) and list of input parameters.

Note that one of the main heuristics applied to the

canonical DWL expression generated during parsing
relates to the insertion of project operators into the
expression to discard columns that are irrelevant to
the remaining processing, decreasing the size of the
intermediate results.

A CONCEPTUAL APPROACH FOR SUPPORTING TRAFFIC DATA WRANGLING TASKS 13

The output produced in the conceptual operator layer
is a DWL expression that is input to the physical
layer to be ultimately mapped into a sequence of
workflows, where each workflow is composed of input
and output ports and a set of services orchestrated with
the support of a workflow management tool. In Section
4.4 the functionality associated with the physical layer
is described.

4.4. The Physical Implementation Layer

In the physical layer, each operator in the input DWL
expression is mapped into a workflow that encompasses
one of more calls to web services. To manage these calls,
the Taverna workflow management system [56] is used
to orchestrate and execute DW operations implemented
within different target tools. The choice of each service
composing the implementation of a DWL expression is
currently made using heuristics based on the availability
of functionality from a number of service providers and
on minimizing communication costs. For example, once
the input data files to a DWL expression are retrieved
from their sources, the intermediate results derived from
them are forced to be transferred from one service
to another without being brought to the client. In
other words, due to the large sizes of data files, all
processing takes place on the remote servers, and the
servers of choice are the ones that offer the majority
of the required functionality. It is the responsibility of
the write operator to transfer the final result to a data
server to be accessed by the client.

Figure 9 illustrates the workflow representation of the
DWL read operator used in the expression shown in
Figure 7. Each argument of an operator is mapped
into an input port in a Taverna workflow and its
results, mapped into output ports of the workflow.
A physical layer workflow typically includes three
processors, each associated with either a Beanshell
service or a REST service. For example, as Figure 9
suggests, a RESTful component was used to call the
read operator, a function in the R package Utils,
offered as a RESTful (OpenCPU framework) web
service. The input argument to R’s read operation is
an URL, which is sent to the server as an HT'TP request
body, encoded as a Taverna Beanshell component. This
component offers the advantage of allowing parameters
with special characters to be encoded into a format that
is accepted by HTTP. R’s read operator then imports
a dataset from a remote server and outputs an URI
that directs towards the same data set, which may be
stored locally or on a remote server. The result data of
a wrangling workflow is referred to by the data session
key, also encoded as a Taverna Beanshell component,
as illustrated in Figure 9, and this key is passed from
one workflow to the next.

: file URL

Beanshell service

Read

REST gervice

Data file € Read (file URL)
v
Workflow name

Activity
Processor

Beanshell service

Workflow output port=
Data file

FIGURE 9: Details of the Taverna workflow for the
conceptual read operation.

4.4.1. Data Wrangling Tools and Functions

Table 5 shows associations between each DW tool
that has been considered as possible service provider
for examples 1 and 2, and the DW functionality
available from its API. Note that Trifacta in not in
the table because its API is not available. Also, note
the limitations of OpenRefine compared to the DW
functionality offered by R’s packages such as tidyr,
dplyr and ggplot2. Using the operations from these
packages, the majority of the wrangling requirements
from the examples are satisfied. The main exceptions
include specific traffic DW functionality, which had to
be implemented in Python, e.g., enrich/complement
timestamp and the spatial and temporal join and
OpenRefine’s facilities to transform a json file into a
csv file, because R’s facilities could not handle lists of
pairs of values, present in the json input file to example
2.

The developed algorithm for the function responsible
for enriching/complementing a timestamp is based on
the following assumptions: (i) observations are pre-
sorted in ascending order, so that the oldest observation
is placed first in the file; and (ii) vehicles are detected at
each hour within the observed period. More specifically,
the algorithm iterates through the observations in
the dataset and, as it progresses, performs checks to
compare if the minute of the current observation, n,
is less than that of the previous observation, n — 1.
If it is, the hour is incremented. Furthermore, the
hour is checked to find if it has surpassed the day limit
of 24 hours. If so, then the day is incremented and
hour restarted to zero. The enriched timestamp is then
concatenated to the original traffic data.

The spatial and temporal join algorithm solves
geospatial (i.e., latitude and longitude) entity matching
problems by implementing coordinate matching [57].
The distance function used in the implementation of

14 S. SAMPAIO ET AL.

Algorithm 1 Spatial and Temporal Join Pseudocode

TABLE 5: Tools and Respective Functions Considered
in Examples 1 and 2

General Funct.

OpenRefine

Python

import tabular file format
import JSON file format
export to tabular file
select columns

filter

create column

rename column

enrich timestamp

group by

summarize

join

spatial temporal join
bar chart

Slole

>

SRR

S

Services Layer:

1: function SPACETIMEJOIN(x,y, threshold)
2: % = READFROMURL(x)
3 y = READFROMURL(y)
4: d = ARRAY()
5: ZTrows = SIZEOF(X)
6 for it = 0 to x,ouws do
7 8 = CALCULATEDISTANCES(X_it, §)
8 SORTASCENDING(6)
9: if 69 < threshold then
10: dit = 60
11: else
12: di; = NA
13: end if
14: end for
15: result = MERGE(X, d)
return result
16: end function
17: function CALCULATEDISTANCES(z,y)
18: d_haversine = HAVERSINEDISTANCE(z,y)
19: d_temporal = TIMEDISTANCE(z,y)
20: 0 = MERGE(d_haversine, d_temporal)
return J

21: end function

coordinate matching is the Cosine-Haversine formula
described in [58], which calculates the distance between
two geospatial locations. As both traffic and weather
datasets are spatial and temporal, and coordinate
matching solves only the geospatial aspect of the
problem, the temporal aspect was solved using simple
temporal matching based on hour of the day.

Due to the complexity involved in joining approxi-
mate latitude, longitude and time information, the spa-
tial and temporal join algorithm is shown in Algorithm
1. More specifically, the algorithm takes datasets z and
y as parameters, and configurable thresholds for the
time and space distances, so that if the nearest weather
observation is greater than the accepted threshold, then
it is neglected. The function yields a dataset which
represents the merging of the two input datasets. Simi-
lar to the timestamp enrichment function, the resulting
dataset is then given a name and stored.

Figure 10 shows an activity flow for example 2,
associating the functions used in the execution of
example 2 with the tool from which the function was
called. Note that, as Taverna calls a service from
one of the tools, the server responds by executing one
step in the workflow, which can be associated with
the retrieval of a relevant file from one of the data
sources, denoted as DSi; (i.e., file j retrieved from
Data Source i). Also, all operators shown in this
figure represent implementations associated with one
or more conceptual operators offered as services called
from Taverna. The mappings from the DWL operators
into the services shown in Figure 10 are described in
Table 6.

Services Layer:
;]
T

Services Layer:
0 5

Data Store Layer:

Python Services
T

Remote Data Store
T

o~
Enrich date

read.csv

i
Retrieve DS14 |
i

|

|

|

|

|

I

I
.

Retrieve DS1

I

:
3 ‘
- : :

mutate = ! |

I i
read.csv] Retreve DSty
|
left_join ! 1 +
| | 7
i i
T

group_by

summarise

1
i
j 1
i i
T |
import JSON o RetieveDSty [+
remove columhs ‘ﬂ
1
i

rename columhs

fill down columns

I
|
|

create columns !

export to csy |
i
i
i
i
i
i

N i
spatial and temporal join] Retieve DS,
>

>
Retrieve DS1g

v

Rereve DSt pg 1

<
<

read.csv

mutate

select

i —
I
|
|
I
|
|
|
|
|

group_by

summarise

bar_chart

i
i
|

mutate | i |
i
i
i

Retrieve DSty 5

Retrieve bar chartfor DSty 53 |

\A 4

FIGURE 10: Activity Flow for Example 2.

4.4.2. Interactions between Taverna and the Tools

R, OpenRefine and Python services were each assigned
to a designated server in the current prototype. While
OpenCPU served DW operations from R packages,
the OpenRefine server hosted a list of its own
functionalities, and a separate Python server provided
operations that were specific for traffic data wrangling.
For communication between services to be possible,
data formats had to be translated into one which the
destination service could work with. For example, in
example 2, OpenRefine’s json to csv service was used
so that the data could become readable to all other
services. As all services commonly work with tabular

A CONCEPTUAL APPROACH FOR SUPPORTING TRAFFIC DATA WRANGLING TASKS 15

TABLE 6: Mappings from the DWL Operators to the
Functions Implemented within the Tools for Example
2.

Physical Op.

read import JSON or read.csv
transform remove, rename, fill down
and create column, and export
to CSV

enrich date

Conceptual Op.

enrich_timestamp

select filter
project remove column or select
join left_join
spatialtemporal_join | spatial and temporal join
group_by group-by and mutate
barplot bar_chart
write export to CSV

data format, i.e., CSV, this became the preferred data
format.

As OpenRefine generally forces its clients to
download any datasets it exports, a special download
service was implemented to prevent the CSV file output
by OpenRefine to be transmitted to Taverna, in the
middle of the execution of the task. This service
interacted with the OpenRefine server to enable the
exported OpenRefine project to be stored rather than
sent to Taverna.

The interactions between Taverna with the three
OpenRefine’s functions, £ill down, remove column,
rename column, and create column (described in
Section 4.4.1) were implemented using nested workflows
configured to handle a list of parameters. As such,
filling down, dropping, and renaming of multiple
columns could be performed in a single interaction.

Once the CSV file exported by OpenRefine was
imported by R’s read service via the file’s session
key, other R services could process the file, such as
R’s select, filter, groupby, summarize, mutate and
left_join. Each of these services produced a data
session key which pointed to its respective result. Thus,
a sequential interaction to each DW function in R could
be performed.

The interactions between Taverna and the Python
services were similar to the previously described
interactions with OpenRefine and R, where parameters
were firstly encoded to a HT'TP-accepted format using
the Beanshell component; the encoded parameters were
then mapped as the request body of a REST service
component; and the output of both interactions was an
URL pointing to the result datasets.

While the Taverna interactions with the OpenCPU
and Python servers were straightforward, the inter-
actions with the OpenRefine server posed challenges,
mainly for the following reasons: (i) OpenRefine’s
server specifically demanded any service request to be
encoded in multiple parts; (ii) the process by which
OpenRefine imports files is asynchronous and so, Open-

Refine does not send a response immediately. Thus, the
status of the process has to be repeatedly checked un-
til the file is ready to be imported by the OpenRefine
server. This repeated interaction was implemented us-
ing a nested workflow; (iii) similar to the file import
step of the interaction, project creation in OpenRefine
is also an asynchronous process, and so a similar so-
lution had to be applied. In conclusion, extensions of
the current system towards integrating new DW tools
presents challenging API integration issues due to the
specific execution models of each target tool’s API.

5. CONCLUSIONS

In this paper we argue for the development of a set of
conceptual data wrangling constructs and a flexible and
extensible DW architecture, to shield end users from the
complexity of low-level data wrangling APIs.

The main advantages derived from the proposed
approach relate to the possibility of reusing knowledge
and skills gained from the use of DW operations
across a wide range of tools and the potential for
creating automated optimization strategies to address
data wrangling requirements. We also believe that high-
level domain-specific data wrangling languages can have
a positive impact in improving the productivity of data
wranglers. Due to the complexity associated with the
DW process, there is often the need to apply several
DW tools, presenting significant challenges to the data
analyst. To address these challenges, the proposed
architecture combines advantages from existing DW
approaches by providing abstract and domain-specific
DW constructs minimizing the need for end users
to learn low-level programming APIs. The proposed
approach allows data analysts to take advantage of the
functionalities available in existing tools whilst focusing
at the conceptual aspects of the data handling task.

5.1. Limitations and Future Work

The approach discussed in this paper needs to be
underpinned by the development of a comprehensive
set of operators at the conceptual operator layer and
only a small range of examples were included in the
case study to show the viability of the approach. Both
the conceptual operator language (DWL) and the high-
level DSL (D*WL) need to be extended to incorporate
additional conceptual data wrangling operators, high-
level constructs to capture traffic domain requirements
and, potentially, constructs that demonstrate the
viability of the approach in other domains.

A comprehensive language design specification (ex-
tending the snapshot provided in Figure 11) will be in-
cluded in future work and also a formal description of
DWL and D?*WL and their semantics. Optimization of
the target data wrangling execution recipes (data wran-
gling execution plans) is also a challenging problem to
be investigated as part of future work. To be able to

16 S. SAMPAIO ET AL.

generate optimization strategies, we also need to de-
velop formalizations of the properties of the conceptual
operators to ensure soundness of the translation into
equivalent optimized data wrangling recipes.

Finally, we also plan to perform extensive end-user
evaluation comparing and contrasting the proposed
constructs in relation to the wrangling tools covered
in the literature review. From our experience working
with traffic data analysts and data scientists, we have
realized that some data wrangling operations may be
more effectively performed via direct manipulation of
visual constructs supported by user interfaces, and
that the inherent complexity involved in applying
the operations may require expert system support
incorporated into DW tools. These are two important
future research directions requiring further exploration
and empirical studies involving data scientists and
casual users of data wrangling tools.

For a more comprehensive assessment of the proposed
approach, we also plan to perform a number of end-
user experiments towards measuring productivity and
end-user ability to express requests using (D?*WL). User
productivity will be measured based on ability to tackle
DW tasks of varying levels of complexity, time, number
of steps required to complete the tasks, and overall user
acceptance of the proposed approach.

ACKNOWLEDGEMENT

The second author was supported by the Government
of the Kingdom of Saudi Arabia.

REFERENCES

[1] Lopes, J., Bento, J., Huang, E., Antoniou, C., and Ben-
Akiva, M. (2010) Traffic and mobility data collection
for real-time applications. 138th International IEEE
Conference on Intelligent Transportation Systems,
Funchal, Portugal, 19-22 Sept, pp. 216-223. IEEE, New
York.

[2] Hutchins, J., Ihler, A., and Smyth, P. (2008)
Probabilistic analysis of a large-scale urban traffic
sensor data set. In Gaber, M. M., Vatsavai, R. R.,
Omitaomu, O. A., Gama, J., Chawla, N. V., and
Ganguly, A. R. (eds.), Knowledge Discovery from
Sensor Data, Las Vegas, NV, USA, August 24-27, pp.
94-114. Springer, Berlin Heidelberg.

[3] Jagadish, H., Gehrke, J., Labrinidis, A., Papakonstanti-
nou, Y., Patel, J. M., Ramakrishnan, R., and Shahabi,
C. (2014) Big data and its technical challenges. Com-
munications of the ACM, 57, 86-94.

[4] Furche, T., Gottlob, G., Libkin, L., Orsi, G,
and Paton, N. (2016) Data wrangling for big data:
Challenges and opportunities. Advances in Database
Technology FEDBT 2016, Bordeaux, France, March
15-18 Advances in Database Technology, pp. 473-478.
University of Konstanz, Germany.

[5] Terrizzano, 1., Schwarz, P. M., Roth, M., and Colino,
J. E. (2015) Data wrangling: The challenging journey
from the wild to the lake. Proceedings of the

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

CIDR Conference, Asilomar, California, 4-7 January.
www.cidrdb.org.

Papazoglou, M. P. and van den Heuvel, W.-J.
(2007) Service oriented architectures: approaches,
technologies and research issues. The VLDB Journal,
16, 389-415.

Weske, M. (2007) Business Process Management -
Concepts, Languages, Architectures. Springer-Verlag
Berlin Heidelberg.

Guo, C., Jensen, C. S., and Yang, B. (2014) Towards
total traffic awareness. SIGMOD Record, 43, 18-23.
Oinn, T. M., Greenwood, R. M., Addis, M., Alpdemir,
M. N., Ferris, J., Glover, K. R., Goble, C. A., Goderis,
A., Hull, D., Marvin, D., Li, P., Lord, P. W., Pocock,
M. R., Senger, M., Stevens, R., Wipat, A., and Wroe,
C. (2006) Taverna: lessons in creating a workflow
environment for the life sciences. Concurrency and
Computation: Practice and Ezxperience, 18, 1067-1100.
Abiteboul, S., Hull, R., and Vianu, V. (eds.) (1995)
Foundations of Databases: The Logical Level, 1st
edition. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

Services, E. E. (2015) Data Science and Big Data
Analytics: Discovering, Analyzing, Visualizing and
Presenting Data. John Wiley Sons, New Jersey, United
States.

Kandel, S., Paepcke, A., Hellerstein, J., and Heer,
J. (2011) Wrangler: Interactive visual specification of
data transformation scripts. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
Vancouver, BC, Canada, May 7-12 CHI 11, pp. 3363—
3372. ACM, New York, NY, USA.

Tye Rattenbury, J. H., Joseph M. Hellerstein and
Kandel, S. (2016). Data wrangling techniques and
concept for agile analytics. https://www.trifacta.com.
[Online; accessed 03-09-2017].

Endel, F. and Piringer, H. (2015) Data wrangling:
Making data useful again. IFAC-PapersOnLine, 48,
111 — 112. 8th Vienna International Conference on
Mathematical Modelling.

Rahm, E. and Do, H. H. (2000) Data cleaning:
Problems and current approaches. IEEE Data
Engineering Bulletin, 23, 3—13.

Fowler, M. and Parsons, R. (2011) Domain-specific
Languages Addison-Wesley signature series. Addison-
Wesley, Boston, United States.

Trifacta (2017). Trifacta wrangler.
https://www.trifacta.com/. [Online; accessed 03-
09-2017].

OpenRefine-Google (2017). Openrefine tool.
https://github.com/OpenRefine/ OpenRefine /wiki/Ge-
neral-Refine-Expression-Language. [Online; accessed
03-09-2017].

Aho, A. V., Lam, M. S.; Sethi, R., and Ullman, J. D.
(2006) Compilers: Principles, Techniques, and Tools
(2nd Edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

Garey, M. R. and Johnson, D. S. (1990) Computers
and Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY,
USA.

A CONCEPTUAL APPROACH FOR SUPPORTING TRAFFIC DATA WRANGLING TASKS 17

(21]

(22]

23]

24]

[25]

[26]

27]

(28]

29]

30]

(31]

32]

(33]

(34]

(35]

(36]

37]

(38]

Batini, C., Lenzerini, M., and Navathe, S. B. (1986)
A comparative analysis of methodologies for database
schema integration. ACM Computing Surveys, 18,

323-364.
Aristaran, M., Tigas, M., and Merrill, J. B.
(2016). Tabula extract tables from pdfs.
http://tabula.technology/. [Online; accessed 01-
09-2017].
Github (2018). Mr. data converter.

https://thdoan.github.io/mr-data-converter/. [Online;
accessed 28-09-2018].

Cao, L. (2017) Data science: A comprehensive
overview. ACM Computing Surveys, 50, 1-42.
Meehan, J., Aslantas, C., Zdonik, S., Tatbul, N.,
and Du, J. (2017) Data ingestion for the connected
world. CIDR 2017, 8th Biennial Conference on
Innovative Data Systems Research, Chaminade, CA,
USA, January 8-11, 2017, Online Proceedings.
Abedjan, Z., Golab, L., and Naumann, F. (2015)
Profiling relational data: A survey. The VLDB
Journal, 24, 557-581.

Larsson, P. (2013). Evaluation of open source data
cleaning tools: Open refine and data wrangler.
https://courses.cs.washington.edu/courses/cse544 /13-
sp/final-projects/pl2-plarsson.pdf. [Online; accessed
28-09-2018].

Mike Tuchen, C. (2005).
https://www.talend.com/why-talend.
cessed 03-09-2017].

Thaka, R. and Gentleman, R. (1993). R programming

Talend.
[Online; ac-

language. https://www.r-project.org/. [Online;
accessed 03-09-2017].
Revesz, P. (2010) Introduction to Databases: From

Biological to Spatio-Temporal, 1st edition. Springer-
Verlag, London.

Guo, C., Jensen, C. S., and Yang, B. (2014) Towards
total traffic awareness. ACM SIGMOD Record, 43, 18—
23.

Jacox, E. H. and Samet, H. (2007) Spatial join
techniques. ACM Transactions on Database Systems,
32.

Aggarwal, C. C. (2013) Outlier Analysis. Springer-
Verlag, New York.

Guarino, N. (1998) Formal Ontology in Information
Systems: Proceedings of the 1st International Confer-
ence June 6-8, 1998, Trento, Italy, 1st edition. 10S
Press, Amsterdam, The Netherlands.

ter Hofstede, A. H., Proper, H. A., and Van Der Weide,
T. P. (1993) Formal definition of a conceptual language
for the description and manipulation of information
models. Information Systems, 18, 489-523.

Aho, A. V. and Ullman, J. D. (1977) Principles
of compiler design. Addison-Wesley, Boston, United
States.

Kune, R., Konugurthi, P. K., Agarwal, A., Chillarige,
R. R., and Buyya, R. (2016) The anatomy of big data
computing. Software Practice and Fxperience, 46, 79—
105.

Abelson, H. and Sussman, G. J. (1996) Structure and
Interpretation of Computer Programs, 2nd edition. MIT
Press, Cambridge, MA, USA.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

Beekhuizen, B., Bod, R., and Zuidema, W. (2013)
Three design principles of language: The search for
parsimony in redundancy. Language and speech, 56,
265-290.

Codd, E. F. (1970) A relational model of data for large
shared data banks. Communications of the ACM, 13,
377-387.

Sampaio, P. R. F. and Paton, N. W. (2000) Query
processing in doql: A deductive database language for
the odmg model. Data & Knowledge Engineering, 35,
1-38.

Mendes Sampaio, S. d. F., Dong, C., and Sampaio,
P. (2015) Dqg2s - a framework for data quality-
aware information management. FEzpert Systems with
Applications, 42, 8304-8326.

Sampaio, S. d. F. M., Paton, N. W., Smith, J.,
and Watson, P. (2006) Measuring and modelling the
performance of a parallel odmg compliant object
database server. Concurrency and Computation:
Practice and Experience, 18, 63-109.

Hasan, W. and Krishnamurthy, R. (1993) Pil: An
optimizable functional language for data intensive
applications. In Albano, A. and Morrison, R. (eds.),
Persistent Object Systems, San Miniato (Pisa), Italy,
September 1-4 1992, pp. 262-279. Springer London.
Graefe, G. (1996) Iterators, schedulers, and distributed-
memory parallelism. Software Practice and Ezxperience,
26, 427-452.

Jarke, M. and Koch, J. (1984) Query optimization in
database systems. ACM Computing Surveys, 16, 111—
152.

Raman, V. and Hellerstein, J. M. (2001) Potter’s wheel:
An interactive data cleaning system. Proceedings
of the 27th International Conference on Very Large
Data Bases, San Francisco, CA, USA, September 11
- 14, pp. 381-390. Morgan Kaufmann Publishers Inc.,
Massachusetts, United States.

Lakshmanan, L. V. S., Sadri, F., and Subramanian,
I. N. (1996) Schemasql - a language for interoperability
in relational multi-database systems. Proceedings
of the 22th International Conference on Very Large
Data Bases, San Francisco, CA, USA, September 3-
6, pp. 239-250. Morgan Kaufmann Publishers Inc.,
Massachusetts, United States.

Lee, M.-L., Ling, T. W., Lu, H., and Ko, Y. T.
(1999) Cleansing data for mining and warehousing.
Proceedings of the 10th International Conference on
Database and Expert Systems Applications, Florence,
Ttaly, August 30 - September 3 DEXA '99, pp. 751—
760. Springer-Verlag, London, UK.

Savinov, A. (2017). Data commandr — integrate,
transform, analyze. http://dc.conceptoriented.com.
[Online; accessed 03-09-2017].

Savinov, A. (2014) Concept-oriented model. In
Wang, J. (ed.), Encyclopedia of Business Analytics and
Optimization, pp. 502-511. IGI Global, Pennsylvania,
United States.

Konstantinou, N., Koehler, M., Abel, E., Civili, C.,
Neumayr, B., Sallinger, E., Fernandes, A. A., Gottlob,
G., Keane, J. A., Libkin, L., and Paton, N. W. (2017)
The vada architecture for cost-effective data wrangling.
Proceedings of the 2017 ACM International Conference

18

S. SAMPAIO ET AL.

(53]

[54]

[55]

[56]

[57]

(58]

on Management of Data, Chicago, Illinois, USA, May
14-19 SIGMOD 17, pp. 1599-1602. ACM, New York,
NY, USA.

Ceri, S., Gottlob, G., and Tanca, L. (2012) Logic
Programming and Databases, 1st edition. Springer-
Verlag, Berlin Heidelberg.

Dijkstra, E. W. (1982) On the role of scientific thought
(EWD447). Selected Writings on Computing: A
Personal Perspective, pp. 60—66. Springer-Verlag, New
York, NY.

Bostock, M. and Heer, J. (2009) Protovis: A graphical
toolkit for visualization. IEEE Transactions on
Visualization and Computer Graphics, 15, 1121-1128.
Apache (2014).
https://taverna.incubator.apache.org.
cessed 28-09-2018].

Sehgal, V., Getoor, L., and Viechnicki, P. D.
(2006) Entity resolution in geospatial data integration.
Proceedings of the 14th Annual ACM International
Symposium on Advances in Geographic Information
Systems, Arlington, Virginia, USA, November 10-11
GIS ’06, pp. 83-90. ACM, New York, NY, USA.
Robusto, C. C. (1957) The cosine-haversine formula.
The American Mathematical Monthly, 64, 38—40.

Taverna.
[Online; ac-

APPENDIX: SNAPSHOT OF D?WL’S
BNF

<query specification> =

SELECT [<set quantfier> | <select list> <table expression>
<select ist> =

<asterisk>

| <select sublist> [{ <comma> <select sublist> }...]

<select sublist> = <derived column> | <qualifier> <period> <asterisk>
<derived column> = <value expression> [<as clause> |
<table expression> ;=

<from clause>

<{o clause>

[<where clause> |

[<wrangle by clause>]

[<group by clause>]

[<having clause> |
<from clause> = FROM <from sublist> [<comma> <from sublist> |
<from sublist> = <URL expression> [<as clause> |
<URL expression> = <URL syntax rules>
<as clause> = [AS] <column name>
<content expression> = <content syntax rules>
<to clause> = TO <URL expression>
<wrangle by clause> = WRANGLE BY <wrangle by subclause> [{<comma> <wrangle
by subclause}...]

<wrangle subclause> =

<fransform expression>
[<enrichtimestamp expression>
[<join expression>

[<union expression>
[<filmissingvalue expression>

FIGURE 11: Snapshot of D?WL’s BNF.

