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Network comparison is a widely-used tool for analyzing complex systems, with applications in varied
domains including comparison of protein interactions or highlighting changes in structure of trade net-
works. In recent years, a number of network comparison methodologies based on the distribution of
graphlets (small connected network subgraphs) have been introduced. In particular, NetEmd has recently
achieved state of the art performance in undirected networks. In this work, we propose an extension of
NetEmd to directed networks and deal with the significant increase in complexity of graphlet structure
in the directed case by denoising through linear projections. Simulation results show that our framework
is able to improve on the performance of a simple translation of the undirected NetEmd algorithm to the
directed case, especially when networks differ in size and density.
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1. Introduction

Complex networks represent relationships between actors of systems with non-trivial structural prop-
erties and are ubiquitous in a myriad of domains. Studying the networks underlying these complex
systems is then a step towards gaining an understanding about the systems themselves. Comparing
different objects is a fundamental part of human cognition, therefore it is only natural that analysis of
networks encompasses a comparison element. It is sometimes straightforward to show two networks are
different, through finding a mismatch between the set of nodes and edges that compose the networks,
which would and claim a difference if these sets do not match. On the other hand, knowing if two net-
works are exactly the same is known as the graph isomorphism problem, which has been shown to be
in the NP complexity class [7]. Between these two extremes, network comparison has been established
as an area of study within network analysis that combines network statistics and computable proper-
ties of a network to tell how similar or dissimilar two networks are. Network comparison has been the
subject of an increasing amount of research, see for example [2, 3, 47, 50, 53], and its applications are
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widespread, most notably in biological areas like protein-protein interaction networks [2] and metabolic
networks [3], but also in other domains, like tracking dynamics of world trade networks [56].

Network comparison methods can be broadly split in two categories: node alignment methods [10,
26, 32], that attempt to create a mapping between the nodes of the networks being compared, and
alignment-free methods [1, 24, 34, 36, 38, 48], that use global features of the networks to determine
similarity or dissimilarity. Among the latter, methods that use distributions of small connected sub-
graphs, known as graphlets, have emerged as the state of the art in the area [2, 3, 38, 47, 56]. In
particular, Wegner et al. [53] recently introduced the NetEmd measure that achieves state of the art
performance in undirected networks, by comparing the shape of graphlet distributions using the Earth
Mover’s Distance (EMD).

Undirected networks represent relationships between entities under the assumption that the relation-
ship is symmetrical. For example, a Facebook friendship is mutual because both users mutually agree
to become friends and thus there is no difference between source and target in the friendship. This
abstraction is often insufficient to capture more nuanced relationships. For instance, in Twitter there
is an asymmetry in the follower-followed relationship because the action of following another user is
not necessarily reciprocated. Directed networks allow us to model such relationships, but this increased
wealth of information leads to greater complexity when analyzing them. Such is the case when compar-
ing directed networks, where network comparison metrics designed for undirected networks have been
shown to be unsuitable for the task [3, 47].

The first contribution of our work is an extension of NetEmd to directed networks, using directed
graphlets of size up to 4. Xu and Reinert [54] previously proposed a similar extension, named Tri-
adEMD, that is limited to graphlets of size 3. The main obstacle when going from size 3 to size 4
graphlets in directed networks is the combinatorial explosion in number of orbits due to edge direction,
there are 33 orbits in graphlets of size up to 3 but 730 when including size 4 as well. In the undirected
case, scaling up from size 3 to size 4 is a comparatively much smaller jump, from 4 to 15. We propose
two methodologies for our extension to size 4: the first is a simple extension, where all orbits are used
in the NetEmd calculation; in the second, we adapt the idea of Aparı́cio et al. [3] and use only orbits that
have non-zero frequency in both networks for the comparison. We test systematically the performance
difference between using size 3 and size 4 graphlets to understand under which circumstances the added
computational load of size 4 graphlets leads to gains in comparison performance. It is also worth noting
that the previous methods that use graphlets for comparing directed networks [3, 47] also use size 4
graphlets as input to their comparison measures.

Another difference between our work and TriadEMD is the inclusion of orbits from size 2 graphlets
in the comparison, which is tantamount to including a comparison of the degree distribution in the
network comparison measure. Degree distributions are the most commonly studied property to measure
the structure of networks and are able to distinguish between networks created with different models [35,
39, 41], but often they are insufficient alone as a heuristic for network comparison as it is possible to
craft networks with the same degree distribution but widely different structures [30, 39]. The inclusion
of orbits from size 2 graphlets is also supported by the undirected version of NetEmd, where these orbits
are also included [53].

Complex networks are heterogeneous in the amount of data they represent, with famous examples
ranging from Zachary’s karate club [58] with only 34 individuals to gigantic networks like the Friendster
social network [55], which contains more than one billion relationships between its users. Such dispar-
ity makes the task of comparing networks even harder, as networks that differ in size by multiple orders
of magnitude may still be organized according to similar topography, for instance when they are gener-
ated by the same process. Identifying such “common organizational principles” [53] is the basis for the
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NetEmd comparison measure. However, networks representing real world phenomena are often inac-
curate representations of that phenomena due to unseen data, measurement errors or simply because
the systems they represent are too complex to fully describe. These inaccuracies lead to noise in the
statistics used to describe the network and similar topographies become harder to recognize, especially
when networks differ greatly in size.

The distributions of graphlets are not immune to these errors, so our second contribution in this work
is using denoising methods to reduce the impact of these errors so that NetEmd is able to more accu-
rately distinguish networks according to those core structures that compose each network. To this end,
we propose a framework that employs Principal Component Analysis (PCA) [14] as the most commonly
used denoising method before comparing the graphlet distributions with EMD. PCA finds uncorrelated
directions of ordered by contribution to variance, which is sufficient for independence under the assump-
tion of normality [49]. Graphlet distributions for complex networks, however, break this assumption as,
although hard to characterize exactly, they are thought to be similar to degree distributions, which,
whether or not they are approximately power-law as often claimed [4], are at least often far from normal
due to being heavy-tailed [5]. Therefore, we hypothesize that PCA struggles to create an appropriate
model for these distributions, which can make the denoising process ineffective, so we also propose
an alternative intermediate step that uses Independent Component Analysis (ICA) [6], a method that is
explicitly designed to work with heavy-tailed distributions [31].

We test our contributions in clustering tasks involving synthetic and real world networks, following
the same experimental procedure as the original NetEmd paper [53], which adheres to the framework of
graph comparison introduced by Yaveroğlu et al. [57]. We find that our proposed method of denoising
using component analysis techniques is able to improve NetEmd’s performance on clustering tasks,
both in undirected and directed networks. This improvement is particularly significant when comparing
networks of different sizes and densities, where NetEmd is already the state of the art.

2. Background

2.1 Graph theoretical concepts

A graph G is composed of a set of vertices (or nodes) V (G) and a set of edges E(G) ⊆ V (G)×V (G),
represented by pairs (a,b)∈ E(G) for a,b∈V (G). A graph can be either directed, when the order of the
vertices in the pairs expresses direction, meaning that (a,b) ∈ E(G) does not imply that (b,a) ∈ E(G),
or undirected otherwise (i.e. when (a,b) ∈ E(G) if and only if (b,a) ∈ E(G)). The size of a graph is
the number of vertices in the graph, written as |V (G)|, and the density is the portion of edges present in
the graph over the total potential ones (|E(G)|/

(|V (G)|
2

)
in undirected networks). For a directed network,

the reciprocity ρ is the probability that, given an edge (a,b) selected uniformly at random from E(G),
(b,a) is also a member of E(G). A graph is called simple if it does not contain multiple edges (two or
more edges connecting the same pair of vertices) or self-loops (an edge of the form (a,a) that connects
a vertex to itself). In this work, we consider only simple graphs.

The neighbourhood of a vertex u ∈ V (G) is defined as N(u) = {v : (v,u) ∈ E(G)∨ (u,v) ∈ E(G)}.
All nodes are assigned consecutive integer numbers starting from 0 and running to |V (G)| − 1. The
degree of a vertex is the number of edges it participates in, which is equivalent to the size of the node’s
neighbourhood. In directed networks, the degree of a vertex can be split into the in-degree and out-
degree, counting the number of incoming and outgoing edges, respectively, from that node. In directed
networks, the degree of a vertex is the sum of its in-degree and out-degree. In undirected networks,
the degree of a node u is simply |N(u)|. The distribution of degrees in a network is called the degree
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FIG. 1. Undirected graphlets of size 2, 3 and 4 and directed graphlets of size 2 and 3. Nodes are numbered according to their orbit,
counted by type (directed or undirected) from the size 2 graphlets, and nodes with the same number represent the same orbit.

sequence.
A subgraph of size k, Gk, of a graph G is a graph with k vertices, such that V (Gk) ⊆ V (G) and

E(G) ⊇ E(Gk) ⊆ V (Gk)×V (Gk). A subgraph is induced if ∀u,v ∈ V (Gk), (u,v) ∈ E(Gk)↔ (u,v) ∈
E(G) and is said to be connected when all pairs of vertices have a sequence of edges connecting them.
Two graphs G and H are isomorphic, written as G∼ H, if there is a bijection between V (G) and V (H)
such that two vertices are adjacent in G if and only if their correspondent vertices in H are adjacent. A
match of a graph H in a larger graph G is a set of nodes that induce the respective subgraph H. In other
words, it is a subgraph Gk of G that is isomorphic to H. The frequency of a subgraph Gk is then the
number of different matches of Gk in G.

Orbits are unique positions of a graph, calculated by partitioning the set of vertices into equivalence
classes where two vertices belong to the same class if there is an automorphism that maps one into the
other [43].

Small, connected, non-isomorphic, induced subgraphs are commonly called graphlets [38]. The
smallest graphlet considered is a single edge, which can be seen as a size-2 subgraph. An undirected
edge has a single orbit (three in the directed case) and the frequency of a node in this orbit is equivalent
to the degree of the node. The graphlet degree vector of a node is an extension of the definition of degree
to size-k graphs, representing how many times the node occurs in each orbit. The graphlet degree matrix
of a graph is the collection of graphlet degree vectors of each node in the graph.

Figure 1 shows the graphlets of size 2, 3 and 4 in undirected networks and size 2 and 3 in directed
networks, alongside the respective orbits.

2.2 NetEmd

NetEmd [53] is a network comparison measure that relies on structural features of the network, mainly
the distribution of orbit frequencies. The core idea is formalizing the intuition that the shape of the
degree distribution is indicative of the network’s generation mechanisms, for instance, a network with a
power law degree distribution is generated by a process distinct from a network with a uniform degree
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distribution. As the graphlet degree vector is a generalization of the degree distribution for graphlets
of size k > 3, the shapes of the distributions of each orbit also carry information about the topology of
the network. Note that because the shape of a distribution is invariant under linear transformations such
as translations, using the shape as the focus of the comparison is well-suited to comparing networks of
different sizes and densities.

Wegner et al. [53] postulate that “any metric that aims to capture the similarity of shapes should be
invariant under linear transformations of its inputs.” Thus, they define a measure of similarity between
distributions p and q, with non-zero and finite variances, using the Earth Mover’s Distance (EMD) [46]:

EMD∗(p,q) = infc∈R(EMD(p̃(·+ c), q̃(·))),

where p̃ and q̃ are the distributions resulting of scaling p and q to variance 1. Any distance metric d can
be used to generate d∗; EMD was used by the authors as it has been shown to be an appropriate metric
to compare shapes of distribution in domains such as information retrieval and it produced better results
than other distance metrics, like the Kolmogorov or L1 distances.

Given two networks G and H and a set of m orbits O = {o1,o2, . . . ,om}, the NetEmd measure is
defined as:

NetEmdO(G,H) =
1
m

m

∑
i=1

EMD∗(poi(G), poi(H)), (2.1)

where poi(G) and poi(H) are the distributions of orbit i in graphs G and H, respectively. Note that O
may be replaced by any set of network features; in this work we focus on orbits only.

3. Directed NetEmd

Directed networks pose challenges unlike the ones observed in undirected networks, due to the combi-
natorial explosion in number of orbits introduced by distinguishing (u,v) and (v,u) as different edges
between u and v. There are 730 orbits when considering directed graphlets of size up 4, compared
to 15 in the undirected case, and scaling up to size 5 in directed networks becomes unfeasible as the
number of orbits rises to 45,637. This sharp increase makes the task of counting orbit frequencies
for each node even harder, with no known analytical approaches like ORCA [13] that rely on crafting
sets of equations that exploit combinatorial relationships between smaller graphlets to compute orbit
counts. Instead, enumeration-based approaches are required in the directed case, which are known to
be at least an order of magnitude slower than analytical approaches in undirected networks. In order to
adapt NetEmd to directed networks, we use the G-Trie [44] data structure and the counting algorithm
proposed by Aparı́cio et al. [3], publicly available at [42], modified to return the graphlet degree matrix
instead of the graphlet degree distribution.

How to handle this increased number of orbits in the comparison is also a challenging problem,
especially when comparing networks that contain only a small subset of orbits and differences within
those orbits can get diluted when taking the average over the whole set. Aparı́cio et al. [3] argue that the
comparison should only be done over the orbits present in at least one of the networks, using networks G
and H in Figure 2 as an example. In this case, the authors show that using the original formulation of the
Graphlet Degree Distribution Agreement (GDA) (described in Section 5.4.2) inflates the similarity score
between the two networks far beyond what would be expected from two so distinct looking networks,
with an agreement score of 0.92 against 0.32 when using their modified version that compares only
orbits in at least one of the networks. This modification to GDA is well-founded because GDA is a
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FIG. 2. Example to illustrate the usefulness of only using orbits that appear in at least one of the networks being compared. Graphs
G and H are the example provided by Aparı́cio et al. [3]; we adapt them to directed networks G′ and H ′, keeping the same number
of orbits in each network. We measure NetEmd(G′,H ′) = 5e−5 and Weighted NetEmd(G′,H ′) = 0.12.

measure of agreement, bounded between 0 and 1 and meant to be interpretable; a score close to 1 means
that the networks are similar and a score close to 0 the opposite, so the magnitude of the value that the
measure outputs is of interest. However, NetEmd is a measure of distance between networks and the
relative difference between distances is more informative than the absolute value of that distance, so
including information that an orbit is missing in both networks improves our ability to tell if they are
less distant from each other when comparing against another pair of networks.

With the above in mind, we propose two versions of directed NetEmd. Given two networks G and
H and a set of m orbits O = {o1,o2, . . . ,om}, the first uses all m orbits in this set, which in practice are
all the orbits in graphlets of size up to 3 or 4 and the formulation is the same as the original NetEmd in
Equation 2.1. The second is using the same idea of Aparı́cio et al. [3], which we refer to as weighted
NetEmd, where we restrict the set of orbits to those that occur in at least one of the networks G or H.
This leads to a new set of m′ orbits O ′ = {o′1,o′2, . . . ,o′m}, with m′ 6 m. The average in Equation 2.1 is
done over this set O ′ instead of the original O , but the rest of the formula is the same:

Weighted NetEmdO ′(G,H) =
1
m′

m′

∑
i=1

EMD∗(poi(G), poi(H)). (3.1)

Graphs G′ and H ′ in Figure 2 show an analogous example to the one shown by Aparı́cio et al. [3]
to demonstrate the difference between weighted and original NetEmd applied to directed networks.
Although it is usually impractical to scale up to size 5 in directed networks, in a small example like this
one it becomes feasible to do so. In this context, we calculate a distance of 5e−5 using all orbits and
0.12 when using the weighted version. Note that this idea of using the orbits that appear in at least one
of the networks under comparison can also be applied to undirected networks, as Aparı́cio et al [3] do,
however we show results only for the directed case.

4. NetEmd with Dimension Reduction

4.1 Motivation

In this section, we describe how we couple dimensionality reduction techniques with NetEmd, using
them as noise reduction techniques. The rationale is that processes that generate networks are inherently
noisy due to the complexity of the systems they represent. This is particularly evident when we consider
random networks generated by the same model; we expect them to have similar structure and that
similarity to be reflected in the distribution of subgraph and orbit frequencies, but the stochastic nature
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of the generation process introduces noise in these distributions that makes them harder to identify.
Considering the graphlets and orbits shown in Figure 1, it is clear that (for example) directed graphlet

G2 cannot exist if G0 does not, and similarly directed graphlet G12 cannot exist if G1 does not. More
generally, it is clear that the different orbits do not represent independent degrees of freedom, and are
expected to be constrained by the requirement of combinatorial consistency of the underlying full graph
G as well as correlations induced by the generation process.

In practice, both combinatorial enumeration of graphlets and a priori determination of statistical
relationships between them (beyond comparison to simple random graphs as in [34]) are computation-
ally infeasible. While this does not matter in practice for the undirected case, for directed graphs as we
consider here, the relatively large number and complexity of orbits makes these much more important.
We therefore seek an approach that can adjust for the non-independence of orbit counts.

Proceeding somewhat formally, let FG denote the graphlet degree matrix of graph G for a set of
orbits O , a n×m matrix where n = |V (G)|, m = |O|, such that [FG]i, j represent the frequency of orbit
j for node i. Further, let fi be the vector of frequencies of node i, i.e. (fi) j = [FG]i, j meaning fi is the
i-th row of FG. Now note that we are only interested into networks up to isomorphism; in fact, our
distance measures depend on empirical histograms of orbit counts, deriving the distribution poi in (2.1)
from histogram heights like

ho j ,y =
1
n

n

∑
i=1

1{(fi) j=y}, (4.1)

which is the proportion of nodes with y counts of orbit o j, where 1 is an indicator function taking the
value 1 if its argument is true and the value 0 otherwise. The right-hand side of (4.1) is a sum of random
variables, one for each node, and from (2.1) we will further sum over orbits for a function of two such
histogram heights.

In general, we will expect a random graph model to assign a probability to each graph in some finite
set, and according to this measure we expect a probability distribution to be induced on hG = [ho j ,y].
As discussed above, we expect both combinatorial constraints and correlations between orbit counts,
meaning that a sum over all elements of hG as implied by (4.1) and (2.1) will inflate, due to the additivity
of variances of random variables, the amount of noise in EMD realisations compared to the amount that
is absolutely necessary under the random graph model.

Therefore, a natural approach is to denoise using techniques that do not require explicit solution
of or simulation from random graph models. In particular, we will use the linear techniques of princi-
pal component analysis (PCA) and independent component analysis (ICA), noting their computational
efficiency compared to potentially more general nonlinear methods [12]. The main idea of our method-
ology is therefore to project the orbit frequencies to a lower dimension, training the dimension reduction
model to lose minimal information while removing noise.

Since it is not guaranteed that each graph will dimensionally reduce to the same size, the approaches
we use allow for expansion of the dimensionally reduced features back to the original (high) dimension.
The NetEmd comparison from Equation 2.1 is consequently applied to the reconstructed frequencies.
By using the first L components of the linear methods, which contain the most signal from the dataset,
to reconstruct the original counts, this can be intuitively understood as decreasing noise within the orbit
frequencies when we do not have a good model for that noise.

4.2 Principal Component Analysis

Principal component analysis (PCA) is a technique for dimensionality reduction that preserves as much
variability of the data as possible, by computing principal components of the data. Principal components
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are sequences of orthogonal unit vectors that form an orthonormal basis, in which the original dimen-
sions of the data are linearly uncorrelated. When projecting the data onto this new basis, these vectors
can be seen as the directions that maximize the variance of the projected data, with the first principal
component representing the maximum variance.

Let FG denote the graphlet degree matrix of graph G for a set of orbits O , a n×m matrix where n =
|V (G)|, m= |O| and [FG]i, j represents the frequency of orbit j for node i. We assume that the frequencies
have been normalized, a preprocessing step advised before applying PCA (to prevent notation overload,
we use the same FG to denote the normalized version of the graphlet degree matrix). The principal
components of this matrix are defined by V = FGW, where W is a m×m matrix whose columns are
the eigenvectors of Fᵀ

GFG. To allow for only the first L components, the matrix W can be truncated
to WL, with dimensions m×L, leading to a transformation VL = FGWL. This truncation is done such
that the L eigenvectors chosen to correspond to the largest eigenvalues of W. The original graphlet
degree matrix can be reconstructed as F̂G = VLWᵀ

L = FGWLWᵀ
L. The goal of PCA is to learn WL such

that the variance of the original data preserved is maximized, while also minimizing the total squared
reconstruction error ||FG− F̂G||22 = ||VWᵀ−VLWᵀ

L||22.
We use the reconstructed graphlet degree matrix to compare networks with NetEmd, keeping Equa-

tion 2.1 virtually unchanged from the original formulation:

PCA NetEmdO(G,H) =
1
m

m

∑
i=1

EMD∗(p̂oi(G), p̂oi(H)), (4.2)

where p̂i(G) and p̂i(H) are obtained from F̂G and F̂H respectively, instead of FG and FH .

4.2.1 Choosing the number of components. Choosing an appropriate number of components to pro-
ject the data down affects the reconstruction error and therefore the amount of noise reduced. If we take
L = m, then clearly we are able to reconstruct the original frequencies perfectly and no noise has been
removed from the data. On the other hand, picking a value for L too low, leads to foregoing descriptive-
ness of the data. A common strategy for picking the number of components is through the amount of
variance explained by each component, a strategy that allows us to adapt the number of components to
suit the networks we are comparing.

The sample covariance matrix of each orbit, i.e. FGi,1 , FGi,2 , . . . , FGi,m , is proportional to Fᵀ
GFG (the

derivation for this result can be found in [21], pp. 30-31) and contains the variance of the frequency
of each orbit in its diagonal. As a square matrix, according to the spectral theorem, the covariance
matrix can be diagonalized by its eigenvectors and the values of the resulting diagonal matrix are the
corresponding eigenvalues. These eigenvalues represent variability of each axis in the projected space.
Therefore, by taking the sum of the L highest eigenvalues, the ones corresponding to the first L compo-
nents, we get the variance explained by the first L principal components. The ratio ∑

L
1 λi/∑

m
1 λi, where

λi is the eigenvalue corresponding to the ith eigenvector, measures the proportion of variance explained
by the first L principal components. Finally, to condition the number of components on the proportion
of variance explained, the smallest L is calculated such that ∑

L
1 λi/∑

m
1 λi > r where r× 100% is the

percentage of variance explained.

4.3 Independent Component Analysis

Independent component analysis (ICA) is a statistical technique in which an observed vector of random
variables is thought to be the linear combination of unknown independent components. These compo-
nents are assumed to be mutually statistically independent and with zero mean. The classic example of
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an ICA application is a party where a microphone is picking up multiple conversations and the goal is
to separate the source signal from each conversation from the mixed one picked up by the microphone.

Transposing ICA to the domain of network comparison, we can draw an analogy from the above
application by considering that the voices in the conversation are the nodes in the network and the
orbit frequencies are the data points captured by the microphone. Our goal is then to search for the
source signals, i.e., network characteristics stemming from its generation mechanism that generate such
frequency distribution. We conjecture that by using these source signals to reduce noise in the orbit
frequency distributions, our network comparison measure becomes able to more accurately distinguish
networks with different generation mechanisms.

As before, let FG denote the graphlet degree matrix of graph G for a set of orbits O and let fi be the
vector of frequencies of node i, i.e. fi, j = FGi, j . We can write fi as fi = Asi, where A is called the mixing
matrix and si are the L independent components. The goal of ICA is to estimate A and si from fi only. In
practice, algorithms to calculate independent components compute a weight matrix W, a pseudo-inverse
of A and obtain the independent components through si = Wfi. Using the FastICA algorithm [16, 18],
W is constructed iteratively by finding unit vectors w such that the projection wᵀfi maximizes non-
gaussianity, measured by the approximation of negentropy J(wᵀfi) ∝ [E(G(wᵀfi))−E(G(ν))]2, where
G(x) = logcoshx and ν is a standard Gaussian random variable with mean 0 and variance 1. These unit
vectors w are combined into the weight matrix W and decorrelated to prevent convergence to the same
maxima by W = W/

√
‖WWᵀ‖ (the matrix norm is calculated using the l2 norm); this procedure is

then repeated with W = 3
2 W− 1

2 WWᵀW until convergence.
Upon obtaining the weight matrix, we calculate its pseudo-inverse to obtain the mixing matrix A

and calculate F̂G similarly to what was done with PCA: we project FG to a lower dimensional space
using W and apply the mixing matrix A to retrieve the original data. The final NetEmd formula then
takes a similar form as for PCA NetEmd:

ICA NetEmdO(G,H) =
1
m

m

∑
i=1

EMD∗(p̂oi(G), p̂oi(H)), (4.3)

with p̂i(G) and p̂i(H) obtained from F̂G and F̂H respectively, as before.
As we mention previously, our hope is that the independent components discovered are more rep-

resentative of the true number of degrees of freedom involved in generating the network than the
full number of orbits. Although a formal argument for this intuition is beyond scope of this work,
we present here a straightforward example that can help clarify the impact of this denoising pro-
cess on the orbit frequency distribution. Consider an Erdős-Rényi (ER) [8] random network model,
adapted for directed networks, where all edges are independent and exist with probability p (thus,
Pr((u,v) ∈ E(G)) = p,∀u,v ∈V (G),u 6= v). We can derive analytically the expected frequency of orbits
of size 2 for each node in this network, corresponding to the number of outgoing, incoming and recip-
rocal edges, which are p(1− p)(n−1), p(1− p)(n−1) and p2(n−1), respectively. When generating
networks from this model, we empirically observe stochastic noise generating values away from these
frequencies, particularly when the number of nodes in the network is small and these frequencies deviate
from their asymptotic behaviour. For this simple model, we denoise via a single independent compo-
nent, with results shown in Figure 3. This shows the impact of noise reduction in a network with 50
nodes, created using the model above, and in particular very significant reduction in the noise associated
with reciprocal edges.



10 of 37

FIG. 3. Example of the impact of ICA denoising in the distributions of size 2 directed graphlets, in a network with 50 nodes,
generated via a directed ER model, with p = 0.25.

5. Experimental Setup

Experiments were performed on an AMD Opteron Processor 6380 with 1.4 GHz and 2 MB of cache
memory, using Python version 3.5.4. The implementation of our methods is available online at https:
//github.com/migueleps/denoise-dir-netemd.

5.1 Measure of Cluster Performance

Given a set of networks G = {G1,G2, . . . ,GN}, divided in disjoint classes C = {c1,c2, . . . ,cm}, we use
the performance measure proposed by Wegner et al. [53] that captures the idea that networks of the
same class should be nearer to each other than to networks of other classes. It is defined as an empirical
probability P(G) = d(G,G1)< d(G,G2), where G1 is a network selected randomly from the same class
as G and G2 is randomly selected from a different class, and d is the network comparison statistic. The
performance over the whole dataset is the average P(G) over all the networks in G , and we write this as
P = P(G ) = 1

|G | ∑G∈G P(G). In Appendix D, we present results using area under precision-recall curve
(AUPR) and adjusted Rand index (ARI).

5.2 Synthetic datasets

We reproduce the experimental setup of Wegner et al. [53], testing our proposed modifications to
NetEmd on the same eight random network models. These models are Erdős-Rényi [8], Barabasi-Albert
preferential attachment [4], configuration model, geometric random graphs [9], geometric gene dupli-
cation model [11], duplication divergence of Vazquez et al. [51], duplication divergence of Ispolatov et
al. [20] and Watts-Strogatz [52]. Details of parameters for each model are described in Appendix E.

We generate 10 networks per model per combination of number of nodes and average degree. The
set of number of nodes used is N ∈ {1250,2500,5000,10000} and the set of average degrees is k ∈

https://github.com/migueleps/denoise-dir-netemd
https://github.com/migueleps/denoise-dir-netemd
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{10,20,40,80}. This leads to a total of 160 networks per model and 1280 networks in total.
For the directed datasets, we add varying levels of reciprocity ρ ∈ {0,0.25,0.5,0.75,1}. To generate

a directed network with reciprocity ρ , we take the undirected version, we duplicate and invert all edges
(if (u,v) is in the undirected network, we add (v,u) to the directed version) and we then take a proportion
1− ρ of these pairs and choose randomly a direction to remove (either (u,v) or (v,u)). This is done
incrementally such that if (u,v) is removed from the dataset with 75% reciprocity, then it is also removed
from the datasets with 50%, 25% and 0% reciprocity.

These datasets of synthetic networks give rise to two tasks aimed at gauging how well a network
comparison measure separates clusters according to their generation mechanism, with the ground truth
given by the random network model used to generate the networks in each cluster. The first, more
simple task is to separate networks with the same number of nodes and the same density. To this end,
we create 16 groups based on the combinations of N and k, each group containing 10 realizations of each
random network model, for a total of 80 networks. This task is equivalent to RG1 in the original NetEmd
paper [53]. The second task, equivalent to RG3 in the original NetEmd paper, is to compare all 1280
networks simultaneously, finding the 8 clusters of 160 networks. This task measures how sensitive the
comparison measure is to differences in an order of magnitude in number of nodes and edges, making
the separation by model type more difficult. In directed networks, we repeat Task 1 and 2 for each level
of reciprocity, determining how sensitive the network comparison is to this third parameter that impacts
the set of orbits available for comparison (the set of orbits with 0% reciprocity is disjoint from the set of
orbits with 100% reciprocity).

5.3 Real world datasets

We use the dataset of Onnela et al. [36] to validate our methodology on a mix of real world and synthetic
networks. The multiple sources that make up this dataset lead to a heterogeneous set of networks;
however, the ability to separate these networks according to their domain is desired from a network
comparison method. We were unable to find sources for the original 746 networks, so we use the
reduced set proposed by Ali et al. [2] with 151 unweighted and undirected networks. There is no ground
truth for the true clusters in this dataset and the dendograms constructed through the methods proposed
by Onnela et al. [36] and Ali et al. [2] disagree on the composition of each cluster. Therefore, we aim to
reconstruct clusters according to the type of data, which can be visualized in the supplementary material
of Ali et al. [2].

For directed networks, we download four datasets from the SNAP library [29]: Gnutella peer-to-peer
file sharing network from August 2002 [28, 45] (9 networks with an average reciprocity of 0%), CAIDA
autonomous systems relationships datasets from January 2004 to November 2007 [27] (122 networks
with an average reciprocity of 100%), ego networks of circles from Google+ [33] (132 networks with an
average reciprocity of 28%) and ego networks of lists from Twitter [33] (973 networks with an average
reciprocity of 54%).

5.4 Other network comparison methods

5.4.1 GCD. Yaveroğlu et al. [56] note that orbit counts have dependencies between them, making
them redundant since they can be expressed as a linear combination of other orbits. The authors identify
11 out of 15 orbits in graphlets of size up to 4 and 56 out of 73 orbits in graphlets of size up to 5 as
non-redundant. The authors construct the graphlet degree vector of each node in the network using
this reduced number of orbits (although the full set of orbits may also be used), making up a matrix
where each row is the graphlet degree vector of each node, and compute the Spearman’s correlation
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coefficient between each pair of orbits, i.e., each pair of columns in this matrix. The pairwise Spearman’s
correlation coefficients are aggregated in a square m×m matrix called the Graphlet Correlation Matrix
(GCM), where m is the number of orbits used (e.g., 11 if using non-redundant orbits of graphlets up to
size 4).

To compare two networks, the authors propose the Graphlet Correlation Degree (GCD), which is
the Euclidean distance between the upper triangle of the GCM of each network.

Sarajlić et al. [47] extend GCD to directed networks, finding 13 non-redundant orbits in graphlets of
size up to 3 and 129 in graphlets of size up to 4.

5.4.2 GDA. Przulj et al. [38] introduced the Graphlet Degree Distribution (GDD), calculated as fol-
lows. Let do

G(k) be the number of nodes of graph G that participate k times in orbit o, i.e., do
G(k)

is graphlet degree distribution of orbit o. The authors scale the distribution to decrease the contribu-
tions of larger orbits by calculating So

G(k) = do
G(k)/k and then normalize the distribution as No

G(k) =
So

G(k)/∑
∞
k=1 So

G(k). To compare the GDD distributions of the same orbit in different networks G and H,
the authors propose the GDD-agreement (GDA) metric defined as:

Ao(G,H) = 1−

(
∞

∑
k=1

[No
G(k)−No

H(k)]
2

)1/2

.

As a measure of agreement, the output of GDA is 1 if the distributions are identical, as opposed
to NetEmd which is a measure of distance meaning it will output 0 for identical distributions. To
aggregate the agreements of the multiple orbits, the authors propose either a arithmetic or a geometric
mean. We compare against the implementation of Aparicio et al. [3], which uses the arithmetic mean
and is available at [42]. This implementation uses the idea that if a graphlet has a frequency of 0 in
both networks, then the orbits from that graphlet are excluded from the arithmetic mean, for both in the
directed and undirected versions.

6. Results

6.1 Undirected Results

We present the results for Tasks 1 and 2 in undirected networks and the results for the Onnela et al. [36]
dataset in Table 1. The results for Task 1 show the average and standard error for the 16 values of P,
one for each combination of N and k. The results for Task 2 and Onnela et al. dataset show the single
value of P after comparing the 1280 and 151 networks, respectively.

We find that our proposed modifications to NetEmd achieve an increase in performance, with
ICA NetEmd outperforming original NetEmd in synthetic datasets and PCA NetEmd in the Onnela
et al. dataset. The performance gain in Task 1 is not significant as the results are within a standard
error of each other, but on Task 2, the more difficult task, the difference is more pronounced. This
performance improvement in synthetic datasets is not reflected in the Onnela et al. dataset, where 15
components are necessary to equalize the performance of original NetEmd. The best performance in
the Onnela et al. dataset is PCA NetEmd with 80% explained variance, which contrasts with the results
in the synthetic dataset, where 80% explained variance achieves worse performances than the original
NetEmd. Using higher values for explained variance in PCA NetEmd also improves performance over
original NetEmd in Task 2 and Onnela et al. dataset, but not in Task 1.
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Algorithm Parameter
Synthetic Real

Task 1 Task 2 Onnela et al.

Original NetEmd G5 0.995 ± 0.003 0.918 0.890

PCA NetEmd

50% Variance 0.98 ± 0.01 0.915 0.864

80% Variance 0.98 ± 0.01 0.918 0.893

90% Variance 0.995 ± 0.004 0.922 0.891

95% Variance 0.993 ± 0.004 0.919 0.892

99% Variance 0.995 ± 0.004 0.921 0.891

ICA NetEmd

2 components 0.985 ± 0.002 0.926 0.869

10 components 0.994 ± 0.004 0.930 0.887

15 components 0.996 ± 0.003 0.929 0.890

GCD
11 orbits 0.99 ± 0.01 0.888 0.789

73 orbits 0.994 ± 0.008 0.885 0.819

GDA

G3 0.986 ± 0.003 0.868 0.876

G4 0.977 ± 0.007 0.886 0.855

G5 0.95 ± 0.01 - 0.832

Table 1. Results for Task 1, Task 2 and the Onnela et al. [36] datasets in undirected networks. The metric used for Task 1 is the
mean (and standard error of the mean) of the 16 values for P in each combination of number of nodes with network density. The
metric used for Task 2 and Onnela et al. dataset is the sole value of P after comparing the 1280 and 151 networks, respectively.
The parameter column indicates: graphlet size used in original NetEmd; percentage of variance explained to determine the number
of components in PCA NetEmd (using orbits in graphlets of size up to 5); the number of components used in ICA NetEmd, using
orbits in graphlets of size up to 5; the number of orbits used by GCD; graphlet sizes used in GDA. The bolded values are the
maximum for each task. Italic values are within one standard error of the maximum performance. Note that results for GDA with
graphlet size 5 took longer than a week to return results for Task 2, at which point we stopped the computation.

6.2 Directed Results

We show the results for Task 1 in directed networks in Table A.4 and the results for Task 2 and the
dataset of real world directed networks in Table 2. The results for Task 1 show the average and standard
error for the 16 values of P, one for each combination of N and k, for each level of reciprocity. The
results for Task 2 and real world directed networks dataset show the single value of P after comparing
the 1280, for each level of reciprocity, and 1232 networks, respectively.

Similarly to the undirected case, we find that the results for each algorithm in Task 1 are similar
across different levels of reciprocity, meaning that the various different versions of NetEmd and DGCD
are able to distinguish the generation mechanism regardless of how many edges are reciprocated in a
directed network. Results show that DGCD with 129 orbits achieves best performance for 0%, 25%,
50% and 75% and PCA NetEmd with 90% explained variance for 100% reciprocity. We observe no sig-
nificant difference between using NetEmd with all orbits, with weighted orbits or coupled with dimen-
sionality reduction techniques. Results with TriadEMD are non-significantly better than our NetEmd
version with orbits from size 3 graphlets in this task, indicating that using graphlets of size 2 for the
comparison in this task does not help differentiating between different models. This is likely due to the
configuration model, which shares the same degree distribution as the duplication divergence model of
Vazquez et al. [51].

In Task 2, our results show a noticeable gain in performance when using ICA NetEmd over other
NetEmd versions and DGCD, in particular when using only 2 components and in reciprocity levels
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Algorithm Parameter

Synthetic
Real

NetworksReciprocity

0% 25% 50% 75% 100%

All
Orbits

G3D 0.923 0.905 0.907 0.905 0.915 0.864

G4D 0.908 0.879 0.881 0.878 0.927 0.813

Weighted
G3D 0.918 0.899 0.902 0.898 0.913 0.868

G4D 0.902 0.876 0.878 0.875 0.923 0.827

PCA

50% Variance 0.924 0.897 0.900 0.894 0.908 0.821

80% Variance 0.924 0.885 0.892 0.881 0.920 0.825

90% Variance 0.921 0.882 0.889 0.878 0.927 0.824

95% Variance 0.915 0.880 0.887 0.876 0.922 0.822

99% Variance 0.914 0.878 0.885 0.875 0.924 0.818

ICA

2 components 0.941 0.916 0.914 0.911 0.927 0.712

10 components 0.934 0.900 0.903 0.896 0.923 0.843

15 components 0.931 0.896 0.903 0.892 0.917 0.844

TriadEMD 0.926 0.903 0.906 0.906 0.916 0.859

DGCD
13 orbits 0.905 0.904 0.895 0.885 0.871 0.812

129 orbits 0.887 0.884 0.880 0.880 0.885 0.799

GDA
G3D 0.842 0.802 0.802 0.800 0.858 0.736

G4D - - - - 0.886 -

Table 2. Results for Task 2 in directed networks, for each level of reciprocity, and for the real world networks dataset. The
metric used for this task is the sole value of P after comparing the 1280 and 1231 networks, respectively. The parameter column
indicates: graphlet size used in directed and weighted NetEmd; percentage of variance explained to determine the number of
components in PCA NetEmd (using orbits in graphlets of size up to 4); the number of components used in ICA NetEmd, using
orbits in graphlets of size up to 4; the number of orbits used by DGCD; graphlet sizes used in GDA. The bolded values are the
maximum for each dataset. Note that results for GDA with graphlet size 4 took longer than a week to return results for Task 2 and
in the real world networks dataset, at which point we stopped the computation.

smaller than 100%. We find that using orbits in graphlets of only size 2 and 3 orbits achieves better
results for this task than using ones with size up to 4, with the exception of the two extremities in
reciprocity (0% and 100%), where having more available orbits for comparison helps performance.
In this task, we also find that using Weighted NetEmd degrades performance compared to using all
orbits. Results also show that our versions of NetEmd perform very similarly to TriadEMD, with a
slight advantage to TriadEMD at 0, 75% and 100% reciprocity, which is perhaps expected again due to
the configuration model adding a confounding factor when using graphlets G0 and G1 from Figure 1 in
the comparison.

On the other hand, Weighted NetEmd reaches the best performance in the real directed networks
dataset, where, similarly to Task 2 in synthetic networks, using smaller graphlets yields better results.
Table 2 shows that ICA NetEmd with 10 and 15 components obtains better performance than NetEmd
without dimensionality reduction and with size 4 graphlets. This comparison is unfair to ICA NetEmd,
as results suggest that when there is a large discrepancy between the sizes of the networks, using smaller
graphlet sizes improves the performance of NetEmd. Therefore, although Weighted NetEmd achieves
the best performance out of the parameters we include in Table 2, the top performance in the real world
directed networks dataset is achieved by ICA NetEmd with size 3 graphlets and 10 components. All
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four versions of NetEmd that we propose achieve better results than DGCD and GDA in this dataset.
This is also true when comparing our versions with size 3 graphlets against TriadEMD, indicating that
in real world networks the degree distribution is able to contribute in a positive manner towards being
able to discriminate networks of different sources

6.3 Performance by number of ICA components

We examine the impact on performance of varying the number of components used for ICA NetEmd,
with the caveat that increasing the number of components leads to a greater computational complex-
ity as the FastICA algorithm takes more iterations to converge. We also explore the performance of
ICA NetEmd under smaller graphlet sizes, namely graphlets sizes 3 and 4 for undirected networks
and size 3 for directed. There are two different ways of using smaller graphlets on ICA NetEmd, the
more natural way in which we compute the independent components using the set of orbits related to
the desired graphlet size, or an alternative way in which the components are computed using a larger
graphlet size and the reconstructed graphlet degree matrix is posteriorly truncated to include only the
orbits of the desired graphlet size. For example, when calculating network distances using undirected
graphlets of size up to 4, there are 15 orbits. In the first method, the graphlet degree matrix FG is a
|V (G)|× 15 matrix and we simply calculate F̂G as described in Section 4, constraining the number of
components used to a maximum of 14 components. In the second method, FG is a |V (G)|×73 matrix,
allowing a maximum of 72 components to compute F̂G, which is then truncated to 15 columns.

Figures 4 to 9 show, in order, performance with varying number of components in undirected net-
works Task 1, undirected networks Task 2, directed networks Task 1, directed networks Task 2, the
Onnela et al. dataset and directed real world networks.

We find that adding more components to ICA does not always translate to a better performance,
instead we find that there is a performance maximum obtained with a low number of components that
depends on the task. Adding more components after this maximum leads to a decline in performance,
either an immediately visible decline (Figures 5, 7 and 8) or after plateauing at that maximum value
(Figures 4, 6 and 9). This behaviour indicates that our ICA algorithm is working as expected, as we find
a suitable number of components that maximizes the noise reduced in the orbit frequency distributions,
so adding more components reduces the difference between FG and F̂G which negates the positive
impact on that noise reduction.

Figures 6 and 7 show a sharp decline in performance when using graphlets of size up to 3 with
reciprocity 0% and 100%, after 13 and 4 components respectively. This is caused by these extreme levels
of reciprocity limiting the orbits that can occur in the networks we compare. With 0% reciprocity, only
graphlets with no reciprocal edges can occur in these networks, so all orbits in graphlets with reciprocal
edges have a frequency of 0. As there are only 13 orbits belonging to graphlets with no reciprocal
edges, when we try to compute more than 13 independent components the performance degrades as
more components are added. With 100% reciprocity, we find a similar situation but there are only 4
orbits in graphlets of size 2 and 3 for which all edges are reciprocal (orbits 2, 27, 28 and 32 in Figure 1).

7. Conclusion

We presented two extensions of NetEmd to directed networks, one a direct extension that uses all orbits
of graphlets up to size 4 and another that compares networks based only on the orbits that exist in at least
one of the networks. We showed that our methodology achieves state of the art performance in large
datasets of synthetic networks with heterogeneous network sizes and in datasets of real world networks.

We also proposed to add dimensionality reduction techniques, namely PCA and ICA, as a prepro-
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FIG. 4. Undirected networks - Task 1

FIG. 5. Undirected networks - Task 2

FIG. 6. Directed networks - Task 1
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FIG. 7. Directed networks - Task 2

FIG. 8. Onnela et al. dataset

FIG. 9. Real world directed networks dataset
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cessing step to the network comparison. The goal of this step is to use dimensionality reduction as a
process to attenuate noise within orbit frequencies, that can be introduced by random number generation
(in synthetic networks) or data collection/representation (in real world networks). Results show that this
preprocessing improves the performance of NetEmd not only when comparing networks with the same
number of nodes and edges, but especially in large datasets containing networks of different sizes.

From an end-user perspective, our extensive testing allows us to recommend guidelines for which
version of NetEmd to use in which situation. If the set of networks is homogeneous in number of nodes
and average degree, using the largest graphlet size available (size 5 in undirected, size 4 in directed) cou-
pled with ICA (10 to 15 components) leads to the best results. In the cases where there is a large variety
in number of nodes or average degree between the networks in the dataset, using smaller graphlets is
generally advised. The exception is in directed networks, if the connections within the networks have
no reciprocity, then using graphlets of size 4 (with ICA) is more likely to yield a more accurate compar-
ison, due to having a larger set of orbits to with non-zero frequency. On the other hand, if the average
reciprocity allows using the whole range of graphlets of size 3 and 4, then it is more likely that using
graphlets of size 3 coupled with ICA will lead to a more accurate distinction between networks. In this
case, 2 components might be enough if the size of the networks are all within one order of magnitude
from each other but 5 to 10 components if there is a wider difference.

The results presented in this contribution indicate that there is value in denoising orbit frequencies
when comparing complex networks. However, we only used linear methods to perform the denoising
process and graph statistics will not generally depend linearly on underlying parameters. With this in
mind, we believe that future work should consider replacing these linear projection methods by others
that include a non-linear component, such as non-linear ICA [17, 19] or autoencoder architectures [25],
such as a variational [22] or graph autoencoders [23].
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A. Discussion on the time complexity of NetEmd

Calculating the NetEmd measure is a process that can be separated in two phases: acquiring the distribu-
tions of the network statistics of interest and comparing the statistics using the EMD. In the case of the
algorithm we propose in this work, obtaining the distributions of network statistics involves calculating
the graphlet degree matrix and performing PCA or ICA on this matrix.

Obtaining the graphlet degree matrix is the most computationally expensive step of this process,
with a time complexity of O(Ndm−1), where N is the number of nodes in the network, d the maximum
degree of any node in the network and m the size of the graphlets being enumerated. In undirected
networks, we use the combinatorial algorithm ORCA [13] that relies on an analytical approach to set
up a system of linear equations that relates different orbit frequencies. In directed networks, no such
approaches are known [43], so we rely on G-Tries [3, 44], a data structure that supports a graphlet
enumeration algorithm by representing subgraphs in a prefix tree, the state of the art in enumerating
directed graphlets, to our knowledge [3, 43].
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The complexity of PCA is split in two parts, computing the covariance matrix is O(N p2) and doing
the eigenvalue decomposition is O(p3), where N is the number of nodes in the network and p the number
of orbits being considered. This leads to an overall complexity of O(N p2 + p3).

The complexity of ICA is harder to characterize. Firstly, the FastICA algorithm assumes that the
data has been centered and whitened [18]. The implementation we use, from scikit-learn [37], uses PCA
to do the whitening preprocessing, so its complexity is at least as high as PCA. The iterative algorithm to
find the weight matrix W is repeated until the matrix has converged, but there is no prior assurance that
the algorithm converges or how many iterations it takes to do so. The scikit-learn implementation defines
a maximum number of iterations to stop execution, we set this value to 1000. Each iteration involves
calculating logcosh(wᵀfi) for each component and each node, which the scikit-learn implementation
does in O(Nc2), where c is the number of components to be calculated, and the decorrelation step,
which is done in O(c2). The overall complexity of ICA then becomes O(N p2 + p3 + INc2), where I is
the number of iterations.

Wegner et al. [53] calculate the complexity of comparing two graphlet distributions using EMD∗ to
be O(k(N +N′) log(N +N′)), where N and N′ are the number of nodes of each network and k is the
maximum number of function calls to the optimization algorithm used to align the distributions.

A.1 Runtime analysis

To illustrate the added time complexity of calculating the linear projections prior to comparing the
distributions via the EMD, we show how long each step of the NetEmd process takes for two datasets in
Task 1 (one with 1250 nodes and average degree of 10, the other with 10000 nodes and average degree
of 80) in directed networks, using graphlet size of 4. Table A.3 shows the time taken in minutes to
compute the graphlet distributions and the time, to calculate PCA and ICA with different percentages of
explained variance or numbers of components and the time to compare the orbit distributions between
each pair of networks. These experiments were performed on an AMD Opteron Processor 6380 with
1.4 GHz and 2 MB of cache memory, using Python version 3.5.4, with the multiprocessing package and
64 threads. The orbits from graphlets of size 3 and 4 were calculated using G-Tries [3, 44], also with 64
threads, whereas the orbits from graphlets of size 2 did not benefit from parallel computation.

Orbit
distribution

PCA ICA
EMD∗

50% 90% 99% 2 10 20

0% - (1250,10) 3.0 3.9 4.3 5.3 3.7 4.1 5.3 2.7

0% - (10000,80) 107 22 24 24 22 26 33 21

25% - (1250,10) 3.0 6.0 12 27 5.7 5.8 6.8 3.3

25% - (10000,80) 121 39 43 54 42 42 48 35

50% - (1250,10) 3.1 6.0 12 27 5.9 5.9 7.3 3.3

50% - (10000,80) 142 39 43 52 40 41 48 37

75% - (1250,10) 3.2 6.1 12 27 6.6 5.8 7.0 3.3

75% - (10000,80) 164 38 43 55 40 43 49 36

100% - (1250,10) 3.3 3.6 3.6 3.6 3.5 3.8 6.2 2.6

100% -
(10000,80) 169 19 20 20 19 23 59 19

Table A.3. Time taken in minutes to perform each step of network comparison with directed NetEmd and denoising framework.
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Table A.3 highlights the increasing difficulty of obtaining graphlet counts and orbit distributions as
the number of nodes and the number of connections in the network increases. In small networks, the
time to compute these distributions is less than the time to calculate the linear projections and takes
approximately the same time as the comparison via EMD∗. However, when increasing the number of
nodes by tenfold and the the average degree by eight times, we observe that the computation time of
the orbit distributions increases by 30 to 50 times. This growth results in this phase of the algorithm
dominating the overall execution time (making up 60% to 70% of this time), as the complexity of both
the linear projections and EMD∗ depends on the number of nodes but not on network density, thus
leading to a comparatively smaller increase in their computation time.

This runtime analysis uncovers an unexpected result in the time taken to compute principal compo-
nents when the amount of explained variance is high. Particularly in small networks, we observe that
it takes twice as long to compute the principal components that explain 99% of variance compared to
those that explain 90% of variance. This sharp increase in execution time is explained by scikit-learn’s
implementation of PCA, which uses different algorithms depending on the number of components to
calculate. It also explains why the execution time of ICA can be lower than PCA, even though ICA uses
PCA as a preprocessing step.

Finally, Table A.3 demonstrates that calculating up to 10 independent components does not induce
a significant increase in the execution time of ICA, when compared with only 2 independent compo-
nents. However, performing the denoising process with 20 independent components takes on average
33% longer (1 minute and 30 seconds) in the small networks and 46% longer (12 minutes) in the big
networks than with 10 components; moreover, our results show that there is no visible improvement to
the comparison accuracy by doing so.

B. Results for Task 1 in directed networks

C. Discussion on orbits from smaller graphlet sizes

Wegner et al. [53] have shown that reducing the graphlet size as input to NetEmd can improve the
quality of the clusters under certain conditions. A more common reason to use smaller graphlets for
comparison is a computational load argument, as we show in Appendix A, increasing the graphlet size
leads to more computation time in each step of the NetEmd framework. In the first step, computing orbit
frequencies of graphlets of size 4 in directed networks or size 5 in undirected networks can be prohibitive
for very large graphs. Another consideration is the time taken to compute the EMD between orbit
distributions, particularly in directed networks with graphlets of size 4 requiring 22 times more calls
to the EMD∗ function than using size 3. Finally, computing the principal or independent components
also contain a complexity component dependent on the number of orbits we consider as features to these
methods, which also contribute to greater computational load when increasing the graphlet sizes as input
to NetEmd. Therefore, it is important to understand in which situations decreasing the graphlet size as
input to NetEmd leads to similar or better performance to avoid paying the high computational cost.

We previously presented the performance of ICA NetEmd under smaller graphlet sizes, for multiple
components used, in Figures 4 to 9. The results for Task 1, both in directed and undirected networks,
demonstrate that when comparing networks of similar sizes and densities using bigger graphlet sizes
yields a more accurate comparison. The same holds for Task 2 in the undirected case and in the extreme
cases of reciprocity (0% and 100%) in Task 2 of the directed experiments, where ICA achieves the top
performance with size 5 undirected and size 4 directed graphlets, respectively. On the other hand, in
the datasets of real world networks and in directed Task 2 with reciprocity of 25%, 50% and 75%, size
5 graphlets in undirected networks and size 4 in directed networks perform worse than size 4 and size
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Algorithm Parameter
Reciprocity

0% 25% 50% 75% 100%

All Orbits
G3D 0.989 ± 0.002 0.990 ± 0.002 0.989 ± 0.002 0.991 ± 0.002 0.968 ± 0.003

G4D 0.992 ± 0.002 0.993 ± 0.001 0.993 ± 0.001 0.993 ± 0.001 0.989 ± 0.001

Weighted NetEmd
G3D 0.989 ± 0.002 0.990 ± 0.002 0.989 ± 0.002 0.989 ± 0.002 0.969 ± 0.003

G4D 0.992 ± 0.002 0.993 ± 0.001 0.992 ± 0.001 0.993 ± 0.001 0.989 ± 0.001

PCA NetEmd

50% Variance 0.989 ± 0.003 0.993 ± 0.002 0.991 ± 0.002 0.993 ± 0.001 0.978 ± 0.004

80% Variance 0.990 ± 0.003 0.993 ± 0.001 0.990 ± 0.002 0.992 ± 0.001 0.982 ± 0.003

90% Variance 0.993 ± 0.002 0.993 ± 0.001 0.992 ± 0.001 0.993 ± 0.001 0.990 ± 0.002

95% Variance 0.992 ± 0.002 0.993 ± 0.001 0.992 ± 0.001 0.993 ± 0.001 0.988 ± 0.001

99% Variance 0.992 ± 0.002 0.992 ± 0.001 0.992 ± 0.001 0.992 ± 0.001 0.986 ± 0.002

ICA NetEmd

2 components 0.990 ± 0.003 0.993 ± 0.002 0.992 ± 0.002 0.993 ± 0.001 0.987 ± 0.002

10 components 0.992 ± 0.002 0.993 ± 0.001 0.992 ± 0.002 0.993 ± 0.001 0.985 ± 0.002

15 components 0.993 ± 0.002 0.994 ± 0.001 0.993 ± 0.001 0.993 ± 0.001 0.980 ± 0.001

TriadEMD 0.992 ± 0.001 0.991 ± 0.001 0.990 ± 0.002 0.992 ± 0.002 0.970 ± 0.003

DGCD
13 orbits 0.986 ± 0.003 0.992 ± 0.002 0.990 ± 0.002 0.988 ± 0.002 0.968 ± 0.004

129 orbits 0.995 ± 0.002 0.996 ± 0.001 0.995 ± 0.001 0.995 ± 0.002 0.987 ± 0.002

GDA
G3D 0.988 ± 0.003 0.990 ± 0.002 0.988 ± 0.003 0.992 ± 0.002 0.959 ± 0.005

G4D 0.992 ± 0.003 0.992 ± 0.002 0.991 ± 0.003 0.993 ± 0.002 0.977 ± 0.007

Table A.4. Results for Task 1 in directed networks, for each level of reciprocity. The metric used for evaluation is the mean (and standard error of the mean) of the 16 values
for P, in each combination of number of nodes, network density and reciprocity. The parameter column indicates: graphlet size used in directed and weighted NetEmd;
percentage of variance explained to determine the number of components in PCA NetEmd (using orbits in graphlets of size up to 4); the number of components used in
ICA NetEmd, using orbits in graphlets of size up to 4; the number of orbits used by DGCD; graphlet sizes used in GDA. The bolded values are the maximum for each
reciprocity level. Italic values are within one standard error of the maximum performance.
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3, respectively. For the datasets of real networks in particular, this difference in performance can be
explained by noticing that these datasets contain very small networks such that some graphlets have
no matches in them. This issue is amplified the larger the graphlet size considered is and it adds a
confounding factor to the network comparison, similar to the example of Figure 2. Incidentally, this
is the only dataset where Weighted NetEmd achieves better performance than following the original
formulation.

Figures 4 to 9 also show the performance results of using the full set of size k orbits to denoise the
distributions of k− 1 or k− 2 orbits. In this second way of using ICA, the only time saved compared
to using the full set of orbits is the time to compute the EMD between orbit distributions and we find
that in no case it leads to the best clustering performance. However, Figure 5 shows a breakpoint at 30
components, where the performance using size 3 and 4 orbits after denoising with size 5 succeeds in
performing better than size 5. The reason for this is that, as more components are added, the smaller the
reconstruction error ||FG− F̂G||2 is, so the performance with those parameters tends to approximate the
performance of the original NetEmd with those graphlets sizes.

The performance of PCA NetEmd under smaller graphlet sizes follows a similar set of rules to
ICA NetEmd, with better performances in Task 1 measured when using larger graphlets and in Task
2 and real world networks when using smaller graphlet sizes. Tables A.5 to A.7 detail the results for
multiple combinations of graphlet size and percentage of variance explained. Unlike ICA NetEmd, our
experimental setup does not allow us to claim that after a certain value of explained variance perfor-
mance degrades or stabilizes. Instead, results suggest that the optimal threshold depends on both the
dataset and the size of graphlet chosen. Like with ICA NetEmd, choosing a low value for percentage
of explained variance for Task 2 in directed networks yields the best performance for 0, 25, 50 and 75%
reciprocity, but otherwise choosing 90 or 95% explained variance seems to be a good rule of thumb for
best performance with PCA NetEmd.
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Parameters
Synthetic Real

Task 1 Task 2 Onnela et al.

3 - 50% Variance 0.981 ± 0.004 0.912 0.872

3 - 80% Variance 0.980 ± 0.003 0.924 0.874

3 - 90% Variance 0.984 ± 0.002 0.929 0.881

3 - 95% Variance 0.982 ± 0.002 0.911 0.891

3 - 99% Variance 0.986 ± 0.002 0.928 0.889

4 - 50% Variance 0.986 ± 0.003 0.917 0.873

4 - 80% Variance 0.987 ± 0.003 0.926 0.885

4 - 90% Variance 0.992 ± 0.001 0.931 0.898

4 - 95% Variance 0.990 ± 0.001 0.921 0.897

4 - 99% Variance 0.991 ± 0.001 0.931 0.897

5 - 50% Variance 0.986 ± 0.003 0.915 0.863

5 - 80% Variance 0.985 ± 0.002 0.918 0.893

5 - 90% Variance 0.995 ± 0.001 0.922 0.891

5 - 95% Variance 0.993 ± 0.001 0.919 0.892

5 - 99% Variance 0.995 ± 0.001 0.921 0.891

Other best 0.996 ± 0.001 (ICA
G5 13 components)

0.933 (ICA G5 7
components)

0.898 (Original
NetEmd G4)

Table A.5. Results for PCA NetEmd with different combinations of graphlet size and percentage of variance explained in Task
1, Task 2 and the Onnela et al. dataset in the undirected case. The metric used for Task 1 is the mean (and standard error of the
mean) of the 16 values for P in each combination of number of nodes with network density. The metric used for Task 2 is the
sole value of P after comparing the 1280 networks. The bolded values are the maximum in each task. Italic values are within one
standard error of the maximum performance.
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Parameter
Reciprocity

0% 25% 50% 75% 100%

3 - 50% Variance 0.984 ± 0.003 0.987 ± 0.003 0.985 ± 0.003 0.987 ± 0.003 0.928 ± 0.004

3 - 80% Variance 0.985 ± 0.003 0.991 ± 0.002 0.991 ± 0.002 0.992 ± 0.002 0.932 ± 0.004

3 - 90% Variance 0.989 ± 0.003 0.991 ± 0.002 0.991 ± 0.002 0.990 ± 0.002 0.929 ± 0.005

3 - 95% Variance 0.992 ± 0.002 0.992 ± 0.001 0.990 ± 0.002 0.992 ± 0.002 0.940 ± 0.003

3 - 99% Variance 0.990 ± 0.002 0.991 ± 0.001 0.990 ± 0.002 0.991 ± 0.002 0.938 ± 0.004

4 - 50% Variance 0.989 ± 0.003 0.993 ± 0.002 0.991 ± 0.002 0.993 ± 0.001 0.978 ± 0.004

4 - 80% Variance 0.990 ± 0.003 0.993 ± 0.001 0.990 ± 0.002 0.992 ± 0.001 0.982 ± 0.003

4 - 90% Variance 0.993 ± 0.002 0.993 ± 0.001 0.992 ± 0.001 0.993 ± 0.001 0.990 ± 0.002

4 - 95% Variance 0.992 ± 0.002 0.993 ± 0.001 0.992 ± 0.001 0.993 ± 0.001 0.988 ± 0.001

4 - 99% Variance 0.992 ± 0.002 0.992 ± 0.001 0.992 ± 0.001 0.992 ± 0.001 0.986 ± 0.002

Other best 0.995 ± 0.002
(DGCD129)

0.996 ± 0.001
(DGCD129)

0.995 ± 0.001
(DGCD129)

0.995 ± 0.002
(DGCD129)

0.989 ± 0.001
(Weighted G4D)

Table A.6. Results for PCA NetEmd with different combinations of graphlet size and percentage of variance explained in Task 1 of directed networks, for each level of
reciprocity. The metric used for evaluation is the mean (and standard error of the mean) of the 16 values for P, in each combination of number of nodes, network density and
reciprocity. The bolded values are the maximum for each reciprocity level. Italic values are within one standard error of the maximum performance.
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Parameters

Synthetic
Real

NetworksReciprocity

0% 25% 50% 75% 100%

3 - 50%
Variance 0.915 0.919 0.918 0.918 0.857 0.825

3 - 80%
Variance 0.925 0.909 0.905 0.907 0.865 0.858

3 - 90%
Variance 0.933 0.909 0.905 0.906 0.866 0.861

3 - 95%
Variance 0.934 0.908 0.905 0.904 0.867 0.868

3 - 99%
Variance 0.921 0.903 0.900 0.903 0.879 0.867

4 - 50%
Variance 0.924 0.897 0.900 0.894 0.908 0.821

4 - 80%
Variance 0.924 0.885 0.892 0.881 0.920 0.825

4 - 90%
Variance 0.921 0.882 0.889 0.878 0.927 0.824

4 - 95%
Variance 0.915 0.880 0.887 0.876 0.922 0.822

4 - 99%
Variance 0.914 0.878 0.885 0.875 0.924 0.818

Other best

0.941
(ICA

G4D 2
comps)

0.926
(ICA

G3D 2
comps)

0.925
(ICA

G3D 2
comps)

0.928
(ICA

G3D 2
comps)

0.927
(ICA

G4D 4
comps)

0.870
(ICA

G3D 10
comps)

Table A.7. Results for PCA NetEmd with different combinations of graphlet size and percentage of variance explained in Task
2 in directed networks, for each level of reciprocity, and for the real world networks dataset. The metric used for evaluation is
the mean (and standard error of the mean) of the 16 values for P, in each combination of number of nodes, network density and
reciprocity. The bolded values are the maximum for each reciprocity level.

D. Different metrics

D.1 Area Under Precision-Recall (AUPR)

Sarajlic et al. [47] evaluate the performance of their graph comparison tool using the Area Under Pre-
cision - Recall curve (AUPR), after the framework proposed by Yaveroğlu et al. [57]. The metric is
calculated as follows: for each value of a parameter ε > 0, if the distance between two networks is less
than ε , then the networks belong to the same cluster. The parameter ε ranges from 0 to 1, with values
incrementing by 5e−3. For each value of ε , we compute the number of true positives, false positives,
true negatives and false negatives. In this context, we define these concepts as:

• True positive (TP): the distance between the networks is smaller than ε and they were generated
by the same random network model.

• False positive (FP): the distance between the networks is smaller than ε but they were generated
by different random network models.
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Algorithm Parameter
Synthetic Real

Task 1 Task 2 Onnela et al.

Original NetEmd

G3 0.91 ± 0.01 0.670 0.762

G4 0.95 ± 0.01 0.705 0.790

G5 0.96 ± 0.01 0.712 0.761

PCA

50% Variance 0.93 ± 0.01 0.668 0.702

80% Variance 0.92 ± 0.01 0.701 0.759

90% Variance 0.96 ± 0.01 0.717 0.756

95% Variance 0.96 ± 0.01 0.716 0.760

99% Variance 0.96 ± 0.01 0.718 0.760

ICA

2 components 0.93 ± 0.01 0.742 0.717

10 components 0.94 ± 0.01 0.728 0.750

15 components 0.96 ± 0.01 0.729 0.754

GCD
11 orbits 0.89 ± 0.02 0.516 0.698

73 orbits 0.94 ± 0.02 0.600 0.747

GDA

G3 0.92 ± 0.02 0.605 0.783

G4 0.80 ± 0.04 0.535 0.692

G5 0.74 ± 0.04 - 0.638

Table A.8. Results for Task 1, Task 2 and the Onnela et al. [36] datasets in undirected networks. The metric used for Task 1
is the mean (and standard error of the mean) of the 16 values for AUPR in each combination of number of nodes with network
density. The metric used for Task 2 and Onnela et al. dataset is the sole value of AUPR after comparing the 1280 and 151
networks, respectively. The parameter column indicates: graphlet size used in original NetEmd; percentage of variance explained
to determine the number of components in PCA NetEmd (using orbits in graphlets of size up to 5); the number of components
used in ICA NetEmd, using orbits in graphlets of size up to 5; the number of orbits used by GCD; graphlet sizes used in GDA.
The bolded values are the maximum for each task. Italic values are within one standard error of the maximum performance. Note
that results for GDA with graphlet size 5 took longer than a week to return results for Task 2, at which point we stopped the
computation.

• True negative (TN): the distance between the networks is greater than ε and they were generated
by different random network models.

• False negative (FN): the distance between the networks is greater than ε but they were generated
by the same random network model.

From these quantities, we calculate precision as T P
T P+FP and recall as T P

T P+FN , obtaining 200 tuples of
(precision, recall), from which we are able to plot the precision-recall curve. The area under this curve
is a metric relevant to our problem as it puts an emphasis on the positive predictive value of the model,
disregarding the true negatives that compose the majority of datasets with imbalanced labels such as this
one (with 8 random network models, positive labels comprise only 12.5% of the dataset).

D.1.1 Undirected Results Table A.8 shows the AUPR for Task 1 and Task 2 in the undirected case
and the Onnela et al. dataset.

In Task 1, according to AUPR, using PCA or ICA does not lead to a gain in performance, unlike
what we observed when using P. This is not surprising as the improvement we displayed with P was
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Algorithm Parameter

Synthetic
Real

NetworksReciprocity

0% 25% 50% 75% 100%

All
Orbits

G3D 0.644 0.594 0.583 0.598 0.721 0.883

G4D 0.702 0.630 0.632 0.628 0.953 0.820

Weighted
G3D 0.605 0.554 0.545 0.559 0.639 0.883

G4D 0.608 0.567 0.563 0.565 0.660 0.847

PCA

50% Variance 0.696 0.638 0.644 0.631 0.855 0.829

80% Variance 0.700 0.626 0.634 0.621 0.845 0.824

90% Variance 0.718 0.628 0.639 0.623 0.876 0.822

95% Variance 0.705 0.628 0.636 0.623 0.872 0.822

99% Variance 0.703 0.628 0.637 0.623 0.892 0.819

ICA

2 components 0.767 0.688 0.691 0.683 0.926 0.726

10 components 0.725 0.669 0.679 0.664 0.820 0.837

15 components 0.729 0.660 0.680 0.658 0.768 0.841

TriadEMD 0.664 0.629 0.623 0.629 0.738 0.881

DGCD
13 orbits 0.631 0.625 0.600 0.581 0.567 0.872

129 orbits 0.653 0.643 0.620 0.593 0.558 0.860

GDA
G3D 0.584 0.552 0.539 0.551 0.549 0.760

G4D - - - - 0.535 -

Table A.9. Results for Task 2 in directed networks, for each level of reciprocity, and for the real world networks dataset. The
metric used for this task is the sole value of AUPR after comparing the 1280 and 1231 networks, respectively. The parameter
column indicates: graphlet size used in directed and weighted NetEmd; percentage of variance explained to determine the number
of components in PCA NetEmd (using orbits in graphlets of size up to 4); the number of components used in ICA NetEmd, using
orbits in graphlets of size up to 4; the number of orbits used by DGCD; graphlet sizes used in GDA. The bolded values are the
maximum for each dataset. Note that results for GDA with graphlet size 4 took longer than a week to return results for Task 2 and
in the real world networks dataset, at which point we stopped the computation.

within a standard error and both methodologies are able to separate networks between these random
models with a very high degree of accuracy. Task 1 serves as a proof of concept that our proposed
measure is able to perform the most simple task.

The results for Task 2 are aligned with what we observe when using P, coupling ICA with NetEmd
leads to the best separation between models when different network sizes and densities are present. In
the Onnela et al. dataset, the results with AUPR also agree with P, both performance metrics consider
the original NetEmd with size 4 orbits to be one of the top performers with this dataset. The difference
between the two metrics is that when measuring with P, we observe that using PCA with 90% explained
variance leads to similar performance (Table A.5), but the top performer in this dataset according to
AUPR is PCA with 99% explained variance, achieving an AUPR score of 0.791.

D.1.2 Directed Results The results using AUPR for Task 1 in directed networks are shown in Table
A.10 and for Task 2 and the dataset of real world directed networks in Table A.9.

In Task 1, the main difference we find is that GDA with size 3 orbits shows an improvement over
the other algorithms, becoming the top performer with 25% (tied with DGCD with 129 orbits) and 75%
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Algorithm Parameter
Reciprocity

0% 25% 50% 75% 100%

All Orbits
G3D 0.89 ± 0.01 0.90 ± 0.01 0.89 ± 0.01 0.90 ± 0.01 0.914 ± 0.007

G4D 0.961 ± 0.007 0.945 ± 0.005 0.941 ± 0.005 0.944 ± 0.005 0.992 ± 0.002

Weighted NetEmd
G3D 0.87 ± 0.01 0.88 ± 0.01 0.87 ± 0.02 0.89 ± 0.02 0.875 ± 0.009

G4D 0.93 ± 0.01 0.930 ± 0.007 0.925 ± 0.009 0.928 ± 0.007 0.923 ± 0.009

PCA NetEmd

50% Variance 0.94 ± 0.01 0.929 ± 0.009 0.928 ± 0.008 0.927 ± 0.008 0.957 ± 0.005

80% Variance 0.94 ± 0.01 0.935 ± 0.006 0.932 ± 0.008 0.932 ± 0.006 0.958 ± 0.006

90% Variance 0.958 ± 0.008 0.938 ± 0.005 0.936 ± 0.005 0.936 ± 0.005 0.974 ± 0.004

95% Variance 0.958 ± 0.007 0.940 ± 0.005 0.937 ± 0.005 0.939 ± 0.005 0.971 ± 0.003

99% Variance 0.958 ± 0.007 0.941 ± 0.005 0.936 ± 0.005 0.940 ± 0.005 0.977 ± 0.002

ICA NetEmd

2 components 0.941 ± 0.007 0.938 ± 0.007 0.934 ± 0.007 0.940 ± 0.007 0.982 ± 0.003

10 components 0.936 ± 0.009 0.941 ± 0.005 0.939 ± 0.007 0.937 ± 0.006 0.936 ± 0.005

15 components 0.946 ± 0.007 0.938 ± 0.005 0.938 ± 0.006 0.937 ± 0.005 0.92 ± 0.01

TriadEMD 0.938 ± 0.006 0.936 ± 0.008 0.93 ± 0.01 0.94 ± 0.01 0.936 ± 0.005

DGCD
13 orbits 0.92 ± 0.02 0.93 ± 0.02 0.91 ± 0.02 0.89 ± 0.02 0.87 ± 0.02

129 orbits 0.97 ± 0.01 0.96 ± 0.01 0.94 ± 0.02 0.92 ± 0.02 0.90 ± 0.02

GDA
G3D 0.90 ± 0.03 0.96 ± 0.01 0.94 ± 0.01 0.96 ± 0.01 0.82 ± 0.04

G4D 0.88 ± 0.03 0.84 ± 0.03 0.86 ± 0.03 0.84 ± 0.03 0.80 ± 0.04

Table A.10. Results for Task 1 in directed networks, for each level of reciprocity. The metric used for evaluation is the mean (and standard error of the mean) of the 16
values for AUPR, in each combination of number of nodes, network density and reciprocity. The parameter column indicates: graphlet size used in directed and weighted
NetEmd; percentage of variance explained to determine the number of components in PCA NetEmd (using orbits in graphlets of size up to 4); the number of components
used in ICA NetEmd, using orbits in graphlets of size up to 4; the number of orbits used by DGCD; graphlet sizes used in GDA. The bolded values are the maximum for
each reciprocity level. Italic values are within one standard error of the maximum performance.
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reciprocity. DGCD with 129 orbits still shows the best performance with 0% reciprocity, but PCA with
90, 95 and 99% explained variance is within one standard error, similarly to the results measured with
P. At a 100% reciprocity, NetEmd with size 4 orbits achieves the best performance, but PCA with 90,
95 and 99% explained variance and ICA with 2 components obtain similar AUPR scores. As before,
we highlight that the high scores achieved by the 6 algorithms in Table A.10 serve as a proof of concept
that they are able to distinguish the random network models for different levels of reciprocity, even if
the AUPR score is not within a standard error of the best score.

In Task 2, similarly to the undirected version, we find an agreement between the AUPR score and
P, with ICA with 2 components highlighted as the highest performing algorithm for 0, 25, 50 and 75%
reciprocity datasets and NetEmd with size 4 orbits for 100% reciprocity. The same agreement between
AUPR and P is found on the dataset of real world directed networks, with the top performer being ICA
with 6 components with an AUPR of 0.891 but not highlighted in Table A.9.

The conclusions regarding the difference between our proposed NetEmd methods and TriadEMD
also hold when using AUPR instead of P; in the synthetic datasets TriadEMD achieves better AUPR
scores than both NetEmd and Weighted NetEmd with orbits from size up to 3 graphlets, but worse
results than NetEmd with size 4 graphlets. In the real world directed networks dataset, both NetEmd
and Weighted NetEmd with size 3 orbits obtain better AUPR scores than TriadEMD.

D.2 Adjusted Rand Index

The adjusted Rand index [15, 40] is a metric to evaluate the similarity of data clusterings; a cor-
rected for chance version of the Rand index [40] was proposed by Hubert and Arabie [15]. Let G =
{G1,G2, . . . ,GN} be the set of networks we wish to partition into clusters. For the synthetic datasets,
the ground truth partition of this set is known, we have 8 models of random graphs and we evaluate
a network comparison method by its ability to reconstruct these groups. For the Onnela et al. [36]
dataset, the ground truth partition used is the one shown in the supplementary material of [2]. Let
P∗ = {P∗1 ,P∗2 , . . . ,P∗c } be the ground truth partitions and P = {P1,P2, . . . ,Pc} be the clusters produced
by the network comparison algorithms. These clusters are generated by applying a hierarchical cluster-
ing algorithm to the matrix of pair-wise distances calculated by the network comparison; in our case we
used the implementation by scikit-learn [37], the AgglomerativeClustering class with complete linkage.

Given the two set of clusters, we define the following four quantities:

• a: the number of pairs of elements of G that are in the same cluster in P∗ and in the same cluster
in P .

• b: the number of pairs of elements of G that are in different clusters in P∗ and also in different
clusters in P .

• c: the number of pairs of elements of G that are in the same cluster in P∗ but in different clusters
in P .

• d: the number of pairs of elements of G that are in different clusters in P∗ but in the same cluster
in P .

These quantities can be interpreted as the number of true positives, true negatives, false negatives
and false positives, respectively, if we consider the attribution of a pair of networks to a cluster as a
decision problem. The Rand index is then defined as:
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RI =
a+b

a+b+ c+d
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The general form for correcting a index for chance is:

RI−E(RI)
max(RI)−E(RI)

.

Hubert and Arabie [15] show how to calculate E(RI), which we omit for brevity, leading to the formula
for the adjusted Rand index (assuming a maximum value of 1 for the Rand index when c and d are 0):
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where ni j is the number of networks in common between P∗i and Pj, i.e., ni j = |P∗i ∩Pj|, ai = ∑
c
j=1 ni j

and b j = ∑
c
i=1 ni j.

D.2.1 Undirected Results Table A.11 shows the ARI for Task 1, Task 2 and real world networks in
the undirected case.

As with AUPR, we find that using ARI as a performance metric does not change the conclusions
drawn from the results with P. Recalling that the ARI metric measures the quality of hierarchical
clusters generated from a distance matrix, for Task 1, the output of original NetEmd with size 5 orbits
leads the best score using this metric. More evidence of the quality of the clusters produced by the
original NetEmd with size 5 orbits is to notice that increasing the number of components in ICA or the
percentage of variance explained in PCA (and therefore approximating the results of original NetEmd)
leads to higher ARI score.

For Task 2, the gain measured by P and AUPR when using ICA NetEmd with 2 components is also
reflected in the ARI score. For the Onnela et al. dataset, the best performance we measure not included
in Table A.11 is ICA NetEmd with size 4 graphlets and 8 components, with the components calculated
with size 5 graphlets, with a score of 0.713.

D.2.2 Directed Results The results using ARI for Task 1 in directed networks are shown in Table
A.13 and for Task 2 and the dataset of real world directed networks in Table A.12.

In Task 1, we find that, according to ARI, the performance of all NetEmd variants is significantly
below the performance of DGCD with 129 orbits for 0, 25 and 50% reciprocity and of GDA with
size 3 graphlets for 75% reciprocity. At 100% reciprocity, NetEmd, PCA NetEmd with 80% variance
and GDA, all with size 4 graphlets, share the top performance, but with a smaller difference to other
algorithms and parameters. These results are a stark contrast to the ones we observe using AUPR and
P, where scores for this task did not differ significantly between all the algorithms.

In Task 2, unlike in the other metrics, ICA NetEmd with 2 components is no longer considered
the best performer for 0% reciprocity, with TriadEMD achieving the best result instead. On the other
hand, according to ARI, ICA NetEmd with 2 components is the top performer for 100% reciprocity.
For 25, 50 and 75% reciprocity, ICA NetEmd with 2 components performs significantly worse when
comparing to the results using AUPR and P. ARI scores indicate that the best performers in these levels
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Algorithm Parameter
Synthetic Real

Task 1 Task 2 Onnela et al.

Original NetEmd

G3 0.63 ± 0.03 0.472 0.592

G4 0.69 ± 0.02 0.427 0.675

G5 0.81 ± 0.02 0.445 0.576

PCA

50% Variance 0.72 ± 0.03 0.439 0.558

80% Variance 0.71 ± 0.03 0.447 0.619

90% Variance 0.78 ± 0.02 0.436 0.612

95% Variance 0.80 ± 0.02 0.414 0.610

99% Variance 0.81 ± 0.02 0.396 0.587

ICA

2 components 0.67 ± 0.02 0.477 0.521

10 components 0.73 ± 0.03 0.452 0.593

15 components 0.76 ± 0.03 0.469 0.602

GCD
11 orbits 0.64 ± 0.07 0.309 0.435

73 orbits 0.77 ± 0.05 0.430 0.488

GDA

G3 0.74 ± 0.05 0.361 0.456

G4 0.62 ± 0.07 0.332 0.197

G5 0.41 ± 0.05 - 0.207

Table A.11. Results for Task 1, Task 2 and the Onnela et al. [36] datasets in undirected networks. The metric used for Task 1 is the
mean (and standard error of the mean) of the 16 values for ARI in each combination of number of nodes with network density. The
metric used for Task 2 and Onnela et al. dataset is the sole value of ARI after comparing the 1280 and 151 networks, respectively.
The parameter column indicates: graphlet size used in original NetEmd; percentage of variance explained to determine the number
of components in PCA NetEmd (using orbits in graphlets of size up to 5); the number of components used in ICA NetEmd, using
orbits in graphlets of size up to 5; the number of orbits used by GCD; graphlet sizes used in GDA. The bolded values are the
maximum for each task. Italic values are within one standard error of the maximum performance. Note that results for GDA with
graphlet size 5 took longer than a week to return results for Task 2, at which point we stopped the computation.

of reciprocity are PCA NetEmd with 99% variance, NetEmd with size 3 graphlets and PCA NetEmd
with 95% variance. As we mention previously, using a smaller graphlet size usually leads to better
performance when different network sizes and densities are involved. We find partial agreement to this
claim when using ARI as the performance metric. At 0% reciprocity, we find that ICA NetEmd with 2
components and size 3 orbits achieves an ARI of 0.509 (higher than the score of ICA NetEmd with 2
components and size 4 orbits in Table A.12, but lower than the score of TriadEMD); at 75% reciprocity,
PCA NetEmd with 90% variance explained and size 3 orbits achieves an ARI of 0.495 (higher than the
score of PCA NetEmd with 95% variance explained and size 4 orbits in Table A.12).

For the dataset of real world directed networks, ARI disagrees with AUPR and P, assigning the
best performance to GDA with size 3 orbits. This task also favours using smaller graphlets for the
comparison, so the PCA NetEmd and ICA NetEmd results are at a disadvantage compared to the other
methods as we only report results with size 4 in Table A.12. For these two algorithms with size 3
graphlets, the best ARI scores on this task are 0.524, when using PCA NetEmd with 90% explained
variance, and 0.489, when using ICA NetEmd with 19 components.

On the overall, in spite of some agreements between ARI and AUPR or P, we find ARI to be an
unreliable metric to gauge the performance of network distance measures, as it relies on an intermediate
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Algorithm Parameter

Synthetic
Real

NetworksReciprocity

0% 25% 50% 75% 100%

All
Orbits

G3D 0.432 0.423 0.464 0.387 0.188 0.167

G4D 0.395 0.409 0.348 0.433 0.439 0.308

Weighted
G3D 0.393 0.361 0.343 0.319 0.311 0.449

G4D 0.362 0.324 0.319 0.378 0.422 0.373

PCA

50% Variance 0.448 0.274 0.456 0.439 0.429 0.153

80% Variance 0.425 0.371 0.338 0.396 0.424 0.124

90% Variance 0.415 0.460 0.350 0.392 0.448 0.192

95% Variance 0.427 0.468 0.440 0.475 0.445 0.151

99% Variance 0.431 0.481 0.394 0.451 0.434 0.159

ICA

2 components 0.451 0.261 0.336 0.403 0.484 0.118

10 components 0.399 0.419 0.397 0.284 0.417 0.282

15 components 0.418 0.441 0.431 0.438 0.394 0.172

TriadEMD 0.539 0.467 0.436 0.392 0.001 0.297

DGCD
13 orbits 0.428 0.445 0.420 0.264 0.154 0.436

129 orbits 0.432 0.402 0.421 0.386 0.373 0.203

GDA
G3D 0.354 0.255 0.178 0.270 0.000 0.542

G4D - - - - 0.455 -

Table A.12. Results for Task 2 in directed networks, for each level of reciprocity, and for the real world networks dataset. The
metric used for this task is the sole value of ARI after comparing the 1280 and 1231 networks, respectively. The parameter
column indicates: graphlet size used in directed and weighted NetEmd; percentage of variance explained to determine the number
of components in PCA NetEmd (using orbits in graphlets of size up to 4); the number of components used in ICA NetEmd, using
orbits in graphlets of size up to 4; the number of orbits used by DGCD; graphlet sizes used in GDA. The bolded values are the
maximum for each dataset. Note that results for GDA with graphlet size 4 took longer than a week to return results for Task 2 and
in the real world networks dataset, at which point we stopped the computation.

step of clustering that is unrelated to the measures themselves. Using a different clustering method
or even a different linkage leads to disparate results compared to the ones we present in this section,
which adds a confounding factor when measuring the performance of the network comparison itself.
An example of this unreliability is the ARI score of 0 given to GDA with size 3 orbits and to TriadEMD
at 100% reciprocity, when the other metrics showed a performance comparable to DGCD.

E. Details of datasets

E.1 Synthetic datasets

We generate 16 datasets using the combinations of number of nodes N ∈ {1250,2500,5000,10000} and
average degree d ∈ {10,20,40,80}. Each dataset contains 10 realizations of each model for a total of
80 networks.

• Erdős-Rényi (ER) model [8]. A random graph with n is generated by picking m unique edges
chosen at random from the

(n
2

)
possible edges. m was chosen to generate networks with the
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Algorithm Parameter
Reciprocity

0% 25% 50% 75% 100%

All Orbits
G3D 0.56 ± 0.02 0.61 ± 0.03 0.62 ± 0.03 0.60 ± 0.03 0.61 ± 0.02

G4D 0.65 ± 0.03 0.70 ± 0.02 0.69 ± 0.03 0.71 ± 0.02 0.64 ± 0.02

Weighted NetEmd
G3D 0.55 ± 0.02 0.60 ± 0.03 0.60 ± 0.03 0.59 ± 0.03 0.60 ± 0.03

G4D 0.63 ± 0.03 0.68 ± 0.02 0.68 ± 0.03 0.69 ± 0.02 0.63 ± 0.03

PCA NetEmd

50% Variance 0.67 ± 0.03 0.71 ± 0.03 0.72 ± 0.03 0.71 ± 0.02 0.56 ± 0.01

80% Variance 0.67 ± 0.03 0.69 ± 0.03 0.67 ± 0.02 0.71 ± 0.02 0.64 ± 0.02

90% Variance 0.69 ± 0.03 0.69 ± 0.02 0.69 ± 0.03 0.70 ± 0.02 0.63 ± 0.02

95% Variance 0.65 ± 0.03 0.70 ± 0.02 0.68 ± 0.02 0.71 ± 0.02 0.60 ± 0.01

99% Variance 0.66 ± 0.03 0.69 ± 0.03 0.68 ± 0.02 0.70 ± 0.02 0.58 ± 0.02

ICA NetEmd

2 components 0.63 ± 0.03 0.67 ± 0.03 0.68 ± 0.03 0.70 ± 0.03 0.57 ± 0.02

10 components 0.64 ± 0.02 0.69 ± 0.03 0.70 ± 0.03 0.68 ± 0.02 0.56 ± 0.01

15 components 0.64 ± 0.02 0.70 ± 0.02 0.68 ± 0.02 0.70 ± 0.02 0.58 ± 0.02

TriadEMD 0.69 ± 0.03 0.62 ± 0.03 0.65 ± 0.03 0.64 ± 0.03 0.65 ± 0.02

DGCD
13 orbits 0.70 ± 0.03 0.79 ± 0.03 0.77 ± 0.04 0.69 ± 0.05 0.59 ± 0.04

129 orbits 0.84 ± 0.03 0.80 ± 0.03 0.78 ± 0.04 0.74 ± 0.05 0.58 ± 0.05

GDA
G3D 0.66 ± 0.04 0.79 ± 0.03 0.73 ± 0.03 0.81 ± 0.03 0.56 ± 0.05

G4D 0.66 ± 0.06 0.63 ± 0.05 0.62 ± 0.07 0.61 ± 0.06 0.64 ± 0.06

Table A.13. Results for Task 1 in directed networks, for each level of reciprocity. The metric used for evaluation is the mean (and standard error of the mean) of the 16
values for ARI, in each combination of number of nodes, network density and reciprocity. The parameter column indicates: graphlet size used in directed and weighted
NetEmd; percentage of variance explained to determine the number of components in PCA NetEmd (using orbits in graphlets of size up to 4); the number of components
used in ICA NetEmd, using orbits in graphlets of size up to 4; the number of orbits used by DGCD; graphlet sizes used in GDA. The bolded values are the maximum for
each reciprocity level.
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appropriate density.

• Barabasi-Albert (BA) preferential attachment model [4]. An initial graph is created with m nodes
and new nodes are added iteratively to the network, each new node is connected to m existing
nodes, picked randomly with probability proportional to their degree. m was chosen to generate
networks with the appropriate density.

• Geometric random graphs [9], using a 3-dimensional square (D= 3). Nodes are randomly embed-
ded in a D-dimensional space and are connected if the Euclidean distance between them is smaller
than a threshold r. This threshold parameter was determined by grid search to generate networks
with the desired number of edges.

• Geometric gene duplication model [11]. Starting with an initial network of 5 nodes embedded
in a 3-dimensional space, on each iteration a node is chosen randomly to be duplicated. The
duplicated node is placed randomly in the 3-dimensional space at an Euclidean distance of at
most 2 from the original node. This process is repeated until the desired number of nodes, and
nodes at a distance of r or less at connected. This distance r is chosen to generate a network with
the appropriate number of edges.

• Duplication divergence model of Vazquez et al. [51]. The network grows in two stages. In the
first stage, a node v is chosen randomly to be duplicated into a node v′, that keeps all the edges
from v. The nodes v and v′ are connected with probability 0.05. In the second stage, one of the
duplicated edges ((v,u) or (v′,u)) is chosen randomly and deleted with probability q. This process
is repeated until the network grows to the desired number of nodes and q is chosen to generate
networks with the appropriate density.

• Duplication divergence model of Ispolatov et al. [20]. Starting from a network with a single
edge, a node is chosen randomly and duplicated, with the new node keeping each of the original’s
neighbours with probability p. This parameter is chosen to generate networks with the desired
number of edges.

• Configuration model, using the Duplication divergence model of Vazquez et al. [51] as the gener-
ator for the graphical degree sequence.

• Watts-Strogatz (WS) model [52]. Nodes are placed in a ring and connected to their k nearest
neighbours in both sides of the ring. Each edge is then rewired with probability 0.05 to a new
node selected at random. The parameter q is chosen to generate networks with the appropriate
average degree.

E.2 Real world networks

The summary statistics of the Onnela et al. [36] and the real world directed networks are given in
Table A.14.
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