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Abstract

We describe a class of new algorithms to construct bipartite networks that preserves a prescribed 

degree and joint-degree (degree-degree) distribution of the nodes. Bipartite networks are graphs 

that can represent real-world interactions between two disjoint sets, such as actor-movie networks, 

author-article networks, co-occurrence networks, and heterosexual partnership networks. Often 

there is a strong correlation between the degree of a node and the degrees of the neighbors of that 

node that must be preserved when generating a network that reflects the structure of the underling 

system. Our bipartite 2K (B2K) algorithms generate an ensemble of networks that preserve 

prescribed degree sequences for the two disjoint set of nodes in the bipartite network, and the 

joint-degree distribution that is the distribution of the degrees of all neighbors of nodes with the 

same degree. We illustrate the effectiveness of the algorithms on a romance network using the 

NetworkX software environment to compare other properties of a target network that are not 

directly enforced by the B2K algorithms. We observe that when average degree of nodes is low, as 

is the case for romance and heterosexual partnership networks, then the B2K networks tend to 

preserve additional properties, such as the cluster coefficients, than algorithms that do not preserve 

the joint-degree distribution of the original network.
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1. Introduction

A bipartite network, sometimes called two-mode network or affiliation network, is a network 

whose nodes can be divided into two disjoint sets, upper and lower nodes, where every edge 

connects an upper node to a lower node. There are no edges between upper nodes, and no 

edges between lower nodes. Bipartite networks can provide an insightful representation of 

the interactions between two disjoint groups, with applications ranging from heterosexual 

partnerships [? ? ], citation/collaboration networks [7], and ecological networks [12].

To avoid artifacts caused by the structure of a single network, mathematical models on these 

networks must quantify the range of possible predictions based on an ensemble of networks 

with properties similar to those in real-world networks. This requires algorithms to generate 

an ensemble of random networks that capture the relevant structure of these real-world 

networks. For many models, these important properties include the network degree 

distribution and joint-degree distribution which is sometimes called the degree correlation or 

degree-degree distribution. That is, if a property of a network, such as the degree and joint-

degree distribution, affects the solution of questions being asked, such as how fast a disease 

will spread among a heterosexual population, then that property must be preserved in the 

networks used in the simulations.

For example, in heterosexual partnership networks the number of partners a man, or a 

woman, has is correlated with the number of partners that their partner has. That is, most 
people with few partners might select partners who also have few partners, and most 
people with many partners might select partners who also have many partners. 
However, there might exist people with many partners whose partners have few 
partners. Sex workers are an example of this situation. These statistical properties can 

often be captured in the heterosexual network by preserving the joint-degree distribution 

when simple rule-based assumptions, such as preferential attachment, fail to account for 

these complex correlations.

We recognize that the degree and joint-degree distributions are just two of many possible 

important properties of a network that can affect the solution of a network-based model. In 
particular, when modeling the spread of information on a network, it seems likely that 
the joint degree-cluster distribution can influence the local saturation of information. 
In unipartite networks, there is often an assortativity tendency where nodes are connected 

to nodes with similar properties. In bipartite networks, this affect is more often captured by a 

one-hop associative mixing where the a node is more like the neighbors of their neighbors, 

than they are like their neighbors. That is, in a heterosexual network, a woman is more like 

the partners of her partner than she is like her partner, or in an author/article network, the 

authors are more like the other authors of their papers than they are like the article.

Typical network generation algorithms that preserve the degree distributions are based on 

stochastic, rewiring, or reconfiguration approaches. The Erdős-Rényi random graph 

generation algorithm [13] is an example of stochastic approach where every two nodes are 

connected with probability p defined by the average degree of nodes in the network divided 

by their size. This approach is easily generalized to match a given degree distribution [6] or 
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joint-degree distribution [4]. The pseudograph reconfiguration algorithm [22] reproduces the 

given degree distribution exactly, however it may end up with a multigraph, a network with 

self-loop or multiple edges between two nodes, therefore, rewiring is needed to convert the 

network to a simple one. The rewiring approach takes a connected network and selects two 

random edges to reconnect, while preserving the average degree or degree distribution. Fully 

generating a network via rewiring does converge, although there is little analysis on the 

convergence rate [21].

The joint-degree distribution is correlated with the structural and dynamical properties of 

networks [10, 15, 24, 32]. This information is quantified in the symmetric joint-degree 

matrix (JDM) whose (i, j) element is the number of edges between nodes of degree i and 

nodes of degree j [31]. The necessary and sufficient condition for a simple network to exist 

for a given JDM is given by the Erdős–Gallai type theorem [1, 8, 31]:

Theorem 1.1—(Erdős–Gallai Type Theorem for JDM) Consider a network where M is the 

largest degree of the nodes in the network, then there is a simple network that has an M×M 
symmetric JDM if and only if

1. ni = 1
i (JDM(i, i) + ∑ j = 1

M JDM(i, j)) is the number of nodes with degree i for i = 

1···M.

2.
JDM(i, i) ≤

ni
2

, for i = 1···M.

3. JDM(i, j) ≤ ninj, for i ≠ j.

There are several methods, called 2K network generation algorithms, for generating 

unipartite networks, networks with only one type of node, that preserve both a given degree 

and joint-degree distributions. [4, 10, 15, 20, 24, 32].

Mahavedan et al. [20] have extended the rewiring approach to generate random networks 

using joint-degree distribution. They use the term 2K–series to introduce joint-degree 

distribution, and they compare stochastic, pseudograph, matching and rewiring and the 

extended pseudograph algorithms to construct networks using 2K–series. They compare the 

topology of networks made based on different algorithms and suggest that 2K– series or 

joint-degree distribution is enough to reproduce most metrics of interest for the network. 

They then use a configuration model to generate a 2K-network with the prescribed JDM, 

however their network may end up with multiple edges between two nodes. Miller et al. and 

Newman et al. [? ? ] use the configuration model approach in their 2K edge-based 

algorithms to generate a random unipartite network by randomly assigning edges to match 

the given joint-degree sequence. A balanced degree invariant algorithm is provided by [31] 

for constructing simple networks from a given JDM, and a Monte Carlo Markov Chain 

method is used for sampling the networks. Gjoka et al. [16] designed a new algorithm for 

constructing simple networks with a target JDM. Bassler et al. [2] described a JDM 

sampling algorithm for generating independent (uncorrelated) networks that match a 

specified joint-degree distribution. Their algorithm is exact, that is, it does not exclude 

classes of graphical realizations of a given JDM and can generate all possible 2K networks 
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in the limit of an infinite number of samples. None of the mentioned unipartite 2K 
algorithms distinguishes between different types of nodes, and therefore, cannot be directly 

applied to bipartite networks.

There are bipartite 1K (B1K) algorithms for generating bipartite network that preserve a 

prescribed degree distribution of the network [18, 23] and prevent edges between similar 

nodes. We extend these B1K methodologies to create bipartite 2K (B2K) algorithms that 

preserve both the degree and joint-degree distributions. Note that the bipartite joint degree 

(BJD) matrix of a bipartite network can be nonsymmetric and is not a square matrix if the 

maximum degree in two groups are not the same. We find and prove a similar necessary and 

sufficient condition as Erdős–Gallai Type Theorem on BJD for constructing simple bipartite 

network and then use BJD matrix as an input to construct network. We then describe new 

bipartite algorithms for generating these random networks and investigating how well they 

reproduce other properties, such as the bipartite clustering, observed in real-world networks. 

This family of algorithms are called B2K algorithms and they preserve a given degree and 

joint-degree distributions of the network.

2. Bipartite Network

A bipartite network, sometimes called two-mode network or affiliation network, is a network 

whose nodes can be divided into two disjoint sets Vu and Vl such that every edge connects a 

node in Vu to one in Vl, there is no edge between nodes in Vu, and no edges between nodes 

in Vl. This network is shown like G = (Vu,Vl,E) consisting of a set of Pu = |Vu| upper nodes, 

Vu = {vi
u ∣ i = 1, 2, 3, …Pu}, a set of Pl = |Vl | lower nodes, Vl = {vi

l ∣ i = 1, 2, 3, …Pl}, together 

with a binary adjacency relation defining the set of edges 

E = {ei j = vi
uv j

l ∣ i ∈ {1, 2, 3, …Pu}, j ∈ {1, 2, 3, …Pl}}, where ei j = vi
uv j

l  denotes the edge 

between node vi
u and node v j

l .

The degree of a node vi, deg(vi), is defined as the number of neighboring nodes connected to 

the node by an edge. The degree distribution dk defines the number of nodes with degree k. 

The joint-degree distribution or sometimes called degree-degree distribution or degree 
correlation (k, j) is the number of nodes with degree j which are connected to nodes with 

degree k. A bipartite network G can be represented by the Bipartite Joint Degree or BJD 
matrix:

BJDG =

e11 e12 e13 … e1l
e21 e22 e23 … e2l
⋮ ⋮ ⋮ ⋱ ⋮

eu1 eu2 eu3 … eul

,

where, u is the maximum degree in upper nodes, and l is the maximum degree in lower 

nodes, each element eij is the number of edges between upper nodes with degree i and lower 

nodes with degree j.
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The degree distribution of network G is defined by the number of upper nodes, dk
u, and lower 

nodes, dk
l , with degree k:

dk
u =

∑ j = 1
l ek j

k , and dk
l =

∑i = 1
u eik

k .

The number of nodes with degree k is dk = dk
u + dk

l .

A BJD matrix is consistent with a bipartite network if there exists at least one bipartite 

network with this joint degree distribution. For an example, consider the BJD matrix

BJD = 2 2
4 0 ,

each entry in the matrix, (i, j), is an edge between an upper node with degree i and lower 

node with degree j. There are 2 + 2
1 = 4 upper nodes with degree 1, and 4 + 0

2 = 2 upper node 

with degree 2, 2 + 4
1 = 6 lower nodes with degree 1, and 2 + 0

2 = 1 lower node with degree 2. 

On the other hand, e21 = 4 means that four of the edges of the graph will connect an upper 

node of degree 2 to a lower node of degree 1, or e22 = 0 means there is no edge between 

upper and lower nodes with degree 2.

Theorem 2.1—Let BJD be a matrix,

BJD =

e11 e12 e13 … e1l
e21 e22 e23 … e2l
⋮ ⋮ ⋮ ⋱ ⋮

eu1 eu2 eu3 … eul

,

where di
u =

∑ j ei j
i  is the number of upper nodes with degree i, and d j

l =
∑i ei j

j  is the number 

of lower nodes with degree j. If we have ei j ≤ di
ud j

l  for i = 1, …,u and j = 1, …, l, then, there 

exist at least one simple network, a network without self-loops or multiple edges, as defined 

by the BJD matrix.

Proof: Suppose the BJD matrix satisfies the assumption of theorem, and the network G 
corresponding to BJD matrix has at most one edge between all nodes, except for two nodes, 

where there are two edges between the upper node u of degree i and the lower node v of 

degree j. There are di
u upper nodes with degree i and d j

l  lower nodes with degree j.
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For the trivial case when di
u = 1 and d j

l = 1, we have eij ≤ 1 and there can not be a multiple 

edge between the sole node u with degree i and sole node v with degree j.

When either di
u > 1 or d j

l > 1, then there is an upper node, u′, with degree i and a lower node, 

v′, with degree j that are not connected. This follows from the contradiction argument where 

if all nodes with degree i are connected to all nodes with degree j and u is connected to v 

with two edges, then ei j = di
ud j

l + 1 ≰ di
ud j

l , which contradicts the assumption of theorem. 

Therefore, such u′ and v′ exist. These u′ may be the same as u or v′ may be the same as 

v, but both can not happen:

• Case 1: We consider the case that u′ is different from u and v′ is different from 

v. Because u is connected to v within two edges, therefore, it has i–1 disjoint 

neighbors, however, because all edges connected to u′ are simple, therefore, u′ 
has i disjoint neighbors, thus u′ has a neighbor, like w, which is not a neighbor 

of u. Also, for the same reason v has j–1 disjoint neighbors and v′ has j disjoint 

neighbors, thus v′ has a neighbor, like w′, which is not a neighbor of v. When 

this happens, then we rewire the network by first removing one of the the double 

edges uv, as well as edges u′w and v′w′, then adding the edges uw, vw′, and u
′v′. Therefore, we have a simple network G. The figure below illustrates this 

rewiring process.

• Case 2: If u′ is the same as u, then v′ has to be different from v, in that case, 

because v has j–1 disjoint neighbors and v′ has j disjoint neighbors, then v′ has 

a neighbor, w′, which is not a neighbor of v. Therefore, we rewire the network 

by removing edges uv and w′ v′ and adding the edges uv′ and w′v. The figure 

below illustrates this process. For the case when v′ is the same as v we have 

similar approach.

2.1 Generating Bipartite Network

We introduce five B2K algorithms to construct simple bipartite networks for a given BJD 
matrix satisfying the assumptions of Theorem 2.1. These algorithms are categorized as 

either an edge or node algorithm, depending on the network generation process. Both 

approaches can be used to generate an ensemble of B2K networks. However, as we will 

show, the statistical properties of the networks for the different algorithms differ. That is, the 

different approaches have different biases in sampling the space of all feasible networks.

The algorithms begin by grouping nodes into upper and lower nodes and assigning each 

node a desired degree based on the BJD matrix. In the edge algorithms, we first choose an 

entry in the BJD matrix - a tuple of the desired degrees of the upper node and lower node. 

We find the list of pair of nodes that satisfies the conditions of the tuple. We choose one pair 

of nodes randomly from this list and attach the edge if one does not exist. If we cannot find a 

pair of nodes in the list that do not have an edge between them, we choose one at random 

and add a double-edge. We repeat adding edges until all edges are placed. If we attached a 

double-edge during the generation, we rewire the graph as described in subsection 2.2. The 

full algorithms for each approach to graph generation are provided in the Appendix.
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The edge algorithms start with the unconnected list of upper and lower nodes and iteratively 

add new edges guided by the current state of the edges in the network:

• Random Edge (RE): Define the remaining BJD matrix RBJD matrix equal to 

BJD matrix. Choose one (i,j) randomly from the RBJD. We find a pair of upper 

and lower nodes with degrees i, j respectively and add an edge between them, 

then update (i, j) → (i, j)–1. This process continues for each edge until the RBJD 
becomes zero matrix.

• Maximum Edge-Degree (EDmax): Of the remaining edges choose an edge to 

add from those with max(dmax) where dmax((i, j)):= max(i, j) at random until 

there are no remaining edges.

• Total Edge-Degree (TED): Of the remaining edges choose an edge to add from 

those with max(dtotal) where dtotal((i, j)):= i+ j at random until there are no 

remaining edges. (Note: We observed no statistical differences between the TED 

and EDmax approaches and will only present results for the EDmax algorithm.)

The node algorithms start with the unconnected list of upper and lower nodes and iteratively 

add new edges based on current state of the nodes in the network:

• Maximum Node-Degree (NDmax): Choose from the nodes with the highest 

desired degree. Choose possible edges that the chosen node could have and select 

appropriate neighbors. Select all of the neighbors for the chosen node, then 

choose another node from those with the highest desired degree. Repeat until all 

edges are added.

• Maximum Stub Minimum Node-Degree (SmaxNDmin): Find the nodes with 

the fewest placed edges – the most stubs – and sort them by their desired degree, 

and choose the one with the maximum desired degree. Choose possible edges 

that the chosen node could have and select appropriate neighbors and make the 

edge. Continue until all edges are added.

Because our experiments require that we calculate the degree of nodes attached to edge for 

each possible edge in the network, the full set of experiments run in O(|E|PuPl ) time, where |

E| is the number of edges, Pu number of upper nodes and Pl number of lower nodes in the 

network. Therefore, it is prohibitive when |E|, Pu, or Pl is large, however, for when the 

average degree ( 2 ∣ E ∣
Pu + Pl) of the network is not high then the methods are more feasible.

2.2 Rewiring Approach

During the construction of our network, it is possible that there are not valid nodes, u and v, 

each of valid desired degrees, i and j that do not already have an edge between them. Our 

options are to increase a node beyond its desired degree, or attach a multiple edge. Because 

the final network satisfies a certain BJD, we choose to simplify the generation by allowing 

multiple edges between nodes u and v as long as the network still satisfies (i, j). Once all of 

the edges are attached, we use rewiring to remove multiple edges, which maintains the 

proper edge count for each (i, j).
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Our approach follows the proof of theorem 2.1. Suppose G is the bipartite network 

generated by one of the approaches defined in the last subsection, and suppose G has at least 

one multiple edge. We randomly start with one of the multiple edges, say edge attached to 

the nodes u and v and then we follow the rewiring process explained in the theorem 2.1. The 

detail of the algorithm can be found in the appendix, algorithm 6.

3. Numerical Examples

We evaluated the RE, EDmax, NDmax, and SmaxNDmin algorithms by generating an ensemble 

of random bipartite networks that preserve the B2K properties of small (Southern women) 

and medium size (Romance network, Malaria network) real-world bipartite networks. We 

then compared the ensemble of randomly generated networks using descriptive measures 

that were not imposed when generating the networks:

• Nc: the number of connected components of the network.

• Sg: the size of giant component (the biggest connected component) of the 

network.

• Cl: the bipartite clustering coefficient of the network [? ]. The bipartite clustering 

coefficient for each node is the fraction of the number of quadruplets of nodes 

with four links in network to the number of quadruplets of nodes with at least 

three. The clustering coefficient for a network is the average of clustering 

coefficient for all nodes.

• Rc: the average redundancy coefficient of all nodes in the network. The 

redundancy coefficient of a node u is the ratio of the overlap of u to the 

maximum possible overlap of u according to its degree. The overlap of u is the 

number of pairs of neighbors that have mutual neighbors themselves, other than 

u. The redundancy coefficient for a network is the average of redundancy 

coefficients for all nodes [? ].

3.1 Southern Women

The Southern women empirical network [11] in the right panel of Figure (3) reflects the 

attendance of 18 women in Natchez, MS, USA at 14 social events in the 1930s and was 

collected by ethnographers to examine the roles of race and class in dictating social 

interactions [19]. The BJD matrix of the Southern women network is

BJDS =

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 3 0 1
0 0 0 0 0 0 0 1 0 0 0 1 0 1
0 0 0 1 1 4 0 6 0 4 0 3 0 5
0 0 0 1 1 1 0 0 0 1 0 0 0 1
0 0 2 0 1 1 0 0 0 0 0 1 0 1
0 0 5 1 1 3 0 4 0 3 0 1 0 3
0 0 5 3 1 3 0 5 0 2 0 3 0 2

.
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Table (1) compares the properties of the original network and the average of 10,000 random 

networks generated by each B2K algorithm. The redundancy coefficients of the networks 

generated by B2K algorithms and the original network are similar. However, the clustering 

coefficients for the generated networks differ by about 15% from the original network. The 

visual comparison of the original network and a typical B2K generated network in Figure 3 

shows how similar the networks are.

Currently, there are no B2K NetworkX [? ] algorithms that preserve the joint-degree 

distribution for bipartite networks. To investigate the differences in the graphs generated 

with B1K and B2K algorithms, we compared our B2K generating network algorithms with 

the Newman et al. configuration [23] and Havel-Hakimi [18] NetworkX B1K algorithms. 

Using each algorithm we generated 10,000 networks, and then we compare the average 
of properties in Table (2). Before showing the result, we mention that Havel-Hakimi 
algorithms create a unique graph [? ] in which the highest degree node in the upper set 
tends to be connected to the highest degree node in lower set (Havel-Hakimi 
algorithm), or highest degree node in upper set tends to be connected to lowest degree 
node in lower set (Reverse Havel-Hakimi algorithm), or highest degree nodes in upper 
set to alternatively the highest and the lowest degree nodes in lower set until all stubs 
are connected (Alternating Havel-Hakimi) [18]. Therefore, for this family all our 
generated networks have the same metrics.

The properties of generated networks for Southern women data in Table (2) show that the Nc 
and Sg for all algorithms is close to the original network. However, the Cl for all the 

generated networks is far from the Cl for the original network. The B1K algorithms do not 

preserve the Rc of the original network, while the Rc for the B2K algorithms is close to the 

original value, indicating a correlation between Rc and the joint-degree distribution.

3.2 Romance Network

The network of heterosexual contact depicted in Figure (4) describes the structure of the 

adolescent romantic and heterosexual network in a population of 573 students at Jefferson 

High [3]. The original network is not a bipartite network: there are two edges that link two 

men and two women, representing homosexual relationships. We remove these two edges so 

that we have a bipartite network.

The BJD matrix of the Romance network, BJDR, has kw = 6 rows, and km = 8 columns, 

where kw is the maximum degree for women students and km is the maximum degree for 

men. Each element (i, j) is the number of edges between women with degree i and men with 

degree j. The BJDR matrix determines the degree distribution for women and men: the 

number of women with degree i is summation of elements in i–th row divided by i, and the 

number of men with degree j is summation of elements in j–th column divided by j;
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BJDR =

63 56 30 16 2 0 0 2
46 40 25 14 1 0 0 4
23 20 18 8 1 0 0 2
26 24 21 4 1 0 0 0
8 9 1 2 0 0 0 0
4 1 1 0 0 0 0 0

.

This matrix shows many people with few partners, indicated by many nodes with a low 

degree (upper left corner of matrix) and only a few people with many partners, indicated by 

few high degree nodes. The average degree is very low. Using our algorithms we compare 

the properties of generated random networks and the original Romance network. We 

generate an ensemble of 10,000 networks using each algorithm, the algorithms succeeded in 

generating networks that preserved both the degree and joint-degree distributions in every 

simulation. We observed that the statistical properties of the networks for the B2K 
algorithms were different, as shown in Table (3). This Table lists the Nc, Sg, Cl, and Rc for 

the ensemble of generated networks. Note that the size of the giant component for the real 

network is noticeably above the mean size of giant components in the randomly generated 

networks, especially SmaxNDmin. The Cl and Rc of all the generated networks are similar to 

the original Romance network, although the RE networks are the closest. We also compare 

B2K generating network algorithms with B1K algorithms in NetworkX [? ] by generating 
10,000 networks using each algorithm and computing the average of properties for 
each of them.. Table (4) lists some properties of real Romance network, B2K networks and 

B1K networks generated using Romance data.

The Figure (5) plots the distribution of properties of the 10,000 simulated networks from 

B2K algorithms. The clustering coefficient, subfigure (5a), is approximately normally 

distributed for all the B2K algorithms. We observed that the mean value for the SmaxNDmin 

generated networks is slightly smaller, indicating that joint-degree distribution may weakly 

correlated with the clustering coefficient. The distribution of redundancy coefficients for the 

networks is right skewed (subfigure 5b). The giant component and the number of connected 

components generated by the SmaxNDmin is smaller than it is for the other B2K algorithms 

and it is skewed to the right, while the other distributions are closer to symmetric.

The giant component of generated network using configuration model, Havel-Hakimi 

algorithm, RE algorithm, and real Romance network are shown in Figure (6). This Figure 

shows that the network generated by B2K RE algorithm is visually more similar to the real 

network more than B1K network generators in NetworkX. As expected, this example shows 

that the joint-degree distributions preserves more properties of the original network than the 

bipartite algorithms that just preserve the degree distribution.

3.3 Malaria Network

The last empirical network is the malaria parasite. The parasite evades the human immune 

system via a protein camouflage, which is encoded in var genes [19]. In order to create novel 

camouflages, var genes frequently recombine, which amounts to the constrained splicing 

and shuffling of genetic substrings, giving rise naturally to community structures [5]. Nodes 
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types correspond to genes and their constituent substrings, and each substring connects to 

every gene in which it is present [19].

The BJD matrix for this network is of size 24×35, that all big elements are distributed on 

row 2 to 7 and all columns of the matrix, rest of the matrix are 0 or small numbers of order 

1. The average degree for genes is 9.98 and that of substrings is 3.67. Using BJD matrix and 

B2K algorithms, we generate 3,000 random networks and compare their properties with the 

original network. Table (5) shows the result.

The original Malaria network and randomly generated networks have the same BJD matrix, 

but very different properties, Table (5). All of our B2K algorithms tended to generate 

networks that reproduced the Nc and Sg of the original network, Table 6. However, neither 

the B2K algorithms nor B1K algorithms captured Cl and Rc, indicting that these quantities 

might only be loosely correlated with the joint-degree distribution.

These results indicate that the Malaria network may not be a typical network with these 

degree and joint-degree distributions. If so, then additional properties of the network might 

be needed for an ensemble of randomly generated networks to exhibit similar properties of 

the original network.

The distribution of clustering coefficient of these 3,000 generated networks using different 

algorithms is shown in Figure (7). For SmaxNDmin and RE algorithms, we observe a 

unimodal distribution with a very low variance, however, NDmax and EDmax are near to 

normal with very different parameters, suggesting that joint-degree distribution is not 

enough to capture clustering coefficient for this Malaria data.

4. Summary and Discussion

Some properties of real-world systems such as degree distribution, joint-degree distribution, 

or the degree-cluster distributions affect the dynamics on the network. When these dynamics 

are being modeled, then these properties need to be preserved in an ensemble of random 

networks to prevent introducing artifacts into the simulations. We have partially addressed 

this problem by describing new B2K algorithms to construct bipartite networks that exactly 

match both given degree and joint-degree distributions. An ensemble of these B2K networks 

can then be used to more accurately study dynamical systems like the spread of infections or 

information, and to quantify the uncertainty in these predictions.

We analyzed the properties of an ensemble of networks with the same BJD generated by the 

B2K algorithms that shared the same joint-degree distribution as several real-world bipartite 

networks. We observed a tight distribution in the number of connected components and size 

of giant component for all the networks with the same BJD. The clustering and redundancy 

coefficients for networks with the same BJD had a narrow distribution for low-degree 

networks and broad distributions for high-degree networks. That is, in a typical bipartite 

heterosexual network with low average degree, the networks all had similar clustering 

coefficients. When the average degree of network was high, such as the Malaria network, the 

networks generated by the B2K algorithms had a wider range of clustering and redundancy 
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coefficients, indicating that more information than joint-degree distribution is needed to 

retain these properties.

Although our algorithm preserves the degree and joint-degree distributions of a bipartite 

system, there are other properties that can be important in preserving when generating an 

ensemble of bipartite networks. The joint degree-cluster distribution can influence the local 

spread of information or a disease in a network with highly connected neighborhoods. The 

joint-degree distribution in a heterosexual network can capture the effects where people are 

like their partners, as observed in homosexual networks. However, there are often third-order 

degree relationships in bipartite networks, such as a one-hop associative mixing properties, 

where a node is more like the neighbors of their neighbors, than they are like their 

neighbors. This one-hop assortivity is a weaker condition than generating a bipartite 3K 

network that exactly preserves these third-order distributions [20]. We are investigating ‘soft 

constraint’ algorithms to capture this preferential attachment by biasing the random selection 

process in our node-based algorithms. One of our goals is to generalize this approach to 
account for associative mixing in social networks where nodes also have associated 
properties, such as age, race, income, or spatial location [? ].
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Appendix

This appendix describes algorithms for the generation of random bipartite network. The 

input for all generation network algorithms 1–5 is BJD matrix, each element (i, j) of this 

matrix is the number of edges between upper nodes with degree i and lower nodes with 

degree j. At the beginning of each algorithm every node is given a degree, deg(u), and the 

potential edges of a node as its stubs, stub(u):= deg(u).

The first and simplest algorithm, Random Edge (RE), selects edges randomly and makes 

them between two random nodes.

Algorithm 1

Random Edge (RE)

1: while BJD > 0 do

2:  Randomly select an element (i, j)

3:  Randomly select an upper node u with degree i and stub(u) > 0.

4:  Randomly select a lower node v with degree j and stub(v) > 0.

5:  Make edge uv, stub(u) ← stub(u) – 1, and stub(v) ← stub(v) – 1.

6:  (i, j) ← (i, j) – 1.

7: end while

The Maximum Edge Degree (ED+) selects edges based on degree of nodes attached to them.

Algorithm 2

Maximum Edge Degree (ED+)

1: while BJD > 0 do

2:
 For remaining (i, j) > 0, find m where m: = max

(i, j) > 0
{i, j}.

3:  Randomly select an element (i, j) > 0 where i = m or j = m.

4:  Randomly select an upper node u with degree i and stub(u) > 0.

5:  Randomly select a lower node v with degree j and stub(v) > 0.

6:  Make edge uv, stub(u) ← stub(u) – 1, and stub(v) ← stub(v) – 1.

7:  (i, j) ← (i, j) – 1.

8: end while

Total Edge Degree (TED), first makes an edge for nodes whose summation of their degree is 

highest among others.

Algorithm 3

Total Edge Degree (TED)

1: while BJD > 0 do
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2:
 For remaining (i, j) > 0, find m where m: = max

(i, j)
(i + j).

3:  Randomly select an element (i, j) > 0 where i+ j = m.

4:  Randomly select an upper node u with degree i and stub(u) > 0.

5:  Randomly select a lower node v with degree j and stub(v) > 0.

6:  Make edge uv, stub(u) ← stub(u) – 1, and stub(v) ← stub(v) – 1.

7:  (i, j) ← (i, j) – 1.

8: end while

The algorithm ND+ finds the neighbors for the node with maximum degree, and then go to 

the next highest degree node.

Algorithm 4

Maximum Node Degree (ND+)

1: while BJD > 0 do

2:
 From remaining nodes with positive sub, find the one with highest degree: u = max

deg(v)
{v}

3:  while stub(u) > 0 do

4:   if u is upper node with degree i

5:    then:

6:     From the row i of BJD matrix randomly select an element (i, j) > 0.

7:     Randomly select a lower node v with desired degree j and stub(v) > 0.

8:     Make edge uv, stub(u) ← stub(u) – 1, and stub(v) ← stub(v) – 1, and (i, j) ← (i, j) – 1.

9:

10:   if u is lower node with degree j

11:    then:

12:     From the column j of BJD matrix randomly select an element (i, j) > 0.

13:     Randomly select an upper node v with desired degree i and stub(v) > 0.

14:     Make edge uv, stub(u) ← stub(u) – 1, and stub(v) ← stub(v) – 1, and (i, j) ← (i, j) – 1.

15:

16:   end if

17:  end while

18: end while

The algorithm SmaxNDmin captures social behavior more than the others, it always start with 

the highest degree node and end up with the highest degree node.

Algorithm 5

Maximum Stub Minimum Degree (SmaxNDmin)

1: while BJD > 0 do

2:
 From remaining nodes, find the node u with u = min

deg(v) { max
stub(v)

{v}}.
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3:  if u is upper node with degree i

4:   then:

5:    From the row i of BJD matrix randomly select an element (i, j) > 0.

6:    Randomly select a lower node v with desired degree j and stub(v) > 0.

7:    Make edge uv, stub(u) ← stub(u) – 1, and stub(v) ← stub(v) – 1, and (i, j) ← (i, j) – 1.

8:

9:  if u is lower node with degree j

10:   then:

11:    From the column j of BJD matrix randomly select an element (i, j) > 0.

12:    Randomly select an upper node v with desired degree i and stub(v) > 0.

13:    Make edge uv, stub(u) ← stub(u) – 1, and stub(v) ← stub(v) – 1, and (i, j) ← (i, j) – 1.

14:

15:  end if

16: end while

The algorithms 1–5 generate a network G which may not be a simple network. The 

following algorithm takes the non-simple network G generated by one of the previous 

algorithms and converts it to a simple one preserving BJD matrix.

Algorithm 6

Rewiring Process

1: while Network G is not simple do

2:  Select upper node u and lower node v with more than one edge between them.

3:  if There is lower node v′ with deg(v′) = deg(v) not connected to u

4:   then:

5:    Find a neighbor of v′ which is not neighbor of v: upper node w′.

6:    Remove edges vu and v′w′.

7:    Add edges uv′, vw′.

8:

9:  if There is lower node u′ with deg(u′) = deg(u) not connected to v

10:   then:

11:    Find a neighbor of u′ which is not neighbor of u: upper node w.

12:    Remove edges vu and u′w.

13:    Add edges u′v, uw.

14:   else:

15:    Find upper node u′ with deg(u′) = deg(u), a lower node v′ disconnected to u′ with deg(v′) = deg(v).

16:    Find a neighbor of u′ which is not neighbor of u: upper node w.

17:    Find a neighbor of v′ which is not neighbor of v: upper node w′.

18:    Remove edges uv, u′w, and w′v′.

19:    Add edges uw, w′v, and u′v′.

20:  end if

21: end while
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Fig. 1. 
In case 1, the rewiring with 3 swaps: node u is connected to node v two times, there are 

nodes u′ with the same degree as u, and v′ with the same degree as v which are not 

connected. There are nodes w (neighbor of u′ but not a neighbor of u), and w′ (neighbor of 

v′ but not a neighbor of v). We remove edges uv, u′w and v′w′, add edges uw, vw′, and u
′v′.
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Fig. 2. 
In case 2, the rewiring with 2 swaps: v′ is not neighbor of u and has a neighbor like w′ 
which is not neighbor of v, we remove edges uv and w′v′ and add edges uv′ and w′v.
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Fig. 3. 
Left: a network generated by B2K algorithm SmaxNDmin. Right: real Southern women 

network. Circle nodes on the left are women and square nodes on the right are events; nodes 

in each partition are listed down in descending degree.
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Fig. 4. 
The Romance contact network at Jefferson High [3? ] consists of a single large connected 

component and several smaller romance groups.
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Fig. 5. 
Bar plot of distribution of properties of 10,000 generated networks using B2K algorithms. 

The different distributions result from the algorithms sampling the feasibly space differently.
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Fig. 6. 
The structure of the giant components of Romance network and the B2K generated network 

are similar. The configuration model and Havel-Hakimi algorithms have the same degree 

distributions, but do not capture this property.
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Fig. 7. 
Distribution of the clustering coefficients for the ensemble of networks with the same B2K 
matrix as the Malaria network data. Different algorithms provide different distributions, 

which means the algorithms do not sample the space of feasible networks in the same way, 

and that the joint-degree distribution is not enough to capture clustering coefficient of 

Malaria data. The NDmax and EDmax B2K algorithms tend to produce networks with larger 

clustering coefficients than the SmaxNDmin and RE algorithms.
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Table 2
Average of the properties for Southern women network and10,000 networks generated by 
each of the B1K and B2K algorithms

All the algorithms could estimate Nc and Sg, however B2K algorithms could better estimate Rc. None of the 

algorithms is successful to estimate Cl.

Network Model < Nc > < Sg > <Cl > < Rc >

Southern Women Network 1 32 0.32 0.958

RE 1 32 0.273 0.933

EDmax 1 32 0.277 0.932

NDmax 1 32 0.275 0.932

SmaxNDmin 1 32 0.272 0.933

Configuration Model 1 32 0.222 0.781

Havel-Hakimi Network 1 32 0.341 0.861

Alternative Havel-Hakimi 1 32 0.291 0.916

Reverse Havel-Hakimi 1 32 0.477 0.962
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Table 4
Average of the properties for Romance network and 10,000 networks generated by each of 
the B1K and B2K algorithms

The network metrics B2K algorithms are in better agreement with the metrics for real Romance network than 

the existing B1K algorithms. This is expected since they use more information. Note that the SmaxNDmin 

accurately captures Cl, and Rc in this low average degree network, but not Sg.

Network Model < Nc > < Sg > <Cl > < Rc >

Real Romance Network 101 287 0.339 0.004

RE 102.59 217.57 0.334 0.004

EDmax 110.09 256.35 0.364 0.007

NDmax 109.47 244.79 0.362 0.012

SmaxNDmin 99.527 87.06 0.301 0.001

Configuration Model 103.21 203.37 0.343 0.00

Havel-Hakimi Network 178 82 0.184 0.505

Alternative Havel-Hakimi 120 50 0.383 0.068

Reverse Havel-Hakimi 132 9 0.821 0.564
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Table 6
Average of the properties for Malaria network and 3000 networks generated by each of 
the B1K and B2K algorithms

Note that the none of the algorithms estimates the network Cl and Rc accurately in this high average degree 

network.

Network Model < Nc > < Sg > <Cl > < Rc >

Malaria Network 1 1103 0.227 0.724

RE 1.012 1102.96 0.135 0.169

EDmax 1.357 1101.89 0.146 0.181

NDmax 1.219 1102.3 0.151 0.169

SmaxNDmin 1.004 1102.99 0.134 0.174

Configuration Model 1 1103 0.138 0.159

Havel-Hakimi Network 8 735 0.401 0.882

Alternative Havel-Hakimi 1 1103 0.191 0.413

Reverse Havel-Hakimi 10 699 0.71 0.966
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