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Abstract

Protein–protein interactions are crucial in many biological pathways
and facilitate cellular function. Investigating these interactions as a graph
of pairwise interactions can help to gain a systemic understanding of cel-
lular processes. It is known, however, that proteins interact with each
other not exclusively in pairs but also in polyadic interactions and they
can form multiprotein complexes, which are stable interactions between
multiple proteins. In this manuscript, we use hypergraphs to investigate
multiprotein complex data. We investigate two random null models to
test which hypergraph properties occur as a consequence of constraints,
such as the size and the number of multiprotein complexes. We find that
assortativity, the number of connected components, and clustering differ
from the data to these null models. Our main finding is that projecting a
hypergraph of polyadic interactions onto a graph of pairwise interactions
leads to the identification of different proteins as hubs than the hyper-
graph. We find in our data set that the hypergraph degree is a more
accurate predictor for gene-essentiality than the degree in the pairwise
graph. We find that analysing a hypergraph as pairwise graph drastically
changes the distribution of the local clustering coefficient. Furthermore,
using a pairwise interaction representing multiprotein complex data may
lead to a spurious hierarchical structure, which is not observed in the
hypergraph. Hence, we illustrate that hypergraphs can be more suitable
than pairwise graphs for the analysis of multiprotein complex data.
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1 Introduction

Protein–protein interactions represent the chemical reactions and physical con-
tacts between proteins [1]. Their statistical analysis can give insights into under-
lying cellular processes and the organism they govern. They are therefore used
in various bioinformatics applications, such as, the reconstruction of phyloge-
netic trees, the prediction of proteins’ biological functions and the identification
of functional modules (for reviews see [1, 2]). One important application is
the prediction of whether a gene that codes a certain protein is essential [3, 4].
Typically, a dataset of protein–protein interactions is represented as a binary
undirected network, with proteins as nodes and edges representing interactions.
For predicting essential proteins, one can for example, investigate the centralities
of nodes [5] or combinations of multiple measures [6] in such a protein–protein
interaction network.

In such studies, the interaction between the proteins are modelled as pair-
wise. More than half of all proteins, however, form multiprotein complexes
that may consist of more than two proteins that are linked by non-covalent
interactions [7, 8]. Protein complexes are crucial for most biological processes
ATP synthase, for example, an enzyme that creates the energy storage molecule
adenosine triphosphate (ATP), consists of up to eight different subunits, each a
protein [9]. Proteins can be involved in different complexes or have additional
activities, independent of the complex itself [10]. These biological observations
indicate that mathematical objects that take multiprotein complex information
as high-order interactions into account might be an appropriate way to study
cellular systems in general and the prediction of essentiality, specifically. In this
study, we use hypergraphs [11], which are one way to represent polyadic inter-
actions (i.e., interactions of higher order than pairwise), to analyse a network
of human multiprotein complexes.

In Fig. 1, we give three examples of multiprotein complexes and the repre-
sentation of their high-order interactions as hyperedges in a hypergraph. The
exon junction complex is a crucial molecular machine that influences the trans-
lation of mRNA molecules [12]. It consists of four different protein components
CASC, Y14, MAGOH, and EIF4A3 and we therefore represent this interaction
as a four-edge in a hypergraph. Two of these four proteins (Y14 and MAGOH)
can form a separate complex (the Y14–MAGOH complex), which we repre-
sent as a two-edge [13]. The PYM protein can bind to this complex and we
represent the formed complex which consists of three proteins as a three-edge.
These three different complexes demonstrate only a small subset of the com-
plex higher-order interactions that we observe in the human body. The PYM
protein, for example, interacts with the 40S ribosomal subunit, which itself con-
sists of thirty-three proteins (not shown). Higher-order interactions are common
in cellular processes and in this study, we represent their complex interaction
structure as a hypergraph.

Other mathematical structures are potentially also suited to represent high-
order interactions. Simplicial complexes, for example, have been used to investi-
gate time-series [14, 15], and many other systems [16, 17, 18]. For our purposes,
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Figure 1: Protein may interact with each other and form complexes. (a) We
show the exon junction complex, the Y14–MAGOH complex, and the PYM
complex in cartoon representations. We can represent these interactions as
hyperedges, whose cardinality is the number of different involved proteins. The
exon junction complex, for example, consists of four different proteins (CASC3,
Y14, MAGOH, and EIF4A3; shown in green, blue, yellow, and red, respectively)
and thus we represent it as a four-edge. The two proteins Y14 and MAGOH
can also interact with each other and we represent this interaction as a 2-edge.
The interaction between PYM, Y14, and MAGOH is represented in a 3-edge.
(b) We jointly represent these three interactions in a hypergraph, with the
N = 5 nodes representing proteins and the M = 3 hyperedges representing
multiprotein complexes.

we argue that hypergraphs are a more suited mathematical framework because
simplicial complexes require set inclusion1, which for our application implied
that for every multiprotein complex, all subsets of constituent proteins would
also form a multiprotein complex, which in general is not the case.

Hypergraphs have been identified as a framework to investigate metabolic
pathways, which describe molecular reactions [20, 21, 22] and some methods
for the statistical analysis of hypergraphs have been developed (e.g., central-
ities [23], local clustering coefficient [21], configuration models [24]). In this
manuscript, we focus on the degree and clustering coefficient as node-measures
because they are commonly used for predicting the lethality or essentiality of
proteins [3, 5].

First, we assess whether the constructed hypergraph contains signal beyond
the degree. To test this, we construct two random null models, one an existing
hypergraph configuration model [24] and one a new Erdős–Rényi-type hyper-
graph model. We compare the hypergraph properties of these null models with
the data hypergraph. Similarly to many empirical graphs, we find that assor-
tativity, clustering, and number of connected components differ strongly from
these random null models.

Often, one projects higher-order interactions to pairwise interactions to be
able to use a broad selection of tools that have been developed for the analysis
of graphs. To test which representation, graph or hypergraph, is more suitable

1The convex hull of any subset of the n+ 1 points that define a n-simplex is called a face.
A simplicial complex S is a set of simplices in which every face of a simplex is also in S [19].
This property is called set inclusion.
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for the analysis of the multiprotein complex data, we compare gene essentiality
data from the Online GEne Essentiality database [25] with the degree in the
hypergraph and the degree in the pairwise interaction graph. As the former is
in stronger agreement, the hypergraph representation outperforms the pairwise
graph representation for identifying essential genes using degrees.

Next, we show that using a pairwise interaction graph may lead to a spuri-
ous result for the commonly asserted hierarchical organisation of complex sys-
tems: together with the degree, the local clustering coefficient has been used
to quantify the hierarchical organisation of pairwise complex networks [26, 27]
in general and metabolic networks, specifically [28, 29]. Here, we demonstrate
that projecting a hypergraph onto a graph can drastically increases the local
clustering coefficient of many nodes. Furthermore, this projection may indi-
cate a statistically significant hierarchical organisation of the graph that is not
observed in its hypergraph form. As such a projection is common in many net-
work studies —either explicitly or implicitly— one should be careful about the
interpretation of such results.

Overall, we propose that a hypergraph representation for multiprotein com-
plex data is a better approach to identify essential genes and that not using this
representation may lead to a spurious hierarchical structure in the graph.

2 Methods

2.1 Hypergraph measures

A graph is an ordered pair G = {V,E}, where V is a set of nodes and E ⊂
V × V a set of edges that connect the nodes pairwise; in this paper, edges are
undirected and unweighted. Two nodes which are connected by an edge are
called neighbours and the neighbourhood N (i) of a node i is the set of all its
neighbours. A hypergraph is a generalisation of a graph that allows edges that
connect more than a pair of nodes and are therefore called hyperedges. Formally,
we define H = {V,E}, where V is a set of nodes and the hyperedge set E is a
subset of the power set P (V ), which is the set of all subsets of S, but excluding
the empty set ∅. Therefore, a hyperedge may connect any set of nodes but not
the empty set. The number c = |e| of nodes that a hyperedge e ∈ E connects
to is called the hyperedge’s cardinality. A hyperedge with cardinality c is also
called a c-edge.

For graphs, the degree ki of a node i is the number of edges it connects to.
For simple graphs (i.e., graphs without parallel edges and without self-loops),
the degree is identical to the number of neighbours this node has. In accordance

with graphs, the degree k
(hyp)
i =

!
i∈E 1 of node i in a hypergraph is the number

of hyperedges it connects to. In contrast to simple graphs, the degree of a node
in a hypergraph is not necessarily equal to the number of its neighbours [30].
The maximum degree max(k) is the largest degree of any node in a hypergraph.

The local clustering coefficient Ci of a node i in a graph is
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Ci =

"
2|(l,m)∈N (i) with (l,m)∈E|

ki(ki−1) , if ki > 0 ,

not defined , if ki = 0 .

We choose a definition from [21] to generalise the local clustering coefficient

but adapt it slightly for clarity. The local clustering coefficient C
(hyp)
i of a node

i in a hypergraph is

C
(hyp)
i =

#
$$%

$$&

1

k
(hyp)
i (k

(hyp)
i −1)

!
e=(i,j)∈E

!
e′=(i,j)∈E EO(e, e′) , if k

(hyp)
i > 1 ,

0 , if k
(hyp)
i = 1 ,

not defined , if k
(hyp)
i = 0 ,

where the extra overlap EO(e, e′) between two intersecting hyperedges e and e′

is defined as

EO(e, e′) =
|N (De,e′) ∩De′,e|+ |N (De′,e) ∩De,e′ |

|De,e′ |+ |De′,e|
,

with De,e′ = e− e′, the (asymmetric) set difference between e and e′. We define
EO(e, e′) = 0 for e = e′. The neighbourhood N (S) of a set S of nodes is the
union of the neighbourhoods of each node in the set, i.e. N (S) = ∪i∈S (N (i)).

For isolated nodes with k
(hyp)
i = 0, the local clustering is not defined. Another

variant of local clustering is suggested in [20] and a global clustering coefficient is
discussed in [23]. The mean local clustering coefficient 〈Ci〉 is defined as 〈Ci〉 =
1
N

!N
i=1 Ci. The assortativity ρ of a hypergraph is a measure of the correlation

between a node’s degree and the degree of its neighbours. Following [24], the
assortativity ρ of a hypergraph is the Pearson correlation between the nodes’

degrees k
(hyp)
i , i ∈ V and the mean degree 〈k(hyp)i 〉 = 1

k
(hyp)
i

!
j∈N(i) k

(hyp)
j of all

of its neighbours.
For graphs, the relationship between degree ki and local clustering coefficient

Ci has been approximately described through a power-law Ci(ki) ∼ k−β
i in

which β is called the hierarchical exponent [26]. In practice, we estimate β
by calculating the Pearson correlation between log10(ki) and log10(Ci) for i =
1, . . . .N . With the definitions of local clustering coefficient and degree, we can
also compute the hypergraph hierarchical exponent β(hyp) as Pearson correlation

between log10(k
(hyp)
i ) and log10(C

(hyp)
i ) for i = 1, . . . .N .

For a graph, a component is a subgraph in which any two nodes are connected
to each other by paths. For hypergraphs, more nuanced definitions exists, e.g.,
‘j-component’ are sets of vertices such that consecutive edges in paths inter-
sect in at least j vertices [31]. We discuss here exclusively 1-components and
call them ‘components’ for simplicity. The number ncom of components is the
amount of components in a hypergraph. The size S(m) of a component is the
number of nodes in it. We also compute the relative size Smax/N ∈ (0, 1] of the
largest connected component.
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Figure 2: We discuss two null models. Both preserve the number N of nodes,
the number M of hyperedges, and the cardinality of the hyper-edges, which in
this example is (3, 2, 2). We indicate the degree of each node as number next to
it. In the degree-preserving null model the degree of each node is preserved. In
the ER-type null model the degree is not preserved.

2.2 Data and preprocessing

We constructed a hypergraph from Reactome version May 2019 [32]. The
data set ‘Human complexes with their participating protein molecules’ consists
of a total of ∼ 12, 000 complexes. The complexes include not only proteins but
also other ligands, for example, small molecules (described by ‘chebi’ codes) and
RNA molecules (described by ‘ensemble’ IDs). We ignored these entities and
only kept entities that describe proteins with a uniprot ID. After deletion of
duplicate entries, we obtained a hypergraph with N = 8243 nodes (representing
proteins) and M = 6688 hyperedges (representing multiprotein complexes).
This data combines obligate and non-obligate protein complexes, as well as,
transient and stable protein complexes. We used gene-essentiality data from
the Online GEne Essentiality database (OGEE) v2 [25]. We mapped genes to
proteins with the Retrieve/ID mapping tool from UniProt [33].

2.3 Null models

Null models for hypergraphs have been developed in different domains. In uni-
form random hypergraphs all hyperedges have the same cardinality c [34, 35]. In
this study, we use two different null models (see Fig. 2) that are non-uniform.
For the construction of a configuration model of hypergraphs, we use defini-
tions from [24]. We also define a novel null model, called Erdős–Rényi-type
hypergraph model (ER-type hypergraph model), that does not fix the degrees
of nodes in the hypergraph. For the configuration model, we use a randomisa-
tion algorithm. For the latter null model, in contrast, we construct hypergraphs
directly.

Erdős–Rényi-type hypergraph model For a hypergraph with N nodes
and M hyperedges, we define the degree sequence k as the N-vector in which the

ith element is the degree k
(hyp)
i of node i. Similarly, we define the cardinality

sequence c as the M-vector in which the ith element is the cardinality ci of
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hyperedge i.
Let H(c) be the set of all hypergraphs with a fixed cardinality sequence c.

The random hyperedges hypergraph model is the uniform distribution on H(c)
with self-loops and multiple hyperedges possible. We construct realisations of
this model by connecting uniformly at random ci nodes for every hyperedge
i. In Algorithm 1, we show the procedure used to construct ER-type hyper-
graphs. For dense hypergraphs, this algorithm may construct hypergraphs with
multiple hyperedges (i.e., hyperedges that connect the same set of nodes). For
our examples, this was, however, not the case, because we do not have multiple
multiprotein complexes that connect the identical proteins.

For graphs, (i.e., ci = 2 for all edges) with low connection density, this ran-
dom hypergraph model is identical to the G(N,M) model by Erdős–Rényi [36].
Therefore we call it Erdős–Rényi-type hypergraph model. This model has some
similarity with the Poisson random hypergraph in which the number of hyper-
edges between two nodes is Poisson distributed [37, 38].

Configuration hypergraph model Let H(k, c) be the set of all hyper-
graphs with a fixed degree sequence k and a fixed cardinality sequence c. The
vertex-labelled hypergraph configuration model is then the uniform distribution
on H(k, c). To construct random hypergraphs, we use a pairwise reshuffeling al-
gorithm [24], which preserves the degree sequence and the cardinality sequence.
As the reshuffling algorithm is an irreducible, reversible, and aperiodic Markov
Chain, it has an equilibrium distribution, which we call the configuration hy-
pergraph model. In this model, self-loops and multiple hyperedges are possible.

2.4 Constructing graphs from hypergraphs

We construct a representing graph from a hypergraphs as follows. The repre-
senting graph R(H) = (V ′, E′) of a hypergraph H = (V,E) is the graph with
the same set V ′ = E′ of vertices as the hypergraph, and edges between all pairs
of vertices contained in the same hyperedge (i.e, (i, j) ∈ E′ if there exists an
edge e ∈ E such that (i, j) ⊂ e). Thus, in the representing graph, hyperedges
are translated into complete subgraphs of simple edges.

Algorithm 1: Constructing an Erdős–Rényi-type hypergraph H with
N nodes and a cardinality sequence c = (c1, c2, . . . , cM )

initialisation of empty hypergraph H = (V, ∅);
initialisation of empty edge set E = ∅;
for i ← 1 to M do

1) Construct hyperedge e by sampling ci nodes without replacement
uniformly at random from V ;
2) Add the hyperedge to the edge list E = E ∪ e

end
return H(V,E)
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Figure 3: To construct the representing graph of a hypergaph, we replace every
hyperedge of cardinality c with c(c− 1)/2 2-edges.

Alternatively, one could construct the dual graph from the hypergraphs. This
method is discussed in SI A.

3 Results

3.1 Random topology null models

First, we explore whether the multiprotein complex hypergraph can be mod-
elled (a) by the ER-type hypergraph model, which uses only its cardinality
sequence c or (b) by the configuration hypergraph model, which uses only the
hypergraph’s degree sequence k and cardinality sequence c (see Subsection 2.3
for definitions of both models). For both null models, we construct 100 inde-
pendent realisations. We focus on graph measures (maximum degree, degree-
assortativity, number of components, relative size of the largest component, and
the mean local clustering); Table 1 gives their mean and standard deviation in
these simulated hypergraphs, and the values for the data hypergraph. In SI C,
we illustrate the distributions of these measures for the simulated hypergraphs.

The maximum degree in the multiprotein hypergraph is max(ki) = 283; in
the ER-like hypergraph the maximum degree max(ki) ≈ 27 is far smaller. By
contrast, the maximum degree max(ki) = 283 is by construction the same in the
configuration model and the data. Computing the degree assortativity for the
hypergraph yields ρdata ≈ 0.44. This indicates that proteins with high degree ki
tend to form complexes with other proteins with high degree [24]. For both null
models, we find a assortativity close to zero. Performing a Monte-Carlo test
yields a p-values p < 0.01 (see Fig. 12 in SI D), indicating that assortativity of
the multiprotein hypergraph is significantly larger than expected by either null
model.

For the mean local clustering 〈Ci〉, we find that the original hypergraph
has a significantly smaller clustering than both, the ER-type model and the
configuration model. This contrasts with pairwise protein interaction networks,
in which the clustering is normally higher than in random null models [39].
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We next investigated the components of the hypergraph. The hypergraph
has ncom = 253 components of which the two largest consist of 7249 and 93
nodes, respectively. This means that almost 88% of all nodes belong to the
largest component. The smaller components range in size from 22 to 2. There
are 131 components which have the minimum size 2 and thus are two proteins
that are connected by a 2-edges and otherwise not involved in a multiprotein
complex.

In both null models, the number ncom of connected components is much
smaller than in the data hypergraph. For the ER-type model and the configu-
ration model, we obtain ncom = 1.01± 0.01 and ncom = 3.69± 1.5, respectively.
This indicates that if the edges were evenly distributed between the nodes, there
would exist a path between almost all nodes. Fixing the degree distribution
of the hypergraph leads to a slightly larger number of connected components.
This occurs because of the larger number of nodes with degree ki = 1 than in
the ER-like model which has a mean degree of 〈ki〉 ≈ 1.6. The relative size
Smax/N of the largest connected component is 1±0 for the ER-type model and
0.9993± 0.0004 for the configuration model. For both null models, the number
ncom of connected components is significantly smaller and the size Smax/N of
the largest connected component is significantly larger than for the protein data
(p-values p < 0.01 shown in Fig. 13 in SI D).

original ER-type configuration
hypergraph model model

number of nodes 8243 8243 8243
number of hyperedges 6688 6688 6688

maximum degree 283 21.3± 1.4 283
degree-assortativity 0.44 0.000± 0.008 −0.005± 0.007

number of components 253 1.01± 0.01 3.69± 1.5
size of largest component 0.8794 1± 0 0.9993± 0.0004
mean2 local clustering 0.079 0.39± 0.0008 0.48± 0.001

Table 1: Structural information about the protein hypergraph and the two inves-
tigated null models (ER-type model and configuration model). We constructed
100 null models and present the mean ± standard deviation. For definitions of
hypergraphs measures see Subsection 2.1.

3.2 Degree distribution in graph and hypergraph

Next, we compare the degrees of the nodes in the hypergraph with the degree
of nodes in the representing graph. To construct the representing graph, we
replace each hyperedge of cardinality c with c(c− 1)/2 simple edges. Therefore,
the total number of edges in the representing graph is at least as large as the
number of hyperedges in the hypergraph, and the degree distribution is wider
for the representing graph (see Fig. 4). This indicates that replacing higher-
order interactions with pairwise edges broadens the degree distribution. The
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Figure 4: (a) Distribution of degrees in hypergraph and its representing graph.
(b) Scatterplot of the hypergraph degree and the degree in the representing
graph.

mean graph-degree 〈k(rep)i 〉 ≈ 92.99 is an order of magnitude larger than that

of the hypergraph 〈k(hyp)i 〉 ≈ 8.21. In the right panel of Fig. 4, we plot the
hypergraph-degree with the degree in the representing graph for each protein.
The Spearman correlation between both is 0.34, which indicates a weak cor-
relation between the two quantities. The genes with highest degree, RPS27A
and UBA52, are the same in both structures. These genes encode the pro-
tein ubiquitin, which targets proteins to degrade them and is known to bind

to many different proteins [40]. For the hypergraph degree k
(hyp)
i , Ubiquitin B

(UBB) has the third highest degree. For the representing graph degree k
(rep)
i ,

GNB1 and GNGT1, two guanine nucleotide-binding proteins have the third and
fourth highest degrees. Both proteins are membrane-bound proteins that form
complexes consisting of a large number of proteins. In Fig. 5, we show a force-
directed layout of the representing graph. The size of the nodes is proportional

to their representing graph degree k
(rep)
i and the colour indicates the hypergraph

degree k
(hyp)
i . We observe cliques of nodes with high k

(rep)
i and low k

(hyp)
i : these

nodes represent proteins that participate in a large multiprotein complex but no
other interactions. These observations indicate that representing multiprotein
complex data as hypergraphs identifies some different proteins as ‘hubs’ than its
representing graph. In Subsection 3.3, we compare the identified degrees with
gene-essentiality information.

3.3 Identifying essential proteins and protein complexes

One of the prominent applications of protein–protein interaction networks is
the identification of essential proteins (i.e., proteins without which an organism
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Figure 5: Force-directed layout of the representing graph. The size of nodes is

in proportion to the representing graph degree k
(rep)
i and the colour indicates

the hypergraph degree k
(hyp)
i from low (blue) to high (red). Accordingly, large,

blue nodes indicate proteins with a high representing graph degree and a low
hypergraph degree. Illustration created with Netwulf [41].

cannot survive). The degree of proteins has been suggested as a way to predict
essentiality [5]. We now assess whether the degree in the hypergraph is also able
to predict the essentiality of proteins.

For this task, we compare the average degree of proteins expressed by es-
sential genes with the average degree of proteins expressed by genes that are
not essential or conditionally essential (see Table 2). We observe that in the
hypergraph essential proteins have a higher mean degree than non-essential
proteins and conditionally essential proteins lie between those. This indicates
that the more multiprotein complexes proteins participate in, the more func-
tionally important they are. We use a χ2-test to investigate the null hypothesis
that essential and non-essential proteins belong to the same population. We
obtain a χ2 ≈ 1459 with one degree of freedom (p-value < 10−5) and reject the
null hypothesis, which is strong evidence that hypergraph degrees of proteins
can predict essentaility of genes.
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mean degree hypergraph representing graph
essential 14.06 85.48

conditional 9.87 77.45
non-essential 6.444 110.89

Table 2: The mean degree 〈ki〉 of nodes which connect to essential proteins (i.e.,
proteins expressed by essential genes), to conditionally essential proteins, and
to non-essential proteins in the hypergraph and its representing graph.

In the representing graph, we do not observe that essential proteins tend to
have a higher degree than non-essential proteins. This occurs because essential
proteins tend to be connected to hyperedges of low cardinality. Our results in-
dicate that the hypergraph representation is more fruitful than the representing
graph for this application.

A further advantage of the hypergraph in comparison with the representing
graph is that we can associate a protein complex with each hyperedge. While
there is no information available whether a certain protein complex is essential,
we may infer whether a complex is potentially essential from protein-essentiality
data by asserting that only a multiprotein complex that has at least one com-
posing protein that is essential may also be essential. In total, 811 out of 6688
complexes have at least one essential protein associated with them and are
therefore potentially essential protein complexes (see Fig. 6). The Spearman
correlation between the number cessential of essential proteins connected by a
hyperedge and the hyperedge’s cardinality c is 0.35 (p < 10−193). This is in
accordance with earlier findings on yeast that larger complexes tend to be more
essential [42].

To test which of the protein complexes consist of more essential proteins
than expected by chance, we construct a random null model: For each essential
hyperedge of cardinality c we fix one essential protein in the hyperedge and
sample c− 1 proteins. Out of a total of 8243, proteins 108 are essential, which
gives a density of essential proteins of ρessential ≈ 0.013. Assuming that we
pick c − 1 proteins at random with replacement, independently of each other,
each pick would have probability ρessential ≈ 0.013 of being essential. Therefore,
under this model, the number of essential proteins in an essential complex would
follow a shifted binomial distribution with an expectation value of E(c) = 1 +
(c − 1)ρessential, which we show as dashed line in the lower panel of Fig. 6. In
our data set, 246 out of 6688 protein complexes are essential and shown as red
disks in Fig. 6. When comparing the fraction cessential/c of essential proteins to
the size c of the complex, we observe an anticorrelation (see Figure in SI B).
This indicates that larger complexes tend to be more essential because they are
larger and not because they have a higher density of essential proteins.

Overall, this analysis indicates that the hypergraph degree is in better agree-
ment with gene-essentiality information than the representing graph. Addi-
tionally, the hypergraph allows us to statistically investigate the essentiality of
protein complexes.
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Figure 6: (Upper Panel) The distribution of the number cessential of essential pro-
teins in multiprotein complexes. (Lower Panel) The number cessential of essential
proteins versus the cardinality c of the complexes. We highlight complexes that
have more essential proteins than expected under a random null model (dashed
line) in red.

3.4 Hierarchy coefficient

The results above indicate that the hypergraph contains biological signal and
conveys different information than the representing graph. Next, we find that
the representing graph may have a hierarchical structure which arises solely
from the translation of hyperedges into simple edges.

For many complex networks, it has been reported that the local clustering
coefficient follows the degree in a power law, which has been interpreted as a
sign of a hierarchical organisation [26]. First, we compute the local clustering
for the hypergraph and for the representing graph. Fig. 7 shows that on average,
the local clustering Ci is much larger in the graph representation than in the
hypergraph. The average local clustering 〈Ci〉graph ≈ 0.810 in the graph is an
order of magnitude larger than of the hypergraph 〈Ci〉hypergraph ≈ 0.078. We
find that the local clustering between both graphs is anticorrelated (Spearman
correlation −0.49). This is plausible because some high-cardinality hyperedges
connect many different proteins, which leads to a local hypergraph clustering
close to 0 but a local graph clustering close to 1 (see right panel of Fig. 7 for
an extreme example). This indicates that constructing a representing graph
from a hypergraph inflates the clustering coefficient for nodes incident to such
high-cardinality hyperedges.

To explore the hierarchical organisation for hypergraphs, we investigate the
relationship between clustering and degree for the hypergraph and the repre-
senting graph (see Fig. 8). For the hypergraph, we estimate the power-law
exponent βhyp ≈ 0.001 (p-value 0.899) and thus do not observe a hierarchical
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Figure 7: (Left Panel) The distribution of local clustering Ci differs strongly
between hypergraph and graph. (Right Panel) An example showing that re-
placing hyperedges with high cardinality with a c-clique may inflate the local
clustering from zero to one.

organisation. For the representing graph, however, we find βrep ≈ 0.07 (p-value
4× 10−9) and thus observe an organisation that appears to be ‘hierarchical’ in
the sense of [26].

This indicates that hypergraphs that themselves do not show a statistically
significant relationship between local clustering Ci and degree ki can show a
statistically significant relationship after being translated into their representing
graph. This behaviour can be explained by the pairwise projection procedure in
Fig. 7b: hyperedges of cardinality c that do not intersect with any other edges
are replaced with a c-clique in the representing graph. This creates c nodes with
degree ki = c−1 and clustering coefficient Ci = 1. As we have many hyperedges
with only small overlap with other hyperedges, we obtain many of such nodes
in the representing graph, which creates an apparent hierarchical organisation.

4 Discussion

Multiprotein complexes are biological polyadic interactions between proteins
that can be represented by hypergraphs. In this paper, we have used a hy-
pergraph representation of the data and using two null models for hypergraphs
have found that the data hypergraph contains signal beyond their cardinality
sequence c and their degree sequence k. Similar results are well-established for
protein interaction graphs but have not been tested for multiprotein complex
hypergraphs [43]. By projecting the hypergraph into a graph representation,
we illustrate that this simplification reveals different degree-rankings, which
indicates that using both mathematical structures may reveal complementary
information. In our test on human data, the hypergraph representation revealed
a stronger correlation with gene-essentiality information than the representing
graph. We then estimated the essentiality of protein complexes by comparing it
with a null model and found that larger complexes tend to be more essential. In
future work, one could investigate whether other hypergraph centralities (e.g.,
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Figure 8: (Left Panel) Degree and local clustering for all nodes in the hyper-
graph. (Right Panel) Degree and local clustering for all nodes in the representing
graph.

an eigenvector-based centrality [44]) are in even better agreement with essen-
tiality.

Using an established definition of local clustering coefficient in hypergraphs,
we defined the hierarchy coefficient for hypergraphs. We then showed that a
pairwise graph may appear to show a hierarchical organisation while the hy-
pergraph does not. As graphs are often constructed from polyadic interaction
data, this finding reveals that such results might occur through the projection
process and not the biological systems themselves.

In this study, we have demonstrated that hypergraphs are a fruitful repre-
sentation of higher-order interactions between proteins. We did, however, ignore
the stoichiometry (i.e., the number of proteins of a certain type that are involved
in a complex). The investigation of a mathematical structure that incorporates
such information might be a fruitful extension to our work. Furthermore, one
could consider the different role (e.g., catalyst) that proteins have in chemical
reactions and investigate them as annotated hypergraphs [45].

The formation of stable protein complexes investigated in this study is just
one way in which proteins interact with each other. There exist many transient
protein interactions that form and break on shorter time scales but are never-
theless of crucial biological importance [46]. An integrative analysis of pairwise
protein interaction sources (e.g., BIOGRID) with multiprotein-complex data
may reveal a more nuanced picture of the cellular processes than either data set
on their own.

Hypergraphs and their null models might be used to analyse other data
sets. Among them are association-based data (e.g., ingredient–product net-
works [47, 48], authorship networks [49], company–directorate networks [50])
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or social networks in which higher-order interactions have been shown to be
prominent [51, 52]. The tools in this manuscript could be used to investigate
such data as hypergraphs and so reveal organisational principles beyond their
pairwise interactions.
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Supplementary Information

A Dual graph

A.1 Definition

The dual graph D(H) = (V ′, E′) (also called line graph) of a hypergraph
H = (V,E) is the graph whose vertex set V ′ is the set of hyperedges of the
hypergraph with edges between them if the hyperedges have at least one node
in common (i.e., V ′ = E and (ei, ej) ∈ E′ ↔ ei ∩ ej ∕= ∅). In Fig. 9, we show an
example of the dual graph constructed from a hypergraph.

A.2 Results for the dual graph

In Fig. 10 we compare the hypergraph with its dual graph, keeping in mind
that in the dual graph D(H) the nodes represent the edges of the hypergraph

H. Therefore, we compare the degree k
(dual)
i of dual graph nodes V ′ with the

cardinality of the hyperedges E in the original hypergraph (see Fig. 10). There
are 1717 hyperedges with minimum cardinality cmin = 2. This is the cardinality
that occurs most often. The mean cardinality is 〈ce〉 ≈ 10.12. and the mean

degree is 〈k(dual)i 〉 ≈ 8.21.
In the dual graph D(H), we also investigate the degrees of nodes nodes and

compare it with the cardinality of the hyperedges E in the original hypergraph
H. The Pearson correlation is −0.03 and the Spearman correlation of −0.03,
indicating that the size of the complex and the degree of its associated node in
the dual graph are almost uncorrelated.

The node in D(H) with the highest degree 960 represents a Wnt complex
and has a cardinality of 119. We observe that there are multiple other nodes
that have a slightly lower degree and similar cardinality. All of these nodes in
D(H) represent complexes that are also involved in the Wnt signaling pathway
and are active in the clathrin-coated endocytic vesicle membrane, which plays
a critical role in the Wnt signaling pathway [53]. This pathway itself is crucial
for stem cell development and disease progression [54]. The complex with the
highest cardinality of 421 is the ‘Olfactory receptor–G protein trimer’. It has
a degree of 83. The second highest cardinality has the ‘KRAB-ZNF / KAP
Complex’ with a cardinality of 336 and a degree of 6.

This investigation illustrates that degree of the dual graph and cardinality of
the protein complexes identify distinct protein as high ranked. Both approaches
reveal protein complexes of crucial cellular function and are therefore fruitful
strategies to investigate cellular hypergraphs.
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Figure 9: Example of a dual graph constructed from a hypergraph. Each hy-
peredge is represented by a node. These nodes are connected if the hyperedges
share a node.

Wnt signaling

Olfactory receptor:G protein trimer

KRAB-ZNF / KAP Complex

Figure 10: (Left) Distribution of ce cardinality of hyperedges in H and the
degrees of the associated nodes in the dual graph D(H) (Right) Scatterplot of
these two.
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B Fraction of essential proteins in multiprotein
complexes

Figure 11: The fraction cessential/c of essential proteins in complexes, in de-
pendence of the cardinality c. The two are anticorrelated, i.e., larger protein
complexes tend to have a smaller fraction of essential proteins.
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C Distribution of hypergraph measures for the
null models

Figure 12: The distribution of mean assortativity 〈ρ〉, number ncom of compo-
nents, and relative size Smax/N of the largest component for the ER-type model
(orange) and the configuration model (blue) for 100 realisations. The mean as-
sortativity 〈ρ〉data ≈ 0.44 of the protein hypergraph (red vertical line) is clearly
larger than for these null models. The number ncom = 253 of components is
also larger for the protein hypergraph. The relative size Smax/N ≈ 0.88 of the
largest component is smaller.
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Figure 13: The distribution of the maximal degree max (ki) and mean local
clustering 〈Ci〉 for the ER-type model (orange) and the configuration model
(blue) for 100 realisations. The maximal degree is (by construction) the same
for the configuration model as for the protein hypergraph. The ER-type model
has a much smaller maximum degree. The mean local clustering 〈Ci〉 ≈ 0.8 is
smaller for the data than for the null models.
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