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Abstract

One of the most effective strategies to mitigate the global spreading of a pandemic (e.g., COVID-

19) is to shut down international airports. From a network theory perspective, this is since inter-

national airports and flights, essentially playing the roles of bridge nodes and bridge links between

countries as individual communities, dominate the epidemic spreading characteristics in the whole

multi-community system. Among all epidemic characteristics, the peak fraction of infected, Imax, is

a decisive factor in evaluating an epidemic strategy given limited capacity of medical resources, but

is seldom considered in multi-community models. In this paper, we study a general two-community

system interconnected by a fraction r of bridge nodes and its dynamic properties, especially Imax,

under the evolution of the Susceptible-Infected-Recovered (SIR) model. Comparing the charac-

teristic time scales of different parts of the system allows us to analytically derive the asymptotic

behavior of Imax with r, as r → 0, which follows different power-law relations in each regime of

the phase diagram. We also detect crossovers when Imax changes from one power law to another,

crossing different power-law regimes as driven by r. Our results enable a better prediction of the

effectiveness of strategies acting on bridge nodes, denoted by the power-law exponent ǫI as in

Imax ∝ r1/ǫI .
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I. INTRODUCTION

Network science has provided many useful tools for studying epidemic problems [1]. By

modeling an epidemic-confronting society as a network, where each individual is modeled as a

node and all physical contacts between individuals so that the disease might get transmitted

as links, an epidemic problem can often be reduced to a pure problem of percolation theory

and network dynamics which strongly depend on the network topology. In many synthetic

and real-world complex networks, it is known that the number of short loops is negligible

[2], and thus the network topology can be characterized by two generating functions G0 and

G1 denoting the degree distribution and the excess degree distribution: G0(x) =
∑

k P (k)xk

and G1(x) = 〈k〉−1
∑

k kP (k)xk−1, respectively, given P (k) the fraction of nodes of degree k

in the network, and 〈k〉 =
∑

k kP (k) the average degree [3–5].

In the Susceptible-Infected-Recovered (SIR) model, the course of a disease can be modeled

as three states, and each individual can be in one of these three states at any instant:

susceptible (S, i.e., not infected yet), infected (I), and recovered (R) [6]. An individual will

recover tr time steps after being infected, and is then immune to the disease and will never

get infected again. Note that the final steady state of the SIR model can be mapped into a

link percolation problem [7–12]. In this mapping, the fraction of individuals that have ever

been infected at the final state Rfinal is just the size of the cluster that patient zero belongs

to in the link percolation problem, which is the order parameter of a phase transition; the

transmissibility T in the SIR model, which is the probability that an infected node can

spread this disease to its neighbor through a link before it recovers, is equivalent to the

probability of a link being occupied in the link percolation problem, which is the control

parameter.

In recent years, there are many studies about epidemics in systems with more complicated

structures, such as multi-group modelling or multi-community systems. In the multi-group

modelling, nodes are classified into different groups based on age or other factors [13, 14]. In

systems of multiple communities, each community is itself a complex network of some degree

distribution, while multiple communities are coupled to each other through either shared

nodes [15–17], or bridge links that follow a possibly different degree distribution [18–21].

The structure of multi-community systems with bridge links is used in our research since it

better reflects the real world. In practice, different countries (represented by communities)
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may have different transportation capabilities, and thus their own topological properties.

Also, constraints on international traveling are usually more strict than domestic ones, so

it is necessary to distinguish transmissibilities along bridge links between communities from

internal links [22, 23]. In a system of multiple communities connected by bridge links,

which allows for different transmissibilities along internal links (T i) and bridge links (T b),

it has been shown that Rfinal asymptotically follows different power-law behaviors with r in

different regimes, where r is the fraction of nodes in the whole system that are bridge nodes

(nodes with bridge links attached) [24]. These results enable better decisions about epidemic

strategies such as whether social distancing strategies are needed (to reduce transmissibility

T ) or how many international airports need to be closed (to reduce the fraction of bridge

nodes r).

Besides the final steady state Rfinal, the dynamic properties of the SIR process, especially

the peak fraction of infected Imax, are also of great interest. The dynamics of SIR has

been well known to belong to the same dynamic universality class of link percolation, given

its equivalence to the breadth-first process (the Leath-Alexandrowicz algorithm [25, 26])

that is used for simulating the growth of percolation clusters [27]. In this paper, instead

of looking at the final state of SIR, we study its dynamic properties in a two-community

system with bridge links. By comparing the time scale of different parts of the system,

we find that the peak fraction of infected Imax also follows different power laws with the

fraction of bridge nodes r in different regimes as r → 0. The regimes are determined by the

comparison between the order parameters (T i and T b) and their critical values in isolated

systems, while the exponents in different regimes are related to the exponents for Rfinal

[24]. All of our results are verified by numerical simulations. Now, we can predict not

only the total number of individuals ever been infected in the SIR model [24], but also the

maximum number of infected during the epidemic. In practice, Imax is the more decisive

factor, as it actually decides the transient maximum capacity of patients who can receive

timely treatment.

II. MODEL

Consider a system of two communities A and B, where a fraction r of nodes from each

community are bridge nodes, between which bridge links that interconnect A and B exist.
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The subsystem composed of bridge nodes and bridge links is denoted by b, as shown in

Fig. 1. Both communities and the bridge links are generated by the configuration model

and are guaranteed uncorrelated [28]. For simplicity, we assume the two communities A

and B are statistically identical, so that PA(k) = PB(k) ≡ P i(k), and that the internal

transmissibility is also the same within each community, given by TA(k) = TB(k) ≡ T i(k).

The bridge links are allowed to have a different degree distribution P b(k) and a different

transmissibility T b. Note that all the methods and results in this paper can be generalized

to cases with PA(k) 6= PB(k) and/or TA 6= TB.

FIG. 1: Illustration of a two-community system composed by communities A and B. The

subsystem b is composed of bridge nodes and bridge links. Bridge nodes are denoted by

squares and internal nodes by circles.

The step-by-step evolution of the system can then be simulated by the Edge-Based Com-

partmental Model (EBCM) adapted to the SIR model [29, 30]. The EBCM is a set of

difference equations that can reproduce the evolution of disease spreading, i.e., the time

dependence of the fraction of susceptible S, the fraction of infected I, and the fraction of

recovered R, using much less time than calculating the states of all nodes individually at

each time step (see Appendix A). For example, in a two-community system where both

internal and bridge links follow Poisson distributions P (k) = 〈k〉ke−〈k〉/k!, with 〈ki〉 = 4,

〈kb〉 = 10, r = 0.1, T i = 0.5, T b = 0.2, the time dependence of S, I, R based on the EBCM

simulation [Eqs. (2)-(11)] shows that R will increase from zero and then stabilize to a value

Rfinal, and that I will increase at the beginning but then decrease after passing a peak value

Imax (Fig. 2). It has been shown that Rfinal has different power-law behaviors with r in
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different regimes [24]. In this paper, we will show that Imax also follows power-law relations

with r as r → 0, and that crossovers exist between some regimes when r is not small enough.
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FIG. 2: Time dependence of the susceptible (S), infected (I), and recovered (R) in the SIR

model in a two-community system, where both internal and bridge links follow Poisson

distributions, with 〈ki〉 = 4, 〈kb〉 = 10, r = 0.1, T i = 0.5, T b = 0.2.

III. ASYMPTOTIC DEPENDENCE OF Imax ON r IN DIFFERENT REGIMES

By mapping the SIR model to a link percolation problem, we can apply well-known results

of percolation theory to epidemic problems. Hence, we are going to use the terminologies in

the SIR model and percolation theory interchangeably. In the SIR model, the critical value

of transmissibility in an isolated network is given by Tc = 1/(κ− 1), where κ = 〈k2〉/〈k〉 is

the branching factor [31, 32]. This critical point is characterized by many behaviors, e.g.,

the probability to find a cluster of size s is given by P (s) ∼ s−τ+1 exp(−s/smax), where

smax ∼ |T − Tc|
−1/σ is the largest finite cluster size [8, 33]. For Erdös-Rényi (ER) networks

whose degree distribution follows a Poisson distribution P (k) = 〈k〉ke−〈k〉/k!, we always

have τ = 5/2; for scale-free (SF) networks where the degree distribution is a power law

P (k) ∝ k−λ with 3 < λ < 4, τ is given by τ = (2λ− 3)/(λ− 2) [34]. Also, the correlation

length ξ diverges around the critical point following ξ ∼ |T − Tc|
−ν, where ν = 1/2 for both

ER and SF networks. There are also dynamic behaviors around the critical point, e.g., the

chemical distance l, which represents the time scale in epidemic models [35], is related to the

correlation length ξ by l ∼ ξz ∼ |T − Tc|
−zν , in which z = 2 for both ER and SF networks.

5



Due to the abrupt change in behaviors around the critical points, we are going to split

the space of the combination of T i and T b into seven regimes [24], based on whether T i is

less than, equal to, or larger than 1/(κi− 1), and whether T b is less than, equal to, or larger

than 1/(κb − 1) (Fig. 6). Note that 1/(κi − 1) or 1/(κb − 1) is the critical value of T i or

T b when the respective part is isolated, and we are going to look at the peak fraction of

infected Imax in each regime.

In order to derive the behavior of Imax, it is helpful to denote Ib as the fraction of bridge

nodes that are infected at any instant, and Ibmax as the peak fraction of infected for bridge

nodes. For a community, the peak fraction of infected Imax is related to the status of its

bridge nodes, i.e., either rRb
final or rIbmax, where Rb

final is the fraction of bridge nodes that are

recovered at the final state, depending on whether they get infected within a small or large

time scale. Specifically, if the time scale of a community is much less than the time scale of

the whole system, the spreading of the disease in the community can be treated as multiple

“breakouts” within the community occurring one after another, i.e., those “breakouts” will

not overlap over time; on the other hand, if the time scale of a community is much larger than

the time scale of the system, all the “breakouts” will keep spreading within the community

and accumulate over time.

The dependencies of Imax and Ibmax in each regime are discussed separately as follows:

1. When T i < 1/(κi − 1), there are at most a fraction rIbmax of bridge nodes that are

infected at any instant, and each of the nodes is expected to expand to at most smax

nodes within the community, where smax is the largest finite cluster size. Consequently,

rIbmax ≤ Imax ≤ rIbmax · smax, where smax is finite, so Imax ∝ rIbmax, as r → 0, which is

true for any value of T b.

1.1 (Regime I) When T b < 1/(κb − 1), the whole system is in non-epidemic regime,

so Imax or Ibmax is not a power law of r.

1.2 (Regime II) When T b = 1/(κb − 1), there is the relation Rb
final ∼ Ibmax · l

b due to

Rb
final ∼

∫

Ib · dlb, where lb represents the time scale of the bridge link part. Since

lb ∼ |T b − T b
c |

−zbνb ∼ |T b − T b
c |

−1 given z = 2 and ν = 1/2 for both ER and SF

networks with 3 < λ < 4, and also |T b − T b
c | ∼ r where T b

c is the critical value

of bridge link transmissibility for the whole system given a fixed value of T i (see

Appendix B), we have Ibmax ∼ rRb
final.
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1.3 (Regime III) When T b > 1/(κb−1), there is a giant component within the network

of bridge links b in finite time steps, so Ibmax is not a power law of r.

2. (Regime IV, V, VI) When T i = 1/(κi−1), each community has a divergent time scale,

while the whole system has a finite time scale †. There are rRb
final bridge nodes being

infected in total, and they get infected within a short period of time due to the finite

time scale of the system. This is equivalent to considering that there are rRb
final bridge

nodes that get infected at the same time, and they are going to spread the disease

within each community, so it is expected that there are at most Imax ∝ rRb
final nodes

that are being infected at the same time (see Appendix D).

3. (Regime VII) When T i > 1/(κi − 1), there is always a giant component within each

community, and thus always a finite Imax, which cannot be a power law of r.

T b < 1
κb−1

T b = 1
κb−1

T b > 1
κb−1

T i < 1
κi−1

Imax ∝ rIbmax

Ibmax ∝ rRb
final

Imax ∝ rIbmax

Ibmax ∝ 1

T i = 1
κi−1

Imax ∝ rRb
final Imax ∝ rRb

final Imax ∝ rRb
final

TABLE I: Dependence of Imax and Ibmax in different regimes, as r → 0.

† The time scale for a system is divergent at critical since l ∼ |T −Tc|
−zν . However, the relation holds true

only when the system size is large enough compared with the correlation length ξ. For percolation in an

infinitely large system starting from a small fraction I(0) of nodes, the time scale l at critical depends on

I(0) and keeps increasing to infinity as I(0) decreases; but l is finite and independent of I(0) as long as

I(0) is small enough, if above critical. For percolation in a finite system, we cannot really have infinite

time scale even if we are at critical, since the system size will be considered not large enough and the

relation l ∼ |T − Tc|
−zν no longer holds as T goes too close to Tc. However, the time scale near critical

will keep increasing as the system gets larger, while it will be independent of the system size when above

critical, as long as the system is large enough. In either case, we can always say the time scale l at critical

is significantly larger than when it is above critical, for reasonably large systems.
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T b < 1
κb−1

T b = 1
κb−1

T b > 1
κb−1

T i < 1
κi−1

Rfinal ∝ rRb
final

Rb
final ∝ (Rfinal)

τb−2

Rfinal ∝ rRb
final

Rb
final ∝ 1

T i = 1
κi−1

Rfinal ∝ (rRb
final)

τ i−2

Rb
final ∝ Rfinal

Rfinal ∝ (rRb
final)

τ i−2

Rb
final ∝ (Rfinal)

τb−2

Rfinal ∝ (rRb
final)

τ i−2

Rb
final ∝ 1

TABLE II: Dependence of Rfinal and Rb
final in different regimes, as r → 0 [24].

All the scaling relations are summarized in Table I. Combined with previously known

results (Table II), we can find the asymptotic dependence of Imax on r, as shown in Table

III, that gives the power-law exponent ǫI as in Imax ∝ r1/ǫI in different regimes, as r → 0.

T b < 1
κb−1

T b = 1
κb−1

T b > 1
κb−1

T i < 1
κi−1

∅

(Regime I)

ǫI =
1−(τb−2)
2−(τb−2)

(Regime II)

ǫI = 1

(Regime III)

T i = 1
κi−1

ǫI = 1− (τ i − 2)

(Regime IV)

ǫI = 1− (τ i − 2)(τ b − 2)

(Regime V)

ǫI = 1

(Regime VI)

T i > 1
κi−1

∅

(Regime VII)

∅

(Regime VII)

∅

(Regime VII)

TABLE III: Power-law exponent ǫI as in Imax ∝ r1/ǫI in different regimes, as r → 0. ∅

denotes that there is no power-law relation in that regime.

The results can be verified by comparing with the numerical solutions from the EBCM.

As in Fig. 3, in a system where both communities and bridge links are ER networks (ER-ER

system) such that τ i = τ b = 5/2, numerical solutions of Eqs. (2)-(11) are plotted in solid

lines, and the dashed lines are straight lines whose slopes are given by Table III. It is clear

that the numerical solutions agree with our prediction, as r → 0. Our results also apply to

SF networks with 3 < λ < 4. As in Fig. 4, in a system where both communities and bridge

links are SF networks (SF-SF system) with λi = 3.3 and λb = 3.4, such that τ i = 36/13 and

τ b = 19/7, numerical solutions of Eqs. (2)-(11) are plotted in solid lines, and the dashed

lines are straight lines predicted by Table III. It is clear that the numerical solutions also
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agree with our prediction for SF networks as r → 0.

Similar to our previous results for Rfinal [24], it can be verified that for all ER networks or

SF networks with 3 < λ < 4, ǫI has a smaller value in regions with smaller transmissibilities

(T i or T b), so that the curve of Imax vs. r goes steeper when r is small. That is to say,

strategies to reduce r are more effective in controlling peak fraction of infected, if adequate

actions are also taken to reduce T i or T b. Our results also show that, compared to the values

of ǫR as in Rfinal ∝ r1/ǫR in each regime [24], ǫI is either smaller than or equal to ǫR for all ER

networks or SF networks with 3 < λ < 4. In general, as r decreases, Imax decays faster than

Rfinal does, i.e., the peak fraction of infected Imax responds more sensitively to r than the

total fraction of individuals ever been infected Rfinal. Thus, strategies that reduce r should

be prioritized if controlling the peak fraction of infected is more crucial (for example, when

medical resources are limited).

IV. CROSSOVERS FOR T i . 1/(κi − 1) WHEN T b = 1/(κb − 1)

Besides the asymptotic behaviors of Imax as r → 0, we also expect crossovers for Imax, i.e.,

the relation between Imax and r follows one power law when r is small enough, but follows a

different power law when r is larger. This happens when the transmissibilities are near the

boundaries of different regimes, for example, when T i . 1/(κi − 1), i.e., when T i is smaller

than but close to 1/(κi − 1). Since Regime I is not an epidemic phase, and the values of ǫI

in Regime III and VI are the same, we will only look at the case when T b = 1/(κb − 1).

When T i . 1/(κi−1), the relation between Imax and r behaves differently on both sides of

the crossover for two reasons. Firstly, the behavior of Imax depends on the behavior of Rb
final,

and there is a crossover for Rb
final [24]. This crossover r∗1 is determined by 1/smax ∼ r∗1(R

b
final)

∗,

where r∗1 and (Rb
final)

∗ are the values of r and Rb
final when the crossover for Rfinal occurs, and

thus we get the first crossover point r∗1 ∼ |T i − 1
κi−1

|[1−(τ i−2)(τb−2)]/σ when T b = 1/(κb − 1).

Secondly, whether Imax depends on Rb
final or Ibmax is determined by how the time scale of

a community is compared with that of the whole system. In this case, the turning point

occurs when the time scale of a community is approximately the same as the time scale of the

system, i.e., |T i− 1
κi−1

|−ziνi ∼ |T b−T b
c |

−zbνb, which reduces to |T i− 1
κi−1

| ∼ |T b−T b
c | for ER

and SF networks with 3 < λ < 4, where T b
c is the critical value of bridge link transmissibility

T b for the whole system, given a fixed value of T i. Then we have the second crossover point
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(see Appendix B for details)

∣

∣

∣

∣

T i −
1

κi − 1

∣

∣

∣

∣

∼
〈ki〉〈kb〉T i

(κi − 1)(κb − 1)2
(

1
κi−1

− T i
) · r∗2, (1)

which gives r∗2 ∼ |T i − 1
κi−1

|2.

In summary, when T i . 1/(κi − 1) and T b = 1/(κb − 1), we expect crossovers in the

relation between Imax and r. If r is small enough so that r < r∗1 and r < r∗2, Imax vs. r

follows its asymptotic behavior as T i < 1/(κi − 1), while if r is larger than both r∗1 and r∗2,

the relation between Imax and r will be as if T i = 1/(κi − 1), both of which can be verified

by the numerical solutions from Eqs. (2)-(11), as shown in Fig. 5. Moreover, we can also

see a transition part when r∗2 < r < r∗1, whose slope can also be predicted by combining

dependencies of Rfinal and Imax with r from different regimes.

Practically, when actions are taken to reduce r, it is essential to know that the peak

fraction of infected Imax may not be reduced immediately as fast as the predicted behaviors

for asymptotic situations. This is due to the fact that r may be not small enough, and

we are on the right side of the crossovers. However, we would expect Imax to drop down

as fast as predicted, once r goes below the crossover points. Our results enable us to find

the balance between relieving medical pressure and reopening, and to make better plans for

epidemic strategies.

V. CONCLUSIONS

In this paper, we study the dynamic properties of a two-community system with bridge

nodes, especially how the peak fraction of infected Imax depends on the fraction of bridge

nodes r. We find the asymptotic relation between Imax and r to have power-law behaviors

in multiple regimes. We analytically calculate the power-law exponents for each regime,

which are verified by numerical solutions from the EBCM. We also find crossovers between

regimes when T i . 1/(κi − 1) and T b = 1/(κb − 1), which can be explained by the compar-

ison of time scales between different parts of the system. Our methodology can be easily

extended to situations with multiple communities, or communities with different internal

degree distributions, or different internal transmissibilities.

Our methods can also be adapted to other types of compartmental models, as long as the

final state of the model is R (i.e., a node is immune to the same disease once recovered), so
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that a mapping to the link percolation problem is still available, such as in the SEIR model,

where E stands for Exposed [36]. However, it does not apply to models in which a node

may get reinfected, for example, the SIS, or SIRS models, etc. Also note that the mapping

from the SIR model to link percolation is exact only when the time to recover after getting

infected tr is fixed, so that the transmissibilities along links are independent; otherwise, the

mapping might not be accurate [37].

Due to the complexity of the real world, our model cannot capture all factors in practice,

such as time-varying transmission rate [38, 39], vaccination [40], or time-dependent epidemic

strategies [22, 41], etc. Instead, we focus on one aspect of epidemic strategies, i.e., the

shutting down of international traveling, and propose new methodology to study and to

evaluate epidemic strategies. Our results serve as an important basis for making epidemic

strategies, e.g., to anticipate the effectiveness of a strategy, and to find the best practice of

reopening under the premise that all patients can get timely treatment.
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A. EBCM ADAPTED TO THE SIR MODEL

The Edge-Based Compartmental Model (EBCM) adapted to the SIR model was first

introduced for isolated networks [29] and then extended for multi-community networks with

bridge nodes [30]. In this model, two auxiliary variables θi(t), θb(t) are defined as the prob-

abilities that the disease has not been transmitted through a randomly chosen internal or

bridge link from a node, respectively, by time t, which could fall into one of the three cate-

gories: the node is still susceptible (S) up to this instant (with probability ΦS(t)), the node

is infected (I) at this instant but has not transmitted through this link yet (with probability

ΦI(t)), or the node is already recovered (R) and has never transmitted the disease through

this link (with probability ΦR(t)) [30]. Recall that Gi,b
0,1 represents generating functions,
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where the subscript is used to denote whether the generating function is for the degree dis-

tribution (0), or the excess distribution (1); the superscript is i for internal links, and b for

bridge links. The time dependence of all variables of the SIR model can then be calculated

numerically from [30]:

θi(t+ 1) = θi(t)− qiΦi
I(t) (2)

θb(t+ 1) = θb(t)− qbΦb
I(t) (3)

∆Φi
S(t) = (1− r)

[

Gi
1(θ

i(t+ 1))−Gi
1(θ

i(t))
]

+ r
[

Gi
1(θ

i(t + 1))Gb
0(θ

b(t+ 1))−Gi
1(θ

i(t))Gb
0(θ

b(t))
]

(4)

∆Φb
S(t) = Gi

0(θ
i(t+ 1))Gb

1(θ
b(t+ 1))−Gi

0(θ
i(t))Gb

1(θ
b(t)) (5)

∆Φi
I(t) = −qiΦi

I(t)−∆Φi
S(t) + (1− T i)∆Φi

S(t− tr) (6)

∆Φb
I(t) = −qbΦb

I(t)−∆Φb
S(t) + (1− T b)∆Φb

S(t− tr) (7)

∆Si(t) = (1− r)
[

Gi
0(θ

i(t+ 1))−Gi
0(θ

i(t))
]

(8)

∆Sb(t) = r
[

Gi
0(θ

i(t+ 1))Gb
0(θ

b(t+ 1))−Gi
0(θ

i(t))Gb
0(θ

b(t))
]

(9)

∆I i(t) = −∆Si(t) + ∆Si(t− tr) (10)

∆Ib(t) = −∆Sb(t) + ∆Sb(t− tr) (11)

where qi (or qb) is the probability that an infected node transmits the disease to its susceptible

neighbor through an internal link (or a bridge link) at each time step, and tr is the number

of time steps it takes for an infected individual to recover, and thus T i = 1− (1− qi)tr and

T b = 1− (1− qb)tr .

Equations (2)-(3) are due to the fact that the disease can only be transmitted through

a link when the node is infected. In Eqs. (4)-(5) and (8)-(9), Φi
S or Φb

S is calculated by

the probability that the disease has not transmitted to the node through any other links by

time t, and Si or Sb is calculated by the probability that the disease has not transmitted

to the node through any of its links by time t. Eqs. (6)-(7) and (10)-(11) take ∆θ(t) =

∆ΦS(t)+∆ΦI(t)+∆ΦR(t) and 0 = ∆S+∆I+∆R into account, and that all infected nodes

will recover after tr time steps, so that ∆ΦR(t) = −∆ΦS(t− tr) and ∆R(t) = −∆S(t− tr).
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B. DERIVATION OF T b
c FOR THE WHOLE SYSTEM GIVEN A FIXED T i

By mapping the final state of the whole system to the giant component in the link

percolation process, we have the self-consistent equations [16, 24, 30]

f i = (1− r)
[

1−Gi
1(1− T if i)

]

+ r
[

1−Gi
1(1− T if i)Gb

0(1− T bf b)
]

, (12)

f b = 1−Gi
0(1− T if i)Gb

1(1− T bf b), (13)

where f i or f b is the probability to expand a branch to the infinity through an internal link

or a bridge link, respectively. The factors (1 − r), r and 1 of each term stand for the fact

that the node an internal link leads to has a probability of (1 − r) to be an internal node,

and a probability r to be a bridge link, while bridge links only lead to bridge nodes.

The critical value of T b given T i can be solved by letting the Jacobian matrix satisfy

|J − I|f i,fb=0 = 0, where Ji,j =
∂fi
∂fj

, in which each of fi and fj represents f i or f b. Thus, we

have
∣

∣

∣

∣

∣

∣

∣

T i(κi − 1)− 1 rT b
c 〈k

b〉

T i〈ki〉 T b
c (κ

b − 1)− 1

∣

∣

∣

∣

∣

∣

∣

= 0. (14)

So T b
c is given by

T b
c =

(κi − 1)T i − 1

(κb − 1)
[

(κi − 1)T i − 1
]

− r〈ki〉〈kb〉T i
. (15)

When r is small, this expression can be approximated by looking only at the first two

orders of its Taylor series expansion around r = 0. The zeroth order gives

T b
c

∣

∣

r=0
=

1

κb − 1
, (16)

while the first order derivative is

∂T b
c

∂r

∣

∣

∣

∣

r=0

=

[

(κi − 1)T i − 1
]

〈ki〉〈kb〉T i

[

(κb − 1)
[

(κi − 1)T i − 1
]

− r〈ki〉〈kb〉T i
]2

∣

∣

∣

∣

∣

∣

∣

r=0

=
〈ki〉〈kb〉T i

(κb − 1)2
[

(κi − 1)T i − 1
]

= −
〈ki〉〈kb〉T i

(κi − 1)(κb − 1)2
[

1
κi−1

− T i
] .

(17)

Thus, we have

T b
c ≈

1

κb − 1
−

〈ki〉〈kb〉T i

(κi − 1)(κb − 1)2
[

1
κi−1

− T i
] · r. (18)
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C. PHASE DIAGRAM AND REGIMES

The phase diagram (Fig. 6) of the bridge link transmissibility T b
c given in Eq. (15) was

originally presented in our previous work [24]. As an example, for two ER communities

connected by ER bridge links with 〈ki〉 = 4 and 〈kb〉 = 10, we can see that as r → 0, the

nonepidemic phase (the shaded area below the curve of T b
c ) tends to be a rectangle. The

boundaries of the rectangle are given by T i = 1/(κi − 1) and T b = 1/(κb − 1), along which

the whole space is split into several regimes [24].

D. Imax WITH n PATIENT ZEROS IN AN ISOLATED NETWORK

In the case where a disease starts spreading from one patient, i.e., “patient zero”, in an

isolated network, there are behaviors around criticality 〈s〉 ∼ |T−Tc|
−γ, where 〈s〉 represents

the mean cluster size, l ∼ |T − Tc|
−zν, where l represents the chemical distance or shortest-

path distance, and thus 〈s〉 ∼ lγ/zν . Considering 〈s〉 ∼
∫

N(l)dl and I ∼ N(l), we have

I ∼ lγ/zν−1 [27], which becomes I ∼ O(1) for both ER and SF networks with 3 < λ < 4,

whose γ = 1, z = 2 and ν = 1/2 [34].

For epidemics starting from n patient zeros simultaneously in an isolated network, I

would be less than n ·O(1) with time going on, if the spreading paths from different patient

zeros overlap. Due to the initial condition I0 = n, we will have Imax ∝ n.
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FIG. 3: Imax as a function of r for different regimes in an ER-ER system where a power

law exists: (a) Regime II: T i = 0.2, T b = 0.1; (b) Regime III: T i = 0.2, T b = 0.2; (c)

Regime IV: T i = 0.25, T b = 0.05; (d) Regime V: T i = 0.25, T b = 0.1; and (e) Regime VI:

T i = 0.25, T b = 0.2. Both internal links and bridge links are ER networks, with 〈ki〉 = 4

and 〈kb〉 = 10, such that 1/(κi − 1) = 0.25 and 1/(κb − 1) = 0.1, respectively. In each

regime, numerical solutions of Eqs. (2)-(11) are plotted in solid lines, and dashed lines

represent slopes predicted by Table III.
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FIG. 4: Imax as a function of r for different regimes in a SF-SF system where a power law

exists: (a) Regime II: T i = 0.478, T b = 0.803; (b) Regime III: T i = 0.478, T b = 0.964; (c)

Regime IV: T i = 0.573, T b = 0.669; (d) Regime V: T i = 0.573, T b = 0.803; and (e) Regime

VI: T i = 0.573, T b = 0.964. Both internal links and bridge links are SF networks, with

λi = 3.3 and λb = 3.4, such that τ i = 36/13, τ b = 19/7, 1/(κi − 1) = 0.573, and

1/(κb − 1) = 0.803, respectively. In each regime, numerical solutions of Eqs. (2)-(11) are

plotted in solid lines, and dashed lines represent slopes predicted by Table III.
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FIG. 5: Crossovers of Imax as a function of r when T i . 1/(κi − 1), i.e.,

T i = 0.245, 0.246, 0.247, 0.248, 0.249 (from light blue to dark blue), with

T b = 1/(κb − 1) = 0.1. Both internal links and bridge links are ER networks, with 〈ki〉 = 4

and 〈kb〉 = 10, respectively. Dashed lines represent slopes predicted by Tables I and II for

different regimes.
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FIG. 6: Phase diagram for two ER communities connected by ER bridge links, with

〈ki〉 = 4 and 〈kb〉 = 10. The blue shaded areas under the curves of T b
c are the nonepidemic

phases for different values of r (r = 0.5, 0.1, 0.01, 0.001, 0.0001, from dark blue to light

blue). As r → 0, the nonepidemic phase expands and tends to be a rectangle, whose

boundaries are given by T i = 1/(κi − 1) and T b = 1/(κb − 1) [24].
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