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Abstract

In previous work, we developed the scaled SIS process, which models the dynamics of SIS epi-

demics over networks. With the scaled SIS process, we can consider networks that are finite-sized

and of arbitrary topology (i.e., we are not restricted to specific classes of networks). We derived for

the scaled SIS process a closed-form expression for the time-asymptotic probability distribution of

the states of all the agents in the network. This closed-form solution of the equilibrium distribu-

tion explicitly exhibits the underlying network topology through its adjacency matrix. This paper

determines which network configuration is the most probable. We prove that, for a range of epi-

demics parameters, this combinatorial problem leads to a submodular optimization problem, which

is exactly solvable in polynomial time. We relate the most-probable configuration to the network

structure, in particular, to the existence of high density subgraphs. Depending on the epidemics

parameters, subset of agents may be more likely to be infected than others; these more-vulnerable

agents form subgraphs that are denser than the overall network. We illustrate our results with

a 193 node social network and the 4941 node Western US power grid under different epidemics

parameters.
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I. INTRODUCTION

A network is a graph; it is a collection of nodes connected by edges. Networks have

been used in science and engineering to represent systems of multiple interconnected, in-

terdependent components. As a result, the network structure has a large impact on the

behavior of the system. Quantifying how network structure impacts network function, that

is, the behavior of dynamical processes on networks, is a difficult problem since the system

components do not behave independently.

In this paper, we focus on analyzing the behavior of network diffusion processes such as

epidemics. Analytical results for epidemics on networks have been obtained under particular

conditions: full mixing models (i.e., the underlying network is a complete graph); infinite-

sized networks models using mean-field approximation; or for scaled-free networks [1–4].

These approaches approximate the underlying network topology with mathematically sim-

pler structures, because accounting for the exact graph topology is a combinatorial problem

that is difficult to analyze and computationally expensive to compute. We showed in previ-

ous work [5, 6] that ,for a specific network diffusion process, which we called the scaled SIS

(Susceptible-Infected-Susceptible) process, it is possible to characterize its time-asymptotic

behavior on any arbitrary, finite-sized network with N agents.

The scaled SIS process is Markov. It accounts for 1) exogenous (i.e., spontaneous) infec-

tion at rate λ; 2) endogenous (i.e., neighbor-to-neighbor) infection at rate γ; and 3) healing

at rate µ. The time-asymptotic behavior of the process is described by its equilibrium

distribution, which is a PMF (probability mass function) over all 2N possible network con-

figurations. Our approach preserves the full microscopic states of all the agents in contrast

to previous approaches that only provide results for aggregate or macroscopic states (e.g.,

fraction of infected agents) [7]. However, retaining the exact network configuration means

that the computational complexity of solving for the equilibrium distribution, an eigenvector

problem, scales exponentially with the size of the network, N .

We have shown that, under specific assumptions on the form of the endogenous infection,

the scaled SIS process is a reversible Markov process for which we can find its equilibrium

distribution in closed form, avoiding solving a large eigenvalue/eigenvector problem. Fur-

ther, the equilibrium distribution that we derived exhibits explicitly the underlying network

structure through the network adjacency matrix. The equilibrium distribution is parame-
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terized by two parameters:
(

λ
µ
, γ

)

, where as usual, parameter λ
µ
controls the exogenous, or

the topology-independent behavior of the scaled SIS process, whereas parameter γ controls

the endogenous or the topology-dependent behavior of the process.

We used the equilibrium distribution to address the question of which of the 2N possible

configurations in a network is the most likely to occur in the long run. We refer to this

as the most-probable configuration, which is found by maximizing the equilibrium distri-

bution. This optimization (called the Most-Probable Configuration Problem) is difficult

because: 1) it is combinatorial; 2) it depends on the healing/infection parameters of the

scaled SIS process; and 3) it depends on the underlying network topology. Previously in

[5], we partitioned the space of
(

λ
µ
, γ

)

values into four regimes and were able to find the

most-probable configuration in Regime II) Endogenous Infection Dominant, for which

0 < λ
µ
≤ 1, γ > 1, for only specific types of networks: k-regular, complete multipartite, and

complete multipartite with k-regular islands. We showed for these specific networks that the

most-probable configuration solution space exhibits phase transition behavior depending on

the network structure and epidemics parameters.

This paper considers the Most-Probable Configuration Problem for arbitrary networks.

We are able to prove that this leads to the optimization of a submodular function for which

we have a polynomial time solution. Further, we show which clusters of agents in the network

are more vulnerable to epidemics than others. These are relevant questions in applications.

For example, these are the clusters to focus on in marketing campaigns or when combating

epidemics.

We review the scaled SIS process in Section II and set up the Most-Probable Configuration

Problem in Section III. In Section IV, we show that, in Regime II), the Most-Probable

Configuration Problem can be transformed into an equivalent submodular problem, and that

it is possible to solve for its exact solution in polynomial time. We apply this to solve the

most-probable configuration for two example networks: the 193 node acquaintance network

of drug users in Hartford, CT [8], and the 4941 node network of the Western US power grid

[9]. Section V shows how the solution space of the Most-Probable Configuration Problem

in Regime II) relates to the density of subgraphs in the network. Section VI concludes the

paper.
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II. SCALED SIS PROCESS

Consider a population of N agents whose interconnections are represented by a static,

simple, unweighted, undirected, connected graph, G(V,E), where V (G) is the set of vertices

and E(G) is the set of edges. For background on graphs see [10]. The topology of G

is captured by the symmetric N × N adjacency matrix, A. The state of the ith agent is

denoted by xi. Agents can be in one of two states: susceptible (xi = 0) or infected (xi = 1);

susceptible agents are vulnerable to infections since there is no immunization in the system.

Let

x = [x1, x2, . . . , xN ]
T .

We will refer to xi as the agent state and x as either the network state or the network

configuration. The configuration state space is X = {x}, with cardinality |X | = 2N .

The scaled SIS process models the evolution of the network state, x, over time according

to the stochastic microscopic interaction rules from the SIS (susceptible-infected-susceptible)

epidemics. The SIS framework assumes that infected agents can heal and become reinfected

so it does not account for immunization [1]. Let X(t) = x be the state of the network at

time t, t ≥ 0. Under appropriate assumptions, X(t) is a continuous-time Markov process

[7, 11, 12]. The scaled SIS process accounts for 1) exogenous infection (i.e., susceptibles

spontaneously develop infection); 2) endogenous infection (i.e., susceptibles become infected

due to infection from infective neighbors); and 3) healing events. These processes are inde-

pendent. At time t, only one one agent is affected. By including both exogenous infection

and healing, the scaled SIS process does not have an absorbing state at equilibrium.

The scaled SIS process is Markov; each network state is a state of the Markov process.

We define two operators on the network state, x = [x1, x2, . . . xi, . . . xj , . . . , xN ]
T . We use

the following notation:

Hix = [x1, x2, . . . , xi = 1, . . . , xN ]
T

Hj•x = [x1, x2, . . . , xj = 0, . . . , xN ]
T .

The operator Hi defines the operation that agent i becomes infected. If agent i is already

infected, the operator does nothing. The operator Hj• defines the operation that agent j is

healed. If agent j is already uninfected, the operator does nothing.

The time the process spends in a particular state is random and exponentially distributed,
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with the following transition rates corresponding to infection and healing events, respec-

tively:

1. X(t) jumps to the network state where the ith agent, which was healthy, becomes

infected with transition rate

q(x, Hix) = λγdi , x 6= Hix, (1)

where di =
∑N

j=1 1(xj = 1)Aij, is the number of infected neighbors of node i. The

symbol 1(·) is the indicator function, and A = [Aij ] is the adjacency matrix of the

arbitrary network G that captures the interactions among the agents. There are two

components to the infection rate. If the ith agent has no infected neighbors, di = 0,

and the transition rate reduces to λ > 0. We interpret λ as the exogenous infection

rate, the rate a susceptible agent spontaneously becomes infected; it is the same for

all the agents in the network. If the ith agent has di infected neighbors, the infective

rate is λγdi ; it is the product of λ and the endogenous infection rate, γ > 0, scaled by

di, the number of infected neighbors of agent i. Because of this factor, the infective

rate depends on the network topology.

2. X(t) jumps to the network state where the jth agent, which was infected, heals with

transition rate:

q(x, Hj•x) = µ, x 6= Hj•x. (2)

The healing rate, µ > 0, is the same for all the agents in the system.

A. Equilibrium Distribution

The evolution of the scaled SIS process is captured by the rate (infinitesimal) matrix Q

of the Markov process X(t). The assumption that the underlying network G is connected

assures that the Markov process is irreducible. Therefore, the equilibrium distribution,

π(x), exists and is given by the left eigenvector corresponding to the 0 eigenvalue of Q, the

rate matrix [13]. The problem in determining the equilibrium distribution π(x) is that its

computation is prohibitively expensive for meaningful sized networks since Q is a 2N × 2N

matrix. This has limited the analysis of epidemics and spreading processes on networks to

either: 1) full mixing models (e.g., where every agent comes in contact with every other
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agents —the network is a complete graph); 2) to small scale simulations, where N is small

so that O((2N)3) operations are feasible; or 3) to mean field type approximations of special

network configurations.

We proved in [6], see also [5], that the scaled SIS process is a reversible Markov process

by showing that its equilibrium distribution satisfies not only the global balance equation

but also the detailed balance equation [14]. For reversible Markov processes, the equilibrium

distribution is unique. We derived the equilibrium distribution of the scaled SIS process to

be:

π(x) =
1

Z

(

λ

µ

)1Tx

γ
x
T Ax

2 , x,∈ X (3)

where Z is the partition function,

Z =
∑

x∈X

(

λ

µ

)1Tx

γ
x
T Ax

2 . (4)

Previous epidemics model call the ratio λ
µ
, the effective infection rate [15]. The equilib-

rium distribution, π(x), factors as the product of three terms: 1) the normalization by the

partition function; 2) the term
(

λ
µ

)1Tx

that is topology independent since the exogenous

infection rate λ and the healing rate µ are identical for all the agents in the network, and

the total number of infected agents, 1Tx, does not depend on the topology; and 3) the

γ
x
T Ax

2 that explicitly accounts for the exact network through its adjacency matrix A. It is

topology dependent since the endogenous infection rate γ is scaled by the number of infected

neighbors; the number of edges where both end nodes are infected (we call them infected

edges), x
TAx

2
, explicitly depends on the adjacency matrix of the underlying network.

B. Parameter Regimes

The scaled SIS Process can model different types of network diffusion processes depending

on the values of the rate parameters; in particular, if the effective exogenous infection rate,

λ
µ
, and the endogenous infection rate, γ, are between 0 and 1, or if they are greater than 1.

In [5], we identified 4 regimes.

When both parameters are either between 0 and 1 or greater than 1, then the most-

probable configuration is either the x0 = [0, 0 . . . , 0]T configuration or the xN = [1, 1 . . . , 1]T
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configuration. Reference [5] also investigated Regime III) where λ
µ
> 1, 0 < γ ≤ 1. This

regime models the counter-intuitive behavior where an increasing number of infected agents

delays additional infection in the network. In this paper, we focus our analysis on Regime II)

Endogenous Infection Dominant: 0 < λ
µ
≤ 1, γ > 1. Regime II best models epidemics

and similar types of spreading processes.

The effective exogenous infection rate, λ
µ
, indicates the preference of individual agents.

With 0 < λ
µ
≤ 1, the healing rate is larger than the exogenous infection rate; agents prefer

the healthy state to the infected state. With γ > 1, however, additional infected neighbors

increase the rate at which the healthy agent becomes infected; thereby the network helps to

spread the infection. As a result, the network topology is crucial to determine the behavior

of the scaled SIS process at equilibrium.

In the next section, we introduce the Most-Probable Configuration Problem, which solves

for the network configurations with maximum equilibrium probability. Because there is

competition between the topology independent term and the topology dependent term, the

most-probable configuration exhibits complex phase transition behavior depending on the

effective exogenous infection rate λ
µ
, the endogenous infection rate γ, and the underlying

network topology.

III. MOST-PROBABLE CONFIGURATION PROBLEM

In the previous section, we showed that, for the scaled SIS process, we are able to derive its

equilibrium distribution, π(x), analytically, see equation (3). The equilibrium distribution

describes the long-run behavior of the network epidemics. While the partition function (4)

renders the exact calculation of the equilibrium distribution infeasible for meaningful size

networks, knowing the equilibrium distribution expression allows us to quickly compare

between network configurations, addressing, for example questions like which of the two is

more probable. Of all the possible 2N network configurations, one is of particular interest,

namely, the configuration of infected and healthy agents that has a higher chance of occurring

in the long run. This is the configuration x∗ that maximizes π(x). Formally, x∗ maximizes

the equilibrium probability:

x∗ = argmax
x∈X

π(x) = argmax
x∈X

(

λ

µ

)1Tx

γ
x
T Ax

2 . (5)
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We call this the Most-Probable Configuration Problem and x∗ the most-probable configu-

ration. The Most-Probable Configuration Problem is a combinatorial optimization problem

as agents can only be in one of two states; its solution is dependent on the effective exoge-

nous infection rate, λ
µ
, the endogenous infection rate γ, and the underlying network topology,

captured by the adjacency matrix, A.

Previously in [5], we provided analytical results for the Most-Probable Configuration

Problem in Regime II) Endogenous Infection Dominant: 0 < λ
µ
≤ 1, γ > 1 for particular

networks, namely, structured network topologies such as k-regular, complete multipartite,

complete multipartite with k-regular islands. We observed a phase transition behavior.

Below a threshold condition that depends on the parameters
(

λ
µ
, γ

)

and on the network

topology, the most-probable configuration is x0 = [0, 0, . . . , 0], the configuration where all

agents are susceptibles. Above the threshold condition, the most-probable configuration is

xN = [1, 1, . . . , 1], the configuration where all agents are infected.

This paper extends the analysis of the Most-Probable Configuration Problem in Regime

II) to arbitrary network topologies. We will show that, for arbitrary networks, the most-

probable configuration may be configurations other than x0 and xN . We call these solutions

to the Most-Probable Configuration Problem non-degenerate configurations. These solutions

are useful for identifying agents and communities that are more vulnerable to the epidemics.

We will relate these communities to the structure of the networks in detail later. Figure 1

and Figure 2 show the most-probable configurations obtained by the method of Section IV

for two example networks: a 193-node acquaintance network [8] and the 4941-node power

grid [9]. These are non-degenerate configurations where only a subset of agents are infected.

In Section IV, we prove that we can solve exactly for the most-probable configuration

in Regime II) in polynomial time using submodular optimization. Then, in Section V, we

discuss the relationship between the most-probable configuration and the network topology,

in particular, the relation between non-degenerate configurations and network topology.

IV. SUBMODULARITY AND THE MOST-PROBABLE CONFIGURATION

In this section, we solve the Most-Probable Configuration Problem in Regime II in poly-

nomial time by showing that the problem can be transformed into a submodular function.

First, we review the definition of submodular functions.
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A. Submodular Function

The Most-Probable Configuration Problem is the maximization of a pseudo-Boolean func-

tion. Pseudo-Boolean functions are functions that map N binary variables to a real number

[16]. Minimization of general pseudo-Boolean functions is NP-hard [17]. Grötschel, Lovász,

and Schrijver, [18], proved that the minimization of a pseudo-Boolean function that is sub-

modular can be done in polynomial time. If the function is supermodular, its maximization

is in polynomial time.

A pseudo-Boolean function, f : {0, 1}N → R, is also a set function g : P(V ) → R

where P(V ) is the power set of V = {1, 2, . . . , N}. There are many equivalent definitions of

submodularity [19]. The one we use in this paper is the following:

Definition IV.1 ([16]). A set function, g : P(V ) → R, is submodular if and only if for any

α1 ⊆ V, α2 ⊆ α1, i ∈ V \ α1:

g(α1 ∪ {i})− g(α1) ≤ g(α2 ∪ {i})− g(α2).

For a submodular function, the incremental gain of adding an element to the set α1 is less

than or equal to the gain of adding the element to a smaller subset of α1. A supermodular

function has the inequality in the opposite direction.

B. Most-Probable Configuration: A Submodular Problem

The Most-Probable Configuration Problem (5) seeks the maximum of a pseudo-Boolean

function that maps a 0-1 vector, the network configuration x, to a scalar. The network

configuration x ∈ {0, 1}N is the characteristic vector or characteristic function of the set

of infected agents: αx = {i | i ∈ V, xi = 1}. Let h(αx) be the set of infected edges (i.e.,

edges where both end nodes are infected) in configuration x: h(αx) = {{i, j} | i, j ∈ V, xi =

1, xj = 1}.

The number of infected agents in configuration x is |αx| = 1Tx. The number of infected

edges is |h(αx)| =
xTAx

2
. The Most-Probable Configuration Problem is then to solve for the

maximum argument of

g(αx) =

(

λ

µ

)|αx|

γ|h(αx)|. (6)
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We will prove in Theorem IV.2 that − log(g(αx)) is a submodular function. Therefore,

we can solve for its minimum argument in polynomial time. Lemma IV.1 sets up some basic

conditions that makes proving Theorem IV.2 easier.

Lemma IV.1. Consider two sets of infected agents, α1, α2 ⊆ V and i ∈ V \ α1. The

cardinalities of α1 and α2 are |α1| = n1 and |α2| = n2, respectively; then |α1 ∪ {i}| = n1+1,

and |α2 ∪ {i}| = n2+1. The numbers of infected edges induced by α1 and α2 are |h(α1)| = e1

and |h(α2)| = e2, respectively. Let |h(α1 ∪ {i})| = e1 + m1 and |h(α2 ∪ {i})| = e2 + m2;

therefore m1 is the number of additional infected edges created with the inclusion of agent i

in α1 and m2 is the number of additional infected edges created with the inclusion of agent

i in α2. Let α2 ⊆ α1. Then:

1. n1 ≥ n2.

2. e1 ≥ e2.

3. m1 ≥ m2.

Proof. 1. When α2 ⊂ α1, α2 must have strictly fewer number of infected agents than

α1. When α2 = α1, then they contain the same number of infected agents. Hence,

n1 ≥ n2.

2. When α2 ⊂ α1, infected agents in α2 can not induce more infected edges than the

number of infected edges induced by the infected agents in α1. When α2 = α1, then

the infected agents in α1 and α2 will induce the same number of infected edges. Hence,

e1 ≥ e2.

3. Every infected agent in α2 is an infected agent in α1. Every new infected edge connect-

ing the infected agent j ∈ α2 with i is also a new infected edge in α1 ∪ {i}. However,

some edge may also have j ∈ α1. Hence, m1 ≥ m2.

Theorem IV.2. Let g(αx) be the set function given in (6). If λ > 0, µ > 0 and γ ≥ 1, then

− log(g(αx)) is a submodular function, where

− log(g(αx)) = − |αx| log

(

λ

µ

)

− |h(αx)| log(γ).
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Proof. To prove submodularity of − log(g(αx)), we need to show that

− log(g(α1 ∪ {i})) + log(g(α1)) ≤ − log(g(α2 ∪ {i})) + log(g(α2)), (7)

for any α1 ⊆ V, α2 ⊆ α1, i ∈ V \ α1.

The left-hand side (LHS) of (7) is

−(n1 + 1) log

(

λ

µ

)

− (e1 +m1) log(γ) + n1 log

(

λ

µ

)

+ e1 log(γ), (8)

which reduces to

− log

(

λ

µ

)

−m1 log(γ). (9)

The right-hand side (RHS) of (7) is

−(n2 + 1) log

(

λ

µ

)

− (e2 +m2) log(γ) + n2 log

(

λ

µ

)

+ e2 log(γ), (10)

which reduces to

− log

(

λ

µ

)

−m2 log(γ). (11)

Expression (7) reduces to

− log

(

λ

µ

)

−m1 log(γ) ≤ − log

(

λ

µ

)

−m2 log(γ).

Since γ ≥ 1, we know that log(γ) ≥ 0 and that m1 ≥ m2 by Lemma IV.1. Therefore, the

LHS of (7) is less than or equal to the RHS of (7) for any α1 ⊆ V, α2 ⊆ α1, i ∈ V \ α1. By

definition, − log(g(αx)) is a submodular function.

Theorem IV.2 proves that − log(g(αx)) is submodular if λ > 0, µ > 0, and γ ≥ 1;

this means that log(g(αx)) is supermodular under the same condition. Since the logarithm

function is a monotonic function, the maximum argument of log(g(αx)) is also the maximum

argument of g(αx), which is the solution to the Most-Probable Configuration Problem.

As Regime II) Endogenous Infection Dominant: 0 < λ
µ

≤ 1, γ > 1 satisfies the

condition that γ ≥ 1, using submodular optimization, we can find the exact most-probable

configuration of the scaled SIS process in Regime II) for arbitrary network topology in

polynomial time.
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C. Social Networks and the Power Grid

The most-probable configuration allows us to identify the set of agents that are vulnerable

to network epidemics since it retains the state of all the agents. Agents who are infected

in the most-probable configuration are more vulnerable to the epidemics than agents who

remain healthy. Because the most-probable configuration is derived from a dynamical model

of network diffusion processes, the set of vulnerable agents depends on the infection and

healing rates, λ, γ, µ.

As we showed in [5], the most-probable configuration changes depending on these param-

eters. When the healing rate is high, x∗ = x0, meaning that the epidemics is not severe.

When the infection rate is high, x∗ = xN , the epidemics is severe, and all the agents are

vulnerable. When x∗ is a non-degenerate configuration (i.e, x∗ 6= x0,xN), this indicates that

sets of agents in the network are more vulnerable than others to the epidemics. We illustrate

this by solving for the most-probable configuration using [20] under different
(

λ
µ
, γ

)

param-

eters for 2 realistic networks: a social network [8] and the Western United States power grid

[9], obtained from [21]

The network shown in Fig. 1 is a 193 node, 273 edge social network of drug users in

Hartford, CT. The network was determined through interviews. Reference [22] looked for

influential agents in the network by considering it as a graph connectivity problem. However,

they did not consider a dynamical model of influence. Assuming that we can model drug

habits as an epidemics (i.e., there is a social contagion aspect to the behavior), we applied

the scaled SIS process to this network and solved for the most-probable configuration under

different parameters to find influential network structures.

We show the resultant most-probable configurations in Fig. 1a, Fig. 1b, Fig. 1c, Fig. 1d

as we change
(

λ
µ
, γ

)

. We can see from these results that there is a small community of

users who are infected when others are healthy. The size of this community increases or

decreases depending on the parameters. If there is a social contagion component to drug

usage, then these agents may be more vulnerable to the social contagion component of drug

usage and therefore more likely to persist in their habit. In the next section, we will relate

the most-probable configuration to the network substructure.

The network shown in Fig. 2 is the 4941 node, 6595 edge power grid network of the

Western United States used by Watts and Strogatz. They showed through simulation of the
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SIR (susceptible-infected-removed) epidemics model on the western power grid that small-

world networks like the western power grid are more conducive to spreading infection/failures

than lattice networks. This is useful for explaining why failures propagate so quickly in a

blackout. However, they did not identify which components in the power grid are more

vulnerable to the epidemics.

Figure 2a and Fig. 2b show the most-probable configuration for the western US power grid

when for the scaled SIS process parameterized
(

λ
µ
= 0.33, γ = 2

)

and
(

λ
µ
= 0.33, γ = 2.6

)

,

respectively. We can see that for the same λ
µ
, as γ increases, thereby increasing the infec-

tiousness of epidemics, the number of infected agents increases. This is intuitive since, for

large γ, the epidemics is severe, and the most-probable configuration is driven toward xN , the

configuration where all the agents are infected. Moreover, the most-probable configurations

are both non-degenerate configurations. The agents who are infected at equilibrium are more

vulnerable to the network epidemics than agents who are healthy. By using submodular op-

timization, we can identify these more vulnerable agents, by solving for the most-probable

configuration out of 24941 total possible configurations, exactly and in polynomial time.

An important question is to relate the most-probable configuration to network structure.

We will show in the next section that the most-probable configuration is related to subgraph

density by rewriting the equilibrium distribution (3) in terms of induced subgraphs instead

of network configurations.

V. MOST-PROBABLE CONFIGURATION AND NETWORK STRUCTURE

In the previous section, we showed that we can exactly solve for the most-probable con-

figuration with a polynomial time algorithm. The exact solution, however, does not give

insight on how the most-probable configuration changes depending on the parameters
(

λ
µ
, γ

)

and on the network topology. In this section, we draw the connection between the most-

probable configuration and subgraphs in the network. As per our intuition for epidemics,

densely connected network structures are more vulnerable to network epidemics; the scaled

SIS process quantifies this intuition. First, we will define the graph theoretic terms used in

this section.
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= 0.267, γ = 3
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(c) λ
µ
= 0.4, γ = 1.2
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(d) λ
µ
= 0.5, γ = 1.6

FIG. 1: (Color online) Most-Probable Configuration x∗ under Different
(

λ
µ
, γ

)

Parameters

(Blue/Grey = Infected, White = Healthy).

A. Induced Subgraphs and Graph Density

Definition V.1 (From [10]). The graph H is an induced subgraph of G if two vertices in

H are connected if and only if they are connected in G and the vertex set and edge set of H
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(a) λ
µ
= 0.33, γ = 2

(b) λ
µ
= 0.33, γ = 2.6

FIG. 2: (Color online) Most-Probable Configuration x∗ under Different
(

λ
µ
, γ

)

Parameters

(Blue/Black = Infected, Red = Healthy).
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are subsets of the vertex set and edge set of G.

V (H) ⊆ V (G), E(H) ⊆ V (G)

Definition V.2. The graphH(x) is an induced subgraph of configuration x = [x1, x2, . . . , xN ]
T

if the nodes/edges in the subgraph are the infected agents/edges in x.

V (H(x)) = {vi ∈ V (G) | xi = 1} (12)

E(H(x)) = {(i, j) ∈ E(G) | xi = 1, xj = 1} (13)

By definition, |V (H(x))| = 1Tx and |E(H(x))| = x
TAx

2
. Figure 3 and Fig. 4 show two

network configurations and their corresponding induced subgraphs. We proved in [23] that

configurations whose induced subgraphs are isomorphic are equally probable. Unless we

need to refer explicitly to the underlying network configuration x, for notational simplicity,

we will write H to denote an induced subgraph instead of writing H(x).

V2

V1

V3

V4

V5

V6

V7

V2

V3

V4

(a) (b)

FIG. 3: (a) Configuration x1 = [0, 1, 1, 1, 0, 0, 0]T , (b) Induced Subgraph H(x1) = H1

.

V2

V1

V3

V4

V5

V6

V7

V5

V6

V7

(a) (b)

FIG. 4: (a) Configuration x2 = [0, 0, 0, 0, 1, 1, 1]T , (b) Induced Subgraph H(x2) = H2

.

Definition V.3. The set of all possible induced subgraphs of G is H = {H(x)}, ∀x ∈ X .

The set H includes the empty graph, which is induced by the configuration x0 =

[0, 0, . . . , 0]T , and G, which is the subgraph induced by the configuration xN = [1, 1, . . . , 1]T .
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Definition V.4 (From [24]). The density of the graph G is

d(G) =
|E(G)|

|V (G)|
.

There is an alternative definition for graph density that is the number of edges divided

by the total number of possible edges [25]. Unfortunately, these two definitions of density

are not equivalent.

We will refer to the density of the entire network, d(G) = d(H(xN)), as the network

density, and the density of an induced subgraph of G as the subgraph density. The density

of the empty graph, d(H(x0)), is 0 by definition. The subgraphs in H can be partially

ordered by their density. There may be many subgraphs with the same density. A special

induced subgraph in H is the densest subgraph.

Definition V.5. Let H be the densest subgraph in G. Then

d(H) ≥ d(H), ∀H ∈ H.

Finding H is known as the Densest Subgraph Problem. It is known that this problem

can be solved in polynomial time exactly and in linear time in approximation for undirected

graphs [24].

B. Equilibrium Distribution of the Scaled SIS Process

Since there is a one-to-one relationship between the network configuration x and its

induced subgraph H(x), we can rewrite the equilibrium distribution (3) of the scaled SIS

process in terms of the induced subgraph density and the size of the induced subgraph:

π(H) =
1

Z

((

λ

µ

)

γd(H)

)|V (H)|

, H ∈ H, (14)

where d(H) is the density of the subgraph and Z is the partition function.

The Most-Probable Configuration Problem (5) is then also an optimization problem over

all the possible induced subgraphs in G:

H(x∗) = argmax
H∈H

((

λ

µ

)

γd(H)

)|V (H)|

. (15)

The subgraph induced by the most-probable configuration, H(x∗), is the most-probable sub-

graph, but this is not necessarily the same subgraph as the densest subgraph, H.
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Stating the equilibrium distribution in terms of the induced subgraph will allow us to

derive several theorems regarding the most-probable configuration. For the theorems that

follow, we make the following assumptions:

Assumption 1.: The scaled SIS process operates in Regime II) Endogenous Infection

Dominant. This limits the effective infection and the endogenous infection to the

range, 0 < λ
µ
≤ 1 and γ > 1.

Assumption 2.: The underlying network G is a simple, undirected, unweighted, and con-

nected graph.

C. Most-Probable Configuration and Subgraphs

Theorem V.6. [Proof in Appendix A] The most-probable configuration x∗ 6= x0 if and only

if there exists at least one induced subgraph H ∈ H with density d(H) for which λγd(H) > µ.

Theorem V.7. [Proof in Appendix B]

Case 1: The densest subgraph, H, is the network G. Then, x∗ 6= xN if and only if

λ
µ
γd(G) ≤ 1.

Case 2: The densest subgraph, H, is not the network G. Then, x∗ 6= xN if and only if

there exists at least one induced subgraph H ∈ H \G with density d(H) = E′

N ′
for which

log(λ
µ
γd(G))

log(λ
µ
γd(H))

<
N ′

N
. (16)

Corollary V.8. [Proof in Appendix C] Let the density of the network be d(G) = E
N
. Then,

the most-probable configuration is a non-degenerate configuration, x∗ ∈ X \ {x0,xN}, if and

only if there exists at least one induced subgraph H ∈ H with density d(H) = E′

N ′
for which

λγd(H) > µ, and

log(λ
µ
γd(G))

log(λ
µ
γd(H))

<
N ′

N
.

In Regime II) individual agents have a preference for being healthy, but the epidemics

might spread to other agents through neighbor-to-neighbor contagion. Under the scaled SIS

process, the subgraph density d(H) scales the exogenous infection rate γ, thereby affecting

the overall infection rate. Theorem V.6 states that, if the network contains dense-enough
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subgraphs, then even when the effective exogenous infection rate, λ
µ
, is small (i.e., 0 < λ

µ
≪

1), the exogenous infection rate, γ, can leverage dense subgraphs to spread the infection

throughout the network.

On the other hand, if the endogenous infection rate, γ, is large (i.e., γ ≫ 1), then most

certainly the epidemics will spread throughout the entire network. Theorem V.7 states

when this does not happen. Furthermore, Theorem V.7 shows that it is important to

consider if the densest subgraph in the network is the entire network or a smaller subgraph.

Corollary V.8 proves that the existence of the non-degenerate configurations is related to

the existence of subgraphs with density larger than the network density. The existence of

these denser-than G subgraphs is crucial to the existence of non-degenerate configurations

(i.e., different from x0 and xN ) as solutions to the Most-Probable Configuration Problem;

when the most-probable configuration is a non-degenerate configuration, agents belonging

to denser subgraphs are more vulnerable to the epidemics.

In network science, dense clusters of agents have often been identified as either the network

core or community [2, 26, 27]. Solving for the non-degenerate configuration is an alternative

method for determining these network structures. Previous works in core/community detec-

tion are algorithmic and do not consider the dynamical process on the network. The scaled

SIS process, however, is a model for dynamical processes on networks and, therefore, what

is considered a community changes depending on the parameters of the dynamical process:

the most-probable configuration changes depending on the exogenous rates λ
µ
and on the

endogenous rates γ.

To get an easy visual interpretation of Theorem V.6 and V.7, we illustrate them with

two small 16-node examples; Network A shown in Fig. 5 and Network B in Fig. 6. For

each network, we fix the effective exogenous infection rate, λ
µ

= 0.5. We then solve for

the most-probable configuration for different γ, ranging from 1.2 to 3. As the endogenous

infection rate, γ, changes, the most-probable configuration also changes. In Fig. 5a and

Fig. 6a, neither network supports dense enough subgraphs for the epidemics to spread. But

as γ increases, the infection starts to spread. In Network A, there is at least one subgraph

denser than the network. The subgraph induced by V 1, V 2, V 3, V 4, V 5, V 7, V 8, V 9, V 10

has a density of 1.33 whereas the density of the entire network is 1.19. In Fig. 5b, the most-

probable configuration has these 9 agents infected while the other 7 agents remain healthy.

The 9 agents in the dense subgraph are more vulnerable to the epidemics when λ
µ
= 0.5 and
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(c) λ
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= 0.5, γ = 2
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(d) λ
µ
= 0.5, γ = 3

d(H(x∗)) = 1.19

FIG. 5: (Color online) Most-Probable Configuration x∗ under Different
(

λ
µ
, γ

)

Parameters

(Blue/Grey = Infected, White = Healthy).

γ = 1.7.

In Network B, there are at least two subgraphs denser than the network and they are

induced by the set of infected agents of the most-probable configuration as shown in Fig. 6b

and Fig. 6c. We can see by solving for the most-probable configuration for different parame-

ter values that, as the endogenous infection increases, the most-probable configuration goes
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(d) λ
µ
= 0.5, γ = 1.7

d(H(x∗)) = 2.4375

FIG. 6: (Color online) Most-Probable Configuration x∗ under Different
(

λ
µ
, γ

)

Parameters

(Blue/Grey = Infected, White = Healthy).

toward xN as all agents become vulnerable to the epidemics.

It is easier for the infection to spread in Network B than in Network A, since, at the same

effective exogenous infection rate, x∗ = xN for Network B when γ = 1.7 but x∗ 6= xN for

Network A with the same exogenous infection rate. This is because Network B is a denser

graph (d(G) = 2.4375) than Graph A (d(G) = 1.19).
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D. Most-Probable Configuration and the Densest Subgraph

We showed that the most-probable configuration is related to the density of induced

subgraphs in the network. The densest subgraph, H , is a special induced subgraph. In this

section, we focus specifically on the relationship between the most-probable configuration

and the densest subgraph.

Corollary V.9. [Proof in Appendix D] The most-probable configuration x∗ = x0 if and only

if λγd(H) ≤ µ.

Corollary V.9 follows the result of Theorem V.6. If the densest subgraph in the network is

not dense enough to overcome individual preferences for being healthy, then the endogenous

infection rate γ will not be able to drive the most-probable configuration away from x0.

Lastly, because of the connection between the most-probable configuration of the scaled

SIS process and the densest subgraph, we can prove a general statement regarding network

structure using results from dynamical processes on networks.

Corollary V.10. [Proof in Appendix E] If G is a k-regular, complete multipartite, or com-

plete multipartite with k-regular islands network, then H = G. That is, for these structured

networks, the densest subgraph is the overall graph.

VI. CONCLUSION

We introduced in previous works the scaled SIS process, which is a mathematically an-

alyzable model for modeling diffusion processes on a static network [5]. The scaled SIS

process is a reversible Markov process and has a closed-form equilibrium distribution that

explicitly accounts for the underlying network topology via the adjacency matrix. It is

parameterized by 2 parameters:
(

λ
µ
, γ

)

. The effective exogenous infection rate λ
µ
controls

the exogenous, or the topology-independent behavior of the scaled SIS process whereas the

exogenous infection rate γ controls the endogenous or the topology-dependent behavior of

the process.

Depending on if the parameter values are between 0 and 1 or great than 1, the scaled

SIS process models qualitatively different network diffusion processes. In Regime II) En-

dogenous Infection Dominant: 0 < λ
µ
≤ 1, γ > 1, the scaled SIS process best models
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a network epidemics process; individuals prefer to be healthy, while neighbor-to-neighbor

infection helps to spread the epidemics throughout the population.

This paper analyzes the Most-Probable Configuration Problem that solves for the network

state with the maximum equilibrium probability, in Regime II) for arbitrary networks. First,

we prove that the Most-Probable Configuration Problem in Regime II) is submodular. This

means that we can compute the exact most-probable configuration in polynomial time. We

use the most-probable configuration of the scaled SIS process to identify sets of vulnerable

agents/components for a social network of drug users and the Western US power grid under

different infection/healing rates.

We then showed that the most-probable configuration is dependent on certain classes of

subgraphs in the networks. If there exist dense-enough subgraphs, conditioned on the right

set of parameters, the most-probable configuration will shift away from x0, the network

state where all the agents are healthy. However, if there exist subgraphs that are denser-

than the entire network, conditioned on the right range of infection and healing rates, the

most-probable configuration may not reach xN , the network state with all agents infected.

We call the solution of the Most-Probable Configuration Problem that is neither x0 nor xN ,

the non-degenerate configuration. Non-degenerate configurations identify subsets of agents

that are more vulnerable to the network epidemics than others.

We also proved in this paper using results in [5] that structured networks such as k-

regular, complete multipartite, complete multipartite with k-regular islands do not contain

subgraphs that are denser than the overall network. Therefore, if we want to avoid subsets of

agents being more vulnerable than others, we should use these types of structured networks.

Our analysis of the scaled SIS process in Regime II) informs us that network subgraph

structures are important for understanding network diffusion processes. For future work,

we are interested in statistically characterizing the subgraphs in network classes such as

small-world networks and scaled-free networks.
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Appendix A: Proof for Theorem V.6

Theorem. The most-probable configuration x∗ 6= x0 if and only if there exists at least one

induced subgraph H ∈ H with density d(H) for which λγd(H) > µ.

Proof. Sufficiency: If there exists at least one subgraph H ∈ H with density d(H) for

which λγd(H) > µ, then x∗ 6= x0.

Using the equilibrium distribution (3), π(x0) = 1
Z
. Let the subgraph H ∈ H be the sub-

graph induced by configuration x′ ∈ X \x0. The number of infected agents in configuration

x′ is 1Tx′ =| V (H) |> 0. Using (14), its equilibrium probability is

π(x′) = π(H) =
1

Z

((

λ

µ

)

γd(H)

)|V (H)|

If
(

λ
µ

)

γd(H) > 1, we know that π(x′) > π(x0). Therefore, x0 can not be the most-probable

configuration.

Necessity: If x∗ 6= x0, then there exist at least one subgraph H ∈ H with density d(H)

for which λγd(H) > µ.

If x∗ 6= x0, this means that there is some configuration x′ for which π(x′) > π(x0).

We know that π(x0) = 1
Z
. Using the equilibrium distribution in (14) and the fact that

1Tx = |V (H)| > 0, ∀x ∈ X \ x0, we can conclude that there must exist some induced

subgraph whose density satisfies this condition
(

λ
µ

)

γd(H(x′) > 1.

Appendix B: Proof for Theorem V.7

Theorem. Case 1: The densest subgraph, H, is the network G. Then, x∗ 6= xN if and only

if λ
µ
γd(G) ≤ 1.

Case 2: The densest subgraph, H, is not the network G. Then, x∗ 6= xN if and only if

there exists at least one induced subgraph H ∈ H \G with density d(H) = E′

N ′
for which

log(λ
µ
γd(G))

log(λ
µ
γd(H))

<
N ′

N
. (B1)
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Proof. Sufficiency: Lets first prove sufficiency for both case 1 and case 2.

Case 1: H = G. If λγd(G) ≤ µ, then x∗ 6= xN .

Follows from Corollary V.9: If λγd(H(x)) ≤ µ, then x∗ = x0.

Case 2: H 6= G. If there exists at least one induced subgraph H ∈ H with density

d(H) = E′

N ′
such that

log(λ
µ
γd(G))

log(λ
µ
γd(H))

< N ′

N
, then x∗ 6= xN .

The subgraph H is induced by the configuration x′ ∈ X . The log equilibrium probability

according to (14) for x′ and xN , respectively, are:

log(π(x′)) = log

(

1

Z

)

+N ′ log

(

λ

µ
γd(H)

)

and

log(π(xN )) = log

(

1

Z

)

+N log

(

λ

µ
γd(G)

)

.

Condition
log(λ

µ
γd(G))

log(λ
µ
γd(H))

< N ′

N
implies that N log

(

λ
µ
γd(G)

)

< N ′ log
(

λ
µ
γd(H)

)

. Therefore,

log(π(x′)) > log(π(xN)). Since the logarithm is a monotonic function, we can conclude that

x∗ 6= xN .

Necessity: We now prove necessity for both case 1 and case 2.

Case 1: H = G. If x∗ 6= xN , then λγd(G) ≤ µ.

Follows from Corollary V.9: If x∗ = x0, then λγd(H(x)) ≤ µ.

Case 2: H 6= G. If x∗ 6= xN , then there exists at least one induced subgraph H ∈ H such

that
log(λ

µ
γd(G))

log(λ
µ
γd(H))

< N ′

N
.

Let x∗ = x′, which induces a subgraph H ∈ H with density d(H). Using (14),

π(x′) = log

(

1

Z

)

+N ′ log

(

λ

µ
γd(H)

)

π(xN ) = log

(

1

Z

)

+N log

(

λ

µ
γd(G)

)

.

This means π(x′)− π(xN ) > 0, which implies

N ′ log

(

λ

µ
γd(H)

)

−N log

(

λ

µ
γd(G)

)

> 0

This reduces to the condition that

log(λ
µ
γd(G))

log(λ
µ
γd(H))

<
N ′

N
.
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Appendix C: Proof for Corollary V.8

Corollary. Let the density of the network be d(G) = E
N
. Then, the most-probable configura-

tion is a non-degenerate configuration, x∗ ∈ X \ {x0,xN}, if and only if there exists at least

one induced subgraph H ∈ H with density d(H) = E′

N ′
for which λγd(H) > µ, and

log(λ
µ
γd(G))

log(λ
µ
γd(H))

<
N ′

N
.

Proof. Theorem V.6 gives the necessary and sufficient condition for the most-probable con-

figuration x∗ 6= x0 to be existence of a subgraph H such that λγd(H) > µ. Theorem V.7

gives the necessary and sufficient condition that the most-probable configuration is not xN

when
log(λ

µ
γd(G))

log(λ
µ
γd(H))

<
N ′

N
.

This proves the Corollary.

Appendix D: Proof for Corollary V.9

Corollary. The most-probable configuration x∗ = x0 if and only if λγd(H) ≤ µ.

Proof. Sufficiency: If λγd(H) ≤ µ, then x∗ = x0.

Recall the definition of the densest subgraph V.5. With γ > 1, λγd(H(x)) ≤ λγd(H(x)) ≤ µ

for all possible induced subgraphs in G. This means that there is no subgraph, H ∈ H, for

which λγd(H) > µ. We can conclude that x∗ = x0 using the contrapositive of Theorem V.6:

If there is no subgraph H ∈ H with density d(H) for which λγd(H) > µ, then x∗ = x0.

Necessity: If x∗ = x0, then λγd(H) ≤ µ.

The result follows from the contrapositive of Theorem V.6: If x∗ = x0, then there is no

subgraph H ∈ H with density d(H) for which λγd(H) > µ. Therefore, all induced subgraphs,

including the densest subgraph have density for which λγd(H) ≤ µ.

Appendix E: Proof for Corollary V.10

Corollary. If G is a k-regular, complete multipartite, or complete multipartite with k-regular

islands network, then H = G. That is, for these structured networks, the densest subgraph
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is the overall graph.

Proof. We proved previously in [5] that the solution of the Most-Probable Configuration

Problem for any parameters
(

λ
µ
, γ

)

in Regime II) Endogenous Infection Dominant:

0 < λ
µ
≤ 1, γ > 1, over k-regular, complete multipartite, complete multipartite with k-regular

islands networks is either x0 and/or xN; the solution to the Most-Probable Configuration

Problem for these networks is not a non-degenerate configuration in Regime II). We will use

this and Corollary V.8 to prove this corollary.

Consider the contrapositive of Corollary V.8: Let the density of the network be d(G) = E
N
.

Then, the most-probable configuration is not a non-degenerate configuration, x∗ ∈ {x0,xN},

if and only if there does not exist any subgraph H ∈ H with density d(H) = E′

N ′
for which

λγd(H) > µ, or
log(λ

µ
γd(G))

log(λ
µ
γd(H))

<
N ′

N
.

This implies that all the induced subgraphs, H ∈ H, in networks whose solution to the

Most-Probable Configuration Problem is not a non-degenerate configuration in Regime II),

satisfy the condition that λγd(H) ≤ µ or

log(λ
µ
γd(G))

log(λ
µ
γd(H))

≥
N ′

N
,

for all 0 < λ
µ
≤ 1, γ > 1.

Depending on the effective infection rate and the endogenous infection rate,
(

λ
µ
, γ

)

, the

first condition λγd(H) ≤ µ may not be satisfied. However, since N ′

N
≤ 1 regardless of the

parameters and the underlying network, the second condition is satisfied if

log(λ
µ
γd(G))

log(λ
µ
γd(H))

≥ 1, ∀H ∈ H.

Since γ > 1, this means that d(H) ≤ d(G) for all possible induced subgraph. As this only

depend on the structure of the underlying network, we can conclude that d(H) ≤ d(G) for

networks whose most-probable configuration can only be x0 and/or xN .
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