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We perform an analytical sensitivity analysis for a model of a continuous-time branching process evolving
on a fixed network. This allows us to determine the relative importance of the model parameters to the
growth of the population on the network. We then apply our results to the early stages of an influenza-
like epidemic spreading among a set of cities connected by air routes in the United States. We also
consider vaccination and analyze the sensitivity of the total size of the epidemic with respect to the
fraction of vaccinated people. Our analysis shows that the epidemic growth is more sensitive with respect
to transmission rates within cities than travel rates between cities. More generally, we highlight the fact
that branching processes offer a powerful stochastic modeling tool with analytical formulas for sensitivity
which are easy to use in practice.
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1. Introduction

Branching processes are powerful stochastic models that describe the evolution of populations of individ-
uals which reproduce and die independently of each other according to specific probability laws. They
are playing an increasingly important role in models of population biology including molecular biology,
ecology, epidemiology, and evolutionary theory [6], as well as in other scientific areas such as particle
physics, chemistry, and computer science [21]. Typical performance measures of these models include the
distribution of the instantaneous and cumulative population sizes at a given time, the extinction probability
of a population, and its asymptotic growth rate and composition.

In order to apply branching processes to real-world problems, the parameters of the model must be
estimated from available data sets. Small errors or changes in the parameters may lead to notably different
model outputs. A sensitivity analysis may quantify the impact of each parameter on the performance
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measures of the model. This may be useful if we want to know which parameters influence the growth of the
branching process the most. To the best of our knowledge, sensitivity analysis has received scant attention
in the branching processes literature. Apart from a few papers dealing with very specific questions such as
[14] and [16], there is no complete study of the topic for more general classes of branching processes.

Here we consider a continuous-time Markovian branching process evolving on a fixed network. Such
a process belongs to the class of Markovian trees, which can be seen as particular multitype branching
processes, and offer considerable modelling versatility and appealing computational properties, see [12],
[23] and [27]. The concept of a branching process evolving on a network is certainly not new, but our aim
in this paper is to present branching processes and their properties in an accessible way, and to show how to
derive practical, analytic sensitivity formulas for the main quantities of interest. For that purpose, we first
discuss the typical performance measures of the model (as listed earlier), and we then perform an analytical
sensitivity analysis of each performance measure with respect to the model parameters. As opposed to the
performance measures themselves, most of the sensitivity formulas have an explicit expression that can be
easily used in practical situations.

We then illustrate our theoretical sensitivity results on a topical real-world problem: the spread of an
influenza-like epidemic on a network of cities in the United States through air traffic. It is well known
that the early stages of an epidemic can be approximated by a branching process [10], [35]. The averaged
branching process is essentially the linearisation of the nonlinear Susceptible-Infected-Removed (SIR) com-
partmental model around the disease-free equilibrium. We refer to Hethcote [28] and the book of Keeling
and Rohani [30] for a good introduction to the modeling of infectious diseases, to Arino [5] for an overview
on diseases in metapopulations, and to Balcan et al. [9] for a recent computational model for the spatial
spread of infectious diseases.

The sources of errors in the outputs of a model of epidemic evolving on a network are manifold. They
may arise either from the simplifying assumptions of the model, which necessarily neglect many features
of the real world, or from imprecise epidemiological or mobility data. The former is addressed in the most
sophisticated models by taking into account a large number of explanatory variables or compartments, such
as age, gender, location, etc., and modeling the dynamics in a complex nonlinear way. The mobility data,
at a global level or at the level of a large country such as the United States, is often estimated from the
number of passengers flying from one airport to the other. These data are easily available and are assumed
to account for a large part of the mobility. A discussion on the relevance of these data is included in [8]. The
epidemiological data are however much harder to estimate accurately. For instance, the average number of
infectious contacts that an individual infected by seasonal influenza makes in a day have been estimated to
range from 0.55 to 1.44, see [18].

Sensitivity of epidemic models to parameters has already been studied for different types of diseases:
Hyman and LaForce [29] studied the sensitivity of a multi-city deterministic epidemic model for influenza
with respect to the epidemiological data. They assumed that the transmission and recovery rates are the
same in each city and show that the recovery rate is the most important single parameter. Chitnis et al. [15]
perform a sensitivity analysis on a non-linear compartmental model of malaria transmission, and obtain an
analytical formula for the basic reproduction number R0 and for its sensitivity.

In this paper, we compute the sensitivity of the branching process approximation with respect to both
epidemiological and domestic mobility data. We find that the results are significantly more sensitive with
respect to the epidemiological data than with respect to the domestic mobility data. This provides confi-
dence in the use of the general approximation of domestic mobility by airport traffic, but suggests that the
most stringent limitation of current models is in the relatively imprecise epidemiological data, rather than
in the sophistication of the model or the estimation of domestic traffic. This is in contrast with the role of
international air travel, which can have a more important impact on the development of some diseases such
as H1N1 [31].

Finally, we refine our sensitivity analysis with respect to the epidemiological parameters by studying
the effect of a vaccination campaign. The sensitivity analysis of the epidemic size with respect to the
vaccination rate allows us to compute a practically relevant quantity: the impact of each supplementary
vaccination shot on the total number of infected people, when the vaccination has succeeded in stopping
the exponential spreading of the disease. In this regime the stochastic branching process approximation is
valid at all times [10].

In an appendix, we also introduce the possibility of on-board transmission. Infection during transporta-
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tion has been analyzed from a theoretical point of view for the SIR model in [32], but the authors have
not applied the model to real situations. Studies on the transmission rates on board airplanes exist (see for
instance the report of the European Centre for Disease Prevention and Control [1]), however, to the best of
our knowledge, data are not sufficient to provide accurate on-board transmission functions for influenza.
Therefore we assume that the transmission probabilities are given by a specific function of the flight time,
and we show how this assumption affects the sensitivity results. We show in particular that considering
on-board transmission can noticeably modify the shape of the sensitivity curves.

The paper is organised as follows. In Section 2, we describe the model of branching process evolving
on a network and we discuss several performance measures which can be computed from the model. In
Section 3, we define the sensitivity and the elasticity of a model output with respect to a parameter, and
we derive analytical expressions for the sensitivity of each performance measure discussed in Section 2.
We end the section by an illustration of the sensitivity results on a simple artificial example. In Section 4,
we apply the sensitivity results on a model for the early spread of an influenza-like epidemic on a network
of cities in the United States. Finally, we introduce vaccination and perform a sensitivity analysis with
respect to the proportion of vaccinated people. We conclude our paper in Section 5. The technical details
and supplementary information are provided in six appendices.

Throughout the paper, column vectors are denoted by xxx and row vectors are denoted by xxx>. The
column vector eeei denotes the unit vector with a 1 at the ith entry and zeros elsewhere, and 111 and 000 are
column vectors of which all elements are respectively equal to one and zero; the size of these vectors is
generally clear from the context.

2. A model of branching process evolving on a network

We consider a fixed network represented by an undirected graph (G ,E ) where G = {1,2, . . . ,n} is the set
of nodes and E is the set of vertices. Two nodes i and j are adjacent when either i = j or the edge (i, j)
belongs to E .

We define a continuous-time stochastic model of a population evolving on the network as follows. The
process starts at time 0 with a single individual located at node i ∈ G . One of the following three types of
event may then happen to this individual while at node i:

• The individual moves from i to an adjacent node j 6= i; this happens at rate Ti j (that is, Ti j transitions
from i to j occur on average per time unit, per individual at node i).

• The individual gives birth to k children (k > 1) and simultaneously moves to node j adjacent to i,
the k children respectively starting their life at nodes j1, j2, . . . , jk adjacent to i; this happens at rate
(Bk)i; j1 j2... jk j.

• The individual dies; this happens at rate di.

All individuals living on the network behave independently of each other with the same rules as the initial
individual. The transition rates, birth rates and death rates are gathered respectively in a n× n matrix
T = (Ti j), a sequence of n×nk+1 matrices Bk = ((Bk)i; j1 j2... jk j), k > 1, and an n×1 vector ddd = (di). The
diagonal elements of T are strictly negative and |Tii| is the parameter of the exponential distribution of
the sojourn time of an individual at node i before one of the three abovementioned events occurs. These
elements are computed such that the matrices and vector satisfy T 111+∑k>1(Bk111)+ ddd = 000. The resulting
Markovian population process is a branching process characterized by the set of matrices {T,{Bk}k>1,ddd}
belonging to the class of Markovian trees, see [12] and [26].

Example 2.1 We illustrate the structure of the matrices T,{Bk}k>1 and ddd on the simplest network with
n = 2 (adjacent) nodes. The 2×2 transition rate matrix T is then given by

T =

[
T11 T12
T21 T22

]
,

where the diagonal entries Tii will be described further. Assume that the individuals of the branching
process can give birth to at most two children at each birth event. This means that the birth rate matrices



4 of 30 S. HAUTPHENNE, G. KRINGS, J.-C. DELVENNE, AND V. D. BLONDEL

Bk are nonzero only for k = 1 and k = 2. The 2×4 matrix B1 has the following structure

B1 =

[
(B1)1,11 (B1)1,12 (B1)1,21 (B1)1,22
(B1)2,11 (B1)2,12 (B1)2,21 (B1)2,22

]
,

and the 2×8 matrix B2 has the following structure:

B2 =

[
(B2)1,111 (B2)1,112 (B2)1,121 (B2)1,122 (B2)1,211 (B2)1,212 (B2)1,221 (B2)1,222
(B2)2,111 (B2)2,112 (B2)2,121 (B2)2,122 (B2)2,211 (B2)2,212 (B2)2,221 (B2)2,222

]
.

For instance, the entry (B2)1,122 is the rate at which a parent at node 1 gives birth to two children and
instantaneously moves to node 2, while one of his children stays at node 1 and the second one moves to
node 2. Note that the indices in the entries of B1 and B2 are ordered lexicographically by convention.
Finally the 2× 1 death rate vector is ddd = [d1,d2]

>. In order for T 111+B1111+B2111+ ddd = 000 to hold, the
diagonal entries of the matrix T are then given by

T11 = −d1−T12−
2

∑
j1, j=1

(B1)1, j1 j−
2

∑
j1, j2, j=1

(B2)1, j1 j2 j,

T22 = −d2−T21−
2

∑
j1, j=1

(B1)2, j1 j−
2

∑
j1, j2, j=1

(B2)2, j1 j2 j.

In the next subsections, we describe several performance measures that can be computed for a branching
process evolving on a network. For the clarity of the presentation, the performance measures will be
discussed first in the scalar case (n = 1) which corresponds to the standard Markov branching process [22,
Chapter V], and next in the matrix case for an arbitrary number of nodes n > 1. Note that in the scalar
case, the matrices T,{Bk}k>1 and ddd become all scalar: Bk is the rate at which an individual gives birth to k
children, d is the death rate, and T =−d−∑k Bk.

The matrix case will require the use of the Kronecker product between matrices, which is defined as
follows: for an n×m matrix A and a p×q matrix B, the Kronecker product of A and B, denoted by A⊗B,
is an np×mq matrix defined as

A⊗B =


A11B A12B . . . A1mB
A21B A22B . . . A2mB

...
...

An1B An2B . . . AnmB

 .
It will also require the knowledge of the Perron-Frobenius Theorem for nonnegative matrices, see [37].

Most of the results in the scalar case can be found in [22], and most of the results in the matrix case can
be found in [23] and [26] for the case where Bk = 0 for k > 2 (the Markovian binary tree case).

2.1 Instantaneous population size

SCALAR CASE n = 1. Let Z(t) denote the population size in the branching process at time t. The process
{Z(t), t > 0} is a continuous-time Markov chain on the nonnegative integers, where state 0 is absorbing
and all other states are transient (that is, they will be visited a finite number of times with probability one).
The so-called generating function of Z(t) is defined as Q(t,s) = ∑k>0 P[Z(t) = k]sk, where |s| 6 1, and is
well known to satisfy the backward Kolmogorov differential equation

∂Q(t,s)
∂ t

= d +T Q(t,s)+ ∑
k>1

Bk Q(t,s)k+1, (2.1)

with Q(0,s) = s if the population starts with a single individual at time 0 (which we assume here).
All the moments of Z(t) can be obtained by successive derivatives of Q(t,s) at s = 1. In particular, the

mean population size at time t, M(t) = E[Z(t)], is given by M(t) = (∂Q(t,s)/∂ s)|s=1. By differentiating
(2.1) with respect to s, at s = 1, we obtain the linear differential equation for M(t)

∂M(t)
∂ t

= Ω M(t), (2.2)
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with M(0) = 1, where
Ω = T + ∑

k>1
Bk (k+1) =−d + ∑

k>1
k Bk. (2.3)

By solving (2.2) we obtain that the mean population size at time t is given by

M(t) = exp(Ω t). (2.4)

MATRIX CASE n > 1. We now extend the above definitions and results to the n-dimensional case. The
vector ZZZ(t) = [Z1(t), . . . ,Zn(t)] records the population size at time t at each of the n nodes. The evolution of
the branching process now depends on the node occupied by the initial individual at time 0. We therefore
define the conditional probability generating function of ZZZ(t), given that the process starts with a first
individual at node i, as

Qi(t,sss) = ∑
kkk>000

P[ZZZ(t) = kkk|ZZZ(0) = eeei]ssskkk,

where kkk = (k1, . . . ,kn) ∈ Nn, sss = (s1, . . . ,sn), |si| 6 1, and ssskkk := sk1
1 · · ·skn

n . As shown in [26], the vector
function QQQ(t,sss) = (Qi(t,sss)) satisfies the matrix analogue of (2.1),

∂QQQ(t,sss)
∂ t

= ddd +T QQQ(t,sss)+∑
k

Bk QQQ(t,sss)(k+1), (2.5)

with QQQ(0,sss) = sss, where QQQ(t,sss)(k+1) stands for the (k+ 1)st-fold Kronecker product of the vector QQQ(t,sss)
with itself: QQQ(t,sss)(0) = 1, and QQQ(t,sss)(k) = QQQ(t,sss)(k−1)⊗QQQ(t,sss), for k > 1.

The mean population size at time t is now given by a matrix M(t)= (Mi j(t)), where Mi j(t)=E[Z j(t)|ZZZ(0)=
eeei] is the (conditional) mean number of individuals at node j in the population at time t, given that the
process started at time 0 with one individual at node i. The entries of M(t) being obtained as Mi j(t) =
(∂Qi(t,sss)/∂ s j)|sss=111, the same differential equation (2.2) and solution (2.4) hold for the matrix M(t), the
only difference being that M(0) = I, and Ω is now a matrix given by

Ω = T + ∑
k>1

Bk

k

∑
i=0

(111(i)⊗ I⊗111(k−i)). (2.6)

Note that the matrix exponential is defined as

eΩ t = ∑
n>0

Ω ntn

n!
.

2.2 Cumulative population size

SCALAR CASE n = 1. Let N(t) be the cumulative number of individuals born in the branching process
until time t, and let G(t,s) be the probability generating function of N(t). Similar to Q(t,s), G(t,s) satisfies
the differential equation

∂G(t,s)
∂ t

= d s+T G(t,s)+∑
k

Bk G(t,s)k+1, (2.7)

with G(0,s) = s. Note that the only difference with Eq. (2.1) is that here d is multiplied by s.
Again, all the moments of N(t) can be obtained by successive derivatives of G(t,s) at s = 1, and

we focus here on the mean cumulative number of individuals born in the branching process until time t,
D(t) = E[N(t)] = (∂G(t,s)/∂ s)|s=1. By differentiating Eq. (2.7) with respect to s, at s = 1, we obtain the
following differential equation for D(t):

∂D(t)
∂ t

= d +Ω D(t),

with D(0) = 1 and where the scalar Ω is defined in (2.3). The mean cumulative population size until time
t is thus given by

D(t) = [I− exp(Ω t)] (−Ω)−1 d + exp(Ω t). (2.8)
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MATRIX CASE n> 1. In the n-dimensional case, we extend the definition of G(t,s) to its vector analogue:
we define the conditional probability generating function of N(t), given that the process started with a first
individual at node i, by

Gi(t,s) = ∑
k>0

P[N(t) = k|ZZZ(0) = eeei]sk.

Note that here, s is still scalar. The matrix analogue of Eq. (2.7) for the vector GGG(t,s) = (Gi(t,s)) is

∂GGG(t,s)
∂ t

= ddd s+T GGG(t,s)+∑
k

Bk GGG(t,s)(k+1), (2.9)

with GGG(0,s) = s111, see [26]. Since we now condition on the node of the initial individual at time 0, the mean
cumulative number of individuals born in the population until time t becomes a vector DDD(t)= (Di(t)) where
Di(t) = E[N(t)|ZZZ(0) = eeei] = (∂Gi(t,s)/∂ s)|s=1. Using the same technique as in the scalar case, we find
that the vector DDD(t) is given by the matrix analogue of (2.8),

DDD(t) = [I− exp(Ω t)] (−Ω)−1 ddd + exp(Ω t)111, (2.10)

where the matrix Ω is defined in (2.6). Note that this expression requires Ω to be nonsingular, which is
generally the case in most practical situations.

2.3 Extinction probability

SCALAR CASE n = 1. Due to the transient nature of the strictly positive states of {Z(t)}, the population
in the branching process either eventually grows without bound or becomes extinct, there is no stationary
behavior (but for trivial cases). We denote by q the probability of eventual extinction of the process, that
is, q = limt→∞ P[Z(t) = 0]. Since P[Z(t) = 0] = Q(t,0), an equation for q can be obtained by taking s = 0
and t→ ∞ in Eq. (2.1):

0 = d +T q+∑
k

Bk qk+1. (2.11)

This non-linear equation has potentially more than one solution, but it can be shown that q is its minimal
nonnegative solution.

MATRIX CASE n > 1. The n-dimensional version of q is the vector qqq = (qi) where qi = limt→∞ P[ZZZ(t) =
000|ZZZ(0) = eeei] is the conditional extinction probability of the branching process, given that it starts with one
individual at node i. Similar to the scalar case, we can show that the vector qqq is the (componentwise)
minimal nonnegative solution of the matrix analogue of (2.11),

000 = ddd +T qqq+∑
k

Bk qqq(k+1). (2.12)

Several algorithms with a probabilistic interpretation have been developed to solve for qqq, see [12], [25],
and [27].

2.4 Extinction criteria

SCALAR CASE n = 1. Various criteria can be used to determine whether the population eventually
becomes extinct with probability one or has a positive probability of growing without bound, that is,
whether q = 1 or q < 1. We shall consider two equivalent extinction criteria here.

First observe that, by (2.4), the mean population size M(t) has different asymptotic behavior depending
on the sign of Ω defined in (2.3): as t → ∞, M(t)→ 0 if Ω < 0 (subcritical case), M(t) = 1 if Ω = 0
(critical case), or M(t)→∞ if Ω > 0 (supercritical case). It follows that the population eventually becomes
extinct with probability one (q = 1) if and only if Ω 6 0.

Another threshold quantity is given by the mean number of children generated by an individual during
its entire lifetime, that we denote by R. The population has a positive probability of surviving (q < 1), if
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and only if R > 1, that is, if on average, every individual is replaced by more than one individual. In the
scalar case, R is the ratio of the total rate at which an individual generates a child to the death rate, that is,

R =
∑k kBk

d
. (2.13)

Note that the two criteria are indeed equivalent since Ω 6 0⇔ R6 1.

MATRIX CASE n > 1. The two extinction criteria described in the scalar case have a counterpart in the
n-dimensional case. Since Ω is now a matrix (as defined in (2.6)), the condition Ω 6 0 for almost sure
extinction needs to be adapted: the eigenvalue Ω0 of maximal real part of Ω (also called the Perron-
Frobenius eigenvalue) now plays the role of the threshold quantity:

qqq = 111 ⇔ Ω0 6 0.

We define the matrix R = (Ri j), where the entry Ri j is the expected total number of children born at
node j from a parent born at node i, during the entire lifetime of the parent. The second extinction criterion
then relies on the eigenvalue R0 of maximal real part of the matrix R:

qqq = 111 ⇔ R0 6 1.

An explicit expression for R, which generalizes (2.13) to the matrix case, is given in Proposition A.1 in
Appendix A.

The matrix R and its dominant eigenvalue R0 will play a fundamental role in the epidemic application,
as shown in Section 4.

2.5 Asymptotic node frequency

It may be interesting to know what proportion of the inviduals living in the network at time t are located
at node i. We also call this proportion the frequency of node i at time t, and when t → ∞ we talk about
the asymptotic node frequency. Note that these notions make sense only when the network has at least two
nodes; therefore, we only consider the matrix case in this section.

The matrix exponential exp(Ω) has the Perron-Frobenius eigenvalue exp(Ω0). Hence, as a conse-
quence of (2.4) and Perron-Frobenius theory, the expected population size at time t is asymptotically given
by M(t) ∼ exp(Ω0t)vvvuuu>, as t → ∞, where uuu> and vvv are respectively the left and right Perron-Frobenius
eigenvectors of exp(Ω); this holds provided that the dominant eigenvalue has multiplicity one, which is
generally the case in most practical situations. This implies that for all i, j,

Mi j(t)
(M(t)111)i

∼
u j

uuuT 111
as t→ ∞, (2.14)

and we may use (2.14) to obtain the proportion of the population living at each node of the network as time
goes to infinity.

3. Sensitivity analysis

In practical situations, precise values for the parameters {D,{Bk}k>1,ddd} of the model can be difficult to
obtain. It is therefore important to perform a sensitivity analysis of the model with respect to perturbations
or errors in the parameters. This section addresses the sensitivity analysis of the measures of interest
defined in the previous section with respect to the parameters of the model.

Let p be a parameter of the model (for instance p = Ti j, p = (B1)i; jk, or p = di), and let X be a measure
of the model (for instance X = Mi j(t), X = Di(t), or X = R0). The sensitivity of X with respect to p is
defined by the local slope of X , considered as a function of p:

∂pX =
∂X
∂ p

. (3.1)
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The scale of X and p may be different; it is therefore convenient to consider proportional perturbations
instead of absolute ones. The proportional response to a proportional perturbation is the elasticity (also
called sensitivity index in the context of mathematical epidemiology [15]). The elasticity of X with respect
to p, denoted by ϒ X

p , is defined by the ratio of the relative increase of X to the relative increase of p:

ϒ
X
p =

∂ logX
∂ log p

= ∂pX
p
X
. (3.2)

The interpretation of the elasticity is as follows: if ϒ X
p = a, it follows that if p increases by r %, then X

increases (or decreases, depending on the sign of a) by approximately

100[exp(a log(1+ r ∗0.01))−1]% (3.3)

(see Appendix B for more details). Note that for r = 1, log(1.01)≈ 0.01 so that 100[exp(a/100)−1]≈ a
when |a| is small.

We now derive analytical formulas for the sensitivity of the performance measures defined in the pre-
vious section. Here we focus on the matrix case only, as this is the case leading to relevant discussions.

3.1 Sensitivity of the instantaneous population size

In order to characterize the sensitivity of the population size generating function QQQ(t,sss), we differentiate
(2.5) with respect to p. This leads to a matrix linear differential equation for ∂pQQQ(t,sss) which does not have
any closed-form solution, see Eq. (A.3) in Appendix A.

Recall from (2.4) that the mean population size matrix is M(t) = exp(Ω t). Derivatives of the matrix
exponential have been investigated by several authors, see for instance [4], [33] and [34]. We present here
a simple method which provides an exact expression for ∂pM(t) and involves the computation of a matrix
exponential of size 2n×2n. Let us consider the system of differential equations{

∂tM(t) = Ω M(t)
∂t∂pM(t) = Ω ∂pM(t)+∂pΩ M(t), (3.4)

where the first equation is Eq. (2.2) satisfied by M(t), and the second equation is obtained by differentiating
the first equation with respect to p. The system (3.4) may be equivalently rewritten as

∂t

[
∂pM(t)
M(t)

]
=

[
Ω ∂pΩ

0 Ω

]
·
[

∂pM(t)
M(t)

]
,

with initial condition [∂pM(0),M(0)]> = [0, I]>, where 0 and I denote the n× n zero matrix and identity
matrix respectively. This is a new differential equation of the form ∂tY (t) = AY (t), of which the solution
is given by Y (t) = exp(At)Y (0). Therefore,

∂pM(t) = [I,0] · exp
([

Ω ∂pΩ

0 Ω

]
t
)
·
[

0
I

]
, (3.5)

where

∂pΩ = ∂pT + ∑
k>1

∂pBk

k

∑
i=0

(111(i)⊗ I⊗111(k−i)). (3.6)

A second method to compute ∂pM(t), which has the advantage of not requiring any matrix exponential
computation, is provided in Appendix A.

3.2 Sensitivity of the cumulative mean population size

Focusing now on the sensitivity analysis of the cumulative population size, we observe that, similar to
∂pQQQ(t,s), ∂pGGG(t,s) satisfies a linear matrix differential equation with non-constant coefficients which does
not have any closed-form solution.
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The explicit formula for ∂pDDD(t) follows easily from the one for ∂pM(t). Recall the expression for DDD(t)
given in (2.10) and note that

∂p(−Ω)−1 = (−Ω)−1
∂pΩ (−Ω)−1.

We therefore obtain

∂pDDD(t) = −∂pM(t)(−Ω)−1 ddd +[I− exp(Ω t)] (−Ω)−1
∂pΩ (−Ω)−1 ddd +∂pM(t)111, (3.7)

where ∂pM(t) is computed in Section 3.1.

3.3 Sensitivity of the extinction probability

Here we derive an explicit expression for ∂pqqq in terms of the extinction probability vector qqq. By differen-
tiating (2.12) with respect to p, we obtain

0 = ∂pddd +∂pT qqq+T ∂pqqq+∑
k

∂pBk qqq(k+1)+∑
k

Bk

k

∑
i=0

(qqq(i)⊗ I⊗qqq(k−i))∂pqqq,

so that, in the non-critical case,

∂pqqq =−Φ
−1
[
∂pddd +∂pT qqq+∑

k
∂pBk qqq(k+1)

]
, (3.8)

where

Φ = T +∑
k

Bk

k

∑
i=0

(qqq(i)⊗ I⊗qqq(k−i)).

Note that when qqq = 111, Φ = Ω . The non-singularity of the matrix Φ in the non-critical case is ensured by
the next proposition.

Proposition 3.1 If the Markovian tree is supercritical or subcritical, then the eigenvalues of Φ all have a
strictly negative real part. In the critical case, Φ is singular.

We omit the proof which follows the same lines as in [26, Theorem 6].

3.4 Sensitivity of the extinction criteria

Recall that the eigenvalues of maximal real part of Ω and R, denoted by Ω0 and R0 respectively, are
key quantities to determine whether the branching process almost surely becomes extinct or not. Even
though no explicit expression can be written for Ω0 and R0, analytical expressions can be derived for their
sensitivities ∂pΩ0 and ∂pR0, as we show now.

Let A be any generic n× n matrix (that is, A represents both Ω and R). Let A0 be the eigenvalue of
maximal real part of A, and let uuu> and vvv be the left and right eigenvectors of A corresponding to A0, scaled
such that uuu>vvv = 1. Then,

∂pA0 =
n

∑
i=1

n

∑
j=1

∂A0

∂Ai j

∂Ai j

∂ p
,

where ∂A0/∂Ai j = ui v j [13, Chapter 9], so that

∂pA0 = uuu> ∂pAvvv.

Finally, when A = Ω , ∂pΩ is given in (3.6), and when A = R, we use the explicit expression (A.1) for R to
obtain an expression for its derivative ∂pR, see (A.2) in Appendix A.



10 of 30 S. HAUTPHENNE, G. KRINGS, J.-C. DELVENNE, AND V. D. BLONDEL

4 

1 

2 

3 

FIG. 1. Graph of a network with n = 4 nodes.

3.5 Sensitivity of the asymptotic node frequency

Recall from Section (2.5) that uuu> and vvv are the Perron-Frobenius left and right eigenvectors of exp(Ω)
associated with the dominant eigenvalue exp(Ω0). Let {(λi,uuu>i ,vvvi),16 i6 n} be the full set of eigenvalues
of exp(Ω), with their corresponding left and right eigenvectors, with λ1 = exp(Ω0), uuu>1 = uuu> and vvv1 = vvv,
and assume that the pairs of eigenvectors are normalized such that uuu>i vvvi = 1 for all i. Then, the sensitivity
of the asymptotic node frequency is given by

∂p

(
uuu>

uuu>111

)
=

∂puuu>(uuu>111)−uuu>∂puuu>111
(uuu>111)2 , (3.9)

where

∂puuu> =
n

∑
i=2

uuu>(∂p expΩ)vvvi

exp(Ω0)−λi
uuu>i , (3.10)

which is obtained following the same arguments as in [13, Chapter 9], and where ∂p expΩ is computed in
Section 3.1.

3.6 Illustrative example

In this section, we illustrate the calculation of a few sensitivity results on a branching process evolving on
the simple network with n = 4 nodes depicted in Figure 1. Assume that every individual generates a single
child at each birth event, that is, Bk = 0 for k> 2. To simplify the notation, we drop the index 1 in the birth
rate matrix B1. The structure of the network induces the following structure for the matrices and vector
characterizing the branching process:

T =


T11 T12 T13 T14
T21 T22 0 0
T31 0 T33 0
T41 0 0 T44

 , ddd =


d1
d2
d3
d4

 ,

B =


B1;11 B1;12 B1;13 B1;14 B1;21 B1;22 B1;23 B1;24 B1;31 B1;32 B1;33 B1;34 B1;41 B1;42 B1;43 B1;44
B2;11 B2;12 0 0 B2;21 B2;22 0 0 0 0 0 0 0 0 0 0
B3;11 0 B3;13 0 0 0 0 0 B3;31 0 B3;33 0 0 0 0 0
B4;11 0 0 B4;14 0 0 0 0 0 0 0 0 B4;41 0 0 B4;44

 ,
where the diagonal of T is such that T 111+ B111+ ddd = 000. To further simplify the model, we set di = d
for all i, B1;i, j = b1 for all i, j, B2;i, j = b2 for i, j = 1,2, B3;i, j = b3 for i, j = 1,3, and B4;i, j = b4 for
i, j = 1,4, for some parameters d,b1,b2,b3,b4. In this special case, the expression (2.6) for Ω reduces to
Ω = T +B(I⊗111+111⊗ I) where

T =


−T12−T13−T14−d−16b1 T12 T13 T14

T21 −T21−d−4b2 0 0
T31 0 −T31−d−4b3 0
T41 0 0 −T41−d−4b4

 ,
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Table 1. Sensitivity analysis of the toy example for a given set of parameters.

p Value of p ϒ
M11(2)
p ϒ

D1(2)
p ϒ

R0
p ϒ

q1
p

T12 2 -0.4683 -0.3764 -0.0175 0.0198
T13 6 -0.4679 -0.3126 -0.0133 0.0151
T14 8 0.6255 0.6723 0.0307 -0.0298
T21 1 0.1564 0.1247 0.0065 -0.0062
T31 1 0.0733 0.0484 0.0023 -0.0022
T41 1 -0.0826 -0.0891 -0.0044 0.0034

d 10 -20.0000 -17.9012 -0.9804 1.0131
b1 1 7.4966 6.9555 0.2608 -0.3174
b2 2 3.1233 2.7226 0.1227 -0.1286
b3 3 6.5588 5.7174 0.2448 -0.2451
b4 4 9.9944 8.7123 0.3478 -0.3220

and

B(I⊗111+111⊗ I) =


8b1 8b1 8b1 8b1
4b2 4b2 0 0
4b3 0 4b3 0
4b4 0 0 4b4

 .
We assume that the branching process starts with one individual at node 1 at time t = 0, and we are

interested in the population size at time t = 2 and in the extinction probability. With the specific parameter
values provided in the second column of Table 1, we obtain

M11(2) = 308.7914, D1(2) = 4468.1, R0 = 1.3426, q1 = 0.7390,

so the process is supercritical. The elasticities of the above four quantities with respect to each model
parameter are shown in Table 1. They can be interpreted using (3.3): for instance, if we increase the value
of T14 by 10%, then the value of M11(2) increases by approximately 6.14% and the value of q1 decreases
by approximately 0.28%. We see that the parameters which influence the most the population growth are,
in decreasing order: d, b4, b1, b3, b2, T14, T12, T13, T21, T41 and T31. We also see that some transitions
between the nodes positively influence the population growth (e.g. from 1 to 4), while other transitions
have a negative influence (e.g. from 1 to 2).

4. Application: Sensitivity analysis of an influenza-like epidemic spreading on a network of cities

In this section we apply the sensitivity results developed in the previous section to a stochastic model for
the initial spread of an influenza-like epidemic among a set of cities connected by air routes in the United
States. This allows us to determine the relative importance of the model parameters to the disease spread.
For this purpose, the early stages of the epidemic are approximated by a branching process evolving on a
network as described in Section 2.

Appropriate branching processes are frequently used to approximate the process of infection during the
early stages of a general stochastic epidemic in a large closed and homogeneously mixing population. In
theory, during the course of a major epidemic, the epidemic grows like a branching process until about

√
N

members of the population of N individuals become infected, see [11]. The accuracy of the approximation
actually depends on our own error criteria and is discussed in Appendix C. As shown in Section 3, the
tractability of branching processes make them perfectly suitable for a sensitivity analysis.

4.1 Description of the model

We assume a constant, large, and homogeneously mixing population in each city. We use a branching
process on a network, characterized by a set of matrices {T,{Bk}k>1,ddd} that we detail below, to model the
spread of the disease among the cities during the early stages of the epidemic. As discussed in Appendix C,
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our model of branching process is suitable as long as the number of susceptible individuals is much larger
than the number of infected individuals in each city, which justifies why we focus on the early stages of the
disease. In the rest of this section, the time unit is the day.

Individuals in the branching process correspond to people infected by the disease, and each of the n
nodes of the network corresponds to a city in the U.S. An individual makes a transition from node i to node
j in the network when he travels by plane from city i to city j. Cities are connected through a symmetric
n×n air travel matrix A where the entry Ai j is the average number of passengers per day from city i to city
j for i 6= j (by convention we set Aii = 0). The symmetry assumption for A implies that the population of
each city remains constant, see for instance [15] and [18]. The travel rate per individual per day from city
i to city j is obtained by dividing the daily average number of passengers going from city i to city j by
the population of city i, that we denote by Ni; the nondiagonal entries of the transition rate matrix T are
therefore given by

Ti j =
Ai j

Ni
, i 6= j. (4.1)

For the purpose of our application, we call the matrix T the travel rate matrix.
In a first approach, we assume that infected people transmit the disease to new individuals within cities

only, not during their plane travel. An individual at node i infects a new individual at rate βi; this parameter
thus corresponds to the average number of infectious contacts per day by an infected individual in city
i. The rates βi depend on the cities and are gathered in a transmission rate vector βββ . Since only one
transmission may occur at a time, the sequence {Bk}k>1 of birth rate matrices in the branching process is
such that the only nonzero entries of the matrix B1 are

(B1)i;ii = βi for i = 1, . . . ,n,

and
Bk = 0 for k > 2.

Finally, infected individuals may be “removed” from the population by recovering (or dying) at rate di
in city i, which corresponds to the inverse of the mean time of contagion of an infected individual in city
i. These rates correspond to the death rates in the branching process and form the removal rate vector ddd.
Recall from Section 2 that the diagonal elements of the matrix T are then such that T 111+B1111+ddd = 000, that
is, Tii =−βi−di−∑ j 6=i Ti j.

Due to the simple structure of the matrix B1, we have B1(111⊗ I) = B1(I⊗ 111) = diag(βββ ), so that the
expressions for the matrices Ω and R, given in (2.6) and (A.1) respectively, simplify to

Ω = T +2diag(βββ ), R =−
[
I +T−1diag(βββ )

]−1
T−1diag(βββ ).

In the epidemic context, R is the matrix of mean number of secondary infections generated in each city
by an average infected individual in an entirely susceptible population. The dominant eigenvalue R0 of R
is called the basic reproduction number, which is a key quantity for determining whether an infection can
invade and persist with a positive probability: the infection can invade the population if and only if R0 > 1
(supercritical case). When R0 < 1 (subcritical case) the disease simply dies out, and when R0 = 1 (critical
case) the disease becomes endemic, meaning that the proportion of infected individuals remains constant
over time.

In a second approach, we take into account possible transmission on board airplanes. The description
of the model in this case is given in Appendix D.1.

4.2 Data

Air travel data on the daily average number of passengers for each city-pair (i, j) among a group of n = 114
cities are obtained from the Domestic Airline Fares Consumer Report of the US Department of Transporta-
tion for the first Quarter of 2011 [2]. This report provides information on the 1,000 largest city-pair markets
in the 48 contiguous states, among which the number of one-way passenger trips per day. These markets
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Table 2. Travel rates from city i (which we assume here to be New York) to city j (Ti j , travel frequency per individual per day from i to
j), transmission rates in city j (β j , average number of new infection per individual per day in city j), and mean cumulative epidemic
size after 14 days given that the disease started in city j (D j(14)), for four selected cities j.

City j Ti j β j D j(14)
New York – 1.1 5.93 ·104

Chicago 3.46 ·10−4 1.1 5.90 ·104

San Francisco 3.20 ·10−4 1.02 2.13 ·104

Orlando 3.64 ·10−4 0.85 6.31 ·103

involve 114 cities and account for about 75 percent of all 48-state passengers and 70 percent of total domes-
tic passengers. Data on the metropolitan population of the American cities are taken from the United States
Census Bureau (2011 estimates). The travel rates are computed according to (4.1).

Disease parameters within cities are taken from [18]. In that paper, the contact rate between susceptibles
and infectives, β ∗, is generally estimated to be 1.0. Like many respiratory diseases, influenza exhibits a
seasonal pattern with a low summer and a high winter incidence. Here, we chose to only focus on the
autumn-winter period going from October to March. Cities are divided into five general zones based on
the average number of heating degree-days and cooling degree-days, see for instance [3]. We applied a
scaling factor to β ∗ which depends on the climate zone of each city and ranges between 0.85 and 1.1 in
the autumn-winter period. This provides a specific value βi for each city i. The complete list of cities with
their corresponding metropolitan population and transmission rate is provided in Table A.6 in Appendix F.

Finally, the average length of the infectious period is estimated to be 2.95 days independently of the
city [18], which leads to di = d = 1/2.95 for all i.

4.3 Results and Discussion

In this section, we use the results of Section 3 to compute the elasticity of the mean cumulative epidemic
size DDD(t) and of the basic reproduction number R0, with respect to the parameters of the model, over the
first two weeks of the epidemic, that is, for t ∈ [0,14] (as discussed in Appendix C, the branching process
approximation is reasonable during this time period).

We present our results for a small number of cities, namely New York, Orlando, Chicago, and San
Francisco. As shown in Table 2, this set of cities covers all possible values of transmission rates. Table 2
also presents the travel rates from New York to the three other cities, and the mean cumulative size of the
epidemic after 14 days if it started in each of the four cities. We obtain Ω0 = 2.1401 and R0 = 3.2433,
meaning that the epidemic breaks out with positive probability. Note that these values are particularly high
due to the relatively high transmission rates during the autumn-winter period (between 0.85 and 1.1).

ELASTICITY OF THE EPIDEMIC SIZE WITH RESPECT TO THE TRANSMISSION RATES. Figure 2 shows
the elasticity of the mean cumulative size of the epidemic with respect to the transmission rate in the city
where the disease started, for three cities with different transmission rates. We see that the elasticities are
non-negligible and the curves appear in the same order as the transmission rates. Using formula (3.3), we
see that an increase by 1% of the transmission rate in New York will induce an increase by approximately
14% of the mean cumulative epidemic size after two weeks, while an increase by 1% of the transmission
rate in Orlando will induce a corresponding approximate increase of 5% only. We observe that the elas-
ticities increase over time except, interestingly, for Orlando where the elasticity reaches a maximum and
then starts decreasing. This can be interpreted as an effect of the relatively low transmission rate associated
with Orlando and the high travel rate from that city: if the epidemic starts in Orlando, after about ten days
the growth of the disease in other cities connected to Orlando starts exceeding the infected population in
Orlando (due to higher transmission rates in these cities, see also Figure C.1 in Appendix C). There is thus
a time from which the growth of the disease depends less on the transmission rate in Orlando than on the
transmission rate in other cities, and therefore a small increase in the transmission rate of Orlando would
start having a decreasing impact on the size of the epidemic.
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FIG. 2. Elasticity of the mean cumulative epidemic
size with respect to the transmission rates. Elastic-
ities of the mean cumulative epidemic size at time t if
the disease starts in city i (Di(t)) with respect to the
transmission rate in city i (βi) (left) for a sample of
origin cities i.
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FIG. 3. Elasticity of the mean cumulative epidemic
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disease starts in city i (Di(t)) with respect to the travel
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j.

Table 3. Elasticity of the basic reproduction number R0 with respect to some model parameters which are constant for all cities.

p : β ∗ d c
ϒ

R0
p : 1.2357 −1.2350 −6.62 ·10−4

ELASTICITY OF THE EPIDEMIC SIZE WITH RESPECT TO THE TRAVEL RATES. Figure 3 shows the elas-
ticity of the mean cumulative number of infected individuals with respect to three travel rates from New
York (where the epidemic is initiated): the travel rates to Chicago, to San Francisco, and to Orlando (see
Table 2 for their values). We see that the elasticities are significantly smaller in absolute value than when
they were computed with respect to the transmission rates. A small perturbation in the travel rates has
therefore less impact on the dynamics of the disease than an equivalent perturbation in the transmission
rates. We also observe that the elasticities are all negative, which suggests that increasing the travel rates
out of New York, the origin city of the disease, may be beneficial from a sanitary point of view. This result
might be surprising but it makes sense because the transmission rate in New York is the highest (βi = 1.1),
and we assumed that there is no transmission during travel (we refer to Appendix D.2 to see what happens
when on-board transmission is taken into account). Indeed, increasing the travel rates from New York to a
city with the same transmission rate, such as Chicago, will have almost no effect on the dynamics of the
disease, while increasing the travel rates from New York to a city with a very low transmission rate, such
as Orlando, will have a higher impact on the size of the epidemic. This argument further suggests that a
smaller transmission rate in the destination city induces a larger elasticity (in absolute value), as confirmed
in the figure.

ELASTICITY OF R0. Recall that the basic reproduction number R0 is an important threshold scalar quan-
tity which measures the initial disease transmission on the whole network. In order to study the sensitivity
of R0 with respect to the parameters of the model, we use the results of Section 3.4, where the expression
for ∂pR (provided in (A.2) in Appendix A) simplifies to

∂pR =
[
I +T−1diag(βββ )

]−1 [
T−1(∂pT )T−1diag(βββ )−T−1

∂pdiag(βββ )
]{[

I +T−1diag(βββ )
]−1

+ I
}
. (4.2)

Not surprisingly, the local sensitivity of R0 with respect to the transmission rate in one single city, βi,
or with respect to the travel rate between two specific cities, Ti j, is almost negligible (of the order of 10−6

or less). We also performed a global sensitivity analysis of R0 with respect to some parameters which are
assumed to be the same for all cities, namely the contact rate β ∗ = 1 and the removal rate d = 1/2.95.
The results are shown in Table 3. We see that a 1% increase in the contact rate β ∗ (or, equivalently, in the
transmission rate of all cities together) results in a 1.24% increase in R0. We also note that, in absolute
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value, the elasticities of R0 with respect to β ∗ and with respect to d are very close to each other, R0 being
slightly more sensitive with respect to β ∗ than with respect to d.

In order to analyze the relative change in R0 when all travel rates increase by the same factor, we write
Ti j = c ·Ti j (i 6= j) where the constant c is equal to 1, and we compute the sensitivity of R0 with respect to
c. The result is given in the last column of Table 3 and shows that if all travel rates increase by 1%, then
R0 decreases by 6.62 · 10−4%. This suggests that increasing the frequency of all domestic travel (by the
same percentage) would globally slow down the epidemic very slightly. This is again a surprising result
which comes from the fact that each city has its own transmission rate, and increasing the frequency of all
domestic travel (without on-board transmission) would, among other things, increase the travel rates out of
the cities with a high transmission rate. Finally, we see again that the sensitivity is significantly lower with
respect to the travel rates than with respect to the transmission rates.

Remark 4.1 Note that the sensitivity results are very dependent on the disease under consideration: since
the climate plays a fundamental role in the spread of influenza, the growth of the disease is sensitive to the
travel rates because different cities in different climate zones exhibit different transmission rates. However,
other types of infectious diseases may spread independently of the climate, in which case the air travel
network would have much less impact on the epidemic growth, if we assume that there is no in-flight
transmission.

A discussion of the results in the case where on-board transmission is taken into account is given in
Appendix D.2.

4.4 Vaccination

Vaccination can be used to control the spread of the disease within a population and hence eradicate it.
From a public authority’s perspective, one may want to solve two questions:

(i) what is the smallest proportion of individuals that need to be vaccinated in order to prevent an epi-
demic outbreak, and

(ii) once this number is reached, how many new infections do we prevent with each additional vaccinated
individual?

In this section, we will tackle those two issues by considering the simple problem where there is no on-
board transmission and vaccination is uniform over the population. Appendices E.2 and E.3 respectively
deal with the cases where vaccination is treated differently in each city and where there is on-board trans-
mission.

As we do not consider age patterns, we shall assume that each individual is vaccinated with some
probability r, independently of his age and independently of the city. The parameter r thus also denotes the
fraction of the total American population which is vaccinated. Vaccination reduces susceptibility, which, in
our branching process approximation model, is equivalent to considering the new transmission rate vector
βββ v = (1− r)βββ (in the sequel, we write the subscript v each time a quantity depends on this new vector).
The minimal fraction of individuals that should be vaccinated is solution of the minimization problem

minimize
r

r∑
i

Ni

subject to λmax(Ωv)6 0,

where λmax(Ωv) denotes the Perron-Frobenius (dominant) eigenvalue of the matrix Ωv. The solution of
this problem can be written out explicitly and the critical value obtained for our model is rc = 0.69, which
means that at least 69% of the population has to be vaccinated to avoid an outbreak (see Appendix E.1 for
more details). Assuming that the total population in the US is 3.12 ·108, the critical number of individuals
to vaccinate is 3.12 · 108 rc ≈ 2.16 · 108; this solves Question (i). Given that at least that fraction of the
population is vaccinated, the answer to Question (ii) is then given by the sensitivity of the mean total
cumulative number of infected individuals until eradication with respect to r.
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Table 4. Uniform vaccination case in the almost critical regime where r is such that 3.12 ·108 (r− rc) = 10: the mean total cumulative
size of the infection given the origin city of the disease (Di), and the number of infections prevented by introducing one additional
vaccine (∂Di), for three origin cities of the disease

Origin city i Di ∂Di

New York 1.1 ·104 8.8 ·102

San Francisco 2.6 ·103 2.0 ·102

Orlando 3.3 ·104 2.6 ·103

Let Di represent the mean total cumulative size of the infection given that it was initiated by a first
individual in city i, and DDD = (Di) = limt→∞ DDD(t), where DDD(t) is defined in (2.10). Since the dominant
eigenvalue of Ωv is negative, limt→∞ exp(Ωvt) = 0, and from (2.10) we obtain

DDD = (−Ωv)
−1 ddd, (4.3)

where DDD depends on r through Ωv. Therefore, the sensitivity of DDD with respect to the fraction r of vacci-
nated people is given by

∂DDD
∂ r

= −(−Ωv)
−1

∂rΩv (−Ωv)
−1 ddd

= −(−Ωv)
−1 diag(βββ )(−Ωv)

−1 ddd.

From this formula, we can approximate the mean number of prevented infections per additional vaccine
given that a proportion r > rc of the population is vaccinated: one more vaccine leads to ∂ r = (total
population)−1 = (1/312)10−6, so that

∂DDD =−(1/3.12)10−8 (−Ωv)
−1 diag(βββ )(−Ωv)

−1 ddd.

Assume that we are in an almost critical regime, that is, the initial fraction r of vaccinated individuals
is slightly larger than rc; consider, for instance, a value r such that 3.12 ·108 (r− rc) = 10, that is, such that
the critical vaccinated population is increased by 10. The benefit of one additional vaccine in this regime is
shown in Table 4, in which we compare the mean total cumulative size of the infection in the almost critical
regime given the origin city i of the disease, Di, with the approximate number of prevented infections if
we introduce one additional vaccine in the population, ∂Di, for three origin cities of the disease. We see
that the introduction of one additional vaccine in this almost critical regime would reduce the size of the
epidemic by a bit less than 10%. The number of prevented infections per additional vaccine is thus very
large when the initial number of vaccinated people is close to the critical number; in other words, in the
almost critical regime, the growth of the disease is highly sensitive with respect to the vaccination ratio.
The values of ∂Di decrease very rapidly when the initial fraction of vaccinated people r becomes larger
than the critical value rc. This is shown in Figure 4 for the three cities considered in Table 4, where we
depict the number of people who would escape from the disease if we introduce one additional vaccine in
the population as a function of the difference 3.12 · 108 (r− rc) between the initial number of vaccinated
people and the critical number.

5. Conclusion

Explicit formulas are derived for the sensitivity analysis of a model of Markovian branching process evolv-
ing on a fixed network. This tractable stochastic process is then used to model the early stages of a seasonal
influenza-like disease speading on a network of cities in the United States. This approach allows us to study
the sensitivity of the size of the epidemic and of the basic reproduction number with respect to the trans-
mission and domestic travel rates in an analytic way, that is, without the use of simulations. Our analysis
highlights the differences in the sensitivities with respect to the different parameters, confirming that a
precise estimation of the transmission rates is far more important than a precise estimation of domestic
mobility data. We also treat an extension of the epidemic model by considering vaccination campaigns. In
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FIG. 4. Uniform vaccination. Number of prevented infections per additional vaccine as a function of the difference between the
initial number of vaccinated people (3.12 · 108 r) and the critical vaccinated population (3.12 · 108 rc), for three origin cities of the
disease.

this case, a sensitivity analysis enables us to calculate the marginal gain of one additional vaccine, show-
ing how, at the almost critical regime, each additional vaccination prevents a large number of possible
infections.

Note that in the epidemic application, we chose to focus mainly on the sensitivity of expected quanti-
ties, such as the mean epidemic size, which can also be described by a linearised SIR model, for simplicity
and ease of comparison with those popular models. However our methodology also applies to more sophis-
ticated quantities not deducible from a deterministic model, such as the variance of the epidemic size, or the
probability that the epidemic dies out before a given time. We have considered the example of influenza,
which is suitable for our purpose because people usually continue to travel when they are infectious, how-
ever our model and methods are not restricted to this particular disease.

Our methodology can be applied to a variety of other Markovian models involving reproduction, death
and (discrete) node transition events. Note that the nodes of the network may not only represent geographic
locations but also more abstract features such as physiological states of individuals, see for example [23].
A possible extension of the model would be to generalize the results of Sections 2 and 3 to a dynamic
network (instead of a fixed one); this is the topic of ongoing research.
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A. Further results on the branching process on a network and its sensitivity

In this section we gather some technical results related to Sections 2 and 3.

A.1 The matrix R

Recall from Section 2.4 that the entry Ri j of the matrix R is the expected total number of children born at
node j from a parent born at node i, during the entire lifetime of the parent. For each k > 1, define the
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n×nk+1 matrix
Ψk =−T−1Bk,

whose entry (Ψk)i; j1 j2... jk j records the probability that an individual at node i eventually gives birth before
dying (potentially after moving to other nodes), and the first reproduction event involves the birth of k chil-
dren and the parent moving to node j, while the children start their life at nodes j1, j2, . . . , jk respectively.
Note that nodes j, j1, j2, . . . , jk are not necessarily adjacent to node i here. An explicit expression for R can
be given in terms of the matrices Ψk, as shown in the next proposition.

Proposition A.1 The matrix R of expected total progeny size is given by

R =
[
I−∑

k>1
Ψk(111(k)⊗ I)

]−1
∑
k>1

Ψk

k−1

∑
i=0

(111(i)⊗ I⊗111(k−i)). (A.1)

Proof. We develop the entry Ri j by conditioning on the first reproduction event happening to the parent at
node i:

Ri j = ∑
k>1

∑
j1

. . .∑
jk

∑
`

(Ψk)i; j1 j2... jk `(δ j1, j + . . .+δ jk, j +R` j),

where δi, j = 1 if and only if i = j. In matrix form, this becomes

R = ∑
k>1

Ψk

[
k−1

∑
i=0

(111(i)⊗ I⊗111(k−i))+(111(k)⊗ I)R

]
,

and since the matrix ∑k>1Ψk(111(k)⊗ I) is substochastic, we can write R explicitly as in (A.1). �

Using the explicit expression for R given in (A.1), the sensitivity of R with respect to a parameter p is
given by

∂pR =
[
I−∑

k>1
Ψk(111(k)⊗ I)

]−1[
∑
k>1

∂pΨk(111(k)⊗ I)
][

I−∑
k>1

Ψk(111(k)⊗ I)
]−1

∑
k>1

Ψk

k−1

∑
i=0

(111(i)⊗ I⊗111(k−i))

+
[
I−∑

k>1
Ψk(111(k)⊗ I)

]−1
∑
k>1

∂pΨk

k−1

∑
i=0

(111(i)⊗ I⊗111(k−i)), (A.2)

where ∂pΨk = ∂p[−T−1Bk] =−T−1[∂pT Ψk +∂pBk].

A.2 The sensitivity of QQQ(t,sss) and GGG(t,s)

Here we are interested in characterizing ∂pQQQ(t,sss) and ∂pGGG(t,s). By differentiating (2.5) with respect to p,
we obtain

∂t∂pQQQ(t,sss) = ∂pddd +∂pT QQQ(t,sss)+T ∂pQQQ(t,sss)+∑
k

∂pBkQQQ(t,sss)(k+1)

+∑
k

Bk

k

∑
i=0

(QQQ(t,sss)(i)⊗ I⊗QQQ(t,sss)(k−i))∂pQQQ(t,sss)

= A(t,sss)+B(t,sss)∂pQQQ(t,sss) (A.3)

where

A(t,sss) = ∂pddd +∂pT QQQ(t,sss)+∑
k

∂pBkQQQ(t,sss)(k+1)

B(t,sss) = T +∑
k

Bk

k

∑
i=0

(QQQ(t,sss)(i)⊗ I⊗QQQ(t,sss)(k−i)).

Unfortunately the matrix linear differential equation (A.3) for ∂pQQQ(t,sss) does not have any closed-form
solution because the matrices B(t,sss) do not necessarily commute for different values of t.

Using the same argument and Eq. (2.9), we show that ∂pGGG(t,s) satisfies the same matrix linear differ-
ential equation as ∂pQQQ(t,sss), the only difference being that the term ∂pddd is replaced by ∂pddds.
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A.3 An approximation for the sensitivity of M(t)

An alternative method to compute ∂pM(t) provides a new approximation for ∂pM(t) which relies on the
integral representation of the derivative of the matrix exponential [34]:

∂pM(t) = ∂p exp(Ω t) =
∫ t

0
exp(Ωτ)∂pΩ exp(Ω(t− τ))dτ. (A.4)

Proposition A.2 The matrix ∂pM(t) can be approximated as

∂pM(t)≈ 1
c

exp(Ω0t)∆v

K(t)

∑
i=0

K(t)+1

∑
k=i+1

exp(−ct)
(ct)k

k!
Θ̂

i
∆
−1
v ∂pΩ ∆v Θ̂

k−i−1
∆
−1
v (A.5)

where c, ∆v, K(t) and Θ̂ are defined in the proof.

Proof. The integral in (A.4) is approximated by using a duality argument (as in [24]) and the uniformiza-
tion technique for continuous-time Markov chains (see for instance [36]), as we detail now.

Let uuu> and vvv be the left and right eigenvectors of Ω corresponding to the Perron-Frobenius eigenvalue
Ω0, normalized by vvv>111 = 1 and uuu>vvv = 1, and let ∆v = diag(vvv). We first rewrite exp(Ω t) as

exp(Ω t) = exp(Ω0t)∆v exp(Θ t)∆
−1
v ,

where
Θ = ∆

−1
v Ω∆v−Ω0I.

It is easy to show that Θ satisfies all the properties to be the generator of a continuous-time Markov chain:
Θi j > 0 for i 6= j and 0>Θii =−∑i 6= j Θi j. This Markov chain is called the dual of the branching process
with mean population size matrix exp(Ω t). The integral in (A.4) then becomes∫ t

0
exp(Ωτ)∂pΩ exp(Ω(t− τ))dτ =

exp(Ω0 t)∆v

∫ t

0
exp(Θτ)∆

−1
v ∂pΩ ∆v exp(Θ(t− τ))dτ ∆

−1
v .

Since exp(Θ t) is now a probability transition matrix, we can use the uniformization method to solve the
integral: let c > maxi |Θii| and Θ̂ = I + Θ

c . We can write

exp(Θ t) = ∑
k>0

exp(−ct)
(ct)k

k!
Θ̂

k,

and since the matrix Θ̂ is substochastic, we have

||exp(Θ t)|| 6 ∑
k>0

exp(−ct)
(ct)k

k!
||Θ̂ k||

6 ∑
k>0

exp(−ct)
(ct)k

k!
.

Let K(t) be such that ∑
K(t)
k=0 exp(−ct) (ct)k

k! > 1− ε for a given ε > 0. Then,

exp(Θ t)≈
K(t)

∑
k=0

exp(−ct)
(ct)k

k!
Θ̂

k,

and by replacing exp(Θτ) and exp(Θ(t− τ)) in the last integral by their approximations, we finally obtain
the approximation (A.5) for ∂pM(t). �
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FIG. B.1. Elasticity. Interpretation of the elasticity in terms of percent of increase or decrease of a measure of the model

B. Interpretation of the elasticity

In this section we interpret the elasticity in terms of a proportional response to a proportional pertur-
bation. Let a be the elasticity of a measure X of the model with respect to a parameter p, that is,
ϒ X

p = ∂ logX/∂ log p = a. Assume that p increases by r % (r relatively small), and let z be the induced
proportional increase (or decrease, depending on the sign of a) of X , that is,

p′ = p(1+0.01r)⇒ X ′ = X(1+ z).

By taking the logarithm we obtain

log p′ = log p+ log(1+0.01r)⇒ logX ′ = logX + log(1+ z).

We thus have

a =
∂ logX
∂ log p

≈ log(1+ z)
log(1+0.01r)

,

and we obtain

z≈ exp(a log(1+0.01r))−1.

So, for instance, if p increases by r = 1%, then then X increases (or decreases) by approximately 100[exp(a/100)−
1]%. In Figure B.1, we show the curve y = 100[exp(a/100)− 1] and we compare it with y = a. We see
that the two curves are almost superimposed when |a| is small.

C. Validity of the branching process approximation

In this section, we compare the mean instantaneous and cumulative population size obtained from the
branching process defined in Section 2 to their analogue in the popular deterministic SIR model.

For that purpose, we illustrate the two measures M(t) and DDD(t) on an example where there is a first
infectious case in Orlando (city i) at time t = 0. This city has a low transmission rate (βi = 0.85) but it
is well connected with New York (city j, Ti j = 0.0033) which has a high transmission rate (β j = 1.1).
In Figure C.1, we show the growth of the population of infected individuals within the origin city of the
disease, as well as in New York. In that figure, we compare the branching process approximation to the SIR
model {(Si(t), Ii(t),Ri(t)),1 6 i 6 114} which tracks, for every city i, the number of susceptible (Si(t)),
infected (Ii(t)), and removed (Ri(t)) individuals in city i at time t, and whose evolution is modeled by the
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FIG. C.1. Mean instantaneous and cumulative epidemic sizes. Mean epidemic sizes between the first and the 35th day (in log-
arithmic scale) if the disease is initiated by one infectious case in Orlando (city i) on day t = 0. The plain lines correspond to the
branching process approximation, the dashed lines correspond to the SIR model. Mii(t) is the mean instantaneous number of infected
individuals in Orlando, Mi j(t) is the mean instantaneous number of infected individuals in New York (city j), Mi.(t) = ∑k Mik(t) is the
mean instantaneous total number of infected individuals in all cities, and Di(t) is the mean cumulative number of infected individuals
in all cities. The branching process approximates the SIR model reasonably during the first three weeks of the epidemic.

nonlinear differential equations

dSi

dt
= − βi

Ni
Si Ii +∑

j 6=i
S jTji−∑

j 6=i
SiTi j

dIi

dt
=

βi

Ni
Si Ii +∑

j 6=i
I jTji− Ii ∑

j 6=i
Ti j−di Ii

dRi

dt
= di Ii +∑

j 6=i
R jTji−Ri ∑

j 6=i
Ti j,

where (Si(0), Ii(0),Ri(0)) is specified, for 16 i6 114.
We assume homogeneous mixing within each city. According to [11], during the course of a major

epidemic, the disease grows like a branching process within each city i until about
√

Ni members of the
population of Ni individuals become infected. If we use this criterion to determine the maximum validity
period of the branching process approximation in each city, we find that the approximation is accurate
during the first 10 days of the epidemic on average, the time value ranging from 6 days (Aspen, Colorado,√

Ni = 81.6, βi = 1.1) to 15 days (Houston, Texas,
√

Ni = 2467.2, βi = 0.85).
This criterion is probably too strong for our purpose. If we rather fix to 1% the relative error obtained

when computing Mii(t) with the branching process versus Ii(t) with the SIR model, the approximation is
accurate until 13 days on average. The maximum approximation time depends on the metropolitan size
of the city considered and on its associated transmission rate; it ranges from 5 days (Aspen) to 20 days
(Dallas, Texas,

√
Ni = 2554.8, βi = 0.85). For Orlando (

√
Ni = 1473.4) and New York (

√
Ni = 4366.9),

the two cities used to illustrate our measures, the approximation is accurate until respectively 19 and 15
days after the introduction of the first infectious case in the city.

Figure C.1 also shows that, while the epidemic initially started in Orlando, after a bit more than two
weeks it mainly evolves in New York because of the relatively high travel rate between Orlando and New
York and the high transmission rate in New York. This is in line with [17] and confirms that air travel has
a non-negligible effect on the spatial spread of the disease.

Remark C.1 The expected instantaneous epidemic sizes Mi j(t) obtained from the branching process
approximation correspond to the solution of the linearisation of the quadratic differential equation for I j(t)
around the disease-free equilibrium, that is, if we assume that S j ≈ N j for all j. Note that, thanks to its
stochastic nature, the branching process approximation may also allow us to study other types of questions,
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such as the full distribution of the instantaneous and cumulative epidemic sizes during the early stages of
the disease. These questions would be particularly relevant if the epidemic starts with a small number of
infected individuals, as the strength of stochasticity increases as population sizes get smaller.

D. On-board transmission

In this section, we show what the results of Sections 4.1 and 4.3 become when on-board transmission is
taken into account.

D.1 Description of the model

To the best of our knowledge, there is not enough available data to conclude in an acceptable on-board
transmission rate for influenza-like diseases. Therefore, for the sake of simplicity, we assume that during
a flight an infected individual may infect up to two susceptible individuals (his/her two closest neighbours
in the airplane), independently of each other. This is probably a lower bound of the real number of new
infections, but it is sufficient for our purpose of showing the differences with the case without on-board
transmission.

We model the number of new infections generated by an infected individual during a flight from city i to
city j with a binomial distribution B(2, pi j), where pi j is the probability that an infected individual infects
another individual during a flight from city i to city j. Since no real data are available for these on-board
transmission probabilities, for the sake of our analysis we shall assume that they take the hypothetical form

pi j =
5hi j

5hi j +1
,

where hi j is the flight time (in hours) from city i to city j, which is directly proportional to the distance
between i and j. The data on non-stop distances between cities are available from the US Department of
Transportation [2]. For i 6= j, the probability (P1)i j that an infected individual infects exactly one suscep-
tible individual during the flight between city i and city j is given by (P1)i j = 2pi j(1− pi j). Similarly, the
probability (P2)i j that an infected individual infects exactly two susceptible individuals during the flight
between city i and city j is given by (P2)i j = p2

i j. These probabilities depend on the flight time and are
shown in Figure D.1.

The travel rate from city i to city j without subsequent transmission, denoted by T ′i j, or associated with
the transmission of the disease to one or two individuals, denoted by (C1)i j and (C2)i j respectively, are
given by

T ′i j = Ti j [1− (P1 +P2)i j],

(C1)i j = Ti j (P1)i j,

(C2)i j = Ti j (P2)i j,

for i 6= j.
In the branching process approximation, the travel rate matrix then becomes T ′ (the diagonal of T ′

being the same as that of T ), and if we assume that air travel is instantaneous (that is, flight times are
negligible), there may be up to two transmissions at a time. Therefore, the birth rate matrices are such that
the only nonzero entries of the matrix B′1 are

(B′1)i;ii = βi and (B′1)i; j j = (C1)i j,

the only nonzero entries of the matrix B′2 are

(B′2)i; j j j = (C2)i j,

and
B′k = 0 for k > 3.



SENSITIVITY ANALYSIS OF A BRANCHING PROCESS EVOLVING ON A NETWORK 23 of 30

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Flight time (in hours)

Pr
ob

ab
ilit

y

 

 

probability of 1 new infection
probability of 2 new infections

FIG. D.1. On-board transmission probabilities. Probability that an infected individual infects one or two new individual(s) as a
function of the flight time (in hours).

Table A.5. Mean cumulative epidemic sizes after 14 days associated with four origin cities if on-board transmission is taken into
account. We indicate the ratio of the mean epidemic size with on-board transmission to the corresponding mean size without on-
board transmission as given in Table 2.

City j D j(14) Ratio
New York 6.49 ·104 1.0945
Chicago 6.70 ·104 1.1347
San Francisco 3.25 ·104 1.5231
Orlando 1.71 ·104 2.7003

With these, B′1(I⊗111) = B′1(111⊗ I) = diag(βββ )+C1 and B′2(I⊗111⊗111) = B′2(111⊗ I⊗111) = B′2(111⊗111⊗ I) =C2,
so that the matrices Ω and R become

Ω
′ = T ′+2(diag(βββ )+C1)+3C2

R′ = −
[
I +T ′−1(diag(βββ )+C1 +C2)

]−1
T ′−1(diag(βββ )+C1 +2C2).

Note that our analysis could be adapted to more than two new infections during a flight. This would
require to define subsequent matrices Pi and Ci for i > 2, but would complicate the model unnecessarily for
our purpose.

D.2 Results and Discussion

We found that the difference in the global growth of the disease (that is, in R0) is very small when taking
on-board transmission into account. However, at the city level, the difference can be more noticeable, as
shown in Table A.5: for example, we see that if the disease starts in Orlando, the expected cumulative
epidemic size after two weeks is more than twice larger with on-board transmission than without.

In order to emphasize the effects of the on-board transmission mechanism on the elasticities, we shall
compare elasticities without and with on-board transmission on the same graphs, even if for some cities the
branching process approximation might be less accurate around t = 14 days when on-board transmission
is taken into account. The plain lines in the graphs correspond to the model with on-board transmission,
and the dashed lines correspond to the case without on-board transmission.

ELASTICITY OF THE EPIDEMIC SIZE WITH RESPECT TO THE TRANSMISSION RATES. In Figure D.2
we show a comparison of the elasticities of the mean cumulative size of the epidemic with respect to the
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transmission rates with and without on-board transmission. We see that in general on-board transmission
decreases markedly the elasticity of Di(t) with respect to βi.

ELASTICITY OF THE EPIDEMIC SIZE WITH RESPECT TO THE TRAVEL RATES. In Figure D.3, we see
that the elasticity of the mean cumulative size of the epidemic with respect to the travel rates is larger
when on-board transmission is taken into account. This indicates, as expected, that in that case a change
in the travel rates would affect much more the dynamics of the disease than when on-board transmission is
not taken into account. More precisely, we see that the elasticities start increasing to positive values with
respect to the travel rates out of New York, due to the risk of transmission on board airplanes. After a
few days, however, the elasticities reach a maximum value and start decreasing to negative values, which
is especially clear for Orlando. This indicates that, in the long term and under our on-board transmission
assumptions, it would still be beneficial from a sanitary point of view that infected people travel out of New
York to cities where the transmission rate is lower.

ELASTICITY OF R0. Let C =C1 +C2. The expression given in (A.2) for ∂pR simplifies to

∂pR′ =
[
I +T ′−1(diag(βββ )+C)

]−1 [
T ′−1(∂pT ′)T ′−1(diag(βββ )+C)−T ′−1

∂p(diag(βββ )+C)
]
·{[

I +T ′−1(diag(βββ )+C)
]−1

+ I
}
. (D.1)

The values of the elasticity of R0 with respect to the different parameters with on-board transmission are
identical to those obtained in the case without on-board transmission up to the 6th decimal. We conclude
that on-board transmision (as we define it) has a negligible effect on the sensitivity of R0 with respect to
these parameters.

E. Vaccination

The vaccination problem is stated as follows: given a population and an epidemiological model, what is
the smallest fraction of the population that needs to be vaccinated to prevent the epidemic to break out?
And once this number is reached, how many new infections do we prevent with each additional vaccinated
individual? We first answer these two questions in the scalar case (uniform vaccination) and the vector case
(city-dependent vaccination) without considering on-board transmission. We then discuss what the results
become when on-board transmission is taken into account.

E.1 Uniform vaccination

MINIMAL FRACTION TO BE VACCINATED. In our case, if we assume that vaccination is done uniformly
over the population of each city, without consideration of age, social status, etc., then vaccination has the
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same effect as reducing the transmission rate. Let us suppose for now that the vaccination is done in the
same proportion over the whole country, and that a fraction r of the population is vaccinated. It leads to a
new transmission rate vector βββ v = (1− r)βββ . In the sequel, we write the subscript v each time a quantity
depends on this new vector. The minimal fraction of the population to be vaccinated in order to prevent a
breakout of the epidemic is then given by the minimization problem:

minimize
r

r∑
i

Ni

subject to λmax(Ωv)6 0.
(E.1)

If we write, for simplicity, ∆β = diag(βββ ), one has Ω = T + 2∆β and Ωv = T + (2− r)∆β . Since
Ωv is not symmetric (it results from the sum of T , which is not symmetric, and a diagonal correction
(2− r)∆β ), there is no guarantee that its eigenvalues are real. However, since T = N−1A, where N is
diag(Ni) the diagonal matrix of metropolitan populations, and A is a symmetric air travel matrix (as in
[17]), the matrix N1/2T N−1/2 is also symmetric and has the same eigenvalues as T . Consequently, Ωv
has the same eigenvalues as N1/2ΩvN−1/2 which is symmetric too. For symmetric matrices, the condition
λmax(Ωv)6 0 can be rewritten using Rayleigh quotients as

vvv>N1/2ΩvN−1/2vvv
vvv>vvv

6 0, ∀vvv : ‖vvv‖2 > 0.

By expanding the expression of Ωv and simplifying, one obtains

vvv>N1/2T N−1/2vvv6 (r−2)vvv>∆β vvv, ∀vvv : ‖vvv‖2 > 0.

If all βi are nonzero, then ∆β is invertible, and we can write vvv = ∆
−1/2
β

www, so that the condition becomes

www>∆
−1/2
β

N1/2T N−1/2
∆
−1/2
β

www6 (r−2)www>www, ∀www : ‖www‖2 > 0.

By dividing both sides by www>www, one obtains

www>N1/2∆
−1/2
β

T ∆
−1/2
β

N−1/2www

www>www
6 (r−2), ∀www : ‖www‖2 > 0,

which can finally be translated into
2+λmax(∆

−1
β

T )6 r. (E.2)

In our case, we conclude that r should be larger than 0.6917, so at least 69.17% of the population has to be
vaccinated in order to prevent the epidemic to break out.

E.2 City-dependent vaccination

MINIMAL FRACTION TO BE VACCINATED. When vaccination is not done uniformly over the population
but varies from city to city, the vaccination ratio is described by a vector rrr, where ri is the fraction of the
population of city i that is vaccinated. If we define V = diag(rrr), the optimisation problem becomes

minimize
rrr ∑

i
riNi

subject to λmax(Ωv)6 0,
(E.3)

with Ωv = T + (2I −V )∆β . Again, this matrix is not symmetric but it has the same eigenvalues as
N1/2ΩvN−1/2 which is symmetric. The constraint λmax(Ωv)6 0 can then be written as

vvv>N1/2(T +(2I−V )∆β )N
−1/2vvv6 0 ∀vvv : ‖vvv‖2 > 0.
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By writing again www = ∆
1/2
β

vvv, one obtains after some elementary manipulations

www>[V −N1/2(∆
−1/2
β

T ∆
−1/2
β

+2I)N−1/2]www

www>www
> 0 ∀www : ‖www‖2 > 0, (E.4)

which simply means that V −N1/2(∆
−1/2
β

T ∆
−1/2
β

+2I)N−1/2 has to be positive semi-definite.
In general, the solution of such an optimization problem is not trivial, but it can be solved using Linear

Matrix Inequality (LMI) solvers. However, in this case, we can derive a fairly accurate approximation.
Recall that the matrix T contains on its off-diagonal elements the travel rates between cities, while the
diagonal elements are given by Tii = −βi− di− ∑

j 6=i
Ti j. In the present situation, the travel rates are small

with respect to transmission and recovery rates, and we can approximate T ≈ diag(−βββ − ddd). Then, the
condition becomes that V −∆

−1
β

T − 2I is positive semi-definite. Since we want to minimize a weighted

sum of the elements of V , with only positive weights, this reduces to solve ri−β
−1
i (−βi−di)−2> 0 for

each i, which immediately gives
ri > 1− (di/βi). (E.5)

We solved the original problem with condition (E.4), using the Matlab software CVX [19, 20] for dealing
with the LMI condition, and we denote the solution by rrrcvx. The values of the vector rrrcvx range between
0.5965 and 0.6929, with a mean of 0.6574. We compared this solution with the solution obtained in (E.5),
denoted by rrrapprox. In all cities the optimal vaccination fractions obtained with both methods are very
similar: the largest relative error between the entries of rrrcvx and rrrapprox is 1%. There is a clear correlation
between the intensity of the travel rates and the relative error; the approximation is excellent in weakly
connected cities and less accurate in the most connected cities.

However, this approximation is valid in our case because travel rates are very small with respect to the
transmission and removal rates βββ and ddd. This is no longer the case when travel has a larger impact than
here, that is, when commuting traffic is added, or if on-board transmission is taken into account, as shown
in Appendix E.3.

SENSITIVITY OF DDD WITH RESPECT TO rrr. Now, the sensitivity of vector DDD with respect to ri (the other
r j for j 6= i being held constant) is given by

∂DDD
∂ ri

= (−Ωv)
−1 ∂Ωv

∂ ri
(−Ωv)

−1 ddd,

where the only nonzero entry of the matrix ∂Ωv/∂ ri is the entry (i, i) equal to −βi, and ∂ ri = 1/Ni. In this
case, when the proportion rrr of vaccinated individuals in each city is large enough to prevent an epidemic
to outbreak, the effect of an additional vaccine in city i is then given by

∂DDD =
1
Ni

(−Ωv)
−1 ∂Ωv

∂ ri
(−Ωv)

−1 ddd.

Similar to the uniform case, the value of ∂Di decreases rapidly when rrr moves away from rrrc, as shown
in Figure E.1, which depicts the number of people who would escape from the disease if we introduce
one additional vaccine in the origin city of the disease, as a function of (rrr− rrrc)i×Ni, the initial additional
number of vaccinated people with respect to the critical number in the city, (rrrc)iNi.

Remark E.1 If we assume that the vaccination campaign only applies to the 114 cities considered, then the
results in this section show that, in order to prevent the epidemic to break out, at least rc ∑i Ni = 1.64 ·108

individuals have to be vaccinated in the uniform case, as opposed to ∑i(rrrc)i Ni = 1.57 ·108 individuals in the
city-dependent case. This highlights the benefit of doing city-dependent vaccination, since approximately
seven million vaccinations less are needed to avoid an epidemic outbreak.

E.3 Effect of on-board transmission

The optimal vaccination fraction can be estimated in a similar way when on-board transmission is taken
into account. The optimization problems (E.1) and (E.3) stay unchanged, except for the expression of Ωv,
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FIG. E.1. City-dependent vaccination. Number of prevented infections per additional vaccine in the origin city of the disease as a
function of the difference between the initial number of vaccinated people in the city (riNi) and the critical vaccinated population in
the city ((rrrc)iNi), for three origin cities of the disease.

which is now given by

Ωv = T ′+(2I−V )∆β +2C1 +3C2.

For simplification reasons, we write T1 = T ′+2C1 +3C2, so that Ωv = T1 +(2I−V )∆β .

Note that similar to T , T1 is not symmetric, but can be written as the product of N−1 and a symmetric
matrix, so that T1 has the same eigenvalues as N1/2T1N−1/2, which is a symmetric matrix (the same holding
for T ′, C1 and C2).

UNIFORM VACCINATION. The same manipulation as in the case without on-board transmission provides
the condition equivalent to (E.2): λmax(Ωv)6 0 if and only if

2+λmax(∆
−1
β

T1)6 r. (E.6)

In our case, r should be larger than 0.6960, which is a bit larger than the minimal vaccination fraction
without on-board transmission; this shows again the influence of on-board transmissions on the size of the
epidemic.

CITY-DEPENDENT VACCINATION. Similar to the city-dependent case without on-board transmission, the
condition λmax(Ωv)6 0 of the optimisation problem (E.3) can be finally written as that

V −N1/2(∆
−1/2
β

T1∆
−1/2
β

+2I)N−1/2

has to be positive semi-definite.
The optimisation problem can be solved using CVX and be compared with the simplified solution rrrapprox

obtained when assuming that the travel rates are negligible. The obtained vaccination rates rrrcvx are higher
than in the case without on-board transmission: their values range between 0.6015 and 0.7824 with a
mean of 0.6682. Strikingly, since the influence of air travel is enhanced by the on-board transmissions, we
observe larger differences between the solution rrrcvx returned by CVX and the simplified solution rrrapprox.
In the present case, 55 cities have a relative error between rrrcvx and rrrapprox larger than 1% (the largest
relative error is 12%), and there is a very clear trend between the connectivity of a city and the error; the
most connected cities have a large relative error, while the most isolated cities have a well-approximated
vaccination rate.
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F. Complete data

Table A.6 provides the complete list of the 114 American cities considered in this paper, with their corre-
sponding metropolitan population (2011 estimates of the United States Census Bureau), and automn-winter
transmission rate. The four cities which illustrate our sensitivity analysis in Section 4.3 are in bold.

The 114×114 travel rate matrix is too large to be represented as a whole and can be computed according
to (4.1) using the average daily number of passengers for each city pair obtained from the Domestic Airline
Fares Consumer Report of the US Department of Transportation for the first Quarter of 2011 [2].
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Table A.6. The 114 cities considered, together with their metropolitan population Ni (based on the 2011
estimates of the United States Census Bureau), and their winter transmission rate βi (based on [17]).

City i Ni βi City i Ni βi

Albany 857592 1.1 Little Rock 685488 1.02
Albuquerque 857903 1.02 Los Angeles Metro Area 4/ 12870000 1.02
Allentown/Bethlehem 816012 1.1 Louisville 1259000 1.02
Amarillo 246474 0.85 Lubbock 276659 0.85
Aspen; CO (urban) 6658 1.1 Madison 570025 1.1
Atlanta 5475000 1.02 Medford 201286 1.02
Atlantic City 271712 1.02 Memphis 1305000 1.02
Austin 1705000 0.85 Miami/Ft. Lauderdale 4/ 5547000 0.85
Baltimore/Washington 4/ 2691000 1.02 Midland/Odessa 266941 0.85
Baton Rouge; LA 786947 0.85 Milwaukee 1560000 1.1
Bellingham 200434 1.1 Minneapolis 3270000 1.1
Billings; MT 154553 1.1 Mission/McAllen/Edinburg 741152 0.85
Birmingham 1131000 1.02 Moline 379066 1.1
Bloomington/Normal 167699 1.1 Myrtle Beach 263868 1.02
Boise 606376 1.1 Nashville 1582000 1.02
Boston/Providence 4/ 6190000 1.1 New Orleans 1190000 0.85
Buffalo 1124000 1.1 New York Metro Area 4/ 19070000 1.1
Burlington 208055 1.1 Newburgh/Poughkeepsie 677094 1.1
Cedar Rapids/Iowa City; IA 450462 1.1 Newport News/Williamsburg 1674000 1.02
Charleston 659191 0.85 Norfolk 1647000 1.02
Charlotte 1746000 1.02 Oklahoma City 1227000 1.02
Chicago Metro Area 4/ 9581000 1.1 Omaha 849517 1.1
Cincinnati; KY 2172000 1.02 Orlando 2082000 0.85
Cleveland/Akron 4/ 2790935 1.1 Palm Springs; CA 4143000 0.85
Colorado Springs 626227 1.1 Panama City; FL 164767 0.85
Columbia; SC 744730 0.85 Pasco/Kennewick/Richland; WA 245649 1.1
Columbus 1802000 1.1 Pensacola; FL 455102 0.85
Corpus Christi 416095 0.85 Philadelphia 5968000 1.1
Dallas/Fort Worth 4/ 6448000 0.85 Phoenix 4364000 0.85
Dayton 835063 1.1 Pittsburgh 2355000 1.1
Denver 2552000 1.1 Plattsburgh; NY 81618 1.1
Des Moines 562906 1.1 Portland 2242000 1.02
Detroit 4403000 1.1 Raleigh/Durham 1627228 1.02
Eagle; CO 61699 1.1 Reno 419261 1.1
El Paso 751296 0.85 Richmond 1238000 1.02
Eugene; OR 351109 1.02 Rochester 1036000 1.1
Fargo; ND 200102 1.1 Sacramento 2127000 1.02
Fayetteville; AR 464623 0.85 Salt Lake City 1130000 1.1
Flint 424043 1.1 San Antonio 2072000 0.85
Fort Myers 586908 0.85 San Diego 3054000 1.02
Fresno; CA 915267 0.85 San Francisco/Oakland 4/ 4318000 1.02
Grand Rapids 778009 1.1 Santa Barbara; CA 407057 0.85
Greensboro/High Point 714765 1.02 Santa Rosa; CA 472102 0.85
Harlingen/San Benito 396371 0.85 Sarasota/Bradenton 688126 0.85
Harrisburg 536919 1.1 Savannah; GA 343092 0.85
Hartford 1196000 1.1 Seattle 3408000 1.1
Houston 5867000 0.85 Sioux Falls; SD 238122 1.1
Huntsville 406316 1.02 Spokane 468684 1.1
Indianapolis 1744000 1.1 St. Louis 2829000 1.02
Islip 19070000 1.02 Syracuse 646084 1.1
Jackson/Vicksburg 589041 1.02 Tallahassee; FL 360013 0.85
Jacksonville 1328000 0.85 Tampa 2747000 0.85
Kansas City 2068000 1.02 Tucson 1020000 1.02
Key West; FL 73165 0.85 Tulsa 929015 1.02
Knoxville 699247 1.02 West Palm Beach/Palm Beach 5547000 0.85
Las Vegas 1903000 0.85 White Plains 19070000 1.1
Lexington 470849 1.02 Wichita 612683 1.02


