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We investigate the Laplacian spectra of random geometric graphs (RGGs). The spectra are found
to consist of both a discrete and a continuous part. The discrete part is a collection of Dirac
delta peaks at integer values roughly centered around the mean degree. The peaks are mainly
due to the existence of mesoscopic structures that occur far more abundantly in RGGs than in
non-spatial networks. The probability of certain mesoscopic structures is analytically calculated for
one-dimensional RGGs and they are shown to produce integer-valued eigenvalues that comprise a
significant fraction of the spectrum, even in the large network limit. A phenomenon reminiscent of
Bose-Einstein condensation in the appearance of zero eigenvalues is also found.

Over the past two decades there has been consider-
able progress in the development of parameters and mea-
surements to characterize complex networks. This has
resulted in a rich description of both the microscopic
and macroscopic properties of networks [1–3]. How-
ever, until recently the intermediate, or mesoscale, level
has not received the same degree of attention [4, 5].
The mesoscale level, though, is particularly interesting
because it is there that one can begin to understand
how a network’s modular structure affects its dynamics.
From studies of the relationship between graph spectra
and the structure and dynamics of networks [6–9] it is
known that certain mesoscale structures, namely sym-
metric (or quasi-symmetric) motifs reveal themselves in
the spectrum [10]. Symmetric motifs are of particular
interest [11] because their spectral properties imply that
the presence of a single such motif in a given network
can have distinct, well-defined consequences for system-
level processes such as diffusion, synchronization, or more
complex dynamics [12–15]. While symmetric structures
are relatively rare in random non-spatial graphs, here we
show that they occur abundantly in random geometric
graphs (RGGs). RGGs result from randomly placing N
vertices in space and connecting those that are close and
differ from other random graph models because of the
metric that defines a distance between vertices [16, 17].
They are commonly used for modeling spatially embed-
ded systems [18, 19] such as wireless networks [20], trans-
portation and power grids [21], neural networks [22, 23],
and certain biological processes [24, 25]. Here, we show
that the ensemble-averaged spectra of the graph Lapla-
cian matrices of RGGs indicate that mesoscopic symmet-
ric structures occur abundantly in these graphs.

An example of a 2d RGG embedded on a square is
shown in Fig. 1. Though to make progress analytically,
we focus mostly on the Laplacian spectrum of 1d RGGs
embedded on the unit circle, that is, in the domain [0,1]

FIG. 1: A RGG embedded in 2d on a square.

with periodic boundary conditions. Within this domain,
the vertices are distributed randomly with uniform prob-
ability and two vertices are connected when the Euclidian
distance between them is smaller than a threshold dis-
tance r. The discretized Laplace operator on the graph
is given by the Laplacian matrix L, which has elements
Lij = kiδij − aij , where ki is the degree of vertex i and
aij is an element of the adjacency matrix, i.e., aij = 1 if
vertices i and j are connected and 0 otherwise. For this
one-dimensional case, we analytically calculate the pro-
portion of eigenvalues due to symmetry in the extensive
and intensive scaling limits of large graphs. Additionally,
investigating the occurrence of the particular eigenvalue
λ = 0, we identify a phenomenon that is reminiscent of
Bose-Einstein condensation.

As can be seen in the example shown in Fig. 2, the
spectra consist of discrete, Dirac delta peaks at integer
eigenvalues and a broad distribution of eigenvalues be-
tween the integers. The part of the spectra between the
integers becomes continuous in the large network limit.
We refer to the Dirac delta peaks as the discrete part of
the spectrum and the remainder as the continuous part.
Here, we focus on the discrete part. As this figure sug-
gests, and as we will analytically prove for 1d RGGs, the
discrete eigenvalues comprise a finite fraction of the spec-
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FIG. 2: (Color online) The ensemble-averaged Laplacian spec-
trum for 1d RGGs on the unit circle (red), with N = 100 and
r = 0.1. (a) Top figure shows the discrete, Dirac delta peaks
that exist at integer eigenvalues. The envelope of these peaks
is centered about 〈k〉 + 1 where 〈k〉 = 20 is the mean degree
of the network. (b) The bottom figure is a zoom-in of the
top figure. Between the discrete peaks, the spectrum has a
continuous part. The ensemble-averaged Laplacian spectum
for Erdős-Rényi graphs with the same N and 〈k〉 is shown for
comparison (blue). These results are obtained from numerical
diagonalization of 106 realizations. A bin size of ∆λ = 0.001
was used to construct the histogram.

tra. Note that the height of the Dirac delta peaks, but
not the continuous part of the spectra, depend on the
bin size used. The relative height of the peaks and, thus,
the shape of their envelope is, however, independent of
bin size. By contrast, similar peaks are not visible in the
ensemble-averaged Laplacian spectra of non-spatial ran-
dom graph models such as the Erdős-Rényi graphs, as
the example shown in Fig. 2 indicates.

The network structure that causes a given eigenvalue
can be identified by considering the corresponding eigen-
vector. In an RGG, the eigenvectors of many of the inte-
ger eigenvalues are exactly localized on symmetric motifs
such that the eigenvector’s only nonzero components cor-
respond to vertices of the motif. Such motifs, where the
adjacency of the vertices is invariant under a permutation
of indices, are called graph orbits [10]. Orbits leading to
integer eigenvalues are significantly more frequent in spa-
tial networks, such as RGGS, because of the geographical

(a) (b)

FIG. 3: (Color online) A Type-I orbit (a) and a Type-II orbit
(b) in 1d RGGs on the unit circle. Vertices in an orbit are
colored red. Vertices in Type-I orbits are connected to each
other, but vertices in Type-II orbits are not.

proximity of neighbors. The simplest type of orbit con-
sists of a single set of vertices that can all be permuted.
If the vertices in such a simple orbit are all connected to
each other, so that they form a clique, we call it a Type-I

orbit. If they are not connected to each other then we
call it a Type-II orbit. Simple examples of Type I and
Type II orbits are shown in Fig. 3. More complicated
types of orbits are also possible, but are rare in RGGs.

Type-I and Type-II orbits account for the vast ma-
jority of the integer eigenvalues found in the Laplacian
spectra of RGGs. Since eigenvectors localize on the or-
bits, the corresponding eigenvalue is independent of the
embedding network. Type-I orbits produce an eigenvalue
equal to one more than the degree of the vertices in the
orbit, while the eigenvalues resulting from Type-II orbits
are equal to their degree [26]. To see this, let i and j
be two vertices in a simple orbit, and x be a vector with
components xi = 1, xj = −1, and all others zero. If k is
the degree of the vertices in the orbit, then Lx = (k+1)x
for Type-I and Lx = kx for Type-II. An orbit of size n
has n− 1 of these independent and orthogonal eigenvec-
tors.

To compute the expected number of simple orbits in
1d RGGs we begin by defining the following terms. The
geographical neighborhood N (i) of a vertex i is the re-
gion within a distance r of the vertex. For a pair of ver-
tices, their shared neighborhood Ns(i, j) = N (i) ∩ N (j)
is the common region that is in the geographical neigh-
borhood of both vertices and their excluded neighborhood

Nex(i, j) = (N (i) ∪ N (j)) \ (N (i) ∩ N (j)) is the region
that is in the geographical neighborhood of one vertex,
but not the other.

The average multiplicity of eigenvalues due to Type-
I orbits can be calculated by considering each of the
N(N − 1)/2 pairs of vertices and calculating the like-
lihood that they are nearest neighbors with exactly k− 2
vertices in their shared neighborhood and no vertices in
their excluded neighborhood. Such a motif produces an
integer eigenvalue equal to k. Requiring that the pair
is a nearest neighbor pair ensures that the correct mul-
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tiplicity of the eigenvalues is obtained because in a 1d
RGG orbits that are chains of size n have n− 1 nearest
neighbor pairs. Then, for r ≤ 1

3
, the expected number of

eigenvalues λ = k is

E1(k) =
N !r(2r)k−2(1− 2r)N−k

(k − 1)!(N − k)!

×2F1

[

1, k −N, k, r
1−2r

]

, (1)

where 2F1 is the ordinary hypergeometric function. Be-
cause vertices are distributed randomly with uniform
probability in RGGs, the probability that a particular
number of them are in a region of a given size is given
by the binomial distribution. Then, noting that Type-I
orbits can produce eigenvalues ranging from 2 to N , the
total number of integer eigenvalues due to Type-I orbits
is

T1 =

N
∑

k=2

E1(k) =
N

3

[

1− (1− 3r)
N−1

]

(2)

In 1d RGGs, Type-II orbits and their shared neighbors
always consist of an entire component of the graph. The
average multiplicity of eigenvalues due to Type-II orbits
can be calculated similarly to those due to Type-I orbits,
except that now one must calculate the probability that a
pair of vertices not connected to each other share exactly
the same k neighbors. For r ≤ 1

4
, the expected number

of eigenvalues λ = k is

E2(k) =
N !rk+1(1− 3r)N−2−k

(k + 1)!(N − 2− k)!

×2F1

[

1, k + 2−N, k + 2, r
1−3r

]

. (3)

Type-II orbits can produce eigenvalues ranging from 0 to
N − 2, thus the total number of integer eigenvalues due
to Type-II orbits is

T2 =

N−2
∑

k=0

E2(k) =
N

2

[

(1− 2r)
N−1 − (1 − 4r)N−1

]

(4)

Finally, in addition to the λ = 0 eigenvalues due to
Type-II orbits in which two vertices are between r and
2r apart and their shared neighborhood is empty, there is
an extra contribution of eigenvalue λ = 0 in the spectra
that occurs when pairs of vertices more than 2r apart
have no edges at all. Such pairs are too far apart to have
a shared neighborhood. The expected number of these
extra eigenvalues is

E∗(0) = (N − 1)(1− 4r)N−1. (5)

The contribution to the spectrum is analogous to the
accumulation of particles in the lowest energy level in
Bose-Einstein condensation. In the analogy, r plays the

0 4 8 12 16 20 24 28 32 36 40
λ

0

1

2

3

4

M
ul

tip
lic

ity

FIG. 4: (Color online) Ensemble-averaged integer eigenvalue
multiplicity for 1d RGGs with N = 100 and r = 0.1. The
red points are the results of numerical diagonalization of 106

random ensemble realizations and the black points are the
number due to Type-I orbits according to Eq. 1.
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FIG. 5: (Color online) Fraction of eigenvalues due to Type-I
orbits (red), Type-II orbits (blue), and in the λ = 0 conden-
sate (green) in the extensive large network limit as a function
of z = Nr. Inset shows the fraction of eigenvalues not in the
λ = 0 condensate that are due to Type-I (red) and Type-II
(blue) orbits.

role of temperature and the eigenvalues are the energy
levels. Note that limr→0 E∗(0) = N − 1.
Figure 4 shows a comparison of the averagemultiplicity

of integer eigenvalues for an ensemble of 1d RGGs found
using numerical diagonalization with the number due to
Type-I orbits predicted analytically using Eq. 1. In the
case considered, N = 100 and r = 0.1, the total number
of eigenvalues due to Type-I orbits is ∼ 33.3, which is
∼ 1/3 of all eigenvalues. Note that for this case the
Type-I orbits account for the vast majority of integer
eigenvalues, as there are only ∼ 10−10 expected to be
caused by Type-II orbits and only ∼ 10−22 expected to
be in the condensate of extra λ = 0 eigenvalues. The
discrepancy between the theoretical and numerical curves
in Fig. 4 arises due to the presence of orbits with more
complex symmetries and other mechanisms [27].
The fraction of the spectra due to simple orbits in
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large network limits can be calculated using Eqs. 2 and
4. In the intensive limit of large N and fixed r, for all
r, limN→∞

1
N
T2 = 0 because there are no Type-II or-

bits, but there are many Type-I orbits and the fraction
of corresponding eigenvalues is

lim
N→∞

1

N
T1 =

1

3
. (6)

Thus, the discrete part of the spectrum comprises a sub-
stantial finite fraction of the total number of eigenvalues,
even in the large network limit.
Perhaps a more important thermodynamic limit

though is the extensive limit in which N → ∞ while
the average degree Nr = z is constant. Figure 5 shows
that, in this limit, for z ≫ 1, as in the nonextensive limit
with fixed r, a third of the eigenvalues are due to Type-I
orbits, while virtually none are due to Type-II orbits and
the λ = 0 condensate is empty. However, near the gi-
ant component transition, z ∼ 1, the situation changes.
Here the fraction of eigenvalues due to Type-I starts to
decrease, the λ = 0 condensate starts to fill, and the
fraction of eigenvalues due to Type-II orbits reaches a
maximum. For z ≪ 1, the condensate absorbs almost
all of the eigenvalues, while the fraction of the eigenval-
ues that are due to simple orbits vanishes. However, as
shown in the inset of Fig. 5, even for z ≪ 1, a substantial
fraction of the eigenvalues that are not in the condensate
are always eigenvalues due to simple orbits. In this limit
Type-I and Type-II orbits each produce a quarter of the
eigenvalues that are not in the condensate.
In higher dimensional RGGs, similar calculations of

the expected number of eigenvalues due to simple orbits
are not easy to do exactly. However, what is generally
true in higher dimensions is that in the extensive thermo-
dynamic limit in which mean vertex degree is preserved
the number of simple orbits and the integer eigenvalues
they produce are maximal when the mean degree is near
the threshold of bond percolation where the giant com-
ponent forms. This occurs when the mean degree is of
order one. In the limit of low mean degree almost all
vertices are isolated and thus almost all eigenvalues are
zero and part of the condensate. As mean degree is in-
creased, small clusters of vertices begin to form. Symme-
tries are plentiful in these small clusters. As the mean
degree increases further, the number of components de-
creases with the giant component dominating the graph,
and the number of both Type-I and Type-II orbits de-
crease. In two-dimensional RGGs, we find numerically
that the eigenvalues due to Type-I orbits comprise about
12% of the spectrum near the giant component transition
in connectivity.
The existence of such a large number of orbits has

a profound effect on the way that spatial networks be-
have dynamically. Laplacian spectra describe the normal
modes of diffusion on the network, and if the vertices
are connected elastically, the normal modes of vibration.

Generally the occurrence of symmetries in a networked
system signals that, to linear order, its behavior can be
decomposed into a contribution that is confined to a given
symmetric structure, and a contribution which affects
all vertices in an orbit equally. On the one hand, this
impacts controllability of dynamical systems on spatial
graphs as the confined modes cannot be excited to lin-
ear order by a controller situated elsewhere [28]. On the
other hand, the confinement of dynamical modes inside
the symmetric structure means that mesoscale structures
can exist whose dynamics are largely independent of the
embedding network, but which may be able to commu-
nicate with the embedding network through nonlinear
effects. One can imagine that thereby reusable struc-
tures are created that can perform the same function
independently of the surrounding networks. Symmetric
structures in dynamical networks could therefore have an
important effect, for instance, on the evolvability of bio-
logical systems. They also have important consequences,
for example, in neural networks [22, 23], where an or-
bit implies that that neurons can be locally excited, and
wireless communication networks [13, 29].

The existence of such a large number of orbits in spa-
tial networks can also be used to simplify the analysis of
their behavior. By considering a quotient graph [10, 14]
the integer eigenvalues can be removed, leaving only the
continuous part of the spectrum. The continuous part
of the spectrum describes much of the important proper-
ties of the network’s behavior. For example, the smallest
nonzero eigenvalue in graph Laplacian matrices deter-
mines the number of vertices or edges that must be cut
to sever the network [30]. Also, its eigenvector can be
used to partition the network into communities [31]. No-
tice from Fig. 2 that, in the case shown, pairs of eigenval-
ues split-off or separate [32, 33] from the bulk continuous
distribution at the small end of the spectrum. These
separated eigenvalues include the smallest nonzero one.
The number of eigenvalues that split off together from the
bulk continuous distribution can be deduced by approxi-
mating the graph Laplacian with a continuous Laplacian
operator corresponding to disordered random media and
considering the degeneracy of the modes with smallest
eigenvalues [34].

Thus, we have shown analytically that symmetric
mesoscale structures are highly abundant for all r in 1d
RGGs. These motifs lead to integer eigenvalues that com-
prise a substantial fraction, more than a third, in both
intensive and extensive large network limits. Approxi-
mate arguments and numerical results indicate that sim-
ilar behavior occurs in higher dimensional RGGs as well.
This behavior differs remarkably from that of non-spatial
graphs, which in thermodynamic limits have almost no
orbits.
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E 80, 026117 (2009).

[11] B. D. MacArthur, R. J. Sánchez-Garćıa, and J. W. An-
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24, 1093 (2008).
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