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Abstract. Efficient user revocation is a necessary but challenging prob-
lem in many multi-user cryptosystems. Among known approaches, server-
aided revocation yields a promising solution, because it allows to out-
source the major workloads of system users to a computationally pow-
erful third party, called the server, whose only requirement is to carry
out the computations correctly. Such a revocation mechanism was con-
sidered in the settings of identity-based encryption and attribute-based
encryption by Qin et al. (ESORICS 2015) and Cui et al. (ESORICS
2016), respectively.
In this work, we consider the server-aided revocation mechanism in the
more elaborate setting of predicate encryption (PE). The latter, intro-
duced by Katz, Sahai, and Waters (EUROCRYPT 2008), provides fine-
grained and role-based access to encrypted data and can be viewed as
a generalization of identity-based and attribute-based encryption. Our
contribution is two-fold. First, we formalize the model of server-aided
revocable predicate encryption (SR-PE), with rigorous definitions and
security notions. Our model can be seen as a non-trivial adaptation of
Cui et al.’s work into the PE context. Second, we put forward a lattice-
based instantiation of SR-PE. The scheme employs the PE scheme of
Agrawal, Freeman and Vaikuntanathan (ASIACRYPT 2011) and the
complete subtree method of Naor, Naor, and Lotspiech (CRYPTO 2001)
as the two main ingredients, which work smoothly together thanks to a
few additional techniques. Our scheme is proven secure in the standard
model (in a selective manner), based on the hardness of the Learning
With Errors (LWE) problem.

1 Introduction

The notion of predicate encryption (PE), formalized by Katz, Sahai, and Wa-
ters [19], is an emerging paradigm of public-key encryption, which provides fine-
grained and role-based access to encrypted data. In a PE scheme, the user’s
private key, issued by the key generation center (KGC), is associated with a
predicate f , while a ciphertext is bound to an attribute I. Then the system en-
sures that the user can decrypt the ciphertext if and only if f(I) = 1. PE can be
viewed as a generalization of attribute-based encryption (ABE) [34,18]. Whereas
the latter reveals the attribute bound to each ciphertext, the former preserves
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the privacy of not only the encrypted data but also the attribute. These powerful
properties of PE yield numerous potential applications (see, e.g., [10,37,19]).

As for many other multi-user cryptosystems, an efficient revocation mecha-
nism is necessary and imperative in the PE setting. When some users misbehave
or when their private keys are compromised, the users should be revoked from
the system and we would need a non-trivial mechanism ensuring that: (i) re-
voked users can no longer decrypt ciphertexts; (ii) the workloads of the KGC
and the non-revoked users in updating the system are not too taxing. In the
ABE setting, Boldyreval et al. [8] put forward a revocation mechanism based
on a time-based key update procedure. In their approach, a ciphertext is not
only bound to an attribute but also to a time period. The KGC, who possesses
the up-to-date list of revoked users, has to publish an update key at each time
period so that only non-revoked users can update their private keys to decrypt
ciphertexts bound to the same time slot. To make the KGC’s workload scalable
(i.e., being logarithmic in the maximum number of users N), Boldyreval et al.
suggested to employ the subset-cover framework due to Naor et al. [27] to handle
key updating. Concrete pairing-based instantiations of revocable ABE following
this approach were proposed in [7,33].

In Boldyreval et al.’s model, however, the non-revoked users have to commu-
nicate with the KGC regularly to receive the update keys. Although such key
updating process can be done through a public channel, it is somewhat inconve-
nient and bandwidth-consuming. To reduce the users’s computational burden,
Qin et al. [31] proposed an interesting solution in the context of identity-based
encryption (IBE), called server-aided revocable identity-based encryption (SR-
IBE). Qin et al.’s model takes advantage of a publicly accessible server with
powerful computational capabilities, to which one can outsource most of users’
workloads. Moreover, the server can be untrusted in the sense that it does not
possess any secret information.

Cui et al. [13] subsequently adapted the server-aided revocation mechanism
into the ABE setting and introduced server-aided revocable attribute-based en-
cryption (SR-ABE). Briefly speaking, an SR-ABE scheme works as follows.
When a new user joins the system, he generates a public-secret key-pair, and
sends the public key to the KGC 1. The latter then generates a user-specific to-
ken that is forwarded to the untrusted server through a public channel. At each
time period, the update key is sent only to the server rather than to all users. To
perform decryption for a specific user, the server first transforms the ciphertext
into a “partially decrypted ciphertext”. The latter is bound to the user’s public
key, so that only the intended user can recover the plaintext using his private
key. In [13], apart from introducing this new model, Cui et al. also described a
pairing-based instantiation of SR-ABE.

In this work, inspired by the potentials of PE and the advantages of the
server-aided revocation mechanism, we consider the notion of sever-aided revo-

1 Alternatively, as pointed out by Cui et al. [13], the key-pair can be generated by the
KGC and then sent to the user. This requires a secure channel - which is typically
assumed to be available in the setting of centralized cryptosystems.



cable predicate encryption, and aim to design the first such scheme from lattice
assumptions.

Other related works. The subset-cover framework, proposed by Naor et
al. [27], is arguably the most well-known revocation technique for multi-user
systems. It uses a binary tree, each leaf of which is designated to each user.
Non-revoked users are partitioned into disjoint subsets, and are assigned keys
according to the complete subtree (CS) method or the subset difference (SD)
method. This framework was considered to address user revocation for identity-
based encryption (IBE) schemes, with constructions from pairings [8,24,35,20]
and from lattices [11,12,38]. It also found applications in the context of revocable
group signatures [23,22] and revocable ABE schemes [8,7,33].

Lattice-based cryptography, pioneered by Ajtai [4], Regev [32] and Gentry
et al. [15], has been an exciting research area in the last decade, providing sev-
eral advantages over conventional number-theoretic cryptography, such as faster
arithmetic operations and conjectured resistance against quantum computers.
Among other primitives, lattice-based revocable cryptosystems have been re-
ceiving considerable attention.

Chen et al. [11] initiated the study of lattice-based revocable IBE, equip-
ping the scheme by Agrawal, Boneh and Boyen [2] with a revocation method
following Boldyreval et al.’s blueprint [8]. Chen et al.’s construction has been im-
proved in two directions. Nguyen et al. [28] extended it into an SR-IBE scheme,
using a hierarchical IBE [2] and a double encryption technique [21] in the pro-
cess. Takayasu and Watanabe [38] developed a scheme with enhanced security,
which is, to some extent, resistant against decryption key exposure attacks [35].
Very recently, a major related result was obtained by Agrawal et al. [1], who es-
tablished a lattice-based identity-based trace-and-revoke system, via an elegant
generic construction from functional encryption for inner products.

Beyond the IBE setting, Ling et at. [25] provided a revocation method for the
lattice-based PE scheme by Agrawal, Freeman and Vaikuntanathan [3]. To this
end, Ling et al. employs the direct revocation approach [29], where the revocation
information is directly embedded into each ciphertext. This approach eliminates
the necessity of the key-update phase, but it produces ciphertexts of relatively
large size, depending on the number of all users N and/or the number of revoked
users r. For the time being, the problem of constructing lattice-based revocable
PE schemes featuring constant-size ciphertexts remains open.

Our results and techniques. The contribution of this work is two-fold: We
first formalize the concept of server-aided predicate encryption (SR-PE), and
then put forward an instantiation of SR-PE from lattices. An overview of these
two results is given below.

Our model of SR-PE inherits the main advantage of the server-aided revoca-
tion mechanism [31]: most of the users’ workloads are delegated to an untrusted
server. The model can be seen as a non-trivial adaptation of Cui et al.’s model of
SR-ABE [13] into the PE setting, with two notable distinctions. First, while Cui
et al. assume a public-secret key-pair for each user, we do not require users to
maintain their own public keys. Recall that Shamir’s [36] motivation to initiate



the study of IBE is to eliminate the burden of managing public keys. The more
general notions of ABE and PE later inherit this advantage over traditional pub-
lic key encryption. From this point of view, the re-introduction of users’ public
keys seems contradict to the spirit of identity-based/attribute-based/predicate
cryptosystems. Thus, by not demanding the existence of users’ public keys, we
make our model consistent with ordinary (i.e., non-revocable) predicate encryp-
tion. Second, our security definition reflects the attribute-hiding property of PE
systems, which guarantees that attributes bound to the ciphertexts are not re-
vealed during decryptions, and which is not considered in the context of ABE.

As an effort to instantiate a scheme satisfying our model under post-quantum
assumptions, we design a lattice-based construction that is proven secure (in a
selective manner) in the standard model, assuming the hardness of the Learning
With Errors (LWE) problem [32]. The efficiency of our scheme is comparable to
that of the constructions under the server-aided revocation approach [31,13,28],
in the following sense. The sizes of private keys and ciphertexts, as well as the
complexity of decryption on the user side are all independent of the number of
users N and the number of revoked users r. In particular, the ciphertext size in
our scheme compares favourably to that of Ling et al.’s revocable PE scheme [25],
which follows the direct revocation approach. It is also worth mentioning that,
if we do not assume the availability of the server (which does not affect se-
curity because the server does not possess any secret key) and let the users
perform the server’s work themselves, then our scheme would yield the first
(non-server-aided) lattice-based PE with constant-size ciphertexts. At a high
level, our scheme employs two main building blocks: the ordinary PE scheme by
Agrawal et al. [3] and the CS method due to Naor et al. [27]. We observe that
the same two ingredients were adopted in Ling et at.’s scheme [25], but their
direct revocation approach is fundamentally different from ours, and thus, we
have to find a new way to make these ingredients work smoothly together.

Our first challenge is to enable a relatively sophisticated mechanism, in which
an original PE ciphertext bound to an attribute and a time period (but not
bound to any user’s identifying information), after being transformed by the
server, would become a partially decrypted ciphertext bound to the identifying
information of the non-revoked recipient. We note that, in the setting of lattice-
based SR-IBE, Nguyen et al. [28] addressed a somewhat related problem using
a double encryption technique, where the original and the partially decrypted
ciphertexts are both bound to the recipient’s identity and time period. How-
ever such technique requires the sender to know the recipient’s identity when
generating the ciphertext, and hence, it is not applicable to the PE setting. We
further note that, Cui et al. [13] solved a more closely related problem, in which
the partially decrypted ciphertext is constrained to bind to the recipient’s public
key - with respect to some public-key encryption (PKE) system. We observe that
it is possible to adapt the technique from [13], but as our SR-PE model does
not work with users’ public keys, we will instead make use of an IBE instance.
Namely, we additionally employ the IBE from [2] and assign each user an iden-



tity id. The challenge now is how to embed id into the user-specific token in a
way such that the partially decrypted ciphertext will be bound to id.

To address the above problem, we exploit a special property of some LWE-
based encryption systems, observed by Boneh et al. [9], which allows to transform
an encryption of a message under one key into an encryption of the same message
under another key. Then, our scheme works roughly as follows. Each user with
identity id is issued a private key for a two-level hierarchical system consisting
of one instance of the PE system from [3] as well as an additional IBE level
for id, associated with a matrix Did. Meanwhile, the token for id is generated by
embedding Did into another instance of the same PE system [3]. At each time
period t, the KGC employs the CS method to compute an update key ukt and
sends it to the server. A ciphertext in our scheme is a combination of two PE
ciphertexts and an extra component bound to t. If recipient id is not revoked at
time period t, the server can use the token for id and ukt to transform the second
PE ciphertext into an IBE ciphertext associated with Did, thanks to the special
property mentioned above. Finally, the partially decrypted ciphertext, consisting
of the first PE ciphertext and the IBE ciphertext, can be fully decrypted using
the private key of id.

The security of our proposed SR-PE scheme relies on that of the two lattice-
based components from [3] and [2]. Both of them are selectively secure in the
standard model, assuming the hardness of the LWE problem - so is our scheme.

Organization. The rest of this paper is organized as follows. In Section 2,
we briefly recall some background about lattices and the CS method. We give
the rigorous definitions and security model of SR-PE in Section 3. Our lattice-
based instantiation of SR-PE is described in Section 4 and analyzed in Section 5.
Finally, Section 6 concludes the paper.

2 Preliminaries

Notations. The acronym PPT stands for “probabilistic polynomial-time”. We
often write x ←֓ χ to indicate that we sample x from probability distribution

χ. If Ω is a finite set, the notation x
$← Ω means that x is chosen uniformly

at random from Ω. Meanwhile, if x is an output of PPT algorithm A, then we
write x← A.

We use bold upper-case letters (e.g., A, B) to denote matrices and use bold
lower-case letters (e.g., x, y) to denote column vectors. In addition, we user over-
arrows to denote predicate and attribute vectors as −→x ,−→y . For two matrices
A ∈ Rn×m and B ∈ Rn×k, we denote by [A | B] ∈ Rn×(m+k) the column-
concatenation of A and B. For a vector x ∈ Zn, ||x|| denotes the Euclidean

norm of x. We use Ã to denote the Gram-Schmidt orthogonalization of matrix
A, and ||A|| to denote the Euclidean norm of the longest column in A. If n is
a positive integer, [n] denotes the set {1, .., n}. For c ∈ R, let ⌊c⌉ = ⌈c − 1/2⌉
denote the integer closest to c.



2.1 Background on Lattices

Integer lattices. An m-dimensional lattice Λ is a discrete subgroup of Rm. A
full-rank matrix B ∈ Rm×m is a basis of Λ if Λ = {y ∈ Rm : ∃s ∈ Zm, y = B ·s}.
We consider integer lattices, i.e., when Λ ⊆ Zm. For any integer q ≥ 2 and any
A ∈ Zn×m

q , define the q-ary lattice:

Λ⊥
q (A) =

{
r ∈ Z

m : A · r = 0 mod q
}
⊆ Z

m.

For any u in the image of A, define Λu
q (A) =

{
r ∈ Zm : A · r = u mod q

}
.

A fundamental tool in lattice-based cryptography is an algorithm that gen-
erates a matrix A close to uniform together with a short basis TA of Λ⊥

q (A).

Lemma 1 ([5,6,26]). Let n ≥ 1, q ≥ 2 and m ≥ 2n log q be integers. There
exists a PPT algorithm TrapGen(n, q, m) that outputs a pair (A, TA) such that
A is statistically close to uniform over Zn×m

q and TA ∈ Zm×m is a basis for

Λ⊥
q (A), satisfying

‖T̃A‖ ≤ O(
√

n log q) and ‖TA‖ ≤ O(n log q)

with all but negligible probability in n.

Micciancio and Peikert [26] consider a structured matrix G, called the prim-
itive matrix, which admits a publicly known short basis TG of Λ⊥

q (G).

Lemma 2 ([26]). Let n ≥ 1, q ≥ 2 be integers and let m ≥ n⌈log q⌉. There
exists a full-rank matrix G ∈ Zn×m

q such that the lattice Λ⊥
q (G) has a known

basis TG ∈ Z
m×m with ||T̃G|| ≤

√
5.

Furthermore, there exists a deterministic polynomial-time algorithm G−1

which takes the input U ∈ Zn×m
q and outputs X = G−1(U) such that X ∈

{0, 1}m×m and GX = U.

Discrete Gaussians. Let Λ be an integer lattice. For vector c ∈ Rm and any

parameter s > 0, define ρs,c(r) = exp(−π
‖r− c‖2

s2
) and ρs,c(Λ) =

∑
r∈Λ ρs,c(r).

The discrete Gaussian distribution over Λ with center c and parameter s is

∀r ∈ Λ,DΛ,s,c(r) =
ρs,c(r)

ρs,c(Λ)
. If c = 0, we simplify to use notations ρs and DΛ,s.

We also need the following lemma to prove the correctness of construction in
Section 4.

Lemma 3 ([15,26,14,25]). Let n ≥ 1, q ≥ 2, m ≥ 2n log q and k ≥ 1 be
integers. Let F be a full-rank matrix in Zn×m

q and TF be a basis of Λ⊥
q (F).

Assume that s ≥ ||T̃F|| ·ω(
√

log n). Then, for Z ←֓ (DZm,s)
k
, the distribution of

FZ mod q is statistically close to the uniform distribution over Zn×k
q .



Sampling algorithms. It was shown in [2,26] how to efficiently sample short
vectors from specific lattices. Algorithms SamplePre, SampleBasisLeft, SampleLeft

and SampleRight from those works will be employed in our construction and the
security proof.

SamplePre (A, TA, u, s): On input a full-rank matrix A ∈ Zn×m
q , a trapdoor TA

of Λ⊥
q (A), a vector u ∈ Z

n
q , and a Gaussian parameter s ≥ ‖T̃A‖·ω(

√
log m),

it outputs a vector e ∈ Zm with a distribution statistically close to DΛu

q
(A),s.

SampleBasisLeft(A, M, TA, s): On input a full-rank matrix A ∈ Zn×m
q , a matrix

M ∈ Zn×m
q , a trapdoor TA of Λ⊥

q (A) and a Gaussian parameter s ≥ ‖T̃A‖ ·
ω(
√

log 2m), it outputs a basis TF of Λ⊥
q (F), where F = [A |M] ∈ Zn×2m

q

and ||T̃F|| = ||T̃A||.
SampleLeft(A, M, TA, u, s): On input full-rank matrix A ∈ Z

n×m
q , a matrix

M ∈ Zn×m
q , a trapdoor TA of Λ⊥

q (A), a vector u ∈ Zn
q , and a Gaussian

parameter s ≥ ‖T̃A‖ · ω(
√

log 2m), it outputs a vector z ∈ Z2m, which is
sampled from a distribution statistically close to DΛu

q
(F),s. Here we define

F = [A |M] ∈ Zn×2m
q .

SampleRight(A, R, G, TG, u, s): On input matrices A ∈ Zn×m
q , R ∈ Zm×m,

the primitive matrix G ∈ Z
n×m
q together with trapdoor TG of Λ⊥

q (G), a

vector u ∈ Zn
q , and a Gaussian parameter s ≥ ‖T̃B‖ · ||R|| · ω(

√
log m), it

outputs a vector z ∈ Z2m, sampled from a distribution statistically close to
DΛu

q
(F),s. Here we define F = [A |AR + G] ∈ Zn×2m

q .

The above algorithms can be easily extended to the case of taking a matrix
U ∈ Zn×k

q , for some k ≥ 1. Then, the output is a matrix Z ∈ Z with k columns.

Learning With Errors. We now recall the Learning With Errors (LWE)
problem [32], as well as its hardness.

Definition 1 (LWE). Let n, m ≥ 1, q ≥ 2, and let χ be a probability distribution

on Z. For s ∈ Zn
q , let As,χ be the distribution obtained by sampling a

$← Zn
q

and e ←֓ χ, and outputting the pair
(
a, a⊤s + e

)
∈ Z

n
q × Zq. The (n, q, χ)-LWE

problem asks to distinguish m samples chosen according to As,χ (for s
$← Zn

q )
and m samples chosen according to the uniform distribution over Zn

q × Zq.

If q is a prime power and B ≥ √n · ω (log n), then there exists an efficient
sampleable B-bounded distribution χ (i.e., χ outputs samples with norm at
most B with overwhelming probability) such that (n, q, χ)-LWE is as least as
hard as worst-case lattice problem SIVP with approximate factor O (nq/B) (see,
e.g., [32,30,26]).

2.2 The Agrawal-Freeman-Vaikuntanathan Predicate Encryption
Scheme

Next, we recall the LWE-based predicate encryption, proposed by Agrawal, Free-
man and Vaikuntanathan (AFV) [3] and improved by Xagawa [39]. The scheme is



for inner-product predicates, where an attribute is expressed as a vector −→y ∈ Zℓ
q

(for some integers q and ℓ) and a predicate f−→x is associated with a vector−→x ∈ Zℓ
q.

We say that f−→x (−→y ) = 1 if 〈−→x ,−→y 〉 = 0, and f−→x (−→y ) = 0 otherwise.
In the AFV scheme, the key authority possesses a short basis TA for a

public lattice Λ⊥
q (A), generated by TrapGen algorithm. Each predicate vector

−→x is associated with a super-lattice of Λ⊥
q (A), a short vector of which can be

efficiently computed using the trapdoor TA. Such a short vector allows to de-
crypt a Dual-Regev ciphertext [15] bound to an attribute vector −→y satisfying
〈−→x ,−→y 〉 = 0. In order to improve efficiency, Xagawa [39] suggested an enhanced
variant that employs the primitive matrix G. In the below, we will describe
the AFV scheme with Xagawa’s improvement. The scheme works with parame-
ters n, q, ℓ, m, κ, s, χ and an encoding function encode : {0, 1} → {0, 1}κ, where
encode(b) = (b, 0, . . . , 0) ∈ {0, 1}κ - the binary vector that has bit b as the first
coordinate and 0 elsewhere.

Setup: Generate (A, TA) ← TrapGen(n, q, m). Pick V
$←− Zn×κ

q and for each

i ∈ [ℓ], sample Ai
$←− Zn×m

q . Output

ppPE = (A, {Ai}i∈[ℓ], V); mskPE = TA.

KeyGen: For a predicate vector −→x = (x1, . . . , xℓ) ∈ Zℓ
q, set A−→x =

ℓ∑
i=1

AiG
−1(xi ·

G) ∈ Zn×m
q and output sk−→x = Z by running

SampleLeft (A, A−→x , TA, V, s) .

Another way is to set sk−→x = T−→x by running

SampleBasisLeft (A, A−→x , TA, s) .

Note that we then can sample

Z← SamplePre ([A | A−→x ], T−→x , V, s) .

Enc: To encrypt a message M ∈ {0, 1} under an attribute −→y = (y1, . . . , yℓ) ∈ Zℓ
q,

choose s
$← Zn

q , e←֓χκ, e1←֓χm, Ri
$← {−1, 1}m×m for each i ∈ [ℓ], and then

output ct = (c, c0, {ci}i∈[ℓ]), where:





c = V⊤s + e + encode(M) · ⌊ q
2⌋ ∈ Zκ

q ,

c0 = A⊤s + e1 ∈ Zm
q ,

ci = (Ai + yi ·G)⊤ s + R⊤
i e1 ∈ Zm

q , ∀i ∈ [ℓ]

Dec: Set c−→x =
ℓ∑

i=1

(
G−1(xi ·G)

)⊤
ci ∈ Zm

q and d = c − Z⊤[c0 | c−→x ] ∈ Zq. If

⌊ 2
q
· d⌉ = encode(M ′), for some M ′ ∈ {0, 1}, then output M ′. Otherwise,

output ⊥.



Agrawal, Freeman and Vaikuntanathan [3] showed that, under the (n, q, χ)-
LWE assumption, their PE scheme satisfies the weak attribute-hiding security
notion in a selective attribute setting (short as wAH-sA-CPA), defined by Katz,
Sahai and Waters [19]. Xagawa [39] proved that the same assertion holds for his
improved scheme variant. We thus have the following theorem.

Theorem 1 (Adapted from [3,39]). If the (n, q, χ)-LWE problem is hard,
then the improved AFV PE scheme is wAH-sA-CPA secure.

2.3 The Complete Subtree Method

The complete subtree (CS) method, proposed by Naor, Naor and Lotspiech [27],
has been widely used in revocation systems. It makes use of a node selection
algorithm (called KUNodes). In the algorithm, we build a complete binary BT

with at least N leaf nodes, where N is the maximum number of users in the
system. Each user is corresponding to a leaf node of BT. We use the following
notation: If θ is a non-leaf node, θℓ and θr denote the left and right child of θ,
respectively. Whenever ν is a leaf node, the set Path(ν) stands for the collection of
nodes on the path from θ to the root (including θ and the root). The KUNodes

algorithm takes as input the binary tree BT, a revocation list RL and a time
period t, and outputs a set of nodes Y which is the smallest subset of nodes that
contains an ancestor of all the leaf nodes corresponding to non-revoked users.
It is known [27] that the set Y generated by KUNodes(BT, RL, t) has a size at
most r log N

r
, where r is the number of users in RL. The detailed description of

algorithm KUNodes is given below. and an example is illustrated in Figure 1.

KUNodes(BT, RL, t)

X, Y ← ∅
∀(νi, ti) ∈ RL : if ti ≤ t, then add Path(ν) to X

∀θ ∈ X : if θℓ 6∈ X, then add θℓ to Y ; if θr 6∈ X, then add θr to Y

If Y = ∅, then add the root to Y

Return Y

3 Server-Aided Revocable Predicate Encryption

In this section, we describe the rigorous definition and security model of SR-PE,
based on the server-aided revocation mechanism advocated by Qin et al. [31]
and the model of SR-ABE by Cui et al. [13].

The mechanism advocated by Qin et al. [31] is depicted in Figure 2. Specifi-
cally, when a new recipient joins the system, the KGC issues a private key and a
corresponding token both associated with his identity and predicate. The former
is given to the recipient and the latter is sent to the server. At each time pe-
riod, the KGC issues an update key to the server who combines with the stored
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Fig. 1. Assuming that RL = {2, 4}, it follows that {1, 3, 14} ← KUNodes(BT, RL, t).
For non-revoked identity 5, node 14 ∈ KUNode(BT, RL) is an ancestor of 5. For identity
4 ∈ RL, the set Path(4) = {4, 10, 13, root} is disjoint with KUNodes(BT, RL, t).

users’ tokens to generate the transformation keys for users. A sender encrypts a
message under an attribute and a time period and the ciphertext is sent to the
untrusted server. The latter transforms the ciphertext to a partially decrypted
ciphertext using a transformation key corresponding to the recipient’s identity
and the time period bound to the ciphertext. Finally, the recipient recovers the
message from the partially decrypted ciphertext using his private key.

KGC

RecipientServerSender
❄

❅
❅❘ ❄✲ ✲ ✲

Private key

Token Update key

Ciphertext Partially
decrypted
ciphertext

Message

Fig. 2. Architecture of server-aided revocation mechanism

In comparison with Cui et al.’s model of SR-ABE [13], our model offers
two crucial differences. In [13], it is assumed that each user in the system has
to maintain a public-secret key-pair (which can possibly be a key-pair for an
ordinary PKE scheme). Although this setting can eliminate the need for a secure
channel between the KGC and the users (as explained by Cui et al.), we find it
somewhat unnatural in the context of identity-based/attribute-based/predicate
cryptosystems. (After all, one of the main advantages of these systems over PKE
systems is the elimination of users’ public keys.) In contrast, our model of SR-PE
does not require the users to maintain their own public keys. In the same spirit
of IBE systems, we get rid of the notion of users’ public keys and we assume a
secure channel for transmitting users’ private keys.



Another notable difference between our model and [13] is due to gap between
security notions for ABE and PE systems. Our model preserves the attribute-
hiding property of PE systems, which, unlike ABE systems, attributes bound to
the ciphertexts are not revealed during decryptions.

A server-aided revocable predicate encryption (SR-PE) scheme involves 4
parties: KGC, sender, recipient, and untrusted server. It is assumed that the
server stores a list of tuples (identity, predicate, token), i.e., (id, f, τid,f ). Algo-
rithms among the parties are as follows:

Sys(1λ) is run by the KGC. It takes as input a security parameter λ and outputs
the system parameters params.

Setup(params) is run by the KGC. It takes as input the system parameters params

and outputs public parameters pp, a master secret key msk, a revocation
list RL (initially empty), and a state st. We assume that pp is an implicit
input of all other algorithms.

UserKG(msk, id, f) is run by the KGC. It takes as input the master secret key
msk and an identity id with predicate f . It outputs a private key skid,f which
is sent to the recipient through a secret channel.

Token(msk, id, f, st) is run by the KGC. It takes as input the master secret key
msk, an identity id with a predicate f , and state st. It outputs a token τid,f

and an updated state st. The token τid,f is sent to the server through a public
channel.

UpdKG(msk, t, RL, st) is run by the KGC. It takes as input the master secret
key msk, a time t, the current revocation list RL, and state st. It outputs an
update key ukt which is sent to the server through a public channel.

TranKG(id, τid,f , ukt) is run by the server. It takes as input an identity with the
corresponding token τid,f and an update key ukt, and outputs a transforma-
tion key tkid,t for user id at the time period t.

Enc(I, t, M) is run by each sender. It takes as input an attribute I, a time t,
and a message M . It outputs a ciphertext ctt which is publicly sent to the
server.

Transform(ctt, id, tkid, t) is run by the sever. It takes as input a ciphertext ctt,
and an identity with the corresponding transform key tkid,t. It outputs a
partially decrypted ciphertext ct′

id
, which is sent to the recipient with identity

id through a public channel.

Dec(ct′
id

, skid,f ) is run by each recipient. It takes as input a partially decrypted
ciphertext ct′

id
and a private key skid,f . It outputs a message M or symbol ⊥.

Revoke(id, t, RL, st) is run by the KGC. It takes as input an identity id to be
revoked, a revocation time t, the current revocation list RL, and a state st.
It outputs an updated revocation list RL.

The correctness requirement for an SR-PE scheme states that: For any λ ∈ N,
all possible state st, and any revocation list RL, if all parties follow the prescribed
algorithms, and if id is not revoked on a time t, then:



1. If f(I) = 1 then Dec (ct′
id

, skid,f ) = M .

2. If f(I) = 0 then Dec (ct′
id

, skid,f ) = ⊥ with all but negligible probability.

Next, we give the semantic security against selective attributes chosen plain-
text attacks for server-aided revocable predicate encryption (short as SR-sA-

CPA). The selective security means that the adversary needs to be announced
the challenge attributes and time period before seeing public parameters. In ad-
dition, it is assumed the adversary must commits in advance the set of users to
be revoked prior to the challenge time, which is similar to the semi-static query
model considered in [16,7].

Definition 2 (SR-sA-CPA Security). Let O be the set of the following oracles:

− UserKG(·, ·): On input an identity id and a predicate f , return a private key
skid,f by running UserKG(msk, id, f).

− Token(·, ·): On input an identity id and a predicate f , return a token τid,f by
running Token(msk, id, f, st).

− UpdKG(·): On input a time period t, return an update key ukt by running
algorithm UpdKG(msk, t, RL, st). If t = t∗, then RL

∗ must be a subset of the
RL at t∗.

− Revoke(·, ·): On input an identity id and a time t, return an updated revoca-
tion list RL by running Revoke(id, t, RL, st). Note that this oracle cannot be
queried on time t if UpdKG(·) has been queried on time t.

An SR-PE scheme is SR-sA-CPA secure if any PPT adversary A has negligible
advantage in the following experiment:

ExpSR-sA-CPA

A (λ)

params← Sys(1λ); I0, I1, t∗, RL
∗ ← A

(pp, msk, st, RL)← Setup(params)

M0, M1 ← AO(pp)

b
$← {0, 1}

ct∗ ← Enc(Ib, t∗, Mb)

b′ ← AO(ct∗)

Return 1 if b′ = b and 0 otherwise.

Beyond the condition that M0, M1 have the same length, the following restric-
tions are made:

1. Case 1: if an identity id
∗ with predicate f∗ satisfying that f∗(I0) = 1 or

f∗(I1) = 1 has be queried to UserKG(·, ·) and Token(·, ·), then id
∗ must be

included in RL
∗.

2. Case 2: if an identity id
∗ with predicate f∗ satisfying that f∗(I0) = 1 or

f∗(I1) = 1 is not revoked at t∗, then (id∗, f∗) should not be queried to the
UserKG(·, ·) oracle.



The advantage of A in the experiment is defined as:

Adv
SR-sA-CPA

A (λ) =

∣∣∣∣Pr
[
ExpSR-sA-CPA

A (λ) = 1
]
− 1

2

∣∣∣∣ .

Remark 1. We can also define an adaptive security notion, where the adversary
is not required to specify the challenge attributes I0, I1 and time period t∗ before
seeing the public parameters pp. Such a notion is obviously stronger than the
selective notion defined above.

4 An SR-PE Scheme from Lattices

Our lattice-based SR-PE scheme can be seen as a combination of two AFV
PE instances [3], one IBE instance [2] and the CS method [27]. Each recipient’s
identity id corresponds to a matrix Did determined by the IBE system. The KGC
generates the private key for the first PE instance with a hierarchical level for Did,
and issues the token by embedding Did into the second PE scheme as well as using
nodes in Path(id). At each time period t, the KGC computes an update key using
nodes in KUNodes(BT, RL, t). Recall that token and update key are both sent to
the sever, who makes use of the intersected node in Path(id)∩KUNodes(BT, RL, t)
to obtain a transformation key. Then, a ciphertext in our scheme is a combination
of two PE ciphertexts and an extra component bound to t, where all components
have the same randomness (i.e., vector s). If recipient id is not revoked at time
period t, e.g., id 6∈ RL, then the server can partially decrypt the ciphertext,
via the decryption algorithm of the second PE instance. Finally, the partially
decrypted ciphertext contains a proper ciphertext for the first PE system and
an additional component bound to matrix Did (all with randomness s) so that
it can be fully decrypted using the private key of id (obtained from the first PE
instance and specified by Did).

In the following, we will formally describe the scheme.

Sys(1λ): On input security parameter λ, the KGC performs the following steps:

1. Set n = O (λ). Choose N = poly(λ) as the maximal number of users
the system will support, and arbitrary ℓ be the length of predicate and
attribute vectors. Choose κ = ω(log λ) as a dimension parameter.

2. Let q = Õ
(
ℓ2n4

)
be a prime power, and set m = 2n⌈log q⌉. Note that

parameters n, q, m specify the primitive matrix G (see Section 2.1).

3. Choose a Gaussian parameter s = Õ (
√

m).

4. Set B = Õ (
√

n) and let χ be a B-bounded distribution.

5. Select an efficient full-rank difference map H : Zn
q → Zn×n

q .

6. Let the identity space be I ⊆ Zn
q , the time space be T ⊆ Zn

q , the message

space be M = {0, 1}, the predicate space be P = {f−→x

∣∣−→x ∈ Zℓ
q} and the

attribute space be A = Zℓ
q (see Section 2.2).

7. Define the encoding function encode (see Section 2.2 ).



8. Output params = (n, N, ℓ, κ, q, m, s, B, χ, H, I, T ,M, P, A, encode).

Setup(params): On input the system parameters params, the KGC performs the
following steps:

1. Generate independent pairs (A, TA) and (B, TB) using TrapGen(n, q, m).

2. Select V
$← Zn×κ

q and C, D, Ai, Bi
$← Zn×m

q for each i ∈ [ℓ].

3. Initialize the revocation list RL = ∅. Obtain a binary tree BT with at
least N leaf nodes and set the state st = BT.

4. Set pp =
(
A, B, C, D, {Ai}i∈[ℓ], {Bi}i∈[ℓ], V

)
and msk = (TA, TB).

5. Output (pp, msk, RL, st).

UserKG(msk, id, −→x ): On input the master secret key msk and an identity id ∈
I with predicate vector −→x = (x1, . . . , xℓ) ∈ Zℓ

q, the KGC performs the
following steps:

1. Set B−→x =
ℓ∑

i=1

BiG
−1(xi ·G) ∈ Zn×m

q and Did = D + H(id)G ∈ Zn×m
q .

2. Sample Z← SampleLeft (B, [B−→x | Did], TB, V, s). Note that Z ∈ Z3m×κ

and [B | B−→x | Did] · Z = V.

3. Output skid,−→x = Z.

Token(msk, id, −→x , st): On input the master secret key msk, an identity id ∈ I
with predicate vector −→x = (x1, . . . , xℓ) ∈ Z

ℓ
q, and state st, the KGC performs

the following steps:

1. Compute A−→x =
ℓ∑

i=1

AiG
−1(xi ·G) ∈ Zn×m

q .

2. For each θ ∈ Path(id), if Uθ is undefined, then pick Uθ
$← Zn×m

q and store
it on θ; Sample Z1,θ ← SampleLeft (A, A−→x , TA, Did −Uθ, s). Note that
Z1,θ ∈ Z2m×m and [A | A−→x ] · Z1,θ = Did −Uθ.

3. Output the updated state st and τid,−→x = {θ, Z1,θ}θ∈Path(id).

UpdKG(msk, t, st, RL): On input the master secret key msk, a time t ∈ T , the
revocation list RL and state st, the KGC performs the following steps:

1. Compute Ct = C + H(t)G ∈ Zn×m
q .

2. For each θ ∈ KUNodes(BT, RL, t), retrieve Uθ (which is always pre-defined
in algorithm Token), and sample Z2,θ ← SampleLeft (A, Ct, TA, Uθ, s).
Note that Z2,θ ∈ Z2m×m and [A | Ct] · Z2,θ = Uθ.

3. Output ukt = {θ, Z2,θ}θ∈KUNodes(BT,RL,t).

TranKG(id, τid,−→x , ukt): On input an identity id with token τid,−→x = {θ, Z1,θ}θ∈I

and an update key ukt = {θ, Z2,θ}θ∈J for some set of nodes I, J , the server
performs the following steps:

1. If I ∩ J = ∅, output ⊥.



2. Otherwise, choose θ ∈ I ∩ J and output tkid,t = (Z1,θ, Z2,θ). Note that
[A | A−→x ] · Z1,θ + [A | Ct] · Z2,θ = Did.

Enc(−→y , t, M): On input an attribute vector −→y = (y1, . . . , yℓ) ∈ Zℓ
q, a time t ∈ T

and a message M ∈M, the sender performs the following steps:

1. Sample s
$← Zn

q , e1, e2←֓χm and e←֓χκ.

2. Choose R̄, Si, Ri
$← {−1, 1}m×m for each i ∈ [ℓ].

3. Output ctt = (c, c1, {c1,i}i∈[ℓ], c1,0, c2, {c2,i}i∈[ℓ]) where:





c = V⊤s + e + encode(M) · ⌊ q
2⌋ ∈ Zκ

q ,

c1 = A⊤s + e1 ∈ Zm
q ,

c1,i = (Ai + yi ·G)⊤s + R⊤
i e1 ∈ Zm

q , ∀i ∈ [ℓ]

c1,0 = C⊤
t s + R̄⊤e1 ∈ Zm

q ,

c2 = B⊤s + e2 ∈ Zm
q ,

c2,i = (Bi + yi ·G)⊤s + S⊤
i e2 ∈ Zm

q , ∀i ∈ [ℓ].

Transform(ctt, id, tkid,t): On input ctt = (c, c1, {c1,i}i∈[ℓ], c1,0, c2, {c2,i}i∈[ℓ])
and an identity id with transformation key tkid,t = (Z1, Z2), the server per-
forms the following steps:

1. Compute c1,−→x =
ℓ∑

i=1

(
G−1(xi ·G)

)⊤
c1,i ∈ Zm

q .

2. Compute c̄ = Z⊤
1 [c1 | c1,−→x ] + Z⊤

2 [c1 | c1,0] ∈ Zκ
q .

3. Output ct′
id

= (c, c2, {c2,i}i∈[ℓ], c̄).

Dec(ct′
id

, skid, −→x ): On input ct′
id

= (c, c2, {c2,i}i∈[ℓ], c̄) and a private key skid,−→x =
Z, the recipient performs the following steps:

1. Compute c2,−→x =
ℓ∑

i=1

(
G−1(xi ·G)

)⊤
c2,i ∈ Zm

q .

2. Compute d = c− Z⊤[c2 | c2,−→x | c̄] ∈ Zκ
q .

3. If ⌊ 2
q
·d⌉ = encode(M ′), for some M ′ ∈ {0, 1}, then output M ′. Otherwise,

output ⊥.

Revoke(id, t, RL, st): On input an identity id, a time t, the revocation list RL

and state st = BT, the KGC adds (id, t) to RL for all nodes associated with
identity id and returns RL.

5 Analysis

5.1 Correctness and Efficiency

Correctness. We will demonstrate that the scheme satisfies the correctness
requirement with all but negligible probability. We proceed as in [3,39,14,25].



Suppose that ctt = (c, c1, {c1,i}i∈[ℓ], c1,0, c2, {c2,i}i∈[ℓ]) is an honestly com-
puted ciphertext of message M ∈ M, with respect to some −→y ∈ A. Let tkid,t =
(Z1, Z2) be a correctly generated transformation key, where id is not revoked at
time t. Then we have:

[A | A−→x ] · Z1 + [A | Ct] · Z2 = Did.

We also observe that the following two equations hold:

c1,−→x =
ℓ∑

i=1

(
G−1(xi ·G)

)⊤
c1,i = (A−→x + 〈−→x ,−→y 〉 ·G)

⊤
s + (R−→x )⊤e1,

c2,−→x =

ℓ∑

i=1

(
G−1(xi ·G)

)⊤
c2,i = (B−→x + 〈−→x ,−→y 〉 ·G)

⊤
s + (S−→x )⊤e2.

where R−→x =
ℓ∑

i=1

RiG
−1(xi ·G) and S−→x =

ℓ∑
i=1

SiG
−1(xi ·G). We now consider

two cases:

1. Case 1: Suppose that 〈−→x ,−→y 〉 = 0. In this case, we have: c1,−→x = (A−→x )⊤s +

(R−→x )⊤e1 and c2,−→x = (B−→x )⊤s+(S−→x )⊤e2. Then in Transform algorithm, the
following holds:

c̄ = Z⊤
1 [c1 | c1,−→x ] + Z⊤

2 [c1 | c1,0]

= Z⊤
1

(
[A | A−→x ]

⊤
s +

[
e1

(R−→x )⊤e1

])
+ Z⊤

2

(
[A | Ct]

⊤
s +

[
e1

R̄⊤e1

])

= D⊤
ids + Z⊤

1

[
e1

(R−→x )⊤e1

]
+ Z⊤

2

[
e1

S⊤e1

]

︸ ︷︷ ︸
error′

and in Dec algorithm, the following holds:

d = c− Z⊤[c2 | c2,−→x | c̄]

= V⊤s + e + ⌊ q
2
⌋ · encode(M)− Z⊤


[B | B−→x | Did]⊤s +




e2

(S−→x )⊤e2

error′







= ⌊ q
2
⌋ · encode(M) + e− Z⊤




e2

(S−→x )⊤e2

error′




︸ ︷︷ ︸
error

.

As in [2,3,39,14,25], the above error term can be showed to be bounded

by sℓm2B · ω(log n) = Õ(ℓ2n3), with all but negligible probability. In or-
der for the decryption algorithm to recover encode(M), and subsequently



the plaintext M , it is required that the error term is bounded by q/5,
i.e., ||error||∞ < q/5. This is guaranteed by our setting of modulus q, i.e.,

q = Õ
(
ℓ2n4

)
.

2. Case 2: Suppose that 〈−→x ,−→y 〉 6= 0. In this case, we have:

c2,−→x =
(
A−→x + 〈−→x ,−→y 〉︸ ︷︷ ︸

6=0

·G
)⊤

s + (S−→x )⊤e2.

Then in Dec algorithm, d = c − Z⊤[c2 | c2,−→x | c̄] contains the following
term:

Z⊤[0 | 〈−→x ,−→y 〉 ·G | 0]⊤s ∈ Z
κ
q .

which can be written as 〈−→x ,−→y 〉 · (GZ2)⊤s, where Z2 ∈ Zm×κ is the middle
part of matrix Z. By Lemma 3, we have that the distribution of GZ2 ∈ Zn×κ

q

is statistically close to uniform. This implies that, vector d ∈ Zκ
q in Dec algo-

rithm, is indistinguishable from uniform. As a result, the probability that the
last κ−1 coordinates of vector ⌊ 2

q
·d⌉ are all 0 is at most 2−(κ−1) = 2−ω(log λ),

which is negligible in λ. In other words, except for negligible probability, the
decryption algorithm outputs ⊥ since it does not obtain a proper encoding
encode(M ′) ∈ {0, 1}κ, for M ′ ∈ {0, 1}.

Efficiency. The efficiency aspect of our SR-PE scheme is as follows:

⋄ The bit-size of public parameters pp is ((2ℓ+4)nm+nκ) log q = Õ(ℓ) · Õ
(
λ2

)
.

⋄ The private key skid,−→x has bit-size Õ(λ).

⋄ The token τid,−→x has bit-size O(log N) · Õ
(
λ2

)
.

⋄ The update key ukt has bit-size O
(
r log N

r

)
· Õ

(
λ2

)
.

⋄ The bit-size of the ciphertext ctt is Õ(ℓλ).

⋄ The bit-size of the partially decrypted ciphertext ct′
id

is Õ(ℓλ).

5.2 Security

In the following theorem, we prove that our scheme in Section 4 is SR-sA-CPA

secure in the standard model, under the LWE assumption.

Theorem 2. Our SR-PE scheme satisfies the SR-sA-CPA security defined in
Definition 2, assuming hardness of the (n, q, χ)-LWE problem.

Proof. We will demonstrate that if there is a PPT adversary A succeeding in
breaking the SR-sA-CPA security of our SR-PE scheme, then we can use it to
construct a PPT algorithm S breaking the wAH-sA-CPA security of the AFV
PE scheme. Then the theorem follows from the fact that the building block is
secure under the (n, q, χ)-LWE assumption (see Theorem 1).

Let −→y 0,−→y 1 be the challenge attribute vectors, t∗ be the challenge time and
RL∗ be the set of revoked users at t∗. We assume that, without loss of gener-
ality, the adversary will make token or private key queries on identities whose
predicates are satisfied by −→y 0 or −→y 1. We consider two types of adversaries as
follows.



Type I Adversary: It is assumed that, every identity id∗ whose predicate vec-
tor −→x ∗

satisfies that 〈−→x ∗
,−→y 0〉 = 0 or 〈−→x ∗

,−→y 1〉 = 0, must be included
in RL∗. In this case, the adversary is allowed to issue a query to oracle
UserKG(·, ·) on such a pair (id∗,−→x ∗

).

Type II Adversary: It is assumed that there exists an id∗ 6∈ RL∗ whose pred-
icate vector −→x ∗

satisfies that 〈−→x ∗
,−→y 0〉 = 0 or 〈−→x ∗

,−→y 1〉 = 0. In this case,
id∗ may be not revoked at t∗ and the adversary never issues a query to oracle
UserKG(·, ·) on (id∗,−→x ∗

).

Algorithm S begins by randomly guessing the type of adversaries it is going to
deal with. Let Q be the number of users in RL∗. We separately describe algorithm
S’s progress for the two types of adversaries.

Lemma 4. If there is a PPT Type I adversary A breaking the SR-sA-CPA se-
curity of our SR-PE scheme with advantage ǫ, then there is a PPT algorithm S
breaking the wAH-sA-CPA security of the AFV PE scheme with advantage ǫ/Q.

Proof. Recall that if an identity id has the predicate vector −→x satisfied by the
challenge attributes −→y 0 or −→y 1, it must be include in RL∗. The simulator S
randomly choose j∗ $←− [Q], at which such an identity appears. Let id∗ be the
j∗-th user in RL∗ and −→x ∗

be the corresponding predicate vector.
Let B be the challenger in the wAH-sA-CPA security game for the AFV PE

scheme. Algorithm S interacts with A and B as follows.

Initial: S runs algorithm Sys
(
1λ

)
to output params. ThenA announces to S the

target attribute vectors −→y 0,−→y 1, time t∗ and revocation list RL∗. Algorithm
S forwards −→y 0,−→y 1 to B.

Setup: S sets an empty revocation list RL and a binary tree BT as the sate st.
Then S prepares the public parameters as follows:

1. Get ppPE = (A, {Ai}i∈[ℓ], V) from B, where A, Ai ∈ Zn×m
q , V ∈ Zn×κ

q .

2. Generate (B, TB) by running TrapGen(n, q, m). Pick V
$← Zn×κ

q and

D, Bi
$← Zn×m

q for each i ∈ [ℓ].

3. Select R̄
$← {−1, 1}m×m and set C = AR̄ − H(t∗)G ∈ Zn×m

q .

4. Let pp =
(
A, B, C, D, {Ai}i∈[ℓ], {Bi}i∈[ℓ], V

)
, and send pp to the ad-

versary A. Note that the distribution of pp is exactly the one expected
by A.

Private Key Oracle: When A issues a private key query, S performs the same
as in the real scheme since it knows the master secret key part TB.

Token and Update Key Oracles: The simulator first defines Uθ for each θ ∈
BT as follows:

1. If θ ∈ Path(id∗), pick Z1,θ ←֓ DZ2m×m,s and set Uθ = Did∗−[A|A−→x ∗ ]·Z1,θ.

2. If θ 6∈ Path(id∗), pick Z2,θ ←֓ DZ2m×m,s and set Uθ = [A|Ct∗ ] · Z2,θ.



If A queries a token for (id,−→x ) such that 〈−→x ,−→y 0〉 6= 0 and 〈−→x ,−→y 1〉 6= 0,
algorithm S forwards −→x to B. Receiving a PE private key T−→x from B,
algorithm S performs as in the real scheme except that algorithm

Sampre([A | A−→x ], T−→x , Did −Uθ, s)

replaces algorithm SampleLeft. If A queries a token for (id,−→x ) 6= (id∗,−→x ∗
)

together with 〈−→x ,−→y 0〉 = 0 or 〈−→x ,−→y 1〉 = 0, the simulator returns ⊥. For
the query on (id∗,−→x ∗

), it returns {θ, Z1,θ}θ∈Path(id∗) as defined above. Since
the specific id∗ is unknown in A’s view, S can simulate successfully with
probability at least 1/Q.

For update key of t 6= t∗, note Ct = C + H(t)G = AR̄ + (H(t) − H(t∗))G.
Algorithm S can compute ukt as in the real scheme except that algorithm

SampRight(A, R̄, (H(t)− H(t∗)G), TG, Uθ, s)

replaces algorithm SampleLeft. For the challenge time period t∗, the simulator
S returns {θ, Z2,θ}θ∈KUNodes(BT,RL,t∗) as defined above since KUNodes(BT, RL, t∗)
is disjoint with Path(id∗).

Next, we observe that, the columns of these matrices are sampled via al-
gorithm SampleLeft in the real scheme, while they are either sampled via
algorithm SampleRight, SamplePre or sampled from DZm,s in the simulation.
The properties of these sampling algorithms (see Section 2) will guarantee
that the two distributions are statistically indistinguishable.

Challenge: A gives two messages M0, M1 ∈ M to S who prepares the challenge
ciphertext as follows:

1. Sample s
$← Zn

q and e2←֓χm. Choose Si
$←− {−1, 1}m×m for each i ∈ [ℓ].

2. Pick d
$← {0, 1}. Set M ′

0 = Md, M ′
1 = M1⊕d, where ⊕ denotes the

addition modulus 2.
Forward M ′

0, M ′
1 as two challenge messages to the PE challenger B. The

latter chooses c
$← {0, 1} and returns a ciphertext (c′, c′

0, {c′
i}i∈[ℓ]) as a

PE encryption of M ′
c under attribute vector −→y c.

3. Output ct∗ = (c∗, c∗
1, {c∗

1,i}i∈[ℓ], c∗
1,0, c∗

2, {c∗
2,i}i∈[ℓ]) as an SR-PE en-

cryption of Md under −→y d, t∗, where:





c∗ = c′ ∈ Zκ
q ,

c∗
1 = c′

0 ∈ Zm
q ,

c∗
1,i = c′

i ∈ Zm
q , ∀i ∈ [ℓ]

c∗
1,0 = R̄⊤c′

0 ∈ Zm
q ,

c∗
2 = B⊤s + e2 ∈ Zm

q ,

c∗
2,i = (Bi + yi ·G)⊤s + S⊤

i e2 ∈ Zm
q , ∀i ∈ [ℓ].



Guess: After being allowed to make additional queries, A outputs d′ ∈ {0, 1},
which is the guess that the challenge ciphertext ct∗ is an encryption of Md′

under −→y d′ and t∗. Then S computes c′ = d ⊕ d′ and returns it to B as the
guess for the bit c chosen by the latter.

Recall that we assume that A breaks the SR-sA-CPA security of our SR-PE
scheme with probability ǫ, which means

AdvSR-sA-CPA

A (λ) =

∣∣∣∣Pr[d′ = d⊕ c]− 1

2

∣∣∣∣ = ǫ.

On the other hand, by construction, we have d′ = d⊕ c⇔ d′ ⊕ d = c⇔ c′ = c.
It then follows that

AdvwAH-sA-CPA

S,PE (λ) =

∣∣∣∣Pr[c = c′]− 1

2

∣∣∣∣ = ǫ/Q.

⊓⊔

Lemma 5. If there is a PPT Type II adversary A breaking the SR-sA-CPA se-
curity of our SR-PE scheme with advantage ǫ, then there is a PPT adversary S
breaking the wAH-sA-CPA security of the AFV PE scheme with the same advan-
tage.

Proof. Recall that there is an identity id∗ whose predicate is satisfied by −→y 0 or−→y 1 and it is not included in RL∗.
Let B be the challenger in the wAH-sA-CPA game for the PE scheme. Algo-

rithm S interacts with A and B as follows.

Initial: S first runs Sys
(
1λ

)
to output params. Then A announces to S the

target attribute vectors −→y 0,−→y 1 and time t∗. Algorithm S forwards −→y 0,−→y 1

to B.

Setup: S sets an empty revocation list RL and a binary tree BT as the sate st.
Then S prepares the public parameters as follows:

1. Receive ppPE = (B, {Bi}i∈[ℓ], V) from B, where B, Bi ∈ Z
n×m
q , V ∈

Zn×κ
q .

2. Generate (A, TA) by running TrapGen(n, q, m). Select C, Ai
$← Zn×m

q for
each i ∈ [ℓ].

3. Select S̄
$← {−1, 1}m×m and set D = BS̄− H(id∗)G.

4. Let the public parameters be pp =
(
A, B, C, D, {Ai}i∈[ℓ], {Bi}i∈[ℓ], V

)

and send pp to the adversary A.

Private Key Oracle: A is not allowed to issue a private key query for id∗.
When A makes a query to UserKG(·, ·) oracle on (id,−→x ) such that id 6= id∗,
S returns Z by running

SampleRight([B | B−→x ], S̄, (H(id)− H(id∗))G, V, s).



Token and Update Key Oracles: As S knows the master secret key TA, it
can answer all token and update key queries.

Challenge: A gives two messages M0, M1 ∈ {0, 1} to S, who prepares the
challenge ciphertext as follows:

1. Sample s
$← Zn

q , e1←֓χm. Choose R̄, Ri
$←− {−1, 1}m×m for each i ∈ [ℓ].

2. Pick d
$← {0, 1} and set M ′

0 = Md, M ′
1 = M1⊕d. Forward M ′

0, M ′
1 as two

challenge messages to the PE challenger B. The latter chooses c
$← {0, 1}

and returns (c′, c′
0, {c′

i}i∈[ℓ]) as a PE encryption of M ′
c under −→y c.

3. Output ct∗ = (c∗, c∗
1, {c∗

1,i}i∈[ℓ], c∗
1,0, c∗

2, {c∗
2,i}i∈[ℓ]) as an SR-PE en-

cryption of Md under −→y d, t∗, where:





c∗ = c′ ∈ Z
κ
q ,

c∗
1 = A⊤s + e1 ∈ Zm

q ,

c∗
1,i = (Ai + yi ·G)⊤s + R⊤

i e1 ∈ Zm
q , ∀i ∈ [ℓ]

c∗
1,0 = C⊤

t s + R̄⊤e1 ∈ Zm
q ,

c∗
2 = c′

0 ∈ Zm
q ,

c∗
2,i = c′

i ∈ Zm
q , ∀i ∈ [ℓ].

Guess: After being allowed to make additional queries, A outputs d′ ∈ {0, 1},
which is the guess that the challenge ciphertext ct∗ is an encryption of Md′

under −→y d′ and t∗. Then S computes c′ = d ⊕ d′ and returns it to B as the
guess for the bit c chosen by the latter.

Recall that we assume that A breaks the SR-sA-CPA security of our SR-PE
scheme with probability ǫ, which means

AdvSR-sA-CPA

A (λ) =

∣∣∣∣Pr[d′ = d⊕ c]− 1

2

∣∣∣∣ = ǫ.

By construction, we have d′ = d⊕ c⇔ d′ ⊕ d = c⇔ c′ = c. It then follows that

AdvwAH-sA-CPA

S,PE (λ) =

∣∣∣∣Pr[c = c′]− 1

2

∣∣∣∣ = ǫ.

⊓⊔

Finally, recall that algorithm S can guess the type of the adversary correctly
with probability 1/2 and the adversary’s behaviour is independent from the
guess. It then follows from the results of Lemma 4 and Lemma 5 that

AdvSR-sA-CPA

A (λ) =
1

2

( 1

Q
AdvwAH-sA-CPA

S,PE (λ) + AdvwAH-sA-CPA

S,PE (λ)
)

.

By Theorem 1, we then have that AdvSR-sA-CPA

A (λ) = negl(λ), provided that the
(n, q, χ)-LWE assumption holds. This concludes the proof. ⊓⊔



6 Conclusion and Open Problems

We introduced the server-aided revocation mechanism in the setting of pred-
icate encryption and then gave a lattice-based instantiation. We proved that
the scheme is selectively secure based on the LWE assumption. Achieving the
stronger adaptive security notion seems to require that the underlying PE be
adaptively secure. However, to the best of our knowledge, existing lattice-based
PE schemes [3,39,14,17] only achieved selective security. We therefore view the
problem of constructing adaptively secure lattice-based SR-PE as an interesting
open question. Another question that we left unsolved is to investigate whether
our design approach (i.e., combining two PE instances, one IBE instance and
the CS method) would yield a generic construction for SR-PE.

Acknowledgements. We thank the reviewers for helpful discussions and com-
ments. The research was supported by the “Singapore Ministry of Education
under Research Grant MOE2016-T2-2-014(S)”.
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22. Benôıt Libert, Thomas Peters, and Moti Yung. Group signatures with almost-for-
free revocation. In CRYPTO 2012, volume 7417 of LNCS, pages 571–589. Springer,
2012.
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