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While new forms of attacks are developed every day to comi@®mssential infrastructures, service
providers are also expected to develop strategies to ntihe risk of extreme failures. In this context,
tools of network science have been used to evaluate netwbiksmess and propose resilient topolo-
gies against attacks. We present here a new rewiring methodify the network topology improving
its robustness, based on the evolution of the network lag®sponent during a sequence of targeted
attacks. In comparison to previous strategies, our methagrs by several orders of magnitude the
computational effort necessary to improve robustness. r@uiring also drives the formation of layers
of nodes with similar degree while keeping a highly modutaucture. This “modular onion-like struc-
ture” is a particular class of the onion-like structure jpoesly described in the literature. We apply our
rewiring strategy to an unweighted representation of thel@\air-transportation network and show that
an improvement of 30% in its overall robustness can be aetlidtwough smart swaps of around 9% of
its links.

Keywords network robustness, risk analysis

1. Introduction

The construction of a robust infrastructure network repnésa great challenge to our society. In order
to guarantee a broad and efficient coverage of basic sersicdsas water, electricity, and telecom-
munications, decision makers need to take into accountffeetg of a great number of threats to the
correct functioning of the system [2, 16]. Targeted testaittacks or random extreme weather condi-
tions impose a systemic risk of catastrophic failure thatthebe mitigated. In this way, tools provided
by network science have offered interesting insights onmmomfeatures of robust networks or methods
and strategies to protect infrastructures [4, 12, 25, 2633]L

Consider the construction of an air-transportation netvasran example, a challenge currently faced
by many developing nations [11, 39]. The localization of #iports should be decided given a tight
supply and demand rule in order to ensure their efficiencypother factors should also be included
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in the planning, such as security measures or noise reduf@ij. Besides that, the overall system
robustness should be taken into account, as the trandpartdtgoods and people cannot be entirely
halted in case that some airports close.

When designing a new network from scratch, decision makave lan excellent opportunity to
warrant its future robustness against failures [14]. Havewmost of the current infrastructure has been
built in a non-supervised fashion, mostly through a prefgat attachment mechanism, where highly
connected nodes (e.g. airports, Internet Service Prasjithewe a higher probability of receiving a new
link (e.g. flights, transmission cables) [5]. Inspired bistsituation, we propose in this work a strategy
to improve the robustness of a given network by a small nurobénterventions, which makes the
method useful for real-time actions under budget constrain

Simple modifications of the network topology, the connetfiattern of nodes through links, have
been shown to be an effective way to increase the robustnees node or link attacks [15, 19, 32, 40,
43]. In particular, Schneider et. al [35] showed that susiwesrandom rewirings (link swaps) create a
robust network through the formation of an onion-like staue in which high-degree nodes compose a
core with further interconnected layers of radially desieg degrees.

In this work we propose amarterrewiring that lowers by several orders of magnitude the com-
putational effort necessary to improve robustness. Ouhatkis consistently better than the random
rewiring for a small number of swaps and yields the same leffebbustness in the long term limit.
An onion-like structure is also created, although a highedufarity and degree correlation is observed
in comparison to networks created by random swaps. We applyewiring strategy to the World
Air-transportation network and we show that an improveno80% in its overall robustness can be
achieved through smart swaps of around 9% of its links.

2. Model

In a complex network, nodes (representing power statioingprs, proteins, etc.) interact through
links (cables, flights, molecular binding, etc.) resultingcomplex behavior that describes technical
and biological systems [8, 10, 20, 23, 24, 29, 42]. Partitylaomplex networks provide significant
insights into a system robustness, either in a static [13&Bor dynamic [7, 21, 27, 33, 36, 41] context.
We focus here on a generic approach to improve network robsstand consider only the simple case
of networks where all links have the same importance (unie) and no orientation (undirected).
For illustration purposes, we explain our model and relatettepts in the framework of the World Air-
transportation network, a system of paramount importamo@t globalized world and that has been the
subject of a lot of research in the past years [3, 9, 13].

An Air-transportation network is defined hererabustwhen it allows a passenger to travel between
most of the airports even considering the disruption of #twise in the major connection hubs, i.e.,
the airports with largest number of flights. This featureiigctly associated to the size of the largest
connected component (LCC) of a network. In mathematicalserobustnesR is described as,

1N _p
R=§ 2,5 (2.1)

whereN is the number of nodes/airportsis the number of airports removed from the network, o

is the size of the LCC after a fractian= p/N of nodes were removed, considering that all incoming
links/flights were also removed from the network. The par@mRis contained in the interval/N <

R < 1, and is a measure for robustness: a siRaddl associated to a fragile network and a larBe¢o a
robust one.
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To focus on targeted attacks, the node removal starts fitst tive highly connected nodes, the
network hubs, which intuitively have the largest impact ba size of the LCC. After removing the
more connected node we update the degrees (number of com®aif every node, and remove the
next largest network hub. This process is further repeatétthe network completely collapses.
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FiIG. 1. Smart rewiring for robustness improvement. Diagrammatic representation of the smart rewiriagFirst steps of the
smart rewiring: For a randomly selected nodeb{ue), its lowest degree neighboy, prown) and highest degree neighbky (
brown) are selected. In sequence, two neighborsasfdk are randomly selectedn(andn, both brown), and links to thenej,
ande,) are removed (reX). b, Last step of the smart rewiring in which linkg andemn (green) are added.

To improve robustness, one could simply add more flights éetvairports. In the limit, the network
becomes fully connected: one airport disruption does rfecabther destinations. But improving an
airport flight capacity by adding redundancy might provenienpractical in the short term. In fact,
numerous examples of infrastructure networks presentctyigcity constraint, such as adding new
transmission lines to a power station or new traffic cablemtétnternet Service Provider. Therefore, a
rewiring strategy where links are only swapped, keepingnitdes’ degree fixed, is more appropriate:
we reroute flights from airports and create new connecti@sipdities, without considerably changing
the airports’ load.

Here we propose a novel rewiring strategy that improves otwobustness by creating alternative
connections between parts of the network that would ottsrwe split upon the failure of a hub. In
our targeted attack scenario, we implicitly admit that thacker perfectly knows the network degree
sequence and thus can cause maximum damage. In the sameanssguwme that the “defender” knows
that the attacker has this information and thus acts upnatigh a smart rewiring defined as follows:

1. Select a noderandomly with at least two neighbors with degree larger thiae,

2. Select the lowest degree neighbor,dghe nodej, and its highest degree neighbor, the nkgde
3. Select randomly a neighborof nodej and a neighbon of nodek;

4. Repeat steps 1-3 until all nodes concerned are differemt €ach other.

5. Remove linkejm andexn,

6. Create linkej, andemn.

whereg; represents an undirected link between nodasd j. An illustration of this strategy is pro-

vided in Fig. 1. Swaps can provide positive or negative ckandhe robustness. Previous works have
proposed different swap acceptance mechanisms [17, 28j@r to increase robustness faster. To focus
on the comparison of the random and smart strategies, werpes simple greedy choice: at every step
we compare the robustness before and after the swap, anideoihs successful step if the robustness
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has improved. If unsuccessful, the swap is reverted anchensinart rewiring, or random rewiring for
comparison, is tested. In what follows, we defRRgas robustness of the network before any swap is
executedR; as robustness after one successful swapRaaslits value after some steps are executed.

FiG. 2. Proposed rerouting of flights for some airports in Oceania. aExample of the smart rewiring applied to the Hao Island
Airport (HOI node), connected (in blue) to Faaa Airport (PPa regional hub, and to Vahitahi Airport (VHZ), a small arp
Connections Wallis Island (WLS) to Tureira Airport (ZTA) @PPT to VHZ are added (in green), while previous links from
WLS to PPT and VHZ to ZTA are removed (in red). This simple sivegreases the robustness of the World Air-transportation
unweighted network by 1.85%b, Section of the World Air-transportation network showitng tregion in which airports ia

are locatedc, Effects of a single swap following the random and smarteagias on the overall robustness of a set of randomly
generated Barabasi-Albert networks.

3. Onionlikeness

The onion-like structure was first proposed by Schneideaé{35] as an emerging structure result-
ing from the random swap robustness optimization. To qbatitis feature, we start by plotting the
maximal number of nodeS, with degreek that are connected through nodes with a degree smaller or
equal tok. The onion-like structure presents more often paths betweees of equal degree, which
are not passing through nodes with higher degree, so aaigutisitive shift in theg, curve is observed

in comparison to a randomly generated BA network. Hence saiple way to quantify this structure is
through aronionlikenesparametec, the area below thg curve,

1 X g
c= FK;W’ (3.1)

wherek* is the maximum degree among the nodesldpa the number of nodes with degrkeln this
formulation I/k* < ¢ < 1. At the lower bound; = 1/k*, no special relation between a node degree and
its neighbors’ degrees are present. A regular lattice ffstaince, where all nodes have the same degree,
hasc = 1/k*. The value ot is close to the upper bound for networks with prominent orsioactures,
such as scale-free networks optimized for robustness.
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4. Results

A swap keeps the number of links and nodes’ degree unchaageds capable of changing the network
robustness. A simple example is presented in Fig. 2a-b famaveighted representation of the World
Air-transportation network. In this example, a single simewiring applied to an airport in Oceania is
capable of improving the overall robustness by 1.85%. If apsi® randomly executed, however, there
is no guarantee that an improvement occurs, or that the ruafgnof the improvement is satisfactory.
Smart rewiring diminishes this problem as it presents atolaard improvement. In a set of Barabasi-
Albert (BA) networks, the distribution of the robustnespnovement after one swagy = R; — Ry,
shows that significant changes of robustness are more comwitiorour strategy (Fig. 2c¢). Details
regarding this and all other simulations are in Appendix A.

If positive swaps are executed in sequence, a systematiease in the network robustness is
achieved. Schneider et al. [35] showed an improvement @itriyul 00% inR for a network ofN = 1000
after an extremely large number of swaps. Successive apipls of the smart rewiring are much more
efficient. We compare the evolution Bfin both methods starting from a set of BA networks in Fig. 3,
considering only the execution of sucessful swaps for batfes. While the smart rewiring doublgs
after roughly 16 steps, random swaps are still at the level of 20% improveniEme collapse of the
LCC happens after a removal of 52% of the nodes, a 50% impremeaver the random rewiring strat-
egy (Inset of Fig. 3). Tests for different network sizes shbat the performance difference increases
with network size (See Fig. S2 in Supplementary Materiab)thle limit of a large amount of swaps,
random swaps can yield close to optimal robustness [35]rSmairing approaches the optimal robust-
ness much faster and, consequently, both methods conwetje same level of robustness (See Fig.
S3 in Supplementary Material). Successive swaps in thedMadrttransportation network improve its
robustness by.82% with as few as 50 positive swaps32% of the total of links, as shown in Fig. 4a.
In this network, for a fixed level of robustness improvem@&%), smart swaps affect only 9.24%
0.53% of the total of links, while random swaps have to chang&9%+ 0.90% links (Fig. 4b).
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FiIG. 3. Fast improvement of network robustness for the smart rewirng strategy. The smart rewiring allows a much faster
improvement ofR in comparison to the random strategy. Fof %feps, the inset shows the LCC during a sequence of targeted
attacks. Data is an average of 100 BA networks of 2005 nodaB(phot) and 100 BA networks of 1000 nodes (inset).

Successive applications of the smart rewiring changeidedigtanother characteristics of the net-
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work as well. Fig. 4c shows the evolution of modularity [&))(during rewiring steps. The smart
rewiring makes networks consistently more modular thaeamrewiring. This difference is a con-
sequence of the intervention performed in the local corvigcby the smart rewiring, as our strategy
deliberately creates triangles of connections. This sireaeduces the importance of the hubs, which
are now connected to leaves (nodes of low degree), and #raioval does not have huge impact on
global connectivity. These results are valid for differepstem sizes (See Fig. S2 in Supplementary
Material).

Despite the creation of connections between hubs and leagsork assortativity [28Increases
as the evolution of Newmaniscoefficient shows in Fig. 4d. This result can be qualitaiveiderstood
considering the edges swapped. Before the rewiring, twesdgntribute in a negative way to assorta-
tivity: ejm connects a leaf to an average degree nodeg/mbnnects a hub to an average node. After the
rewiring, one edge contributes negativedy(connects leaf to hub) and the other contributes positively
(emn connects average to average nodes). This effect is alssteatsfor different system sizes (See
Fig. S2 in Supplementary Material) and considering asgeitiathrough neighbor connectivity [30]
(See Fig. S1in Supplementary Material). In comparisor e original BA networks and networks
optimized through random swaps are dissortative.
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FiG. 4. Robust Air transportation network . a, The World Air-transportation network has its robustnesproved by 4.82%
with swaps of 50 links (red) following the smart rewiringatggy. b, Size of the largest cluster for the World Air-transpodati
network through a sequence of targeted attacks before &edtlaé application of the smart and random rewiring stietegin
this case, both strategies reach the same level of robgst8@% of improvement), but while random rewiring changed 9%
+ 0.90% of network links, smart rewiring changes only 9.249%9.53%. c- modularity Q), assortativity ), and onionlikeness
(c) during the application of the random and smart rewiringtsgies.

Higher modularity and assortativity produced by the smasiiring do not interfere with the forma-
tion of the onion-like structure, where layers of nodes af@asing degree hold the network robustness.
Both strategies produce the onion-like structure but, leydjmg a larger robustness, the onion structure
is more prominent in the case of the smart rewiring (Fig. 4@hionlikeness also remains larger for
smart rewiring for different system sizes (See Fig. S2 indieqpentary Material).
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5. Discussion

Through a simple rewiring strategy we present here a methaiditproves drastically the network
robustness while consuming little computational time. Pph&posed smart rewiring quickly increases
robustness in comparison to a random choice of links. Thie &fficiency, together with the fact that
only local knowledge of the two first neighbors of a given nedeecessary, makes this strategy a poten-
tial tool for network designers and policy makers havingtdsk of protecting our already built infras-
tructure against targeted attacks. As an example, simfgevientions on the World Air-transportation
network have been able to considerably improve its robgstn®ur main analysis is performed on a
set of randomly generated BA networks, which suggests lieasame findings would apply to all real
networks with a broad degree distribution since the smaaps® general and not limited to a particular
network class.

Besides its simplicity, the smart strategy counterintelif improves the maintenance of the largest
cluster through a local division of the network: at each $tepnodes previously connected are trans-
formed into a triangle and a pair of nodes. This apparensidimidoes not fully fragment the network, it
only reduces the importance of the network hubs in keepiaglbbal connectivity through the addition
of links between nodes of average degree. These rewiresifiight eventually bridge different parts of
the network after the hub failure. Moreover, smart rewigngates also a highly modular and assortative
topology while forming an onion-like structure.

As modularity and assortativity differ radically from negvks modified through random swaps, we
define the structure of networks generated through sueeeapplications of the smart rewiring as a
modular onionstructure. This new topology gives rise to the question iififer changes in the swap
mechanism could create different structures. Following, thwap mechanisms could be designed to
improve a certain desired feature, in the same way as thet saveiring enhances modularity, while
improving network robustness. As a method based on a siegbfifamework, another possible applica-
tion of the current study is to adapt the strategy to reaétiincumstances of an infrastructure network,
such as flight capacity and climate conditions in the airdpamtation problem.

It is noteworthy that our model does not account for weighthe links, which would represent the
number of passengers traveling between airports in a ngutiod of time. A rewiring method that
takes advantage of this information, together with adaptatof the robustness concept, could have
direct applications in the optimization of a real techngyatem.

A. Methods

The World Air-transportation network was retrieved from igiret. al [3]. It contains data regarding
only international airports and flights. The number of ndaiegorts is 1326, with 16001 links, and
average degree of 2U3. Artificial networks considered in this work are all BA wetrks of average
degree six.

In Fig. 2, Panela andb represent sections of the World Air-transportation. Irtigafar, airports in
Panel (a) are labeled according to their IATA code. Panehn average over 100 BA networks of 1000
nodes, the standard deviation of the points being smalter tiiie symbols.

In Fig. 3, the main plot is an average over 100 BA networks @&0odes. The inset is an average
of 100 BA networks of 1000 nodes subjected t& &@ps of rewiring (smart or random) in comparison
to the original network. In both plots the thickness of te§ is bigger than the standard deviation.

The main plot of Fig. 4 contains the entire World Air-trangption network with rewired links in
red and thicker. The location of some airports are slightigrad due to map projection distortions.
Insetb contains data regarding the Air-transportation networoteeand after 19 smart swaps, for
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which the smart rewiring curve is an average over 100 diffesequences of random swaps. Ingets
are averages over 100 BA networks of 2005 nodes. In all insetthickness of the lines is bigger than
the standard deviation.
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Supplementary Information

A. Assortativity through neighbor connectivity
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FIG. S1. Assortativity for different swap strategies. Assortativity through neighbor connectivity [30] for metrks optimized
using different strategies, and for BA networks in comparis For each degree; knn > represents the average degree of the
neighbors of nodes of degrée Data is an average of 100 networks of 2005 nodes. The smdtt@tues for largd are due to
statistical fluctuations.
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B. System size effects
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FiG. S2. Smart and random rewiring for networks of different sizes. Effect of network size on Robustness,(modularity
(b), assortativity €), and onionlikenessd] for different system sizes. Each plot shows the differdmesveen the quantity after
10° steps R, Q, r, andc) and its initial value R, Qo, ro, andcp). Box plots are used to represent the quantities computetD®
networks, according to: lower whisker for the lowest obagon still within 1.5 IQR of the lower quartile, bottom ofetbox for
the lower quartile, white trace for the median, top of the Baxthe upper quartile, and upper whisker for the highestievatill

within 1.5 IQR of the upper quartile.

C. Effect of the number of swaps
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FiG. S3.Evolution of the difference between robustness for smart athrandom rewirings. Comparing the difference between
both methods, it is clear that for small networks a large nemdd swaps, either random or smart, lead to the same level of
robustness. Each curve represents a system size. Datavsrage of 100 BA networks, with standard deviations sméiian
curve thickness.



