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Abstract. Finding group elements from noisy measurements of their pairwise ratios is also known as the group synchronization
problem, first introduced in the context of the group SO(2) of planar rotations. The usefulness of synchronization over the group Z2

has been demonstrated in recent algorithms for localization of sensor networks and three-dimensional structuring of molecules. In this
paper, we focus on synchronization over Z2, and consider the problem of identifying communities in a multiplex network when the
interaction between the nodes is described by a signed (and possibly weighted) measure of similarity, and when the multiplex network
has a natural partition into two communities, of possibly different sizes. In the setting where one has the additional information that
certain subsets of nodes represent the same (unknown) group element, we consider and compare several algorithms for synchronization
over Z2, based on spectral and semidefinite programming relaxations (SDP), and message passing algorithms. In other words, all nodes
within such a subset represent the same unknown group element, and one has available noisy pairwise measurements between pairs of
nodes that belong to different non-overlapping subsets. Following a recent analysis of the eigenvector method for synchronization over
SO(2), we analyze the robustness to noise of the eigenvector method for synchronization over Z2, when the underlying graph of pairwise
measurements is the Erdős-Rényi random graph, using results from the random matrix theory literature on the largest eigenvalue of
rank-1 deformation of large random matrices. We also propose a message passing synchronization algorithm, inspired by the standard
belief propagation algorithm, that outperforms the existing eigenvector synchronization algorithm only for certain classes of graphs and
noise models, and enjoys the flexibility of incorporating additional constraints that may not be easily accommodated by any of the other
spectral or SDP-based methods. We apply the synchronization methods both to several synthetic models and a real data set of roll call
voting patterns in the U.S. Congress across time, to identify the two existing communities, i.e., the Democratic and Republican parties.
Finally, we discuss a number of related open problems and future research directions.

Key words. Eigenvectors, group synchronization, semidefinite programming, multiplex networks, spectral algorithms, random
matrix theory, bipartite networks, message passing algorithms, voting networks.

1. Introduction. During the last decade, the emerging area of network science has witnessed an explosive
growth, with virtually thousands of papers written on the topic [42, 41]. Much of this work has focused on the
detection of a mesoscale structure known as community structure, where subgroups called communities are composed
of nodes densely connected with each other, while the connection between nodes across different communities
is relatively sparse. There is already a vast literature on community detection [52, 26, 29, 43], which includes
methods that allow for the detection of overlapping communities [44, 1, 5]. The above results have found numerous
applications in areas including committee and voting networks in political science [51, 40], friendship networks
[59, 30], protein-protein interaction networks [35], financial networks [23, 31], mobile phone networks [11, 16],
transportation networks [54], and brain networks from the neuroscience community [9]. In terms of the underlying
(possibly weighted) graph associated to the network, the mathematical task is that of identifying clusters of highly
interconnected nodes, or subgraphs whose internal edge density is large compared to the rest of the graph.

In this paper, we consider the related problem of identifying communities in a graph, for the particular case
when the interaction between the nodes is described by a signed measure of similarity or correlation, and when the
network has a natural separation into two (not necessarily equally sized) communities. The goal is to recover the
two subgroups of nodes whose internal pairwise similarity or correlation is significantly stronger when compared
to the rest of the network. Note that in the ground truth solution, each node belongs to exactly one of the two
communities, and the task is to recover these two communities given a noisy set of pairwise signed interactions.
Signed networks have also been recently considered in the context of identifying community structure in a voting
network in the United States General Assembly [38]. In a dynamical setting, community detection algorithms
have been used to analyze multiple time series data, such as rates in the foreign exchange market [23]. In [31],
the authors introduced a multiresolution module detection approach for dense weighted networks, and successfully
applied it to stock price correlations data. A random matrix theory based technique has been recently proposed for
the particular task of clustering correlation data [37], and was shown to be able to capture well-known structural
properties of the financial stock market.

In this work, the graphs we consider have a special structure, in the form of a multiplex network, in the sense
that each graph can be decomposed into a sequence of subgraphs, each of which corresponds to a layer of the
network, and there exist interconnections linking nodes across different layers. We refer the reader to [20] for a
mathematical formulation of multilayer networks, of which multiplex networks are a subset. Unlike a multilayer
network, a multiplex network only allows for a single type of inter-layer connections via which any given node is
connected only to its counterpart nodes in the other layers. The rich variety of interlayer connections in a multilayer
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network can be mathematically captured by the multilayer adjacency tensor introduced in [20]. The very recent
survey [34] discusses the rich history of multilayer networks, and provides a thorough review of the growing literature
on this topic. The structure of such multiplex networks motivates our work, in the sense that the interconnections
often correspond to certain structural constraints, which on one hand make the problem harder to solve, but on the
other hand, if properly exploited, may enhance the quality and robustness of the community detection process.

The approach we consider in this paper is motivated by the group synchronization problem and the recently
introduced spectral and semidefinite programming based algorithms [56]. The remainder of this section describes
the group synchronization problem, and its many recent applications. As a word of caution to the reader, we remark
that throughout this paper, the group synchronization problem is not be confused with the classical synchronization
phenomena in large ensembles of coupled oscillators. To this end, we refer the reader to [3] for an extensive review of
numerical and analytical techniques underlying the interplay between synchronization phenomena and the topology
of complex networks.

Finding group elements from noisy measurements of their ratios is also known as the group synchronization
problem [28, 32]. In this paper, we focus exclusively on synchronization over the group Z2, which can be formulated
as follows. Consider an undirected graph G = (V,E), with the node set V of size |V | = n corresponding to a set
of n unknown elements z1, . . . , zn ∈ Z2, and the edge set E of size m ≤

(
n
2

)
(though often m�

(
n
2

)
) corresponding

to an incomplete set of m (possibly noisy) pairwise measurements ziz
−1
j available to the user. For mathematical

convenience, we choose to work with the following representation of the group Z2, with elements {−1,+1} and the
usual multiplication operation, for which it holds true that ziz

−1
j = zizj since an element is its own inverse. Note

that the above defined group is isomorphic to the group of integers modulo 2, often written as Z/2Z. One may
interpret the unavailable group element zi ∈ Z2, i = 1, . . . , n as the true (unknown) sign or polarity of node i in
G. Throughout the paper, we use the notation z = (z1, . . . , zn) to represent the unavailable vector of size n with
entries zi ∈ Z2, a notation useful in the context of the optimization problems from subsequent sections.

We denote by Z the symmetric matrix of size n×n, whose entries Zij = Zji represent the pairwise measurement
available for each edge (i, j) inG, which encodes the similarity measure between the pair of nodes i and j. In the noise
free case, the measurement Zij precisely equals the product of its endpoints Zij = zizj ; however, in most scenarios,
many of the edge measurements are corrupted by noise with some given probability, in which case Zij = −zizj .
Given the pairwise measurement matrix Z, the goal is to recover the unknown elements z1, . . . , zn ∈ Z2, in other
words, to recover the polarity of each node of the network, such that we satisfy as many constraints Zij = zizj
as possible. It is also often the case that the information available on the edges does not necessarily take only ±1
values, but rather takes on continuous values in the range [−1, 1] (as is the case with correlation data). In this
setup, one can interpret the magnitude wij ∈ [0, 1] associated to each entry Zij as a measure of confidence on the
similarity estimation. For the purpose of this paper, we will mostly be focusing on the case when all the weights
are equal, wij = 1,∀(i, j) ∈ E.

The synchronization of clocks in a distributed network from noisy measurements of their time offsets is another
example of synchronization, where the underlying group is the real line R. The eigenvector and semidefinite
programming methods for solving an instance of the synchronization problem were originally introduced by Singer
in [56] in the context of angular synchronization, where one is asked to estimate n unknown angles θ1, . . . , θn ∈ [0, 2π)
given m noisy measurements δij of their offsets θi − θj mod 2π. The difficulty of the problem is amplified on one
hand by the amount of noise in the offset measurements, and on the other hand by the fact that m�

(
n
2

)
, i.e., only

a very small subset of all possible pairwise offsets are measured. In general, one may consider other groups G (such
as SO(d), O(d)) for which there are available noisy measurements gij of ratios between the group elements

gij = gig
−1
j , gi, gj ∈ G. (1.1)

We remind the reader that O(d) denotes the group of d × d orthogonal matrices, and its subgroup SO(d) (the
special orthogonal group) denotes the group of d×d orthogonal matrices of determinant 1. The set E of pairs (i, j)
for which a noisy measurement of ratio of group elements is available can be realized as the edge set of a graph
G = (V,E), |V | = n, |E| = m, with vertices corresponding to the group elements g1, . . . , gn and edges corresponding
to the available pairwise measurements gij = gig

−1
j . As long as the group G is compact and has a real or complex

representation, one may construct a real or Hermitian matrix (which may also be a matrix of matrices) where the
element in the position (i, j) is the matrix representation of the measurement gij (possibly a matrix of size 1× 1, as
it is the case for Z2), or the zero matrix if there is no direct measurement for the ratio of gi and gj . For example,
the rotation group SO(3) has a real representation using 3 × 3 rotation matrices, and the group SO(2) of planar
rotations has a complex representation as points on the unit circle eıθi = cos θi + ı sin θi. Given the above matrix
of pairwise group measurements, the approach initiated in [56] proposed to compute the top eigenvectors(s) of the
pairwise measurement matrix and use them to estimate the unknown group elements. Alternatively, one may cast
the synchronization problem as a semidefinite programming (SDP) problem [60], and extract the unknown group
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elements from a low-rank approximation of the noisy incomplete matrix of pairwise group measurements.
We have successfully used the above synchronization methods (first introduced by Singer in [56]) to solve

the graph realization problem in the context of sensor network localization [17], and the molecule problem in
structural biology [19]. Another recent application of synchronization is to the Structure from Motion problem [4],
a fundamental task in computer vision where one is asked to recover three-dimensional structure from a collection
of images. In general, the synchronization problem can be applied in such settings where the underlying problem
exhibits a group structure, and one has readily available (possibly noisy) pairwise measurements of ratios of the
group elements.

In this paper, we focus exclusively on the group synchronization problem over the group Z2, denoted from
now on as SYNC(Z2). We apply the eigenvector synchronization method to a multiplex network, representing
voting patterns for the U.S. Congresses during the years 1927 to 2009, with the goal of robustly detecting the two
political parties across time. We motivate the robustness to noise of the eigenvector synchronization method when
the underlying graph of pairwise measurements is the Erdős-Rényi random graph, using recent results form the
random matrix theory community, following a similar perturbation analysis introduced in [56] for the case of the
group SO(2). We also consider a message passing formulation of the synchronization problem, and compare its
performance with the other spectral and SDP-based methods. Finally, we consider a variant of SYNC(Z2) when
additional constraints are available on the polarity of certain subgroups of nodes, and compare the performance of
our proposed algorithms for this particular instance of SYNC(Z2). We remark that the SDP formulation, though
computationally expensive to solve for large networks, provides the most robust solution for the case when additional
constraints are available.

The structure of this paper is as follows: Section 2 describes the synchronization problem over Z2 and existing
methods for solving it. Section 3 is an application of synchronization to a U.S. Congress roll call voting multiplex
network. Section 4 is a noise sensitivity analysis of the eigenvector method using tools from random matrix theory
(detailed in Appendix A). In Section 5, we propose a message passing algorithm for solving the synchronization
problem, and compare its performance with that of the spectral and SDP relaxations under different graph and noise
models, also when anchor information is available (we review in Appendix B the quadratically constrained quadratic
formulations for incorporating anchor information, considered in [19]). In Section 6, we consider the synchronization
problem with partition constraints, propose several algorithms for computing an approximate solution, and detail
the numerical results when applying our methods to two synthetically generated networks and the U.S. Congress
voting data set. Finally, Section 7 is a summary and a discussion of possible future research directions.

2. Synchronization over Z2. In this section, we describe several different methods for solving SYNC(Z2),
introduced in [17, 19] as one of the building blocks of the ASAP localization algorithm. Mathematically, the
problem of synchronization over the group Z2, whose elements we will denote by {±1}, can be stated as follows.
Given a graph G = (V,E), with the node set V of size |V | = n corresponding to a set of n group elements
z1, . . . , zn ∈ Z2, and the edge set E of size m �

(
n
2

)
corresponding to an incomplete set of m (possibly noisy)

pairwise group measurements of ziz
−1
j , for (i, j) ∈ E, the goal is to provide accurate estimates ẑ1, . . . , ẑn ∈ Z2 for

the unknown group elements z1, . . . , zn. Recall that in Z2 an element is its own inverse z−1
i = zi, thus from now

on we shall write the group elements ratio ziz
−1
j as zizj . We denote by Z = (Zij)1≤i,j≤n the symmetric matrix of

the available pairwise group measurements. We remark here that one may associate a non-negative weight wij to
each measurement Zij that reflects the precision of the pairwise measurement, if such information is available to

the user, in which case the matrix Z used throughout the paper would be replaced by Z(W ), with Z
(W )
ij = ZijWij .

Note that if all measurements have equal precision, then one can set all weights equal wij = 1, for (i, j) ∈ E. For
simplicity of the exposition we assume that all measurements have weight equal to 1, and choose to work with
matrix Z instead of Z(W ). We refer the reader to [17, 17, 4] for other applications of the group synchronization
problem (over groups other than Z2) that discuss and benefit from the incorporation of weights into the pairwise
measurements, if such additional information is available.

If the data is noise free, i.e., the pairwise group measurements perfectly satisfy Zij = zizj , for all (i, j) ∈ E, one
can simply recover the n group elements by choosing a spanning tree of the graph G, fixing the root (for example
z1 = 1), and propagating the information across the spanning tree to compute the values at the remaining nodes.
However, in the noisy case, this approach is no longer robust as a single noisy edge induces errors for the remaining
nodes of the spanning tree, and thus the problem becomes significantly harder.

In the context of the sensor network localization problem [17], the measurements Zij ∈ Z2 denote the relative
reflection of pairs of overlapping subgraph embeddings, and the task is to recover the global orientation of each
such embedding. In the context of the U.S. Congress roll call voting network that we are about the investigate,
where Democrats and Republicans have conflicting interests and their voting patterns are overall opposite, the
measurement Zij ∈ Z2 reflects the similarity of the voting pattern of two senators, and represents a noisy proxy for
whether they belong to the same party or no.
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Fig. 2.1. An instance of the noisy synchronization problem. The goal is to recover the ±1 values at each node of the graph, based
on a sparse subset of pairwise measurements, i.e., using only the information on the edges. The value of each edge Zij is a (perhaps

noisy) measurement of the ratio of its endpoints ziz
−1
j = zizj . The blue, respectively red, edges denote correct, respectively incorrect,

pairwise measurements.

If the pairwise measurements are noiseless, the maximum of the following quadratic form

max
xi∈Z2

n∑
i,j=1

xiZijxj = max
x∈Zn

2

xTZx (2.1)

is attained when x = z (where z denotes the vector of ground truth elements with components z1, . . . , zn), which
yields zTZz = 2m, where m is the number of edges in the graph. This holds true since each edge which correctly
estimates the similarity of two senators contributes with

ziZijzj = +1

to the sum in Equation (2.1). However, when the pairwise group measurements contain errors the problem becomes
significantly more challenging. In the noisy case, we write Zij = zizjδ, where δ is a Bernoulli random variable
taking values −1, respectively +1, with probability η, respectively p = 1−η. Thus, we denote by η the likelihood of
each edge being corrupted with noise, i.e., having its sign flipped. Note that if the underlying graph G is a complete
graph and the measurements are noiseless, i.e., G = Kn and η = 0, then Z = zzT is a rank-one matrix. However,
in most practical applications, G is a sparse graph and η > 0, and one can interpret the matrix Z available to the
user as a sparsified and perturbed version of the rank-one matrix zzT .

Since NP-hard problems, such as the maximum clique problem [12, 33], can be formulated as a quadratically
constrained quadratic program (QCQP) such as the one above, the problem in (2.1) is itself NP-hard. In the spirit
of the approach introduced in [56] for the group SO(2), in [17] we considered the following relaxation for the group
Z2,

max
x1,...,xn∈Z2;

∑n
i=1 |xi|2=n

n∑
i,j=1

xiZijxj = max
‖x‖2=n

xTZx, (2.2)

whose maximum is achieved when x = v1, where v1 is the normalized top eigenvector of Z, satisfying Zv1 = λ1v1

and ‖ v1 ‖2= n, with λ1 being the largest eigenvalue. Thus, an approximate solution to the maximization problem
in (2.1) is given by the top eigenvector of the symmetric matrix Z, as illustrated in equation (2.6). Prior to
computing the top eigenvector of the matrix Z, as initially proposed in [56], we choose to normalize Z as follows.
Let D be an n× n diagonal matrix, whose entries are given by Dii =

∑n
j=1 |Zij |. In other words,

Dii = deg(i), (2.3)

where deg(i) is the degree of node i in G. We define the matrix Z as

Z = D−1Z, (2.4)

and note that, although not necessarily symmetric, it is similar to the symmetric matrix D−1/2ZD−1/2 through

Z = D−1/2(D−1/2ZD−1/2)D1/2.

Therefore, the matrix Z has n real eigenvalues λZ1 > λZ2 ≥ · · · ≥ λZn and n orthonormal eigenvectors vZ1 , ...,v
Z
n ,

satisfying ZvZi = λZi v
Z
i . In the eigenvector method, we compute the top eigenvector vZ1 ∈ Rn of Z, which satisfies

ZvZ1 = λZ1 vZ1 , (2.5)
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and use it to obtain estimators ẑ1, . . . , ẑn for the unknown group elements, in the following way:

ẑi = sign(vZ1 (i)) =
vZ1 (i)

|vZ1 (i)|
, i = 1, 2, . . . , n. (2.6)

The top eigenvector recovers the initial group elements up to a global sign, since if vZ1 is the top eigenvector of Z
then so is −vZ1 . We refer the reader to Section 4 of [17] for a detailed explanation of the increased noise robustness
the above normalization brings, and its connection to the normalized discrete graph Laplacian.

Note that one may use a different objective function as an alternative to (2.1), that allows to formulate the
group synchronization problem as a least squares problem [19], by minimizing the following quadratic form

min
x∈Zn

2

∑
(i,j)∈E

(xi − Zijxj)2 = min
x∈Zn

2

∑
(i,j)∈E

(
x2
i + Z2

ijx
2
j − 2Zijxixj

)
= min

x∈Zn
2

∑
(i,j)∈E

(
x2
i + x2

j − 2Zijxixj
)

= min
x∈Zn

2

 n∑
i=1

dix
2
i −

∑
(i,j)∈E

2Zijxixj

 = min
x∈Zn

2

(
xTDx− xTZx

)
= min

x∈Zn
2

xT (D − Z)x(2.7)

where di denotes the degree of node i in G. Since such a QCQP program is NP-hard to solve, one may replace the
n individual constraints for each of the variables xi = 1 by a single and much weaker constraint which requires that
the sum of squared magnitudes is ||x||2 = n. The solution to this relaxation of the above minimization problem,
is given by the eigenvector (normalized such that ||x||2 = n ) corresponding to the smallest eigenvalue of the more
popular (symmetric) combinatorial Laplacian D − Z.

As previously mentioned, an alternative approach for solving the synchronization problem was initially in-
troduced in [56] for the group SO(2) of planar rotations, and relied on casting the synchronization problem as a
semidefinite programming (SDP) optimization problem. The objective function in (2.1) can be written as

n∑
i,j=1

xiZijxj = Trace(ZΥ) (2.8)

where Υ is the n×n symmetric rank-one matrix with ±1 entries denoting the correct pairwise measurements of ratios
of group elements Υij = xix

−1
j . Note that Υ is a rank-one matrix, with ones on its diagonal Υii = 1,∀i = 1, . . . , n.

Enforcing the low-rank constraint renders the problem no longer convex, and we write the SDP relaxation of (2.1)
as

maximize
Υ∈Rn×n

Trace(ZΥ)

subject to Υii = 1, i = 1, . . . , n

Υ � 0

(2.9)

where the maximization is taken over all semidefinite positive real-valued matrices Υ � 0 [60]. Note that the
solution of the SDP is not necessarily of rank-one as desired. We compute the top eigenvector of Υ, and estimate
z̄1, . . . , z̄n based on the sign of its entries.

In Sections 3 and 6 we apply the eigenvector and SDP-based synchronization methods (and their variations
described in later sections) to the analysis of a Congress data set of roll call voting patterns in the U.S. Senate
across time, with the goal of identifying the two existing communities, i.e., the Democratic and Republican parties.
For any two senators i and j that participate in the same Congress, Zij = 1 if they cast similar votes, Zij = −1 if
they cast opposite votes, and Zij = 0 if they belong to two different Congresses and no pairwise measurement is
available.

3. The synchronization of a voting network. In this section, we explore the application of the synchro-
nization method to the Congress data set [47] of roll call voting patterns in the U.S. Senate across time [48, 62, 40].
We considered Senates in the 70th Congress through the 110th Congress, covering the years 1927 to 2009. During
this time, United States went from 48 to 50 states, each of which delegates two senators (with a few exceptions) and
thus the number of senators S in each of the C = 41 Congresses was roughly the same, i.e., S = 100. The number
of unique senators throughout the C = 41 Congresses was k = 735, and the total number of senators (counting
repetitions) was n = 4196. Note that, for simplicity, we assume that n = C · S, although there are states that
delegate more than two senators. We denote by mi, i = 1, . . . , k, the number of Congresses on which each unique
senator i has served, during the interval 1927 to 2009, and note that m1 +m2 + . . .+mk = n.

The available data set is in the following form. For each Congress, we have available a complete weighted

matrix W (t), t = 1, . . . , C, with W
(t)
ij ∈ [0, 1] denoting the fraction of bills on which two senators voted in the same
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manner. In other words, the element W
(t)
ij is equal to the number of times that senators i and j voted in the same

way, divided by the total number of bills for which both i and j cast a vote, during the tth Congress. Such networks
are often encountered in the literature, and are referred to as “similarity networks” since the weights on the edges
represent a measure of similarity between adjacent nodes [51, 66, 59, 38, 50].

Next, we integrate all the available information into one large block-diagonal square matrix H of size n = C ·S,
where the diagonal blocks are given by the (complete) weighted matrices W (1), . . . ,W (C)

H = Diagonal(W (1), . . . ,W (C)). (3.1)

Furthermore, we also want to take into account the fact that a senator may participate in several (not necessarily
consecutive) Congresses. To this end, we introduce an inter-Congress connection between the entries corresponding
to the same senator in Congresses u and v. In other words, if the ith senator from Congress u is the same as the
jth senator from Congress v, then we set

Ω(u−1)S+i,(v−1)S+j = 1, (3.2)

and set Ω(v−1)S+j,(u−1)S+i = Ω(u−1)S+i,(v−1)S+j to preserve the symmetry. One may think of Ω as the adjacency
matrix of a graph which has k = 735 non-overlapping complete subgraphs (one for each unique senator), and
each node contained in such a complete subgraph denotes a distinct Congress on which the corresponding senator
has served. Finally, we build the n× n nonnegative matrix W which couples together multiple adjacency matrices
W (1), . . . ,W (C) via an interslice coupling parameter ε, and thus captures the similarity of the voting patterns across
all C Congresses, taking into account the information that senators may serve for multiple terms

Wij =

 ∈ [0, 1] if i and j belong to the same Congress
ε if i and j denote the same senator in different Congresses
0 otherwise.

(3.3)

Note that we choose to use categorical coupling and add a pairwise similarity link between nodes from different
Congresses that correspond to the same senator, in order to add more information to the problem and increase
the likelihood of having a consistent party affiliation for different occurrences of the same senator across time. For
example, if a senator appears in q Congresses, using an ordinal coupling that connects only adjacent Congresses
(as used in [40]) yields only q− 1 self-similarity measurements as opposed to

(
q
2

)
in the case of categorical coupling.

Throughout our computations, we keep constant the interslice coupling ε = 1 that controls the strength of the
connection between nodes across different Congresses. We refer the reader to Mucha et al. [40] for a thorough
discussion on the role of the interslice coupling, and various structural results obtained by varying this parameter.
A high-level view of the network defined by matrix W is as a set of inter-coupled layered subnetworks, and hence
the name of a multiplex network. We refer the reader to the extensive review of multilayer networks (of which
multiplex networks are a subset) surveyed recently in [34]. While each subnetwork (i.e., Congress in our case) may
have its own particular features, the ensemble of subnetworks together with their interactions across time define a
richer structure that can provide further information. Note that, in light of Equations (3.1), (3.2), and (3.3), one
may decompose the matrix W as

W = H + εΩ, (3.4)

a structure which may also be observed in Figure 3.1(a). Furthermore, the band around the main diagonal and the
lack of entries in the top-right and bottom-left corners are due to the fact that usually senators serve on consecutive
Congresses (although there are many exceptions), and it is less likely for a senator to serve on Congresses which
are very far apart in time, mostly due to natural causes. The above decomposition (3.4) of W highlights the inter-
layer and intra-layer connections present within the network, and motivates the terminology of supra-adjacency
matrices used recently in the literature to denotes matrices with such particular structure [34]. Note that a different
decomposition of matrix W is given by

W = εB + Θ, (3.5)

for the same value of the ε parameter as in 3.4, where B = Diagonal(1m1 , . . . ,1mk
) is a block-diagonal matrix whose

blocks are all ones matrices of size mi denoting the multiplicity of senator i, and Θij denotes the similarity vote
between two distinct senators for a given Congress. In reconciling the two decompositions (3.4) and (3.5), we note
that Ω and B are both unweighted graphs (with 0/1 entries), where Ω corresponds to the positions of the nonzero
entries in the diagonal blocks of the adjacency matrix show in Figure 3.1 (a), while the B matrix corresponds to
the positions of the nonzero entries outside of the main diagonal blocks of the same Figure.

6



30 40 50 60 70 80 90 00 10

30

40

50

60

70

80

90

00

10

Congress number

C
o

n
g

re
s
s
 n

u
m

b
e

r

(a) Illustration of the Congress
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(c) Normalized square spectrum
ε = 0.1.

20 40 60 80 100

−0.1

−0.05

0

0.05

0.1

Congress number

E
ig

e
n

v
e

c
to

r

 

 

Republicans
Democrats
Others

(d) Partitioning based on v
(1)
41 .

Fig. 3.1. (a) A visualization of matrix W described in equation (3.3). The blocks on the diagonal correspond to the complete
matrices of voting patterns in each of the C+ 41 Congresses, while the off-diagonal entries take the value ε denoting a single individual
that served in two different Congresses. (b) (respectively (c)) Barplot of the normalized square spectrum of the Congress matrix, i.e.,

λ2
i∑n

j=1 λ
2
j

, for i = 1, . . . , 100, for ε = 1 (respectively, ε = 0.1) showing that the large eigenvalues account for a large fraction of the

variance of the data. (c) Plot of the first nontrivial eigenvector v
(1)
41 of the Laplacian associated to matrix W (41), which corresponds

to senators from the 110th Congress, showing a good separation between Republicans and Democrats.

Given the above matrix of voting patterns W , the goal is to recover the two parties, i.e., to classify each of
the (non-unique) n = 4196 senators as either a Republican or a Democrat. It should not be surprising that the
top eigenvector of matrix W (or of its associated Laplacian) no longer captures the bipolarity of the Congress, as
the problem does not fit the hat of synchronization. As illustrated in Figure 3.2 [18], none of the top eigenvectors
capture the bipolarity of the network, and only eigenvectors buried deeper in the spectrum do so (l ≥ 41), but
only for individual Congresses or for sets of temporally adjacent Congresses. The normalized spectrum of matrix
W shown in Figure 3.1 (b) shows that a large fraction of the variance of the data is captured by the first largest
eigenvalues. We refer the reader to our recent work in [18] for a detailed investigation of the above eigenvectors,
and of the eigenvector localization phenomenon encountered in numerous other real data sets. As detailed in [18],
eigenvector l = 1 (the first nontrivial eigenvector) and l = 2 define the coarsest modes of variation in the data,
are delocalized at a global level but localized on individual congresses, and exhibit global oscillatory behavior
characteristic of sinusoids, which is expected for such one-dimensional data. Eigenvector l = 40 is the last one to
exhibit similar behavior, although the localization is more prominent, and l = 41 is the first one to identify the two
parties, but only for a subset of adjacent Congresses. Lower eigenvectors, such as l = 53, exhibit a surprising degree
of localization, very often on a single Congress or a few temporally-adjacent Congresses, and reveal the existence of
the two parties. However, they do so only for single Congresses or a few adjacent ones, which still does not resolve
of task of finding the party affiliation of all the senators, across all the Congresses we have considered.

Alternatively, one may consider only a single Congress at a time, W (t), t = 1, . . . , C, and use the top eigenvector
of each W (t) to extract the two parties, as exemplified in Figure 3.1 (c). In this case, the top eigenvector will separate
the Democrats and the Republicans, as this is the main course of variation within an individual Congress. However,
this approach has two main obvious disadvantages. The bipolar structure present within each Congress is detected
up to a global sign (since the eigenvector is computed up to a global sign), and aggregating this information across all
Congresses requires further work. Second, we no longer make use of the information that some senators participate
in several Congresses, and usually maintain the same party affiliation across time, although as we shall see, some
senators are often inconsistent in their voting, and vote as if they belong to the opposite party.

A simple solution to obtaining a separation between the two parties at a global level is given by the following
procedure, which lays the ground for using the synchronization methods over Z2. By mapping the entries wij ∈ [0, 1]
within the diagonal blocks W (1), . . . ,W (C) of the congress matrix W to {−1, 1}, we are able to highlight the group
structure of the problem. One simple option for such a transformation is given by

W
(t)

ij = sign(2 ·W (t)
ij − 1), t = 1, . . . , C, (3.6)

which is enough to make the problem fit the framework of synchronization. If two senators agreed on more than

50% of their votes, then we consider that they belong to the same party, and set W
(t)

ij = +1. Otherwise, we decide

they belong to opposite parties and set W
(t)

ij = −1. Note that an alternative approach to (3.6) would be to weight

the correlation between nodes and use a mapping such as W
(t)

ij = 2 ·W (t)
ij − 1. For simplicity, we choose to work

with (3.6), and refer the reader to (6.8) for an instance of the synchronization problem with weights. Next, we let
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Fig. 3.2. A selection of top eigenvectors of the Laplacian associated to the Congress data set, exhibiting varying degrees of
localization. ε denotes the values of the inter-Congress coupling constant. The x-axis denotes time, the y-axis the eigenvector entries,
while the coloring highlights the Republican and Democratic parties. Note that in the numbering of the eigenvectors, k = 1 denotes the
first nontrivial eigenvector, and that the x-axis corresponds to the year of the Congress associated to each subset of senators.

H denote the block diagonal matrix

H = Diagonal(W
(1)
, . . . ,W

(C)
),

and note that we may decompose the matrix Z of pairwise measurements in a manner similar to the decomposition
shown in equation (3.4)

Z = H + εΩ. (3.7)

Note that if the interslice coupling constant ε is set to 0.1 or a different transformation is used in (3.6) whose range
is other than ±1, the entries of the matrix Z are no longer elements of Z2, and we interpret the fractional entries
as confidence weights associated to the pairwise measurements. We point out that the formulation in (6.8) is an
instance of such a synchronization problem with weights, since each edge measurement has an associated weight
that quantifies how similar or dissimilar the two nodes (i.e., partitions) are.
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Fig. 3.3. Left: plot of vZ1 , the top eigenvector of matrix Z of size n = 4196, that corresponds to 41 Congresses, starting with
the 70th Congress. Right: zoom in on the entries of the same eigenvector vZ1 , corresponding to the first 20 Congresses. We label the
x-axis with the number of the Congress corresponding to a subset of senators (for example the first ≈ 100 entries correspond to the
70th Congress, while the last ≈ 100 entries correspond to the 110th Congress). Note that within each Congress, the ordering of the
nodes corresponds to the alphabetical ordering of the states that senators represent.

In practice, for increased robustness to noise, we use the normalization Z = D−1Z described in Section 2,
and introduced for the first time in our previous work [17]. We refer the reader to Section 4 of [17] for a detailed
explanation of the additional noise robustness the above normalization brings, and its connection to the normalized
discrete graph Laplacian. As shown in Figure 3.3, the top eigenvector of the matrix Z shows a clear separation
of the two political parties. Due to the existing noise in the data, as often senators actually vote as if they were
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in the opposition, there are of course errors in classifying each senator as a Republican or Democrat, but the
overall accuracy is still high. Of the n = 4196 non-unique senators, we were able to correctly identify 84% of the
Republicans, and 91% of the Democrats (we ignore the 35 senators which are neither Republicans or Democrats).
Note that for the first half of the Congresses, the entries of the top eigenvector take values very close to zero,
misleading one into thinking that perhaps a large number of misclassifications are being made during that interval.
However, in the right plot of Figure 3.3 we zoom in on the first half of the Congresses, and the separation becomes
more visible, although there are clearly many more misclassifications during this time interval. To this end, we plot
in Figure 3.4 the histogram of misclassifications, separately for the Republicans and the Democrats, which shows
indeed that the most “treasons” occurred between 1960s and 1980s, and the least occurred after the year 2000.
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Fig. 3.4. Barplot of the number of Democrat (left) and Republican (right) senators that voted as if they served in the opposite
party, for each of the 41 Congresses under investigation. The x-axis denotes time in years, while the y-axis denotes the number of
misclassifications in each Congress.

We confirm our findings above by an analysis of the spectrum of each of the C = 41 Congresses. To this end, we
plot in Figure 3.5 the top 5 eigenvalues for a subset of the Congresses, illustrating the fact that in very recent years,
the third, fourth and fifth eigenvalues are very small (close to zero) when compared to their counterparts for the
Congresses up until the 1960s. In addition, we record in the left plot of Figure 3.6 the spectral gap λ3−λ2 between
the second the third eigenvalue, a proxy for measuring the bipolarity of each Congress. Similarly, the right plot of
the same Figure 3.6 shows the ratio λ3

λ2
, for each of the 41 Congresses in the interval 1927-2009. Both plots clearly

show that the spectral gaps for the last 10 Congresses are significantly larger than the spectral gaps of all previous
Congresses, thus validating our earlier conclusion from Figure 3.4 that the bipolar structure of the network was
more prominent during the last 10 Congresses. In addition, in Table 3.1 we show a list of the top 10 senators that
we have classified correctly most often, and a list of the top 10 senators that have been misclassified most often.
In other words, the latter 10 senators were the ones whose voting patterns resemble the least the voting pattern of
their respective parties, and voted as if they were in the opposition.
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Fig. 3.5. Barplot of the top five largest eigenvalues for several of the voting similarity matrices W (i), corresponding to the years
{1932, 1946, 1960, 1974, 1988, 2002}.

Another explanation that accounts for the different behavior of the top eigenvector of matrices W and Z is the
following. One may choose to interpret that the zero entries denoting the temporal separation in the W matrix
somewhat cause ”confusion“ in the eigenvector computation. This ambiguity stems from the fact that a small Wij

entry, for example Wij = 0.01, means that senators i and j are close in time (actually they belong to the same
Congress) and their voting patterns completely disagree. On the other hand, a slightly smaller entry Wij = 0
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Fig. 3.6. Barplot of the gap λ2−λ3 (left) and barplot of the ratio λ2
λ3

(right), between the second and third eigenvalue of matrices

W (1), . . . ,W (41) corresponding to the 41 Congresses between the years 1927-2009.

Party η T M State Name
D 1.00 19 19 MS Eastland
D 1.00 18 18 AR McClellan
D 1.00 17 17 VA Byrd
R 0.94 16 17 VT Aiken
D 0.75 15 20 GA Russel
R 0.87 13 15 OR Hatfield
R 1.00 12 12 NJ Case
R 1.00 12 12 NY Javits
D 0.52 11 21 MS Stennis
R 1.00 10 10 ND Langer

Party η T M State Name
D 0.50 1 2 SC Blease
D 0.33 1 3 LA Broussard
R 1.00 1 1 ND Brunsdale
R 0.09 1 11 KS Capper
D 0.33 1 3 OH Donahey
D 0.17 1 6 DE Frear
R 1.00 1 1 ID Gooding
D 0.33 1 3 OK Gore
R 0.14 1 7 MI Griffin
D 0.20 1 5 NC Hoey

Table 3.1
List the senators who were misclassified most often (i.e., “traitors”, on the left) and the least (i.e., those most “faithful” to their

party, on the right). D and R denote a Democrat, respectively a Republican. η = T
M

, where M denotes the total number of terms a
senator served on, and T denotes the number of misclassifications. Results are sorted in decreasing order as a function of T .

denotes the fact that the two senators do not belong to the same Congress and can actually be very far apart in
time, thus a totally different interpretation. In other words, the eigenvector cannot distinguish whether the very
small entries (zero or almost zero) denote completely opposite parties or temporal separation, and it is precisely this
ambiguity that we remove by using the transformation in (3.6) and conducting our analysis based on the resulting
matrix Z.

4. Robustness to noise of eigenvector synchronization over Z2. In this section, we discuss the robust-
ness to noise of the eigenvector method for synchronization over Z2. We defer to Appendix A the associated analysis
of the eigenvector method when the underlying graph G of pairwise measurements is an Erdős-Rényi random graph
(or possibly a complete graph Kn), and the subgraph of noisy edges is a random subgraph of G. We follow closely
the analysis detailed in previous work by Singer [56], pertaining to the group of planar rotations SO(2), and note
that crucial to the analysis are recent random matrix theory results of Féral and Péché [24] on the largest eigenvalue
of rank-one deformation of (real, symmetric) large random matrices.

Under the Erdős-Rényi random graph model assumption, where the graph of corrupted measurements with a
random subgraph of the existing graph, the initial measurement matrix Z = (Zij) is given by the following model

Zij =


ziz
−1
j for a correct edge with probability pα

−ziz−1
j for a incorrect edge with probability (1− p)α

0 for a missing edge, with probability 1− α
(4.1)

whose expected value can be written as a rank-one matrix. We refer to η = 1 − p as the noise level in the data.
Following the approach used in [56] and using recent results on the largest eigenvalue of rank-one deformation
matrices, one can give a similar analysis for the robustness to noise of the eigenvalue method for synchronization
over Z2 (see Appendix A), by decomposing the given matrix Z into a sum of a rank-one matrix and a random
matrix R corresponding to the noise in the measurement graph.

In Figure 4.1, we show histograms of the eigenvalues of the measurement matrix Z of size n = 1000 for the
complete graph case (thus α = 1), as well as the resulting error levels τ , for different values of the noise level p in the
data. The additional numerical simulations shown in Figures 4.2 and 4.3 further confirm the results from Appendix
A. We denote the error level by τ , i.e., the percentage of nodes whose sign has been estimated incorrectly. The heat
map in the left plot of Figure 4.2 shows the error rates for the eigenvector synchronization algorithm based on the
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Fig. 4.1. Histograms of the eigenvalues of the complete matrix Z of size n = 1000 of all pairwise measurements, for different
values of p, and the associated error levels τ .

original matrix Z of pairwise measurements, as we vary the edge probability α on the x-axis, and the noise level p
on the y-axis. The intensity of the color denotes the error level τ , with dark blue indicating a perfect recovery, and
dark red indicating an erroneous solution that is very close to random. We measure accuracy by the percentage of

nodes correctly classified. On the right plot of the same Figure 4.2, we plot the spectral gap λ
(Z)
1 − λ(Z)

2 as we vary
the same two parameters, α and p. We show similar plots in Figure 4.3, but this time we use the normalized matrix
Z = D−1Z. Note that while the recovery rates are very similar, the heat maps showing the corresponding spectral
gaps differ significantly. Therefore, for the random Erdős-Rényi graph model, the lack of a large spectral gap in the
former case does not lead to an erroneous solution, and we are still able to recover the rank-one structure. However,
we refer the reader to Section 3.2 in [17], for a detailed explanation of the additional noise robustness the above
normalization brings for the case of large degree nodes in the graph, and its connection to the normalized discrete
graph Laplacian.
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Fig. 4.2. Left: heat map showing the error level τ as we vary the noise level η and the edge probability α, based on the original
matrix Z (without any normalization). The black curve corresponds to the threshold values given by equation (8.9). Right: heat map

showing the spectral gap λ
(Z)
1 − λ(Z)

2 , as we vary η and α.

5. Synchronization by Message Passing (MPS). This section introduces a message passing algorithm
that solves the synchronization problem over Z2. The algorithm we propose is reminiscent of the message passing
algorithms responsible for some of the recent breakthroughs in the field of information theory, in particular error
correcting codes [55, 27]. Long after Shannon’s theorems from the 1950s, computationally efficient codes have been
found which approach Shannon’s theoretical limit, with turbo codes and low density parity check (LDPC) codes
achieving unprecedented error-correcting performance, and at the same time providing a theoretical understanding
of their good performance. One of the main ingredients of these decoding schemes are message passing algorithms,
such as the popular belief propagation [39, 45].

The algorithm we propose in this section to solve the group synchronization problem is also inspired by the
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Fig. 4.3. Left: heat map showing the error level τ as we vary the noise level η and the edge probability α, using the normalized

matrix Z. Right: heat map showing the spectral gap λ
(Z)
1 − λ(Z)

2 , as we vary η and α.

standard belief propagation algorithm for approximating marginal distributions for unobserved nodes conditioned
on the observed nodes [45, 65]. Our iterative algorithm relies on messages that are real numbers, which, for each
node xi, aggregate the beliefs of its neighbors to estimate the probability distribution of node xi taking value −1
or 1. An analysis of the proposed algorithm is beyond the scope of this paper, and we merely aim to present an
algorithm that is able to provide a robust solution to the synchronization problem even when additional constraints
are imposed.

The synchronization problem SYNC(Z2) can also be regarded as a decoding problem. The information zi, i =
1, . . . , n at the nodes of the graph is encoded in m edges, in the form of pairwise measurements et = ziz

−1
j , (i, j) ∈ E,

t = 1, . . . ,m. The coded message, i.e., the set of edge measurements e1, . . . , em, has been corrupted by a noisy
channel, and the problem is to infer the message that was initially transmitted, i.e., the (group) elements zi ∈
Z2,∀i = 1, . . . , n. In other words, we are trying to send n bits of information encoded in a block message of m bits.
In the absence of noise, any m = n− 1 edges forming a spanning tree of G will provide an accurate solution. Once
we start adding noise to the edge measurements, more and more edges (i.e., redundant information) will be required
in order to recover a meaningful solution. In other words, m will be greater than n so as to provide redundancy
that can be used to recover the original message from the errors induced by the noisy channel.

The rest of this section summarizes the message passing synchronization (MPS) algorithm we propose to solve
SYNC(Z2). At each iteration of the algorithm, we update the belief at each node on what its value should be, i.e.,
+1 or −1. We denote by p+,r

i (respectively, p−,ri ) the probability that, at iteration r, the value of node xi is +1
(respectively, −1), and note that p+,r

i + p−,ri = 1. At the same time, at each iteration we update the weight of each
existing edge, to reflect the current level of confidence on the associated measurement being correct. We denote by
w+,r
ij (respectively, w−,rij ) the probability that, at iteration r, the edge (i, j) ∈ E is correct, given that the value of

the available measurement Zij equals 1 (respectively, −1).

Let us first have a short digression on elementary probability, that will give some intuition for the messages
passed along the graph at each iteration. Let Xi and Xj denote binomial random variables {±1} associated to
nodes i and j, with success probabilities p+

i and p+
j , i.e., P [Xi = 1] = p+

i and P [Xi = −1] = p−i = 1 − p+
i and

similarly for Xj . We let πij = XiXj , denote its associated success probability P [πij = 1] by π+
ij , and note that

π+
ij = p+

i p
+
j + p−i p

−
j . To model the noise in the channel, we associate to every edge (i, j) ∈ E a random variable Fij

Fij =

{
1 with probability p
−1 with probability η = 1− p. (5.1)

In other words, a measurement Zij is correct if and only if Fij = 1, which happens with probability p. We can now
think of the observed measurement on edge (i, j) ∈ E as a random variable Zij given by Zij = XiXjFij = πijFij .
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We use Bayes’ Law to estimate the edge weights as follows

w+
ij

def
= P [Fij = 1|Zij = 1] =

P [Zij = 1|Fij = 1]P [Fij = 1]

P [Zij = 1]

=
P [XiYj = 1]P [Fij = 1]

P [Zij = 1]
(5.2)

where

P [Zij = 1] = P [Zij = 1|Fij = 1]P [Fij = 1] + P [Zij = 1|Fij = −1]P [Fij = −1]

= P [XiXj = 1]P (Fij = 1) + P [XiXj = −1]P (Fij = −1)

= (p+
i p

+
j + p−i p

−
j )p+ (1− p+

i p
+
j − p

−
i p
−
j )(1− p) = (p+

i p
+
j + p−i p

−
j )(2p− 1) + 1− p. (5.3)

Since we will be updating the edge weights at each iteration, we denote by w+,r
ij and w−,rij the edge weights at

iteration r. The update rules at round r + 1 are given by

w+,r+1
ij =

(p+,r
i p+,r

j + p−,ri p−,rj )p

(p+
i p

+
j + p−i p

−
j )(2p− 1) + 1− p

=
π+
ijp

π+
ij(2p− 1) + 1− p

, (5.4)

for the positive edges (i.e., for which Zij = 1), and similarly for the negative edges (i.e., for which Zij = −1 )

w−,r+1
ij = P [Fij = 1|Zij = −1] =

(1− p+,r
i p+,r

j − p−,ri p−,rj )p

1− (p+
i p

+
j + p−i p

−
j )(2p− 1)− 1 + p

=
(1− π+

ij)p

p− π+
ij(2p− 1)

.

Within the same iteration r + 1, after updating the edge weights as shown above, we update the local beliefs
at each node using the following rule

p+,r+1
i 7→

∑
j∼i

p+,r
j w+,r+1

ij 1{Zij=1} +
∑
j∼i

p−,rj w−,r+1
ij 1{Zij=−1}, (5.5)

and similarly for p−,r+1
i . In order to interpret the beliefs (i.e., weights) at each node as probabilities, we normalize

them such that p+,r+1
i + p−,r+1

i = 1. Note that the beliefs updated at each iteration of our proposed procedure are
the edge beliefs w+,r

ij ∈ [0, 1] in (5.4) (respectively w−,rij ∈ [0, 1]) for very edge (i, j) in the graph G, and the vertex

beliefs p+,r
i ∈ [0, 1] in (5.5) (respectively, p−,ri ∈ [0, 1]) corresponding only to the non-anchor nodes in the graph,

since the beliefs of the anchor nodes remain unchanged throughout the iterative process.
The intuition for (5.5) is given by the following. If we observe that edge (i, j) has value Zij = +1, then the

contribution to the belief that node i has value +1 is given by the probability that node j has value +1 (i.e.,
p+,r
j ) weighted by the confidence that edge (i, j) is correct. Similarly, if we observe a measurement (i, j) with

value Zij = −1, then the contribution to the belief that node i has value +1 is the probability that node j has
value −1 weighted by the confidence that edge is correct. We denote as anchors the nodes whose associated group
element (i.e., sign) is known a-priori and note that one can easily incorporate anchor information in the above MPS
algorithm. We initialize the algorithm (at iteration 0) as follows, for a non-anchor node i we set p+,0

i = p−,0i = 0.5,

while for an anchor node i we set p+,0
i = 1 if ai = 1, or p−,0i = 1 if ai = −1 (and enforce such constraints given by

the anchors at all iterations, i.e., for anchor nodes, the probabilities p+,r
i , p−,ri remain unchanged throughout the

iterations). In other words, our proposed message passing algorithm propagates across the network the information
given by the anchors. Finally, note that when there is no anchor information in the network, we simply pick a single
node at random (the root node), fix its sign and consider it an anchor (in this case the final solution will be given
up to a global sign change, as mentioned in Section 2).

We tested the above MPS algorithm for three different families of graphs and noise models. In the first model
shown in Figure 5.1, we plot the recovery rates for the case when G is the complete graph on n = 100 vertices
G = K100, and the subgraph H of bad edges, i.e., edges with incorrect measurements, is (approximately) a regular
graph of degree d. The probability of an erroneous measurement is given by η = 1− p = d

n−1 , since every node has
approximately d bad incident edges out of a total of n− 1 incident edges. Thus, we only vary d in the range [15, 50]
that would correspond to a noise level η in the range [15%, 50%]. The x-axis in Figure 5.1 represents the degree d
of the bad graph H, and the y-axis is the recovery error τ , i.e., the percentage of nodes whose sign was incorrectly
estimated.

We vary the number of anchors in the range h = {1, 10, 20, 30}, and remark that the number of anchors
has an impact on the performance of any synchronization algorithm since anchors carry already known accurate
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information. We compare the results of the MPS algorithm with those achieved by the eigenvector synchronization
methods (when h = 1) and the two versions of the quadratically constrained quadratic program (QCQP) based
approach for synchronization with anchors (when h > 1). We refer the reader to Appendix B for a review of the
QCQP relaxations which are able to incorporate anchor information. The results of this first experiment, averaged
over 100 runs, indicate that the eigenvector method clearly outperforms the MPS algorithm for low levels of noise
(especially for a small number of anchors), but the MPS algorithm consistently returns more accurate solutions for
very high levels of noise. Note that the marginal advantage one method has over the other, in the lower or higher
end of the noise spectrum, diminishes as the number of anchors increases.
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Fig. 5.1. Comparison of the eigenvector/QCQP and MPS algorithms when G is the complete graph on n vertices G = K100, and
the underlying subgraph H of bad edges (i.e., noisy edges) is approximately a regular graph of degree d (x-axis). We vary the number
of anchors h in the range {1, 10, 20, 30}, and average the result of each experiment over 100 runs.

In Figure 5.2, we perform a similar experiment for the case when G = Kn again, but this time the subgraph H
of bad edges is a random Erdős-Rényi graph. In this noise model, the performance of the MPS algorithm is strictly
inferior to that of the eigenvector methods and QCQP formulations, across all levels of noise in the measurements
and all numbers of anchors.
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Fig. 5.2. Comparison of the eigenvector/QCQP and MPS algorithms when G is the complete graph on n = 100 nodes G = K100,
and the underlying subgraph of noisy edges H is an Erdős-Rényi random graph G(n, α) of expected degree d, where α = d

n−1
. We vary

the bad degree d (x−axis), experiment with different number of anchors h = {1, 10, 20, 30}, and average the result of each experiment
over 100 runs.

We plot in Figure 5.3 the recovery rates when G is a scale-free graph generated using the popular preferential
attachment model, while the subgraph H of bad edges is a random Erdős-Rényi graph. Following the preferential
attachment model [8], we grow a graph by adding new vertices one by one, with each new node having exactly mpa

edges connecting it to already existing nodes, chosen proportionally to their degrees. In this scenario, the MPS
algorithm performs worse than the eigenvector method, but as the number of anchors increase the performance of
the MPS algorithm almost matches the one of the QCQP formulations.

As a final set of experiments, we also compare the results of the above proposed MPS algorithm with the
quadratically constrained quadratic program (QCQP) and SDP-based methods for synchronization with anchors
introduced in [19] and reviewed in Appendix B, when the adjacency graph of available pairwise measurements is
an Erdős-Rényi graph G(n, α) with n = 75 and α = 0.2. Furthermore, the corrupted edges are chosen at random
from the existing edges with probability η. We vary the number of anchors h = {5, 15, 30, 50}, chosen uniformly
at random from the n nodes, and we average the results over 50 runs. The results in Figure 5.4 show that the
performance of the MPS algorithm is very similar to the one of its competitors, especially for a large number of
anchors.

An analysis of the above message passing algorithm in terms of its convergence and robustness to noise is a
project in itself and is beyond the scope of this paper. We believe that there are two main reasons that make the
formulation of SYNC(Z2) as a message passing algorithm appealing. First, in the presence of anchors, MPS may
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(a) mpa = 10
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Fig. 5.3. Comparison of the eigenvector/QCQP and MPS algorithms when G is a graph on n = 100 nodes which follows the
preferential attachment model where a new node is incident with mpa already existing nodes chosen with a probability proportional to
their degree. The underlying subgraph of noisy edges H is an Erdős-Rényi random graph G(n, α) of average degree d. We vary the bad
degree d (x−axis), and average the result of each experiment over 100 runs.
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Fig. 5.4. Comparison, in terms of robustness to noise, of the five algorithms proposed for synchronization with anchor information:
the two QCQP formulations using the two different constraints: zT z = s and zTDz = ∆ as they appear in equations (9.2) and (9.3),
the two SDP-based formulations SDP-Y and SDP-XY as formulated in (9.5) and (9.6), and finally the message passing synchronization
algorithm MPS. We denote by s the number of sensors s = n−h, and by ∆ the sum of the degrees of all sensors. The adjacency graph
of available pairwise measurements is an Erdős-Rényi graph G(n, α) with n = 75 and α = 0.2, and the subgraph of corrupted edges is
a random subgraph of G. Also, h denotes the number of anchors, chosen uniformly at random from the n nodes. Results are averaged
over 50 runs.

give superior results when compared to the eigenvector formulation, over certain noise regimes and models. Second,
the MPS algorithm enjoys the flexibility of incorporating additional constraints that may not be accommodated
by any of the other formulations. As an example, we point out the k-SYNC problem from Section 6.1, where
we easily incorporate into the message passing algorithm constraints specific to the k-SYNC problem (6.9), where
all nodes within a given partition correspond to the same unknown group element. Note that the SDP-based
formulation, which can easily accommodate the constraints given by anchors or partitions (as described in Section
6) is computationally expensive when compared to the MPS algorithm, although also more robust.

As an overall conclusion, the numerical simulations detailed in this section suggest the computationally appeal-
ing MPS algorithm is perhaps more suitable for certain instances (underlying graph models) of the synchronization
problem when we are aware that there is a large amount of noise in the available measured data. Otherwise, we
expect the eigenvector method to yield more robust results, though it is an interesting question whether there exist
families of graphs for which the MPS method yields better solutions that the eigenvector method, even at low levels
at noise.

We point out that the above proposed message passing algorithm bears similarities with other propagation
models considered in the literature in the past decades, but it is also distinct in the sense that it is a (deterministic)
algorithm that solves a problem where edges, whenever present, carry additional information on the pairwise
interaction between pairs of nodes. The popular voter model is a stochastic model for opinion formation among
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interacting agents of a finite population [36], in which any given agent flips its state to a new state at a rate that
is proportional to the number of neighbors that posses that new state, and one of the main questions of interest is
consensus of the finite system to a given state. Another line of work similar to our proposed MPS approach is given
by the very popular information cascades models [10, 7], where agents make decisions sequentially based on a mix
of own private information but also that of interacting agents, and the probability that a particular choice is the
best one is computed via Bayes’s Rule, as MPS also does. However, at a give node, MPS aggregates information
from its neighbors based on both the belief of its neighbors and the beliefs on the incident edges that capture
the pairwise interaction measurements and thus encode the group structure available in the group synchronization
problem. Others such models include the popular Sznajd model for the dynamics of opinions and consensus in a
population [57, 58], the Deffuant model for social influence, where randomly chosen agents interact to mix opinions
only if the distance between their respective opinions are shorter than a prescribed threshold [21, 53, 25].

Finally, we point out an encouraging analogous situation in the case of the planted clique problem, where a
recent improvement over spectral methods is due to a belief propagation algorithm. In the planted clique problem,
one chooses a random graph G(n, 1

2 ) and a random subset Q of vertices of size K and force it to be a clique by
connecting every pair of vertices of Q by an edge. The goal is to give a polynomial time algorithm for finding the
planted clique almost surely for various values of K. Until recently, the best polynomial-time algorithms require
that K ≥ c

√
n for some constant c, first achieved by [2] through a spectral technique. The recent result of [22]

shows that the planted clique can be identified in nearly linear time if the clique size is at least (1 + ε)
√
n/e, for

any ε > 0 (thus below the spectral threshold
√
n), and does so via an algorithm derived from belief propagation, a

heuristic method for approximating posterior probabilities in graphical models.

6. Synchronization for Partition Networks (k-SYNC). The problem of synchronization over the group
Z2 with partition constraints can be stated as follows. To each node vi ∈ V of the graph G, there corresponds an
unknown group element zi ∈ Z2. Given a partition of the vertex set V into k pairwise disjoint non-empty subsets
A1, . . . ,Ak with

Ai ∩ Aj = ∅, ∀ i 6= j ∈ {1, . . . , k} and
⋃

1≤j≤k

Aj = V (G) (6.1)

such that zj1 = . . . = zjt ∈ Z2 for vj1 , . . . , vjt ∈ Aj (with |Aj | = t), the task is to recover the unknown group
elements z1, . . . , zn ∈ Z2 from an incomplete set of (possibly noisy) pairwise group measurements ziz

−1
j , for (i, j) ∈ E

and vi ∈ Au, vj ∈ Av, and u 6= v. In other words, we partition the graph nodes into k disjoint subsets, where each
subset corresponds to some unknown group element θl ∈ Z2, l = 1, . . . , k. Given a sparse noisy sample of pairwise
measurements between pairs of nodes that belong to two different partitions, the task is to recover the unknown
group elements θl, l = 1, . . . , k, and thus implicitly of all n nodes since zj1 = . . . = zjt = θl ∈ Z2, if xj1 , . . . , xjt ∈ Al.

Figure 6.1(a) illustrates an example of a multipartite network with k = 4 partitions. We show in Figure 6.1
(b) and (c) the adjacency matrices of the subgraphs of good (correct) and bad (incorrect) edges, and note that all
edges with endpoints within the same partition always carry correct pairwise measurements that are equal to +1
since nodes within the same partition Ai denote the same group element θi, and θ2

i = 1,∀θi ∈ Z2.
We denote by k-SYNC the above synchronization problem over Z2 with the additional constraints that nodes

within the same partition all correspond to the same unknown group element. In the context of the Congress data,
the additional information is that the same senator may serve on multiple (not necessarily consecutive) Congresses.
We denote by mi the multiplicity of each distinct senator i, i.e., the number of Congresses she or he has served on.
The average multiplicity of all senators serving in the first 41 Congresses is m = 5.3. Since it is reasonable to assume
that a senator will maintain the same political orientation across different Congresses, we would like to use this
information to robustly detect the party affiliation of each senator across time. From the perspective of the k-SYNC
problem, the network with n = 4196 nodes in the Congress data may be partitioned into k = 735 non-overlapping
subsets of nodes, one for each unique senator. The nodes within each partition block Au correspond to all mandates
of senator u across time.

6.1. Spectral and SDP algorithms for the k-SYNC problem.. The partition-constrained synchroniza-
tion problem can be formulated as follows

maximize
z=(z1,...,zn)∈Zn

2

zTZz

subject to zTz = n

zizj = 1, ∀ i, j ∈ Au, ∀u = 1, . . . , k.

(6.2)

Note that if the number of partitions k is large and close to n, then the additional constraints contribute with less
information, and are less helpful in increasing the robustness to noise of any algorithm one may use. On the other
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Fig. 6.1. (a) An example of a multipartite network with four partitions {A,B,C,D}, where the blue, respectively red, edges
across the partitions denote the correct, respectively incorrect, pairwise measurements between pairs of points that belong to different
partitions. δij = 1 denotes a correct measurements, while δij = −1 denotes a corrupted measurement. (b) The adjacency graph of good
edges. Note that all edges with endpoints within the same partition always denote correct measurements δij = 1. (c) The adjacency
graph of bad edges δij = −1.

hand, if k is small relative to n, then we are facing an easier task since there are less group elements to the recovered
and a large amount of redundant information in the network. Note that the case k = n corresponds to the usual
synchronization problem discussed in Section 2 when no additional information is available. Unfortunately, since
the above quadratic program (6.2) can no longer be cast as an eigenvector problem, we consider again a relaxation
via semidefinite programming. The objective function in (6.2) can be written as

n∑
i,j=1

ziZijzj = Trace(ZΥ) (6.3)

where Υ is the n× n symmetric rank-one unknown matrix with entries ±1

Υij =

{
ziz
−1
j if i ∈ Au, j ∈ Av, u 6= v

1 if i, j ∈ Au u = 1, . . . , k.
(6.4)

Note that Υ has ones on its diagonal Υii = 1, i = 1, . . . , n, and the partition information gives another layer of hard
constraints in the form of block submatrices with all ones entries, since the pairwise measurement between a pair
of nodes that belong to the same partition is always 1. The SDP formulation is now

maximize
Υ∈Rn×n

Trace(ZΥ)

subject to Υij = 1 if i, j ∈ Au, u = 1, . . . , k

Υ � 0,

(6.5)

where the maximization is taken over all semidefinite positive real-valued matrices Υ � 0. Since Υ is not necessarily a
rank-one matrix, the SDP-based estimator is given by the best rank-one approximation to Υ, which can be computed
via an eigen-decomposition. From a computational perspective, solving such SDP problems is computationally
feasible only for relative small values of n (typically several thousand unknowns, up to n = 10 − 15, 000), though
there exist distributed methods for solving such convex optimization problems, such as the popular Alternating
Direction Method of Multipliers (ADMM) [14] which can handle large-scale problems arising in statistics and
machine learning [67]. The remainder of this section describes several algorithms for solving the k-SYNC problem
with partition constraints.

Algorithm EIG-k-SYNC. Unfortunately, due to the additional constraint, the above maximization in (6.2)
can no longer be cast as an eigenvector problem. One obvious approach to solving (6.2) is to ignore the second
constraint and solve the resulting problem using the eigenvector method. If the data is not very noisy and the
underlying graph G is not very sparse, or k is large compared to n, then we expect the eigenvector method to
perform well, even without taking advantage of the additional constraint information. We denote by EIG-k-SYNC
the approach of solving k-SYNC without taking the partition constraints into account.
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Algorithm MVEIG-k-SYNC. The next natural step is to enforce the additional constraints after running
EIG-k-SYNC, by a simple majority voting rule such as

z̄Al
= z̄l1 = z̄l2 = . . . = z̄lt = Majority(zl1 , zl2 , . . . , zlt), (6.6)

where Majority(zl1 , zl2 , . . . , zlt) = +1 if at least half of the elements have value +1, and −1 otherwise. We denote
by MVEIG-k-SYNC the synchronization algorithm which first runs EIG-k-SYNC followed by the majority voting
scheme applied as a post-processing step. As expected, MVEIG-k-SYNC performs better than EIG-k-SYNC, but
is not very robust at high levels of noise. Its disadvantage is that it is not able to integrate the partition constraints
during the eigenvector computation.

Algorithm PART-k-SYNC. Next, we consider another eigenvector formulation which synchronizes the par-
tition graph (to be made clear shortly) of size k, as opposed to synchronizing the original graph G of size n. This
approach is able to integrate the constraints across partitions at the price of losing information between the ini-
tial individual nodes belonging to different partitions. To each partition block Ai we associate a node ai, whose
value in the final solution will give the sign to all nodes in partition Ai. For each pair of partition blocks Ai and
Aj , denote by E(Ai,Aj ,+) (respectively, E(Ai,Aj ,−)) the number of existing edges with a +1 (respectively, −1)
measurement, that connect a node in Ai with a node in Aj . We let E(Ai,Aj) = E(Ai,Aj ,+) +E(Ai,Aj ,−), and
note that E(Ai,Aj) is the number of edges connecting partition blocks Ai and Aj . We define the partition graph
GA = (V A, EA) to be the graph of size k with node set V A = {a1, a2, . . . , ak} and edge set EA, where GAij = 1

if E(Ai,Aj) > 0 (and we say the two partitions are adjacent), and GAij = 0 otherwise. For every pair of adjacent
partitions, we would like to compute the pairwise group measurement, i.e., decide whether the two partitions have
the same sign or no. To that end, we build the matrix W of size k × k, where

W ij =

 +1 if(i, j) ∈ EA and E(Ai,Aj ,+) > E(Ai, Aj ,−)
−1 if(i, j) ∈ EA and E(Ai,Aj ,+) < E(Ai,Aj ,−)

0 if(i, j) /∈ EA or E(Ai,Aj ,+) = E(Ai,Aj ,−).
(6.7)

Yet, a better approach would be to weight the pairwise measurement between two adjacent partitions, and interpret
this as a measure of confidence on the measurement. Thus, for the synchronization of the partition graph we use
the following similarity matrix

Wij =


+
E(Ai,Aj ,+)
E(Ai,Aj) if(i, j) ∈ EA and E(Ai,Aj ,+) > E(Ai,Aj ,−)

−E(Ai,Aj ,−)
E(Ai,Aj) if(i, j) ∈ EAand E(Ai,Aj ,+) < E(Ai,Aj ,−)

0 if(i, j) /∈ EA or E(Ai,Aj ,+) = E(Ai,Aj ,−).

(6.8)

We are now ready to synchronize the partition graph whose pairwise relations are given by matrix W , and infer the
sign of each partition. One criticism of this approach is that the good measurements between pairs of nodes get
“diluted” when converting them to measurements between pairs of partitions. Also, if the sign of a partition node
ai is inferred incorrectly, so will be the sign of all nodes in partition Ai.

Algorithm SDP-k-SYNC. We denote by SDP-k-SYNC the algorithm which solves the SDP formulation in
(6.5), and remark that SDP problems are expensive to solve compared to the eigenvector-based methods and our
proposed message passing algorithm, since the complexity of solving an SDP problem scales as O(n3), i.e., cubic in
the number of nodes in the graph [60, 49].

Algorithm MPS-k-SYNC (Message Passing Synchronization). Finally, we also consider the message
passing synchronization formulation introduced in Section 5. In light of the structural information available in the
k-SYNC problem, we have modified the algorithm in the following two ways. First, at each iteration, we reinforce
the edge weights within the partitions to be 1, i.e., w+,r

ij = 1, since zizj = 1 whenever both i and j belong to the
same partition Au. Second, at each iteration, we update the node probabilities within each partition Au to reflect
the average belief of all nodes within Au, since they all have the same sign. More precisely, if Au is a partition
of size l, with nodes Au = {y1, . . . , yl}, then we update the individual node probabilities to the average belief of
all nodes within the partition. However, to obtain a more accurate estimate for the value of the current belief on
the overall sign of a partition block Au, we choose to compute the median, rather than the mean, of the individual
nodes probabilities contained in Au

p+,r
yi 7→ median(p+,r

y1 , . . . , p+,r
yl

),∀i = 1, . . . , l. (6.9)

We update p−,ryi similarly, and note that the equality p+,r
yi +p−,ryi = 1,∀yi ∈ Au remains valid. If the noise level in the

original pairwise measurements zizj is small, then we expect that at each iteration r, the probabilities p+,r
y1 , . . . , p+,r

yl
will have small variance and take values close to 0, or all close to 1 (and p−,ry1 , . . . , p−,ryl

will take values close to 1,
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respectively 0). However, for higher levels of noise, many of the above probabilities will be very inaccurate (i.e.,
very far from their true value of 0 or 1), and we choose the median value as a more robust approximation for the
aggregated belief of all nodes within a partition.

6.2. Numerical results for the k-SYNC problem. This subsection details the empirical results when
using all the above algorithms for solving the k-SYNC problem for two synthetically generated networks and
the real Congress data set previously introduced in Section 3. In the Congress data, the two communities (the
Republican and Democrats) are roughly the same size, and this is also the case for the synthetic data. For the
latter case, each senator is a republican or democrat with equal probability, thus the sizes of the two parties is
approximately equal.

Synthetic Congress model I. The first synthetic example we consider closely models the Congress voting
data set. We fix the number of Congresses C = 10, and the number of senators n = 20 in each Congress. A senator
that participates in any given Congress also serves on the next Congress with probability γ (that we refer to as
the “persistence probability”). The number of unique senators that serve across the 10 Congresses is on average k,
and their average multiplicity m (average number of terms a senator serves on). Throughout the experiments, we
let the ground truth variables zi take value ±1 with equal probability. The plots in Figure 6.2 show the recovery
errors (averaged over 25 runs) as we increase the noise level, for three different values of the persistence probability
γ = {0.5, 0.75, 0.95}. The ranking of the algorithms is consistent across the three networks. SDP is the best
performer, closely followed by MV-EIG, EIG. The PART-EIG algorithms performs very similar to the latter two
ones when the network is sparse (γ = 0.5), but worse for the other two denser networks. MPS is the worst performer,
especially when the measurement graph G is sparse.
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Fig. 6.2. Model: 10 Congresses, each with 20 senators (each one equally likely to be a ±1, i.e., a Republican or a Democrat),
and each congress is a G(n, α) with n = 200 and α = 0.50. A senator from Congress i gets to serve in Congress i+ 1 with probability
γ. For each γ, k is the resulting number of partitions (results are averaged over 25 runs) and ν the frequency of occurrence of each
senator. Note that n = kν = 200. The x-axis is the noise level (the probability that a measurement zizj is flipped) and the y-axis is
the recovery error (the percentage of nodes whose sign is estimated incorrectly).

Synthetic benchmark II. In Figure 6.3 we consider a second set of experiments on a different network model,
where we assume that all partition sets have the same size m = 200

k , nodes within the same partition correspond
to the same element zi ∈ Z2, and for any pair of nodes that belong to two different partitions there is available
information on their measure of similarity/dissimilarity. We point out that this synthetic model is not appropriate
for a Congress model since it is unrealistic to assume that one can extract a similarity measure for two senators
in two different (perhaps very far apart in time) Congresses. However, it still remains a valid benchmark for a
synchronization algorithm on a partitioned network.

The adjacency graph of the network is a random Erdős-Rényi graph G(n, α) with n = 200 and α = 0.10, with
the additional constraint that nodes that belong to the same partition are always connected. In other words, a
pair of nodes (i, j) from distinct partitions share an edge with probability α and have Zij = ±1 depending on their
measure of similarity and whether the edge has been corrupted with noise or no, while nodes (i, j) within the same
partition are connected with probability 1 and have Zij = 1. Note that the graph is no longer a “time series” graph
as in the previous example, and the “line” structure no longer exists. In our experiments, we vary the number of
partitions in the range k = {5, 10, 20, 25, 50, 100}. When k is small (and hence m large) all algorithms perform very
well as most of the edges in the graph have noiseless measurements, and only edges across different partitions can
be corrupted by noise. On the other hand, for large values of k, the sizes of the complete subgraphs of noiseless
edges that span nodes corresponding to the same partition is much smaller, and a larger percentage of edges are
subject to having their measurement corrupted by noise. As expected, in the latter scenario, the noise robustness
of all algorithms degrades, with SDP and MPS being the best, respectively worst, performers.
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Fig. 6.3. A network of n = 200 nodes partitioned into k blocks of equal size m = 200
k

. Each block corresponds to a unique
senator, and all nodes within the same partition correspond to multiple terms that senator has served on. The graph is no longer
a “time-series” graph, but an Erdős-Rényi G(n, α) with n = 200 and α = 0.10. Note that in this model the ”line” structure of the
network is no longer present.

Real Congress data set. Finally, we apply the aforementioned algorithms to the voting Congress data set.
As previously described in Section 3, it is very often the case that a senator serves on multiple Congresses. Note
that usually senators serve on consecutive Congresses, but this is not always the case. Furthermore, for the purpose
of this experiment, we restrict out attention only to the first 20 consecutive Congresses, due to the computationally
expensive SDP computations. We start as described in Section 3, by linearly mapping the voting agreement patterns
(percentage of laws on which two senators agree) to values in the interval [−1, 1] using the transformation (3.6).
For increased robustness, we hard-threshold the entries of matrix W by zeroing out those whose absolute value is
smaller than a chosen threshold θ = 0.45. Our choice for the value of θ was made with two considerations in mind.
A small value of θ would allow for a larger number of noisy measurements, while a large value would filter out many
noisy edges. However, a large value for θ would disconnect the underlying graph associated to the matrix W of
pairwise measurements. We have also experimented with smaller values of the parameter θ, but have consistently
obtained less accurate results across all algorithms.

We have tested the five algorithms described at the beginning of this Section for solving the k-SYNC problem
on the real Congress data set. We conducted experiments in an incremental approach, by expanding the network
to include an additional Congress at each step. In other words, we start by synchronizing the first Congress, where
each node of the network corresponds to a unique senator. In the next experiment, we add the second Congress,
and already there are senators who have served on both Congress. When considering multiple Congresses, we
denote the multiplicity of a senator to be the number of distinct Congresses on which she or he served. More
specifically, for a given voting network on a total of n nodes that span r consecutive Congresses, each of size S,
with n = rS, we denote the unique senators by u1, . . . uk ∈ Z2 and their corresponding multiplicities by m1, . . . ,mk,
with m1 +m2 + . . .+mk = n.

As we add more Congresses to the network, more and more senators will have participated in multiple Con-
gresses. The middle plot in Figure 6.4 shows the histogram of the number of (non-necessarily consecutive) terms
each of the k = 735 unique senators has served on, across all 20 Congresses we considered. Note that a senator
serves on average on 5.6 terms, and very few senators serve on more than 15 Congresses. The right plot in Figure
6.4 shows the average multiplicity of the senators during the first 20 consecutive Congresses. Note that, as time
goes on, the average multiplicity increases which means that senators tend to serve on more Congresses and only
a few new senators join the Congress. This last figure also explains the descending slope of the error rates for all
algorithms. Any senator ui that has served on multiple terms adds more “redundancy” to the network, in the sense
that we have available a larger number of voting patterns for senator ui, which makes it easier to decide to which
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party she or he belongs to.
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Fig. 6.4. Left: the error rates as we increase the number of Congresses, across all algorithms proposed for k-SYNC. Middle:
histogram of the multiplicity of all senators, at the end of the 20 Congresses we have considered in this experiment. Right: The average
multiplicity of a senators, as the number of Congresses increases.

7. Summary and open related problems. In this paper we have investigated the synchronization problem
over the group Z2, where the goal is to recover the unknown group elements from noisy pairwise measurements
of their ratios. We applied the eigenvector synchronization method to the U.S. Congress roll call voting data set,
to robustly identify the two political parties across time, taking into account the additional constraints due to
senators serving on multiple Congresses. We used tools from random matrix theory, in particular recent results on
perturbation of rank-one matrices, to give an analysis of the robustness to noise of the eigenvector method when
the underlying graph of pairwise measurements is the Erdős-Rényi random graph. Furthermore, we also proposed
a message passing synchronization algorithm that outperforms the existing eigenvector synchronization algorithm
only for certain classes of graphs and noise regimes, and also enjoys the flexibility of incorporating additional
constraints that may not be easily accommodated by any of the other spectral or SDP-based methods. Finally, we
have proposed and compared the performance of several algorithms based on spectral and SDP relaxations, and
message passing, for the synchronization problem over Z2 when one has the additional information that certain
subsets of nodes (that altogether form a partition of the network) represent the same unknown group element.

There are a number of interesting open questions left for future investigation. One such question relates to
the noise sensitivity analysis of the eigenvector synchronization method for various noise models, and when the
underlying graph is no longer complete or Erdős-Rényi, but a random geometric graph or any other graph that has
local structure. This calls for more advanced tools from random matrix theory in order to understand the behavior
of the largest eigenvalue of low-rank perturbations of large structured random matrices.

Another interesting direction to consider is an application of our methods to other data sets of similar nature.
For example, in finance, the given data may be readily available in the form of correlation matrices indexed by time.
Consider for example an instance where one has available a correlation matrix (based on daily prices) between a
class of n assets, for each year during the past N years. For example, one may be interested in tracking the evolution
of a certain index which, at any given time, tracks a basket composed of n stocks that have a natural separation
into two categories (for example stocks belonging to two different industries). At the end of the year, the index
is rebalanced, meaning that certain stocks will drop out of the index and others will join the index, such that the
number of constituents in the index remains constant n. Instances of such data are ubiquitous in the financial world,
where companies belonging to a given sector behave as they belong to a another sector (for example, an airline
company which has high exposure to the financial sector, would be closer in behavior to the financial sector than to
its own airline sector). Such an approach could be used to detect misclassifications in existing hierarchical divisions
such as the standard GICS (Global Industry Classification System) or ICB (Industry Classification Benchmark)
[61, 15].

An analysis of the convergence and robustness to noise of the proposed message passing algorithm, and the
investigation of a possible phase transition behavior are other venues of research, beyond the scope of this paper.
A much more ambitious goal would be to further expand the proposed algorithm to groups other than Z2 (for
example, SO(d) or O(d)) and compare it with the existing spectral and SDP relaxations.

Furthermore, understanding the role of the lower-order eigenvectors in the synchronization problem and the
extent to which one may extract useful information from them is another question of interest. Empirical evidence
in the case of Z2 suggests that subsequent eigenvectors localize on the “inconsistent” parts of the network, i.e.,
subgraphs whose edges contain the largest amount of noise. In other words, our preliminary investigation suggests
that such lower order eigenvectors point out local cuts in the underlying subgraph of noisy edges.
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Continuing the analogy with the graph cut problem, another interesting question concerns a flow-based approach
for solving the synchronization problem. SDP, spectral and flow-based methods are the three main classes that
cover the most popular graph partitioning relaxation algorithms, usually with tradeoffs between cut quality, balance
and computational cost. However, the group synchronization problem is currently solved via SDP and spectral
relaxations, and no flow-based approach currently exists.

The eigenvector method itself cannot accommodate available additional information, such as the existence of
anchors or partition information. However, it would be interesting to explore whether the traditional power method
can be modified to incorporate such additional constraints at each iteration (for example, reinforcing at each round
that the entries corresponding to the available anchors have the desired sign), and to analyze the convergence and
robustness to noise of this approach.

One may also consider an online version of synchronization, for a graph whose set of nodes increases by one
at each iteration. At each update a new vertex vi is added to the graph Gt, with V (Gt+1) = V (Gt) ∪ {vi}, and
vi is connected to k randomly chosen existing vertices in Gt, with the new edge connections holding both accurate
and noise corrupted pairwise measurements between the new node and the rest of the graph. A trivial approach to
classifying the polarity of the new node would be to consider all its neighbors, and assume their polarity is fixed and
already available (from a previous solution for Gt). Each such neighbor vj contributes with a vote on the possible
parity of node vi, i.e., the vote would be Zijzj . Considering all the k votes from the neighbors of vi, one can then
consider the majority vote and decide on the parity of the new node vi accordingly. In other words, the estimate
would be given by

ẑi = median(Zij1 ẑj1 , . . . , Zijk ẑjk) (7.1)

Alternatively, one may explore a Nystrőm extension-based method, to integrate consistently on the fly the newly
arrived information with the existing one, without having to recompute from scratch a global solution. While the
addition of a new node, or several such new nodes, may not affect the stability of the overall accuracy of the current
assignment, one may expect that if enough new nodes are added to the network, the current solution (obtained
via the above Nystrőm extension procedure) may be significantly different than the solution one would obtain by
recomputing from scratch a new global solution of Gt+1 taking into account the newly arrived information (either via
the eigenvector synchronization algorithm or the SDP approach if additional constraints exist). Thus, it is natural
to ask how often does one need to recompute a global solution for such an online algorithm and still preserve the
accuracy of the overall solution. For example, the percentage of unhappy edges (edges for which zizjZij = −1) may
be a useful proxy for deciding when a global recalculation for Gt+1 is required.

Another question worth investigating is a combinatorial characterization of synchronizable graphs, i.e., graphs
for which the synchronization problem yields a perfect solution under certain combinatorial sufficient and necessary
conditions on the underlying subgraphs of good and bad edges. Perhaps a first step in the above direction would be
to provide such a combinatorial characterization for certain families of graphs. A trivial example in this direction
is the following. If every bad edge et = (i, j) of the graph G is contained in a subgraph Ht = K4 such that
|V (H)∩V (G\H)| = 1 and the remaining other 5 edges of Ht are all correct, then we know for sure we can provide a
perfect solution for the synchronization problem. This stems from the following two facts. First, we can decompose
the objective function fG in (2.1) associated to graph G, into two separate objective functions fH and fG\H that can
be solved independently, and later merged into an global solution that remains optimal. Note that this observation
remains true for any subgraph H (not necessarily K4) as long as the subgraphs H and G\H have at most one node
in common (the statement is trivially true is they do not overlap, as we can synchronize each connected component
separately). Second, if exactly one edge of a complete graph on four vertices has been corrupted by noise, then
there exists a unique solution (up to a global sign change) that maximizes the objective function in (2.1) associated
to a K4 graph, and that unique solution is also noiseless.

Another possible venue to investigate is an information theoretic analysis of the synchronization problem over
Z2, for various families of graphs and noise models. An analysis of the eigenvector synchronization method in the
presence of noise was first explored by Singer [56], in the case of the group SO(2), and uses tools from random
matrix theory that allow for a precise matrix perturbation analysis that quantifies the robustness to noise of the
method under a certain random noise model. Furthermore, it provided an information theoretic analysis showing
that the eigenvector method is asymptotically nearly optimal and achieves the information theoretic Shannon bound
up to a multiplicative factor that depends only on the discretization error of the measurements. We expect that
a similar approach would yield an information theoretic lower bound for the permissible amount of noise that
any synchronization algorithm over Z2 can tolerate, while still being able to provide an accurate recovery. On a
related note, Bandeira et al. [6] proved very recently a Cheeger-type inequality via the graph Connection Laplacian
operator, providing a deterministic worst case performance guarantee for the synchronization problem over the
group O(d) of orthogonal transformations.
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Finally, motivated by the size of many of the modern data sets, it is natural to consider a divide-and-conquer
approach for the synchronization method. While the eigenvector algorithm scales well for sparse networks and runs
in almost linear time in the number of egdes (with the number of iterations depending on the spectral gap), for very
large networks with millions of nodes, a spectral approach is far from being computationally feasible. An alternative
method one can propose would be to partition the graph into many non-overlapping subgraphs S1, S2, . . . , St (using
for example the highly scalable Louvain method for community detection in graphs [11]), compute an optimal
solution Ŝi for each subgraph via any of the available methods, and finally piece together all local solutions by
running a final synchronization algorithm on the new graph H whose nodes hi correspond to subgraphs Si. The
pairwise measurement between a pair of nodes (hi, hj) is obtained by aggregating the information available in the
edges of the initial graph G between the subgraph Si and Sj . In such an approach, the final solution for the n

nodes of the initial graph G would be given by ĥ1Ŝ1, . . . , ĥkŜk. In this setting, a natural question to ask would be
how much worse the resulting solution can be, with respect to the expensive calculation of a global solution of the
entire network.
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8. Appendix A: Noise sensitivity analysis for synchronization over Z2. This appendix gives an analysis
of the eigenvector method for synchronization over Z2 when the underlying graph G of pairwise measurements is
an Erdős-Rényi random graph (or possibly a complete graph Kn), and the subgraph of noisy edges is a random
subgraph of G. We follow closely the analysis detailed in previous work by Singer [56], pertaining to group SO(2),
and note that crucial to the analysis are recent random matrix theory results of Féral and Péché [24] on the largest
eigenvalue of rank-one deformation of (real, symmetric) large random matrices.

We denote by G(n, α) the initial Erdős-Rényi random graph of pairwise measurements on n vertices, where
each edge is present with probability p independent of the other edges. The probabilistic model for the noisy
measurements on the existing edges is given by a binomial model where each measurement Zij is correct with
probability p, and incorrect with probability η = 1−p. We denote by Egood ⊆ E, respectively Ebad ⊆ E, the subset
of correct, respectively incorrect, edge measurements, and by Ḡ the complement of the graph G, whose edge set
we denote by E(Ḡ). In light of the above notation, the available measurement matrix Z is given by the following
mixture model

Zij =


ziz
−1
j if (i, j) ∈ Egood with probability pα

−ziz−1
j if (i, j) ∈ Ebad, with probability (1− p)α

0 if (i, j) ∈ EḠ, with probability 1− α
(8.1)

Following the approach used in [56], the goal is to write the given measurement matrix Z as a rank-one perturbation,
and make use us recent results from the random matrix theory community on the largest eigenvalue of such rank-one
deformation. For convenience, we set the diagonal entries of Z to Zii = (2p− 1)α, and choose to denote z−1

j by zj
since in Z2 an element is its own inverse. Next, we write the symmetric matrix Z as a random perturbation of a
rank-one matrix, with the expected value of its elements given by

E(Zij) = zizjpα− zizj(1− p)α = zizj(2p− 1)α. (8.2)

Note that the expected value of Z is a rank-one matrix

E(Zij) = nα(2p− 1)αttT , (8.3)

where t is the normalized vector ‖ t ‖= 1 with entries

ti =
zi√
n
, i = 1, . . . , n. (8.4)

We are now ready to write the matrix Z in the form of a random perturbation of a rank-one matrix

Z = E(Zij) +R = n(2p− 1)αttT +R, (8.5)

where R is a random matrix with Rii = 0, whose elements Rij = Zij − E(Zij) are zero-mean independent random
variables. Using (8.2), the entries of the random matrix R are given by the following mixture model

Rij =

 zizj − zizj(2p− 1)α, (i, j) ∈ Egood, with probability pα
−zizj − zizj(2p− 1)α, (i, j) ∈ Ebad, with probability (1− p)α

−zizj(2p− 1)α, (i, j) ∈ EḠ, with probability 1− α
(8.6)

Furthermore, the entries of R have zero mean

E(Rij) = [zizj(1− (2p− 1)α]pα+ [−zizj(1 + (2p− 1)α)](1− p)α+ [−zizj(2p− 1)α](1− α)

= zizjα[(1− 2pα+ α)p− (1 + 2pα− α)(1− p)− (2p− 1)(1− α)] = 0,

where the last equality follows after several algebra manipulations. The diagonal elements Rij have zero variance,
while the off-diagonal elements have variance

V ar(Rij) = [1− (2p− 1)α]2pα+ [1 + (2p− 1)α]2(1− p)α+ [(2p− 1)α]2(1− α) = α(1− α+ 4pα− 4p2α) (8.7)

using the fact that (zizj)
2 = 1. Note that in the case of a complete graph, G = Kn and α = 1, the variance vanishes

when p = 1, since all edges are correct. This is also the case whenever p = 0 and all edges are incorrect, meaning
the sign of all equations is flipped, in which case we still recover the original solution. When G is a random graph,
the variance is α(1− α), whenever p = 0 or p = 1.

Following the approach in [56], the interpretation of R as a random matrix now comes into play, with the
distribution of its eigenvalues following Wigner’s semi-circle law [63, 64]. Denoting θ = n(2p − 1)α and σ2 =
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nα(1−α+4pα−4p2α), an adaptation of Theorem 1.1 from [24] guarantees that the largest eigenvalue λ1(Z) jumps
almost surely outside the support [−2σ, 2σ] of the semicircle law as soon as θ > σ, which translates to

n(2p− 1)α >
√
nα(1− α+ 4pα− 4p2α). (8.8)

After squaring both sides and solving the associated quadratic, the above inequality holds true whenever p >
1
2 + 1

2
√
α(n+1)

since we are considering the case when p > 1
2 . In other words, as soon as the correct edge probability

p is larger than the threshold probability

p∗ ≈ 1

2
+

1

2
√
αn

. (8.9)

we are guaranteed that the largest eigenvalue λ1(Z) will jump outside the support [−2σ, 2σ] of the semi-circle law
[24, 46]. Note that the results of [24, 46] on the distribution of the largest eigenvalue of perturbed rank-1 matrices
hold for the case when the rank-1 matrix is assumed to be a constant matrix. In the above setting (8.5), this
translates to the rank-1 matrix in (8.3) having constant entries, in other words it is required that the vector defined
by (8.4) to be the all ones vector, an assumption we can make without loss of generality since once can reduce
the ttT matrix to the all ones matrix by conjugating with the diagonal matrix Z, whose diagonal entries are given
by Zii = zi. Figure 4.1 shows histograms of the eigenvalues of the matrix Z of size n = 1000 for the complete
graph case (thus α = 1), as well as the corresponding error levels τ , for different values of p. For this experiment,
1
2 + 1

2
√
n+1
≈ 51.6, and indeed the recovered solution is meaningful as long as p is above this threshold.

The correlation between the ground truth solution and the top eigenvector v1 can be lower bounded by the
spectral gap between the top eigenvalues of matrices Z and R. If v1 denotes the top eigenvector of Z, with

corresponding eigenvalue λ
(Z)
1 , Zv1 = λ

(Z)
1 v1, the following can be concluded using the rank-one perturbation in

(8.5)

λ
(Z)
1 v1 = Zv1 =

[
n(2p− 1)αttT +R

]
v1 (8.10)

Left multiplication by v1
T yields

λ
(Z)
1 = v1

T
[
n(2p− 1)αttT +R

]
v1 = nα(2p− 1)〈v1, t〉2 + v1

TRv1 (8.11)

Since v1
TRv1 ≤ λ(R)

1 , where λ
(R)
1 denotes the top eigenvector of the noise random matrix R.

〈v1, t〉2 ≥
λ

(Z)
1 − λ(R)

1

nα(2p− 1)
, (8.12)

in other words, the larger the gap between λ
(Z)
1 − λ(R)

1 , the higher the correlation between the recovered solution
and the ground truth.

9. Appendix B: Synchronization with Anchors (ANCH-SYNC). In the context of the synchronization
problem, anchors are nodes whose corresponding group element in Z2 is known a priori. We will refer to the non-
anchor nodes as sensors, following the terminology from sensor network localization. For a given graph G = (V,E)
with node set V (|V | = n) corresponding to a set of n group elements composed of anchors A = {a1, . . . , ah} with
ai ∈ Z2 and sensors S = {s1, . . . , sl} with si ∈ Z2, with n = h + l, and edge set E of size m corresponding to an
incomplete set of m (possibly noisy) pairwise group measurements sis

−1
j with si, sj ∈ S or ais

−1
j with ai ∈ A, sj ∈ S,

the goal is to provide accurate estimates ŝ1, . . . , ŝl ∈ Z2 for the unknown sensor group elements s1, . . . , sl.
The synchronization problem in the presence of anchors, that we shall refer from now on as ANCH-SYNC, can

no longer be cast as an eigenvector problem. In recent work [19], we introduced several methods for incorporating
anchor information in the synchronization problem over Z2, in the context of the molecule problem from structural
biology. The first approach for solving ANCH-SYNC that we proposed in [19] relies on casting the problem as
a quadratically constrained quadratic program (QCQP), while a second one relies on an SDP formulation. We
briefly summarize below the above two approaches, and refer the reader to Section 7 of [19] for additional details.
The purpose of this section is to compare their performance with the message passing synchronization algorithm
introduced in Section 5.

The QCQP method follows a similar approach to equations (2.1), (2.2) and (2.7) that motivated the eigenvector
synchronization method. Unfortunately, maximizing the quadratic form xTZx under the anchor constraints xi =
ai, i ∈ A, is no longer an eigenvector problem. In order to incorporate the additional anchor information we
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combined under the same objective function a quadratic term that corresponds to the contribution of the sensor-
sensor pairwise measurements, and a linear term that represents the contribution of the anchors-sensor pairwise
measurements. Writing the solution vector in the form x = [s a]T that denotes both sensors and anchors, in [19]
we formulated the synchronization problem as a least squares problem, by minimizing the quadratic form in (2.7)
written as [

sT aT
] [ DS − S −U

−UT DV − V

] [
s
a

]
= sT (DS − S)s− 2sTUa + aT (DV − V )a, (9.1)

with

Z =

[
S U
UT V

]
, D =

[
DS 0
0 DV

]
,

where Sl×l, Ul×h and Vh×h denote the sensor-sensor, sensor-anchor, respectively anchor-anchor measurements,
and D is a diagonal matrix with Dii =

∑n
j=1 |Zij |. Note that V is a matrix with all nonzero entries, since the

(correct) measurement between any two anchors is readily available, and the vector (Ua)l×1 can be interpreted
as the anchor contribution in the estimation of the sensors. Since aT (DV − V )a is a (nonnegative) constant, we
are interested in minimizing the integer quadratic form zT (DS − S)z − 2zTUa. Unfortunately, the non-convex
constraint z ∈ Zl2 renders the problem NP-hard, and thus we introduce the relaxation to a quadratically constrained
quadratic program (QCQP) from equation (9.2), whose solution can be shown to be z∗ = (DS − S + λI)−1(Ua)
[19].

minimize
z=(z1,...,zl)

zT (DS − S)z − 2zTUa

subject to zTz = l
(9.2)

minimize
z̄

z̄TD
−1/2
S (DS − S)D

−1/2
S z̄ − 2z̄TD

−1/2
S Ua

subject to z̄T z̄ = ∆.
(9.3)

In [19], we also considered a similar formulation where we replaced the constraint zTz = l in (9.2) by zTDSz =

∆, where ∆ =
∑l
i=1 di is the sum of the degrees of all sensor nodes. Note that the change of variable z̄ = D

1/2
S z

yields the optimization problem shown in (9.3), which is very similar to the one in (9.2).
We have seen in Section 2 that an alternative approach to solving SYNC(Z2) relies on semidefinite programming.

In light of the optimization problem (2.9), the SDP relaxation of (2.1) in the presence of anchors is shown in equation
(9.5), where the maximization is taken over all semidefinite positive real-valued matrices Υ � 0 with

Υij =


xix
−1
j if i, j ∈ S

xia
−1
j if i ∈ S, j ∈ A

aia
−1
j if i, j ∈ A.

(9.4)

Note that Υ has ones on its diagonal Υii = 1,∀i = 1, . . . , n, and the anchor information gives another layer of
hard constraints. Since Υ is not necessarily a rank-one matrix, the SDP-based estimator is given by the best rank-
one approximation to the submatrix corresponding to the sensor-sensor measurements Ῡ{1,...,l}×{1,...,l}, which we
compute via an eigendecomposition.

Alternatively, to reduce the number of unknowns in (9.5) from n = l + h to l, one may consider the relaxation
(9.6) where we relax the non-convex constraint Υ = xxT (which guarantees that Υ is indeed a rank-one solution)
to Υ � xxT , via Schur’s lemma. This last matrix inequality is equivalent [13] to the last constraint in the SDP
formulation in (9.6). As before, we obtain estimators ẑ1, . . . , ẑl for the sensors by setting ẑi = sign(xi),∀i = 1, . . . , l.

maximize
Υ∈Rn×n

Trace(ZΥ)

subject to Υii = 1, i = 1, . . . , n

Υij = aia
−1
j , if i, j ∈ A

Υ � 0

(9.5)

maximize
Υ∈Rl×l;x∈Rl

Trace(SΥ) + 2xTUa

subject to Υii = 1,∀i = 1, . . . , l[
Υ x
xT 1

]
� 0

(9.6)

In Figure 5.4 we compare the performance of the MPS algorithm to the four algorithms introduced in [19] and
summarized above. In the synthetic model we used in our simulations, the graph of available pairwise measurements
is an Erdős-Rényi graph G(n, α) with n = 75 and α = 0.2 (i.e., a graph with n nodes, where each edge is present
with probability α, independent of the other edges). Figure 5.4 shows the results of our numerical experiments
when we vary the number of anchors h = {5, 15, 30, 50}. The set of anchors A ⊂ V (G), with |A| = h, is chosen
uniformly at random from the n nodes. As the number of anchors h increases, compared to the number of sensors
s = n−h, the performance of the five algorithms is essentially the same. Only when the number of anchor nodes is
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small (for example when h = 5), the SDP-Y formulation shows superior results, together with SDP-XY and QCQP
with constraint zTDz = ∆, while the QCQP with constraint zTz = s and the message passing algorithm perform
less well. In practice, one would choose the QCQP formulation with constraint zTDz = ∆ or the message passing
algorithm since the SDP-based methods are computationally expensive as the size of the problem increases.
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