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The application of machine learning to software fault injection data has been
shown to be an effective approach for the generation of efficient error detection
mechanisms (EDMs). However, such approaches to the design of EDMs have
invariably adopted a fault model with a single-fault assumption, limiting the
relevance of the detectors and their evaluation. Software containing more than
a single fault is commonplace, with safety standards recognising that critical
failures are often the result of unlikely or unforeseen combinations of faults. This
paper addresses this shortcoming, demonstrating that it is possible to generate
efficient EDMs under simultaneous fault models. In particular, it is shown that
(i) efficient EDMs can be designed using fault injection data collected under
models accounting for the occurrence of simultaneous faults, (ii) exhaustive fault
injection under a simultaneous bit flip model can yield improved EDM efficiency,
(iii) exhaustive fault injection under a simultaneous bit flip model can be made
non-exhaustive and (iv) EDMs can be relocated within a software system using
program slicing, reducing the resource costs of experimentation to practicable

levels without sacrificing EDM efficiency.
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1. INTRODUCTION

The design of error detection mechanisms (EDMs) is
integral to the development of dependable software
systems [1]. EDMs are fundamentally concerned with
the detection of erroneous software states. Once
detected by an EDM, erroneous software states can
be handled by error recovery mechanisms (ERMs)
to maintain proper function. A failure to contain
the propagation of erroneous state is known to make
recovery more difficult, leading to a focus on the
efficiency of EDMs through measures such as coverage
and latency [2].

The effectiveness of an EDM has been shown to
depend on two factors. These factors are (i) the
error detection predicate that it implements and (ii)
its location in a software system [3]. This gives rise
to two related problems. Firstly, the EDM design
problem, which is concerned with the derivation of
an error detection predicate over program variables
that can be used for the detection of erroneous system
states. Secondly, the EDM location problem, which
is concerned with the identification of those software
locations at which an EDM will be most effective.
Though often treated as orthogonal for simplicity, the

interaction of the implemented error detection predicate
and the software location are demonstrably critical to
the efficiency of an EDM [4].

The efficiency of an EDM can be characterised by
completeness and accuracy [3]. Completeness is the
capability of an EDM to detect erroneous states, i.e., its
associated true positive rate. In contrast, accuracy is
the capability of an EDM to avoid incorrectly detecting
erroneous states, i.e., its associated false positive rate.
An erroneous state is one that will lead to system
failure if the error is not handled, where a failure is
characterised as a violation of a system specification.
An EDM that is complete and accurate is commonly
known as a perfect detector. Due to implementation
constraints, it is not generally possible to generate
or guarantee the existence of a perfect detector for a
particular software location [5].

The role of a fault model is to provide a means
for analysing the response of software system to
the presence a well defined set of faults, such that
appropriate EDMs and ERMs can be designed to
impart dependability. The assumption that faults do
not occur simultaneously or interact is a limitation
of many fault models and the software fault injection
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frameworks that implement them, not least because
software systems containing more than a single fault
are commonplace. Indeed, numerous existing safety
standards recognise that critical system failures are
often the result of unlikely or unforeseen interactions
combinations of faults [6].

It has been shown that efficient error detection
predicates for EDMs can be designed through the
application of machine learning algorithms to data sets
generated during software fault injection [7]. This
approach demonstrated, under a transient data value
fault model, that it was possible to generate error
detection predicates for specified locations with a true
positive rate of nearly 100% and a false positive rate
close to 0% for the detection of failure-inducing states.
As is consistent with the overwhelming majority of
software fault injection frameworks, these results were
achieved under a single-fault assumption, calling into
question their relevance in the context of real-world
software systems.

1.1. Problem Statement

In generating error detection predicates for EDMs
through the application of machine learning to fault
injection data, an implication of the single-fault
assumption is that the efficiency of the EDMs generated
is relevant in the context of a single fault. This
implication limits the application of these EDMs in
practical software systems.

This paper addresses this problem by demonstrating
that practicable simultaneous fault injection can be
used to generate efficient EDMs for a specified location
in a software system. In doing this it is shown that
the adoption of a simultaneous fault model enables
a larger set of faults to be captured than existing
models that make the single-fault assumption. The
viability of simultaneous fault models is based on results
demonstrating that exhaustive fault injection under a
simultaneous bit flip model can be made non-exhaustive
and that EDMs can be relocated without regeneration.

1.2. Contributions

This paper makes several specific contributions to the
design of efficient EDMs. In particular, the research
presented demonstrates that:

• Efficient EDMs can be designed using fault
injection data collected under models accounting
for the occurrence of simultaneous faults;

• Exhaustive fault injection under a simultaneous bit
flip model can yield better EDM efficiency than
under a non-simultaneous fault model;

• Exhaustive fault injection under a simultaneous bit
flip model can be made non-exhaustive without
sacrificing the efficiency of the resultant EDMs,
thus reducing the resource costs of experimentation
to a practicable level.

• Efficient EDMs can be relocated within a software
system using program slicing without sacrificing
the efficiency of those EDMs.

1.3. Paper Structure

The remainder of this paper is structured as follows:
Section 2 provides an overview of research relating to
fault models for detector design. Section 3 details the
adopted system and fault models. Section 4 provides
an overview of how machine learning algorithms can
be used to generate detection predicates for specified
software locations. Section 5 provides details of the
experiments conducted in this paper, including the
target software systems and applied machine learning
algorithms. Section 6 presents the results associated
with the experiments conducted, alongside a discussion
of their significance in the context of efficient error
detector design. Section 7 concludes the paper with
a summary of findings and a brief discussion of future
work in EDM design.

2. RELATED WORK

A fault model has been shown to be composed of two
parts, a local model and a global model [8]. The local
fault model states the type of faults that are assumed
to occur, whilst the global model dictates the extent
to which the local fault model can occur. Ideally
software should be examined under a representative
workload and fault model. However, analyses under
such circumstances can be impractical due to numbers
of test cases or the fault space, particularly in the case
of simultaneous fault models that demand consideration
of fault combinations. Research has addressed these
problems through leveraging parallel architectures in
the execution of the large number of fault injection
experiments [9], though more scalable techniques have
focused on sampling strategies for the test cases and
error spaces [10, 11].

The origin of the established bit flip fault model is
in the diagnosis of hardware faults. In the context
of software fault injection, bit flip and stuck-at fault
models are often used to mimic transient and permanent
hardware faults [12]. There has been much research on
the representativeness of the faults captured by fault
models used in software fault injection, motivated by
results showing the issue can impact the validity of
fault injection analysis. The results presented in [11]
demonstrated that representativeness and resource
efficiency in fault injection can be improved through
the use of machine learning techniques and software
metrics, a shift in emphasis from fault-analysis focused
approaches.

The simultaneous fault models evaluated in this
paper were proposed in [13] in response to a
proliferation of software fault injection frameworks
making the single-fault assumption, despite this being
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known to be unrealistic [6]. The models were developed
on notions of coincidence and impact before being
evaluated with regard to utility using metrics such as
coverage and failure induction. Note that this focus
is distinct from research exploring the simultaneous
execution of fault injection experiments [14].

The focus of this paper is on the generation and
location of efficient error detection predicates for EDMs
under simultaneous fault models. The application
of machine learning to EDM design is appealing
because it does not assume the availability of a
formal system specification or rely on the experience
of software engineers, since the application of each has
been shown to provide undesirable levels of detection
efficiency [15]. The approach is also applicable to
real-world software systems, as opposed to smaller
finite-state constructions. Given that simultaneous
fault models are considered to be more representative
of practical software than models used to-date, the
efficiencies presented in this paper provide a more
representative commentary on the efficacy of machine
learning for EDM design.

3. MODELS

In this section the system, fault and data models used
in this paper are described.

3.1. System Model

A software system S is taken to be a tuple, consisting
of a set of software modules, M1 . . .Mn, and a set of
connections. A software module Mk consists of an
import interface Ik, an export interface Ek, a set of
non-composite program variables Vk and a sequence of
actions Ak1 . . . Aki. Each program variable in Vk has
a domain of values. Each action in Ak1 . . . Aki may
read or write to a subset of Vk. Two software modules
Mk and Ml are connected if the export interface of
Mk is matched with the import interface of Ml, i.e.,
a connection exists if Ek is matched with Il. Thus, a
software system S = (MOD,CON), where MOD =
{M1 . . .Mn}, and CON = {(Ma

k ,M
a
l )}, where Mk

exports to the import interface of Ml over connection
a. The adopted system model is consistent with [7]
and compatible with the simultaneous fault models
developed in [13].

3.2. Fault Models

The simultaneous fault models described were devel-
oped to improve software fault injection by overcom-
ing the single-fault assumption, thus permitting more
meaningful analyses [13]. As the fault injection con-
ducted in [13] focused on the point of entry to modules,
the fault injection experiments in this paper focus on
generating EDMs at the entry points to modules. This
approach is supported by existing research findings [16],
noting that injecting faults at the interface of a software

module is not equivalent to injecting faults in the body
of the same module [17]. To maintain compatibility
with existing research, software state was characterised
by all variables in scope at the point of fault injection.
The described fault models were systematically applied
to exhaustive combinations of all variables in scope.

Fault models were used only for the collection of
software fault injection data that served as input to the
machine learning algorithms, i.e., the machine learning
algorithms took no account of the fault model or data
generation process.

3.2.1. Bit Flip (BF)
The BF fault model injects a single bit flip fault into
the representation of a single variable in each fault
injection experiment, thus incorporating the single-
fault assumption and providing a broad basis for
comparison with simultaneous fault models. This is a
well established model for software fault injection, being
consistent with fault models used in previous work on
the application of machine learning for the generation
of efficient EDMs [7, 12].

3.2.2. Simultaneous Fuzzing (FuzzFuzz)
A single fuzzing injection involves the modification of
a variable value to a random value of the same bit
length. If fuzzing were simultaneously applied to a
single variable, the result would not differ from a single
fuzzing injection. This means there is no need to
consider injection in the same variable. Rather, under
the FuzzFuzz model, the values of more than one target
variable are subject to fuzzing. Exhaustive software
fault injection using fuzzing is impractical, since the
number of possible injection values for an n-bit variable
v is 2n. For this reason we restrict experimentation
to a fixed number of fault injections for each variable
combination simultaneously targeted under FuzzFuzz,
adhering to the experimental guidance derived from
results presented in [13] and [18].

3.2.3. Simultaneous Bit Flip (SimBF)
The SimBF fault model performs fault injections at
the resolution of a single variable. In the original
formulation of this fault model, only combinations of
two bit flips were considered [13]. To ensure that
initial experiments under this model could be said
to exhaustive, bit flip fault injection was systemically
applied to exhaustive k-combinations of bits in each
variable representation. Coupled with the exhaustive
consideration of combinations of variables in which to
inject, this fault model requires a large number of
experiments to consider exhaustively. For example,
just one of the 16-bit variables used by the function
shown in Figure 1 would require

(
n
1

)
+

(
n
2

)
+ ... +(

n
n

)
= 65, 535 experiments. This means that at least

196,605 experiment would be required to analyse each
variable in the function individually, even before the
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FIGURE 1: The experimental cost of the SimBF fault
model for a single variable in a one-statement function.

combinations of variables are considered. It should be
noted that this number of experiments is not practical
at scale. An exhaustive approach is initially used in this
paper to set a standard for EDM efficiencies, such that
the efficiencies of EDMs generated by non-exhaustive
approaches can be better understood.

4. EDM GENERATION USING MACHINE
LEARNING

Recall that the effectiveness of an EDM has been shown
to depend the error detection predicate it implements
and its location in software. If the location is known,
EDM generation is tantamount to the generation of
an error detection predicate for implementation. The
premise of applying machine learning to fault injection
data is that an error detection predicate can the derived
because the data generated during fault injection
captures aspects of the relationships between software
states and future system failure. As data collected
during fault injection analysis provides an indication of
whether a sampled software state resulted in a failure,
the generation of an error detection predicate is a
supervised learning problem.

Data is assumed to exist as a single relation consisting
of a set of n input attributes that define an n-
dimensional space, I. Every point in I is a potential
state of the process being modelled. In supervised
learning an algorithm is tasked with learning a good
approximation, f̂ , of an unknown function, f , given
a training data set, T ⊆ I, consisting of the N pairs
〈xi, f(xi)〉. In the case of learning from fault injection
data the function known to be discrete and binary, since
a software state either leads to a system failure or a
successful execution. The task of learning a binary
function is is referred to as concept learning, a special
case of classification. Within a data set, instances of
the class of interest, known as the concept, are referred
to as positive instances. Instances not belonging to the
concept are referred to as negative instances.

A process for EDM generation using fault injection
data is described in [7]. The process consists of five

stages, where these stages include the evaluation of
EDM efficiency. The stages of the process, as reflected
in Sections 4.1-4.5, are: Data Collection (4.1), Data
Preprocessing (4.2), Model Generation (4.3), Model
Refinement (4.4), and Model Evaluation (4.5).

4.1. Data Collection

The fault injection process is a means for the acquisition
of data that captures the functional relationship
between software state and system failure. The fault
model applied in fault injection dictates the nature and
extent of the exploration of software states, making the
selection and robust application of a representative fault
model imperative. The exploration of simultaneous
fault models is the fundamental concern of this paper,
focusing fault injection analysis on the fault models
described in Section 3.

4.2. Data Preprocessing

Preprocessing transforms fault injection data into a
suitable relational data format for learning. This
transformation provides an opportunity to address
issues such as class imbalance, which can prevent the
development of reliable predictive models in concept
learning problems [19]. The data sets resulting from
fault injection analysis often contain significantly fewer
positive instances than negative instances, i.e., there
are significantly fewer examples of system failure than
successful execution. This feature of the fault injection
data must be accounted for before predictive models are
generated. It is appropriate to tackle this problem in
preprocessing because most approaches to address class
imbalance require the generation of derivative data sets,
a task made simpler if these are produced during data
transformation.

4.3. Model Generation

Symbolic pattern learning algorithms are an effective
class of algorithm for the generation of error detection
predicates, not least because their output can easily
be interpreted as first-order predicates. This paper
applies decision tree induction and rule induction as
machine learning algorithms, since these have been
shown to be capable of generating efficient, in some
cases near-perfect, predicates for EDMs [7]. The
function approximation learnt, referred to as the model,
by a classification algorithm needs to be evaluated, in
order to obtain a measure of the expected accuracy of
the model on unseen data. Typically the accuracy of
a model is measured by the percentage of test data
instances correctly classified, hence most algorithms
seek to learn hypotheses that minimise the number of
errors. Conveniently this is consistent with the notions
of accuracy and completeness used in the measurement
of EDM efficiency. However, this implicitly assumes
that all types of misclassification incur an equal cost,
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TABLE 1: General concept learning confusion matrix.

Predicted Class
Pos. Neg. Marginal Sum

Actual
Pos. TP FN npos

Neg. FP TN nneg

Marginal Sums n̂pos n̂neg n

which is rarely the case. For example, in safety-critical
context, a model misclassifying a failure-inducing state
will typically result in a more significant cost than a
non-failure-inducing state being misclassified.

4.4. Model Refinement

Models are refined by varying the parameters associated
with the applied machine learning algorithms. This is
achieved by repeating the execution of the algorithms
under different configurations on the undersampled and
oversampled data sets generated during preprocessing
to establish an algorithm configuration and data set
that yields the most efficient EDM. Achieving a perfect
detector may not be possible for a given location.
This is not a direct limitation of the machine learning
approach, rather it is a theoretical constraint of the
EDM design problem [5].

4.5. Model Evaluation

The predictions made by a model for a given data set
can be cross-tabulated with the classes assigned to the
instances by the target function to produce a confusion
matrix. Table 1 shows the general form of a confusion
matrix for concept learning. TP is the number of
positives instances labelled positive by f̂ , known as true
positives, whilst FN is the number of positive instances
labelled negative, known as false negatives. FP is the
number of negative instances labelled positive, known
as false positives, whilst TN is the number of negative
instances labelled negative, known as true negatives.
Finally, npos/nneg are the number of positive/negative
instances in the test data and n̂pos/n̂neg are the number
of instances predicted as positive / negative.

4.5.1. The Area Under Curve (AUC) Metric
Aggregate measures of model quality seek to balance
the concerns of the confusion matrix shown in Table 1,
such that favourable performance in one area is not
achieved through the neglect of performance in another.
The most basic of these measures are true negative
rate (TNR = TN

TN+FP ) and true positive rate (TPR =
TP

TP+FN ). These measures give rise to ROC analysis,
which is based on a plot in two dimensions where each
model is a point defined by the coordinates (1-TNR,
TPR). Note that (1-TNR) is also referred to as the false
positive rate (FPR = FP

TN+FP ).
Under different configurations, the same classifier will

produce multiple points on such a plot. The Area Under

the ROC Curve (AUC) obtained by joining these points
to (0,0) and (1,1), as in Equation 1, is one of the most
common metrics for measuring model performance.

An AUC of 0.5 implies random model performance,
i.e., a coin toss in the case of concept learning. An
AUC of 1.0 indicates that a model is near-perfect in
its discrimination. As the focus of this paper is on
evaluating the impact of more practical fault models
on EDM efficiency, where this is understood as their
accuracy and completeness, the AUC metric is a natural
choice for use in model evaluation.

AUC =
TPR− FPR + 1

2
(1)

Misclassification costs are likely to vary in the context of
dependable software systems, hence steps must be taken
to ensure that favourable AUC values are not achieved
through the neglect of accuracy or completeness. With
this in mind, TPR and FPR are also considered by the
results presented in Section 6.

4.6. Model Relocation

The cost of generating a model for a specified location
makes it desirable for existing model to be relocatable
without model regeneration or the loss of detection
efficiency. As the model takes the form of a first-order
predicate over program variables, program slicing can
be used to relocate a model once it has been generated.
The concept of program slicing was first proposed by
Weiser [20]. The majority of program slicing approaches
rely on the construction of a program dependence graph
(PDG) [21], though approaches can also be categorised
according to whether they provide static or dynamic,
inter-procedural or intra-procedural, executable or non-
executable, and forward or backward slicing.

In the context of relocating a generated model for
efficient error detection it is necessary to adopt a static
slicing approach, since the cost of applying dynamic
slicing approaches is typically commensurate with the
model regeneration that program slicing seeks to avoid.
As models exist at the entry-point of software modules
it is desirable that the slicing approach be capable
of accounting for inter-procedural dependences and
producing forward program slices. Figure 2 shows the
body of a sample program and its associated PDG,
where data dependencies between program statements
are shown as solid lines and control dependencies are
shown as dotted lines [22].

EDM relocation involves the abstract interpretation
of the target software module, whereby the generated
error detection predicate serves as the starting
point for interpretation and the conjunctive rules
of the error detection predicate are updated as the
dependencies captured by the PDG are encountered
during interpretation. Where a data dependency
relating to a set of variables exists between successive
statements, all conjunctive rules involving any variable

The Computer Journal, Vol. ??, No. ??, ????

Matthew Leeke




6 M. Leeke

S1: int a, b, x = 7;

S2: if(x>0) {
S3: a = x*x;

S4: b = x-3;

} else {
S5: if (x<0) {
S6: a = x*x*x;

S7: b = x-6;

} else {
S8: a = x*x*x*x;

S9: b = x-9;

}
}

S10: print(a);

S11: print(b);

FIGURE 2: Example program body and its associated
program dependency graph for model relocation [22].

in that set are necessarily subject to modification. The
modification of conjunctive rules is performed with
respect to the conjunctive rules that exists for the
statement that is the target of the data dependency.
Control dependencies encountered are considered to
result in the duplication of the error detection
predicate according to the number of control paths
the dependency could introduce, with a modification
of the conjunctive rules being performed for each
path as dictated by data dependencies. Where it is
not possible to resolve a data or control dependency
with regard to how all conjunctive rules involving a
variable should be updated, every rule involving that
variable must be pruned. This process of abstract
interpretation, guided by the dependencies identified
in program slicing, is akin to is an approach that
has been shown to provide an effective EDM design
mechanism [23]. The development, application and
evaluation of this approach to demonstrate the efficacy
and experimental practicality of relocating efficient
EDMs represents a technical contribution over [24].

5. EXPERIMENTAL SETUP

In this section the experimental approach employed in
this paper is explained, including coverage of the target
software systems.

5.1. Data Collection

Four software systems were subject to experimentation.
Five randomly chosen modules in each of these software
systems were selected for experimentation. System
failures were identified through comparison with a fault-
free execution, where any discrepancy in output or the
completion of the test case was deemed a failure.

5.1.1. 7-Zip Archiving Utility (7Z)
7-Zip is a compression utility that supports archiving
and encryption [25]. 7-Zip is widely-used, modular,
written in C/C++ and has been designed, developed
and maintained by a community of software engineers.
Most source code and resources for 7-Zip are available
under the GNU Lesser General Public License. A single
file archiving procedure was executed as a test case.

5.1.2. FlightGear Flight Simulator (FG)
FlightGear is an open source flight simulator [26]. The
software is modular, contains more than 250,000 lines
of C/C++ and simulates a safety-critical situation. All
source code and resources for FlightGear are available
under the GNU General Public License. An aircraft
takeoff procedure was executed as a test case.

5.1.3. MP3Gain (MG)
MP3Gain is an open source volume normaliser [27].
MP3Gain is modular, written in C/C++ and has been
predominantly developed by a single software engineer.
All source code for MP3Gain is available under the
GNU General Public License. A single file volume
normalisation procedure was executed as a test case.

5.1.4. ImageMagick (IM)
ImageMagick is an open source image editing suite
that can be utilised from the command line [28].
ImageMagick is modular, written in C/C++ and has
been designed, developed and maintained by a small
team of software engineers. All source code and
resources for ImageMagick are available under the
Apache 2.0 license. A colour balancing, crop and scaling
image procedure was executed as a test case.

5.2. Data Preprocessing

The limited simultaneous fault model support in fault
injection tools meant a bespoke framework was used
for the injection of faults. This meant a format
transformation between the fault injection logging and
the Attribute Relation File Format (ARFF) used by the
Weka Data Mining suite for model generation [29]. In
this format, each variable in scope is an attribute and
the class label identifies system failures.

There are two general approaches for addressing class
imbalanced data sets. Either the data distribution can
be implicitly changed or the data set can be resampled
to make the class distribution more uniform. As there is
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FIGURE 3: Example C4.5 generated decision tree [7].

no robust way to identify generally appropriate weights
to associate with training examples, resampling was
used in preprocessing. In particular, Synthetic Minority
Oversampling Technique (SMOTE) was used to address
class imbalance. SMOTE generates synthetic samples
for minority classes along the line segment joining
an example to k-minority class nearest neighbours,
with cross validation being used to set the level of
oversampling and undersampling of each class [30].

5.3. EDM Generation

The Weka Data Mining suite provided the baseline
algorithms used in model generation [29]. In particular,
the Weka Data Mining suite provided implementation
of the C4.5 decision tree induction and Repeated
Incremental Pruning to Produce Error Reduction
(RIPPER) algorithms [31, 32].

5.3.1. Decision Tree Induction
Decision tree induction learns a disjunction of
conjunctive rules describing a concept. As shown in
Figure 3, a decision tree consists of two node types;
decision nodes and leaf nodes. A decision node contains
an input attribute value. Each edge emanating from a
decision node is labelled with one of the unique values in
the domain of the attribute labelling the decision node.
A leaf node is labelled using one of the classification
labels. Each path of the tree from the root node to a leaf
node is interpreted as a set of conjunctive expressions
that lead to the classification label at the leaf node. The
algorithm performs a greedy search of the space of all
possible trees, choosing decision node attributes that
maximise the reduction in entropy of the class label.

5.3.2. Rule Induction
Rule Induction operates in distinct phases. Specifically,
beginning with with the least represented class label,
the algorithm repeatedly grows and prunes rules until

there are no positive examples left or the error rate
is greater than 0.5. A rule is grown by incorporating
greedy conditions until the rule is perfectly accurate.
This is done by attempting to incorporate every possible
value of each attribute and selecting the condition
providing most information gain. A rule is pruned by
removing any final sequences of antecedents according
to a fixed pruning metric, providing some facility to
incorporate domain knowledge and combat overfitting.

5.4. EDM Refinement

Refinement used 20 undersampling and 15 oversampling
levels, distributed uniformly over [5,100] and [100,1500]
for undersampling and oversampling respectively. The
number of nearest neighbours considered in sampling
process was uniformly distributed over [1,15]. These
ranges were chosen to provide insight into achievable
improvement, as opposed to a comprehensive parameter
search pursuing optimal model performance.

5.5. EDM Evaluation

Following the application of each machine learning
algorithm to each fault injection data set, 10-fold cross
validation was used to generate a confusion matrix.
The use of 10-fold cross validation involved the entries
in each data set being partitioned into 10 stratified
samples. For each of the ten cross validation runs, just
one of these partitions is used as a test sample, whilst
the other nine partitions are used as the training set for
the machine learning algorithm.

5.6. EDM Relocation

After evaluating each EDM the most efficient EDMs
in each software module were relocated to the exit-
point of the module using forward slicing. Forward
slicing was implemented using the Frama-C source code
analysis platform for code transformation [33]. Forward
slicing was based on the construction of the PDG from
the location of the EDM to be relocated [21]. EDM
relocation could then take place by updating the values
in the conjunctive rules of the predicate according to
the statements captured by the PDG. This update
guided by identified dependencies is akin to abstract
interpretation, an approach that has been shown to
provide an effective EDM design mechanism [23].
Although computationally expensive, applying this
approach to forward slicing ensures that the results are
representative of what comprehensive program slicing
can afford. Where there is a desire to relocate EDMs
without such comprehensive analysis, it is possible
to apply lightweight forward slicing approaches or
to restrict the PDG to variables incorporated by an
existing EDM, though it should be noted that the
former could impair the relocated EDM.
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6. RESULTS

Sections 6.1-6.5 present results for the error detection
predicates learnt under varying fault models. For each
of the machine learning algorithms applied, results are
presented for the error detection predicates generated
following optimisation. All optimisation performed in
this paper was achieved through varying parameters
that are independent of any data mining algorithm,
i.e., the data set sampling levels applied prior to model
generation. This ensures that the same refinement
process can be applied regardless of the machine
learning algorithm applied. In the tables presented
in Sections 6.1-6.6, the FPR and TPR columns give
the mean false positive and true positive rates taken
across ten cross validations. A true positive corresponds
to a model correctly identifying a failure-inducing
state, whereas a false positive corresponds to a model
incorrectly detecting a state as being failure-inducing.
The AUC column shows the area under the ROC curve,
the aggregate measure of efficiency that balances the
consideration of TRP against FPR. The Var column
gives the AUC variance across all ten cross validations,
providing an indication of how consistently efficient
models were generated.

6.1. BF Fault Model

Evaluating error detection predicates generated under
the BF fault model provides a meaningful benchmark
for the consideration of simultaneous fault models. It
is desirable for error detection predicates generated
under simultaneous fault models to maintain the high
efficiency and low variance that are associated with
error detection predicates generated by a commensurate
mechanism under a non-simultaneous fault model.

Table 2 demonstrates levels of efficiency that are
commensurate with those observed when using decision
tree induction and rule induction to generate error
detection predicates [7]. The hallmarks of these
algorithms for predicate generation can be seen in
the consistently high AUC values and low variance
model generation, the former ranging from 0.89161 to
0.99991 for decision tree induction and from 0.88873
to 0.99780 for rule induction. Decision tree induction
is the better performing of the two model generation
algorithms, with markedly higher TPR in most cases,
another observation that is commensurate with existing
work in machine learning for error detection predicate
generation. An AUC of 0.90411 or higher can be found
for every module subject to analysis, an indication
that the predicates generated are effective classifiers
for failure inducing states. It can also be observed
that, whilst some generated detectors were perfect with
respect to accuracy (TPR = 1) and some perfect with
respect to completeness (FPR = 0), no perfect detector
(TRP = 1, FPR = 0) was generated.

6.2. FuzzFuzz Fault Model

The FuzzFuzz model is the first simultaneous fault
model to be analysed. The space of possible fault
injections under the FuzzFuzz fault model makes
exhaustive injections impractical, since the number of
possible injection values for a single n-bit variable v
is 2n. As such, experimentation was restricted to a
fixed number of fault injections for each combination
of variables simultaneously targeted. Tables 3 and 4
present results where the number of fault injections for
each combination of variables simultaneously targeted
is 30 and 100 respectively.

The error detection predicate efficiencies shown in
Table 3 would be inappropriate for implementation in
an EDM, since the highest AUC value across all models
is 0.81939. However, Table 4 demonstrates that it is
possible to generate efficient error detection predicates
under a simultaneous fuzzing model. It is notable that
the efficiencies of these error detection predicates are
below those observed under the BF fault model, both
in this paper and in existing research, with an aggregate
mean AUC of 0.90493.

The efficiencies shown in Tables 3 and 4 should
not be considered to reflect poorly on the efficacy of
simultaneous fault models in general, since the set
of injected faults associated with FuzzFuzz will result
in greater perturbation of software state than under
other models. Intuitively, the impact of fuzzing for a
fixed number of repeats is to incur a less structured
and thorough exploration of erroneous software state,
thus making it more difficult for any machine learning
algorithm to discern the relationship between erroneous
software state and system failure. This intuition is
substantiated by the improvement that can be seen
in the efficiencies of the error detection predicates
generated using a larger number of fault injection
experiments for each combination of target variables.

6.3. SimBF Fault Model

The SimBF fault model is the most computationally
expensive set of experiments presented in this paper,
since bit flip fault injection was applied to exhaustive
combinations of bits in each variable representation
across exhaustive combinations of variables. Whilst
polynomial in bit representation and the number of
variables, conducting this number of experiments in the
development of most software systems is impractical.
Despite this, the associated efficiencies are the strongest
presented and warrant consideration regardless of the
cost incurred.

Table 5 shows that a perfect error detection predicate
was generated under the SimBF fault model. The
perfect detector is associated with module FG-2, though
the error detection predicated associated with several
other modules, most notably IM-3 and MG-1, are near
perfect. The aggregate mean AUC for decision tree
induction is 0.98861, meaning that it is, once again,
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TABLE 2: The efficiency of error detection predicates generated and evaluated under the BF fault model.

Decision Tree Induction Rule Induction
Software Module TPR FPR AUC Var TPR FPR AUC Var

7Z 1 0.99849 0.00100 0.99875 6E-07 0.96456 0.00157 0.98150 7E-04
2 0.99914 0.00009 0.99953 8E-08 0.98554 0.01241 0.98657 1E-05
3 0.99826 0.00002 0.99912 2E-09 0.93912 0.07671 0.93120 6E-06
4 0.95422 0.00210 0.97606 5E-04 0.94685 0.06631 0.94027 5E-05
5 0.96010 0.00090 0.97960 5E-07 0.93022 0.06467 0.93278 1E-04

FG 1 0.79633 0.01311 0.89161 2E-05 0.94151 0.09568 0.92291 5E-04
2 0.99982 0.00000 0.99991 2E-10 0.98244 0.00420 0.98912 5E-05
3 0.99662 0.00111 0.99776 8E-08 0.98786 0.00033 0.99376 8E-05
4 0.93889 0.00235 0.96827 4E-06 0.87776 0.00677 0.93550 4E-02
5 0.94427 0.04322 0.94350 4E-04 0.92419 0.01097 0.95661 8E-04

IM 1 0.83867 0.00633 0.91617 7E-04 0.81423 0.00766 0.90329 9E-03
2 0.86937 0.02012 0.92463 9E-05 0.82677 0.02657 0.90010 4E-03
3 0.94789 0.00091 0.97349 1E-04 0.86754 0.00675 0.93040 5E-02
4 0.93159 0.00459 0.96350 1E-03 0.82377 0.00950 0.90714 1E-05
5 0.91831 0.00842 0.95495 5E-03 0.84434 0.00905 0.91765 4E-02

MG 1 1.00000 0.00990 0.99505 1E-12 0.97130 0.00001 0.98565 4E-05
2 0.97403 0.00000 0.98702 1E-32 0.99559 0.00000 0.99780 9E-06
3 0.99380 0.00000 0.99690 1E-32 0.90587 0.04206 0.93190 7E-07
4 0.82290 0.01469 0.90411 3E-07 0.81036 0.00177 0.90430 2E-05
5 0.85073 0.00349 0.92362 1E-04 0.79360 0.01614 0.88873 7E-02

0.93667 0.00662 0.96468 4E-04 0.90667 0.02296 0.94186 1E-02

TABLE 3: The efficiency of error detection predicates generated and evaluated under the FuzzFuzz fault model with
30 fault injection experiments for each combination of target variables.

Decision Tree Induction Rule Induction
System Module TPR FPR AUC Var TPR FPR AUC Var

7Z 1 0.64430 0.17731 0.73350 5E-02 0.55872 0.28880 0.63496 7E-03
2 0.59887 0.23541 0.68173 7E-02 0.51426 0.28823 0.61302 2E-03
3 0.54452 0.04431 0.75011 9E-04 0.52676 0.04493 0.74092 7E-03
4 0.63089 0.08624 0.77233 9E-02 0.50364 0.08907 0.70729 9E-03
5 0.56538 0.00793 0.77873 1E-02 0.50114 0.00960 0.74577 9E-03

FG 1 0.67200 0.04847 0.81177 3E-02 0.53404 0.03964 0.74720 6E-03
2 0.61528 0.00626 0.80451 5E-03 0.53584 0.01239 0.76173 6E-03
3 0.52155 0.06680 0.72738 1E-02 0.51829 0.06821 0.72504 9E-04
4 0.69746 0.08621 0.80563 6E-02 0.58829 0.08780 0.75025 7E-03
5 0.53417 0.00917 0.76250 1E-03 0.51322 0.04446 0.73438 4E-03

IM 1 0.61181 0.00258 0.80462 5E-02 0.51907 0.04399 0.73754 6E-02
2 0.61151 0.04591 0.78280 8E-03 0.60607 0.04972 0.77818 4E-03
3 0.64896 0.01207 0.81845 2E-02 0.54398 0.06983 0.73708 5E-03
4 0.66317 0.02439 0.81939 3E-03 0.53377 0.04608 0.74385 5E-03
5 0.62518 0.00411 0.81054 8E-04 0.50813 0.00966 0.74924 1E-03

MG 1 0.53590 0.00987 0.76302 1E-03 0.50873 0.03244 0.73815 9E-03
2 0.63777 0.00879 0.81449 5E-04 0.54761 0.00956 0.76903 8E-02
3 0.55767 0.01651 0.77058 1E-03 0.51580 0.12764 0.69408 4E-03
4 0.57714 0.03535 0.77090 8E-03 0.52553 0.08434 0.72060 4E-02
5 0.52629 0.00890 0.75870 1E-02 0.50150 0.01485 0.74333 5E-02

0.60099 0.04683 0.77708 2E-02 0.53022 0.07306 0.72858 2E-02

the better performing of the two model generation
algorithms. This is higher than the 0.93667 recorded
under the BF fault model, despite SimBF being
the stronger of the two fault models in terms of
the set of faults imposed / perturbation of software
state. Supporting preliminary findings in [7], this is
an indication that a comprehensive and systematic
exploration of erroneous software states is fundamental

to the generation of efficient error detection predicates
using machine learning.

6.4. Simultaneous Fault Model Efficacy

Although simultaneous fault models are proposed to
be more representative and cross validation allows the
efficiency of the generated error detection predicates
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TABLE 4: The efficiency of error detection predicates generated and evaluated under the FuzzFuzz fault model with
100 fault injection experiments for each combination of target variables.

Decision Tree Induction Rule Induction
System Module TPR FPR AUC Var TPR FPR AUC Var

7Z 1 0.92298 0.08920 0.91689 7E-05 0.85316 0.00538 0.92389 9E-02
2 0.89798 0.00161 0.94819 3E-04 0.81497 0.00887 0.90305 2E-02
3 0.84798 0.00944 0.91927 2E-05 0.79370 0.01118 0.89126 6E-01
4 0.89089 0.06959 0.91065 4E-03 0.79718 0.00204 0.89757 9E-03
5 0.83002 0.00933 0.91035 3E-03 0.78101 0.00145 0.88978 7E-02

FG 1 0.75158 0.02956 0.86101 5E-06 0.77264 0.01997 0.87634 9E-02
2 0.88952 0.00260 0.94346 1E-06 0.75132 0.00987 0.87073 1E-02
3 0.91492 0.06680 0.92406 9E-07 0.83180 0.06126 0.88527 2E-03
4 0.89191 0.00876 0.94158 5E-05 0.88171 0.03874 0.92149 1E-02
5 0.83837 0.00714 0.91562 7E-05 0.80233 0.02890 0.88672 1E-02

IM 1 0.78233 0.00126 0.89054 7E-02 0.81423 0.04303 0.88560 2E-01
2 0.71151 0.00638 0.85257 2E-03 0.82677 0.02987 0.89845 9E-02
3 0.83389 0.00342 0.91524 2E-03 0.86754 0.06319 0.90218 6E-02
4 0.73310 0.02439 0.85436 8E-04 0.82377 0.04415 0.88981 2E-02
5 0.81016 0.00330 0.90343 2E-02 0.84434 0.00750 0.91842 9E-04

MG 1 0.82051 0.00583 0.90734 1E-05 0.97130 0.00761 0.98185 7E-02
2 0.84187 0.00035 0.92076 1E-03 0.99559 0.00319 0.99620 5E-03
3 0.77253 0.00716 0.88269 4E-03 0.90587 0.09489 0.90549 2E-02
4 0.76022 0.01853 0.87085 1E-03 0.81036 0.03768 0.88634 1E-02
5 0.82237 0.00299 0.90969 2E-03 0.79360 0.01193 0.89084 4E-02

0.82823 0.01838 0.90493 6E-03 0.83666 0.02654 0.90506 7E-02

TABLE 5: The efficiency of error detection predicates generated and evaluated under the SimBF fault model.

Decision Tree Induction Rule Induction
System Module TPR FPR AUC Var TPR FPR AUC Var

7Z 1 0.99988 0.00005 0.99992 2E-14 0.96484 0.00063 0.98211 2E-02
2 0.99974 0.00003 0.99986 9E-08 0.99744 0.00670 0.99537 9E-03
3 0.99964 0.00001 0.99982 5E-08 0.94111 0.00948 0.96582 3E-02
4 0.98831 0.00031 0.99400 1E-05 0.95326 0.00311 0.97508 2E-03
5 0.97990 0.00078 0.98956 3E-03 0.95828 0.03180 0.96324 1E-03

FG 1 0.89734 0.00433 0.94651 1E-06 0.94151 0.00136 0.97008 7E-03
2 1.00000 0.00000 1.00000 1E-19 0.98655 0.00360 0.99148 5E-02
3 0.99710 0.00057 0.99827 7E-09 0.99121 0.00020 0.99551 3E-02
4 0.94179 0.00167 0.97006 5E-06 0.91728 0.00310 0.95709 1E-03
5 0.96588 0.04672 0.95958 7E-05 0.93679 0.00224 0.96728 8E-02

IM 1 0.97914 0.00633 0.98641 4E-06 0.90968 0.00243 0.95363 9E-02
2 0.97927 0.00040 0.98944 7E-05 0.89180 0.00241 0.94470 6E-02
3 1.00000 0.00006 0.99997 1E-32 0.92153 0.00547 0.95803 3E-02
4 0.98926 0.00459 0.99234 3E-03 0.86372 0.08034 0.89169 9E-03
5 0.99956 0.00031 0.99963 1E-11 0.93834 0.00635 0.96600 2E-02

MG 1 1.00000 0.00004 0.99998 1E-32 0.98766 0.00043 0.99362 2E-03
2 0.99855 0.00000 0.99928 1E-32 0.99598 0.00035 0.99782 9E-04
3 0.99964 0.00000 0.99982 1E-32 0.91953 0.00101 0.95926 3E-02
4 0.94480 0.00235 0.97123 4E-03 0.80133 0.00338 0.89898 8E-02
5 0.95439 0.00126 0.97657 2E-03 0.79408 0.01217 0.89096 3E-02

0.98071 0.00349 0.98861 6E-04 0.93060 0.00883 0.96089 3E-02

to be evaluated, gaining insight into the efficacy of
simultaneous fault models is challenging. It is natural
to consider the extent to which the error detection
predicates generated under a simultaneous fault model
can account for the set of faults injected under a non-
simultaneous model, since the latter is commonly used
to inform EDM design. This is achieved by determining
whether the error detection predicates generated under

the SimBF fault model account for the faults injected
under the BF fault model. These models are related, in
that the set of faults injected under the BF fault model
is a strict subset of the set of faults injected under the
SimBF fault model.

The unsampled BF data set was evaluated against the
best performing error detection predicates generated
under the SimBF fault model. Table 6 shows the
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efficiency of error detection predicates generated under
the SimBF fault model and evaluated under the BF
fault model. The efficiencies of the error detection
predicates generated under the SimBF fault model
when confronted by the set of faults associated with the
BF fault model demonstrate the utility of simultaneous
fault models. Once again, the more comprehensive
exploration of erroneous state under the SimBF fault
model enables the resultant error detection predicates
to be more accurate and complete than those generated
under the BF fault model. Most notably, at least one
perfect detector has been generated for at least one
module in each software system.

Simultaneous fault models aim to be more represen-
tative of faults that occur in real-world software. Whilst
it can not be argued that results presented in Table 6
further the argument of representativeness beyond what
is shown in [13], the results are a strong indication that
simultaneous fault model provides considerations over
and above the widely used BF model.

6.5. Restricted SimBF Fault Model

Having demonstrated the set of fault injections
associated with BF is accounted for under SimBF,
it is reasonable that SimBF could be used in fault
injection analysis, not least with regard to the transient
and permanent hardware faults that BF is commonly
used to emulate. However, the computational expense
of performing bit flip fault injection on exhaustive
combinations of bits in each variable representation
makes the model impractical for many software
validation processes.

The problem of impractical experimental cost can
be solved by restricting the number of fault injections
performed or developing a strategy to intelligently
sample the error space. To this point simultaneous
bit flip fault injections have been exhaustive. That
is, if n variables were in scope, the fault model was
exhaustively applied to the representation of every k-
combination of variables for 1 ≤ k ≤ n. By restricting
the faults injected to being in every k-combination of
bits in the representation for 1 ≤ k ≤ 2 and, similarly
only k-combinations of variables for 1 ≤ k ≤ 2, the
number of experiments is dramatically reduced whilst
preserving the essence of simultaneous fault injection.

Table 7 shows the performance of the generated error
detection predicates when simultaneous bit flip fault
injection is restricted to every k-combination of bits
in representation for 1 ≤ k ≤ 2 and k-combinations
of variables for 1 ≤ k ≤ 2. This reduces the number
of fault injection experiments on a single variable from(
n
1

)
+
(
n
2

)
+ ...+

(
n
k

)
to

(
n
1

)
+
(
n
2

)
, where n is the number

of bits in the variable. Similarly reducing the number
of variable combinations to
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n
1

)
+
(
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2

)
+
(
n
3

)
+ ...+

(
n
k

)
to(

n
1

)
+
(
n
2

)
, where n is the number of variables in scope.

The performance of the error detection predicates
generated under the SimBF model with 2 or fewer

simultaneous faults, shown in Table 7, is identical to
the performance of the exhaustive SimBF model for
all but five software modules. In each of these cases
the associated error detection predicates have decreased
in TPR and FPR, hence a commensurate reduction in
AUC, though the impact is less severe where the error
detection predicates are generated using rule induction.

The TPR, FPR and AUC values of the five impacted
software modules do not revert to the efficiencies of
the BF model, despite the restricted model retaining
near-perfect detection capability with regard to single
fault injections. This represents a further indication
that the consideration of the simultaneous fault model
is providing greater depth of analysis, now at a
more reasonable experimental cost. It is similarly
interesting to note the consistency of the AUC
variance across the exhaustive and restricted models,
suggesting near identical error detection predicates are
being generated, despite the cross validation process
excluding informative instances for evaluation. This is
consistent with the view that capturing the correctness
of a basis set of program variables is sufficient to provide
efficient error detection [34].

Table 8 shows the performance of the generated error
detection predicates when simultaneous bit flip fault
injection is restricted to every k-combination for 1 ≤
k ≤ 3. This increases the number of fault injection
experiments conducted for a single variable from

(
n
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)
+(

n
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)
to

(
n
1

)
+
(
n
2

)
+
(
n
3

)
, where n is the number of bits in

the representation. Similarly increasing the number of
variables combinations to

(
n
1

)
+
(
n
2

)
to

(
n
1

)
+
(
n
2

)
+
(
n
3

)
,

where n is the number of variables in scope.
The performance of the error detection predicates

generated under SimBF with three or fewer simultane-
ous faults, shown in Table 8, builds on the performance
of the model with two or fewer simultaneous faults. The
restricted model with three or fewer simultaneous faults
yields identical performance to the exhaustive SimBF
fault model for all but two software modules, where
these are limited to a single software system.

6.6. Relocated EDM Efficiency

As in Section 5, the most efficient EDMs in each
software module generated were relocated to the exit-
point of the module using forward slicing. Table 9 shows
the efficiency of error detection predicates generated,
relocated and evaluated under the SimBF fault model.

Table 9 shows one case of decreased TPR and five
cases where FPR has increased, explained by the fact
that abstract interpretation over-approximates system
behaviour [23]. The efficiency properties of most EDMs
remain unchanged and the maximum impact of any
impairment is a 0.00601 decrease in AUC. There is
no apparent difference between the magnitude of the
impact of relocation across the decisions tree induction
and rule induction algorithms. Table 9 demonstrates
that relocating efficient EDMs is a viable alternative
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TABLE 6: The efficiency of error detection predicates generated under the SimBF fault model and evaluated against
BF data.

Decision Tree Induction Rule Induction
System Module TPR FPR AUC Var TPR FPR AUC Var

7Z 1 0.99996 0.00000 0.99992 2E-15 0.99981 0.00007 0.99987 4E-08
2 1.00000 0.00000 1.00000 1E-32 1.00000 0.00110 0.99945 2E-09
3 1.00000 0.00000 1.00000 1E-32 1.00000 0.00000 1.00000 1E-32
4 0.99940 0.00002 0.99969 1E-32 0.99944 0.00050 0.99947 6E-15
5 0.99992 0.00048 0.99972 4E-29 0.98199 0.00104 0.99048 1E-04

FG 1 0.99866 0.00700 0.99583 4E-31 0.99711 0.00484 0.99614 2E-04
2 1.00000 0.00000 1.00000 1E-32 1.00000 0.00000 1.00000 1E-32
3 1.00000 0.00000 1.00000 1E-32 1.00000 0.00048 0.99976 2E-17
4 0.99990 0.00092 0.99949 8E-16 0.99990 0.00110 0.99940 4E-09
5 1.00000 0.00112 0.99944 9E-06 1.00000 0.00099 0.99951 3E-16

IM 1 0.99931 0.00031 0.99950 4E-06 0.99811 0.00031 0.99890 7E-02
2 0.99902 0.00000 0.99951 7E-05 0.99703 0.00000 0.99852 4E-09
3 1.00000 0.00000 1.00000 1E-32 1.00000 0.00060 0.99970 9E-15
4 1.00000 0.00192 0.99904 3E-03 1.00000 0.00422 0.99789 9E-18
5 1.00000 0.00001 1.00000 1E-11 1.00000 0.00080 0.99960 2E-29

MG 1 1.00000 0.00000 1.00000 1E-32 1.00000 0.00000 1.00000 1E-32
2 0.99906 0.00000 0.99953 1E-32 0.99900 0.00000 0.99950 9E-08
3 0.99999 0.00000 0.99999 2E-32 0.99999 0.00012 0.99994 3E-06
4 0.99917 0.00200 0.99859 8E-08 0.99907 0.00280 0.99814 2E-31
5 0.99909 0.00062 0.99924 5E-16 0.99890 0.00082 0.99904 1E-04

0.99967 0.00072 0.99947 2E-04 0.99852 0.00099 0.99877 4E-03

TABLE 7: The efficiency of error detection predicates generated and evaluated under the SimBF fault model with
simultaneous fault injections restricted to k-combinations of bits in representation and variables for 1 ≤ k ≤ 2.

Decision Tree Induction Rule Induction
System Module TPR FPR AUC Var TPR FPR AUC Var

7Z 1 0.99988 0.00005 0.99992 2E-14 0.96484 0.00063 0.98211 2E-02
2 1.00000 0.00000 1.00000 1E-19 0.98655 0.00360 0.99148 5E-02
3 0.99710 0.00057 0.99827 7E-09 0.99121 0.00020 0.99551 3E-02
4 0.96205 0.00170 0.98018 8E-06 0.94901 0.00311 0.97295 7E-03
5 0.97990 0.00078 0.98956 3E-03 0.95828 0.03180 0.96324 1E-03

FG 1 0.88218 0.00855 0.93682 1E-06 0.94151 0.00136 0.97008 7E-03
2 1.00000 0.00000 1.00000 1E-19 0.98655 0.00360 0.99148 5E-02
3 0.99710 0.00057 0.99827 7E-09 0.99121 0.00020 0.99551 3E-02
4 0.94004 0.00218 0.97006 4E-03 0.90948 0.00610 0.95709 8E-03
5 0.96588 0.04672 0.95958 7E-05 0.93679 0.00224 0.96728 8E-02

IM 1 0.97914 0.00633 0.98641 4E-06 0.90968 0.00243 0.95363 9E-02
2 0.97927 0.00040 0.98944 7E-05 0.89180 0.00241 0.94470 6E-02
3 1.00000 0.00080 0.99997 4E-32 0.92153 0.00547 0.95803 3E-02
4 0.98926 0.00459 0.99234 3E-03 0.86372 0.08034 0.89169 9E-03
5 0.99956 0.00031 0.99963 1E-11 0.93834 0.00635 0.96600 2E-02

MG 1 1.00000 0.00004 0.99998 1E-32 0.98766 0.00043 0.99362 2E-03
2 0.99855 0.00000 0.99928 1E-32 0.99598 0.00035 0.99782 9E-04
3 0.99964 0.00000 0.99982 1E-32 0.91953 0.00101 0.95926 3E-02
4 0.92249 0.00238 0.96006 5E-02 0.80100 0.00348 0.89876 8E-02
5 0.90100 0.00157 0.97657 2E-03 0.79408 0.01217 0.89096 3E-02

0.97465 0.00388 0.98681 3E-03 0.93194 0.00836 0.96206 3E-02

to regeneration, since the efficiencies of EDMs are
not substantially impaired following relocation. This
result reduces the resource costs of the experimentation
associated with EDM design because it obviates the
need to generate individual EDMs for new locations,
a process that has been shown to be computationally
expensive. Instead, EDMs that are known to be efficient

can be relocated. Combined with the results presented
in Section 6.5, it may be desirable to design a single
efficient EDM under a restricted fault model, thereby
reducing its design cost, and proceeding to relocate to
EDM to multiple locations across a software system,
removing the need for further design cost.

It is noteworthy that all relocated EDMs with
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TABLE 8: The efficiency of error detection predicates generated and evaluated under the SimBF fault model with
simultaneous fault injections restricted to k-combinations of bits in representation and variables for 1 ≤ k ≤ 3.

Decision Tree Induction Rule Induction
System Module TPR FPR AUC Var TPR FPR AUC Var

7Z 1 0.99988 0.00005 0.99992 4E-12 0.96484 0.00063 0.98211 2E-06
2 0.99974 0.00003 0.99986 6E-07 0.99744 0.00670 0.99537 6E-04
3 0.99964 0.00001 0.99982 5E-08 0.94111 0.00948 0.96582 3E-02
4 0.98831 0.00031 0.99400 1E-05 0.95326 0.00311 0.97508 2E-03
5 0.97990 0.00078 0.98956 3E-03 0.95828 0.03180 0.96324 1E-03

FG 1 0.89699 0.00655 0.94522 1E-06 0.94151 0.00136 0.97008 7E-03
2 1.00000 0.00000 1.00000 1E-19 0.98655 0.00360 0.99148 5E-02
3 0.99710 0.00057 0.99827 7E-09 0.99121 0.00020 0.99551 3E-02
4 0.94004 0.00218 0.97006 5E-06 0.90948 0.00610 0.95709 1E-03
5 0.96588 0.04672 0.95958 7E-05 0.93679 0.00224 0.96728 8E-02

IM 1 0.97914 0.00633 0.98641 4E-06 0.90968 0.00243 0.95363 9E-02
2 0.97927 0.00040 0.98944 7E-05 0.89180 0.00241 0.94470 6E-02
3 1.00000 0.00080 0.99997 4E-32 0.92153 0.00547 0.95803 3E-02
4 0.98926 0.00459 0.99234 3E-03 0.86372 0.08034 0.89169 9E-03
5 0.99956 0.00031 0.99963 1E-11 0.93834 0.00635 0.96600 2E-02

MG 1 1.00000 0.00004 0.99998 1E-32 0.98766 0.00043 0.99362 2E-03
2 0.99855 0.00000 0.99928 1E-32 0.99598 0.00035 0.99782 9E-04
3 0.99964 0.00000 0.99982 1E-32 0.91953 0.00101 0.95926 3E-02
4 0.94480 0.00235 0.97123 4E-03 0.80133 0.00338 0.89898 8E-02
5 0.95439 0.00126 0.97657 2E-03 0.79408 0.01217 0.89096 3E-02

0.98060 0.00366 0.98855 6E-04 0.93021 0.00897 0.96089 3E-02

TABLE 9: The efficiency of error detection predicates generated, relocated and evaluated under the SimBF fault
model.

Decision Tree Induction Rule Induction
System Module TPR FPR AUC Var TPR FPR AUC Var

7Z 1 0.99988 0.00005 0.99992 4E-12 0.96484 0.00063 0.98211 2E-06
2 0.99974 0.00003 0.99986 6E-07 0.99744 0.00670 0.99537 6E-04
3 0.99964 0.00001 0.99982 5E-08 0.94111 0.00948 0.96582 3E-02
4 0.98831 0.00031 0.99400 1E-05 0.95326 0.00311 0.97508 2E-03
5 0.97990 0.00078 0.98956 3E-03 0.95828 0.03180 0.96324 1E-03

FG 1 0.88849 0.00750 0.94050 1E-04 0.94151 0.00136 0.97008 7E-03
2 1.00000 0.00826 0.99587 2E-16 0.98655 0.00360 0.99148 5E-02
3 0.99710 0.00057 0.99827 7E-09 0.99121 0.00020 0.99551 3E-02
4 0.94179 0.00284 0.96948 1E-04 0.90948 0.00722 0.95113 3E-03
5 0.96588 0.04672 0.95958 7E-05 0.93679 0.00224 0.96728 8E-02

IM 1 0.97914 0.00633 0.98641 4E-06 0.90968 0.00243 0.95363 9E-02
2 0.97927 0.00040 0.98944 7E-05 0.89180 0.00241 0.94470 6E-02
3 1.00000 0.00207 0.99897 1E-32 0.92153 0.00667 0.95743 2E-02
4 0.98926 0.00459 0.99234 3E-03 0.86372 0.08034 0.89169 9E-03
5 0.99956 0.00031 0.99963 1E-11 0.93834 0.00635 0.96600 2E-02

MG 1 1.00000 0.00009 0.99996 1E-32 0.98766 0.00188 0.99289 1E-03
2 0.99855 0.00000 0.99928 1E-32 0.99598 0.00035 0.99782 9E-04
3 0.99964 0.00000 0.99982 1E-32 0.91953 0.00101 0.95926 3E-02
4 0.94480 0.00235 0.97123 4E-03 0.80133 0.00338 0.89898 8E-02
5 0.95439 0.00126 0.97657 2E-03 0.79408 0.01217 0.89096 3E-02

0.98027 0.00422 0.98803 6E-04 0.93021 0.00916 0.96052 3E-02

reduced efficiency are associated with modules where
EDM performance was also impaired when a restricted
set of variables was used in EDM generation, suggesting
that there exist identifiable software modules for which
it is inherently more difficult to generate efficient EDMs.

The results presented demonstrate that the Re-
stricted SimBF model provides a practical simultaneous

fault model for the generation of efficient EDMs based
on the application of machine learning to software fault
injection data sets. The efficiencies of the generated er-
ror detection predicates surpass those of predicates gen-
erated under the BF model when evaluated against non-
simultaneous or simultaneous faults. It should be noted
that the results presented were derived under synthetic
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workloads and simultaneous fault models developed by
existing research, a common limitation of work in the
design of error and anomaly detection approaches.

7. CONCLUSION

In this section the contributions made in this paper are
summarised and future work discussed.

7.1. Summary

The application of machine learning to fault injection
data has been shown to be amongst the most
effective approaches for the generation of efficient
EDMs. However, such approaches to design of EDMs
have invariably adopted a fault model with a single-
fault assumption. Although simultaneous faults do
not necessarily exist in all scenarios, the single-fault
assumption limits the practical relevance of research
in fault injection and fails to recognise the demands
of established safety standards. This paper addresses
this problem, demonstrating that efficient EDMs can
be generated using fault injection data collected under
fault models accounting for simultaneous faults. In
particular, it is shown that (i) efficient EDMs can
be designed using fault data collected under models
accounting for the occurrence of simultaneous faults,
(ii) exhaustive fault injection under a simultaneous bit
flip model can yield improvements to EDM efficiency,
and (iii) exhaustive fault injection under a simultaneous
bit flip model can be made non-exhaustive and (iv)
EDMs can be relocated within a software system
using program slicing, reducing the resource costs of
experimentation to practicable levels without sacrificing
EDM efficiency.

7.2. Future Work

The results presented motivate further consideration
of simultaneous fault model representativeness. The
examination of fault injection data and efficient
error detection predicates each serve as a means for
gaining insight into fault model representativeness. In
contrast, the task of sampling error states and test
cases to reduce experimental cost is well explored.
Despite this, existing methods for error state and test
case sampling invariably require domain knowledge.
Examining the software states captured by efficient
error detection predicates could provide insight into how
to better sample error spaces and test cases, such that
designed EDMs are inherently efficient and amenable to
relocation within a software system.
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