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We study symmetric motifs in random geometric graphs. Symmetric motifs are subsets of nodes which
have the same adjacencies. These subgraphs are particularly prevalent in random geometric graphs and
appear in the Laplacian and adjacency spectrum as sharp, distinct peaks, a feature often found in real-
world networks. We look at the probabilities of their appearance and compare these across parameter
space and dimension. We then use the Chen-Stein method to derive the minimum separation distance in
random geometric graphs which we apply to study symmetric motifs in both the intensive and thermody-
namic limits. In the thermodynamic limit the probability that the closest nodes are symmetric approaches
one, whilst in the intensive limit this probability depends upon the dimension.
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1. Introduction

Many physical systems like social networks, biological networks, transport networks and technological
infrastructures can be modelled using the graph concept of a set of nodes connected by edges. For an
introduction see for example [23, 24]. In the study of complex networks, a popular technique is to
randomly generate graphs in such a way as to capture certain features of the topology and dynamics of
the real-life systems of interest. Some common examples of these are the Erdos-Renyi random graph
[11], the Barabási-Albert scale-free network generator [4] and the Watts-Strogatz small-world network
generator [34]. A powerful tool for analysing the topology and dynamics of these networks is their graph
spectra [7] [15] [21]. In particular, important subgraphs called symmetric motifs can be seen through the
presence of sharp peaks in the spectra indicative of the multiplicity of particular eigenvalues, see figure
1 for an illustration of this in the real-world network of the high-voltage power grid in the Western
States of the United States of America [34] and see [19] for an analysis of the symmetric motifs in
this particular network. Networks such as this are important for an understanding of efficiency and
robustness of power-grids [28]. It is known that the presence of symmetric motifs is important for other
real-world complex systems [20] and has been shown to influence synchronisation processes [1], [9]
and dynamical stability [3], [10] and is also related to redundancy and network stability [19]. However,
the non-spatial random graph generators mentioned above rarely contain these important subgraphs. It
is known, however, that they do occur in a spatial random graph model the random geometric graph
(RGG). RGGs were first introduced by Gilbert as a way of modelling wireless networks [16]. In a RGG

ar
X

iv
:1

70
4.

00
64

0v
2 

 [
co

nd
-m

at
.d

is
-n

n]
  6

 J
un

 2
01

7



2 C. P. DETTMANN AND G. KNIGHT

FIG. 1. Spectral density of the adjacency (a) and Laplacian (b) matrices of the Western States Power Grid of the United States
[34]. The 4941 nodes in this network represent the infrastructure of transformers, substations, and generators whilst the edges
represent high-voltage transmission connections. Note the peaks at integer values. This network contains 64 type-I symmetric
nodes and 596 type-II symmetric nodes. The data is available at http://konect.uni-koblenz.de/networks/opsahl-powergrid.

the nodes are distributed throughout a given domain uniformly at random and are connected by an edge
when they are within a given range of each other. See [26] and [31] for introductions and see figure 2
for an illustration of a RGG.

RGGs are often used to model networks in which the node location is an important factor, so called
spatial networks ( See Ref.[5] for a review). In particular RGGs have been used in modelling wireless
networks [27], [17], [29], [14], in the study of epidemics [32], [22], [30], in the study of city develop-
ment [33], in modelling the vulnerability of infrastructure [35] and biological protein-protein interaction
networks [18]. In addition the properties of RGGs such as synchronisation [12],[9], consensus dynamics
[13], connectivity [8] and spectral properties of RGGs [25], [6] have all been studied.

Here we study the symmetric motifs in RGGs. Our aim is to understand how properties like density
and dimension of the RGG affect their appearance. We consider the probability of finding symmetric
nodes as a function of the connection radius and in two high density limit cases. In particular, we analyse
the symmetric motifs in the intensive limit of fixed connection radius, and the thermodynamic limit of
fixed mean degree. It turns out that the expected number of symmetric motifs is non-trivially dependent
on these system parameters.

We will study the binomial model of RGGs. That is, we distribute N points representing N nodes of
a network uniformly on the unit torus. A connection is made between two nodes if their toral distance is
less than some given range r. This is known as the unit disc connection model, but note there are many
other connection models in which the links are random with probability depending on the inter-node
distance [8].

In section 2 we will look at the adjacency and Laplacian spectrum of some RGG ensembles and
discuss in particular the sharp peaks we find in these spectra. We will explain how the symmetric motifs
which give rise to these sharp peaks and study the probability of finding them in RGGs. In section 3
we will then use the Chen-Stein method [2] to derive the scaling of the minimum separation distance in
RGGs. The Chen-Stein method is a tool for obtaining a bound on the total variation distance between
a stochastic process which contains dependent random variables and a corresponding independent pro-
cess. Here, we apply it to remove the dependence of inter-node distances, and hence obtain the variation
of the symmetric motifs with dimension in the above limits. Section 4 contains a summary.

http://konect.uni-koblenz.de/networks/opsahl-powergrid


SYMMETRIC MOTIFS IN RANDOM GEOMETRIC GRAPHS 3

FIG. 2. Random geometric graph on the torus. An illustration of a 400 node RGG with a connection range of r = 0.112. The
nodes (black dots) have been distributed randomly, uniformly and are connected by an edge (straight black line) when they are
within a Euclidean distance of r with periodic boundary conditions.

2. Spectrum

We first look at the spectrum of the graph adjacency matrix A and Laplacian matrix L . The adjacency
matrix is the zero-one adjacency matrix whose entries ai j = 1 if there is a connection between nodes
i and j and zero otherwise. The Laplacian matrix L = D−A where D has entries di j = kiδi j, ki the
degree of vertex i. Again see figure 1 for an illustration of the spectrum of A and L in the real-world
network of the high-voltage power grid in the Western States of the United States of America [34].

In [25] the Laplacian spectra of one-dimensional RGGs is studied. The authors show that the
ensemble-averaged Laplacian spectrum of RGGs on the circle consist of a continuous part and a dis-
crete part consisting of peaks at integer values. We numerically obtained the Laplacian spectrum for
an ensemble of RGGs. The ensemble-averaged spectral density ρl(λ ) is illustrated in figure 3. In [6]
the spectra of the adjacency matrix is studied for RGGs. They find that the ensemble averaged spectral
density has a discrete part consisting of a peak at −1. We numerically obtained the adjacency spectrum
of an ensemble of RGGs. This is illustrated in figure 4.

In both [25] and [6] they identify the presence of symmetric nodes as the structural phenomenon
which gives rise to the multiplicities in the eigenvalues which characterise the spectral densities. These
Motifs or graph orbits are subgraphs whose nodes are invariant under permutation of the indices. That
is two nodes are symmetric in this sense when they are connected to the same set of nodes. Eigenvectors
localise on these symmetric nodes and give rise to integer eigenvalues. To see this let n1 and n2 be
symmetric nodes and x be a vector with x1 = 1 and x2 =−1, all other entries equal to zero. Considering
the adjacency matrix we then have
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FIG. 3. Ensemble-averaged Laplacian spectral density. An illustration of the ensemble-averaged spectral density of 103 node
RGGs with a connection range of r = 0.09375 (a) and r = 0.3 (b). The ensembles consist of 104 RGGs. Inset in (b) shows detail
of peaks at integer values.

FIG. 4. Ensemble-averaged adjacency spectral density. An illustration of the ensemble-averaged spectral density of 103 node
RGGs with a connection range of r = 0.09375 (a) and r = 0.3 (b). The ensembles consist of 104 RGGs.
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if n1 and n2 are connected. If they are not connected we get eigenvalue k. Here k is the degree of the
vertices ni. We note that the Laplacian distinguishes between different degrees in these motifs whilst
the adjacency does not. Note that for a set of s symmetric nodes, there are s−1 independent, orthogonal
eigenvectors that lead to a multiplicity of s−1 for the eigenvalue.

2.1 Symmetry probability

The symmetry of a node is dependent upon the nodes in its neighbourhood and their respective neigh-
bourhoods. The neighbourhood of a node ni is defined as Br(ni) = {x : |x− ni| 6 r}, that is the region
within the connection range of ni. Two nodes have a shared neighbourhood Ns(ni,n j) = Br(ni)∩Br(n j)
which is given by the intersection of their respective neighbourhoods. An additional important concept
is the excluded neighbourhood, Nex(ni,n j) = (Br(ni)∪Br(n j))\(Br(ni)∩Br(n j)) which for two vertices
is the region that is within the range of one of the vertices but not both.

A given node ni is type-I symmetric when there is a node n j within its neighbourhood and when the
excluded neighbourhood of ni and n j is empty. This ensures that ni and n j are connected and that they
are connected to the same set of nodes. If they are not within the neighbourhood of each other but have
an empty excluded neighbourhood then they are type-II symmetric.

We calculated the probabilities of finding type-I and type-II symmetric nodes from ensembles of
RGGs. The results are illustrated in figure 5. For one-dimensional RGGs the probability of type-I
symmetric nodes quickly approaches a constant value as a function of connection radius whilst type-II
quickly approaches zero. For two and three -dimensional RGGs we see entirely different behaviour.
Most interestingly there is an optimal value of r for finding type-I symmetric nodes.

3. Dimension and limiting probabilities

In order to look closer at the differences across dimension, we have looked at the adjacency spectral
density of both 2D and 3D RGGs with similar connection probability. The results are illustrated in figure
6 where we see a noticeable difference in that for the 3D RGGs the peak at −1 is far less prominent.
To understand this property we look at the probability that nearest neighbour vertices are symmetric

(these are the most likely to be symmetric). We will analyse the minimum separation distance between
nodes in a RGG and derive how it scales as the number of nodes increases.

We consider N nodes n1,n2, ...,nN , uniformly distributed on d-dimensional torus and choose an
index set I which consists of all pairs of nodes I = {α ⊂ {1,2, ...,N} : |α|= 2}. For each α = {i, j} in
the index set I we let Xα be the indicator random variable of event |ni−n j|6 x. That is, the event that
the nodes ni,n j are separated by a distance less than x. Note that P(Xα = 1) = cDxD = pα , where cD
is the volume of the unit ball in D dimensions. Furthermore, for each α ∈ I we choose a Bα ⊂ I with
α ∈ Bα such that Bα is a neighbourhood of dependence. That is for β ∈ Bα ,Xα and Xβ are dependent.
For each α we let

Bα = {β ∈ I : α ∩β 6= /0}. (3.1)

Consider the sum

W = ∑
α∈I

Xα , (3.2)

and note that

P(W = 0) = P(smin > x). (3.3)
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FIG. 5. Symmetry probability. Illustrated here is the probability Psym of a node being symmetric as calculated from ensembles of
103 node RGGs as a function of connection radius r. We have calculated these as a function of dimension D and intensity (number
of nodes) N.

FIG. 6. 3D RGG. Illustrated here is the adjacency spectral density of an ensemble of 2D (left) and 3D RGGs. The RGGs consist
of 1000 nodes whilst the connection radius is 0.348569 and 0.45 for the 2D and 3D graphs respectively. This ensures that the
connection probability is the same for both.

where smin is the minimum distance of any pair of nodes in the RGG. The expectation of W , is given by

E(W ) =

(
N
2

)
cDxD (3.4)

We now apply the Chen-Stein method described in the Introduction to remove the dependency of the
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inter-node distances. From Theorem 1 in Ref.[2] we have that

|P(W = 0)− e−w|6 (b1 +b2 +b3)

(
1− e−w

w

)
(3.5)

where w = E(W ) and b1,b2,b3 are constants given by

b1 = ∑
α∈I

∑
β∈Bα

pα pβ (3.6)

b2 = ∑
α∈I

∑
α 6=β∈Bα

pαβ , pαβ = E(Xα Xβ ). (3.7)

b3 = ∑
α∈I

E|E
(
Xα − pα |σ(Xβ : β /∈ Bα)

)
| (3.8)

From Eq.(3.1) we have

b1 = |I||Bα |(cDxD)2

=

(
N
2

)[(
N
2

)
−
(

N−2
2

)]
(cDxD)2

= (N3−5N2/2+3N/2)(cDxD)2. (3.9)

Considering b2 we note that the Xα are pairwise independent, this implies E(Xα Xβ ) = E(Xα)E(Xβ ) =

(cDxD)2, therefore

b2 = |I||Bα −1|(cDxD)2

=

(
N
2

)[(
N
2

)
−
(

N−2
2

)
−1
]
(cDxD)2

= (N3−3N2 +2N)(cDxD)2. (3.10)

Finally we note that Xα is independent of all Xβ where β /∈ Bα , hence b3 = 0. Combining Eqs.(3.9,3.10)
via Eq.(3.5) we have the following

|P(W = 0)− e−w|6 (4N−7)cDxD
(

1− e−
N2−N

2 cDxD
)
. (3.11)

We note that from Eq.(3.4) we have that e−w is of order one when N2xD ∼ 1, that is when x ∼ N−
2
D .

Furthermore in this regime from Eq.(3.11)

|P(W = 0)− e−w| → 0, N→ ∞. (3.12)

Hence we see that P(W = 0) = P(smin > x) is order one when x ∼ N−
2
D . From this we derive that smin

scales like N−
2
D for large N.

For D = 1, two points separated by a distance s have an excluded neighbourhood of length 2s. The
probability that they are type-I symmetric with s = smin =C1N−2 for constant C1 is then

P(N(Nex) = 0) =

(
1− 2C1

N2

)N−2

(3.13)

→ 1,N→ ∞. (3.14)
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So the closest nodes will be type-I symmetric in this limit. We obtain the same result in the thermody-
namic limit, where the mean degree is kept constant with r =CN−

1
D .

For D = 2, two points separated by a distance s have an excluded neighbourhood equal to two times
the area of a circle with radius r, minus four times the area of the circular segment with height r− s/2,
that is

||Nex|| = 2πr2−4r2 cos−1
( s

2r

)
+2s

√
r2− s2

4

= 4r2 sin−1
( s

2r

)
+2s

√
r2− s2

4
(3.15)

Using s = smin =C2N−1 for some constant C2 the probability of type-I symmetry in two dimensions is
then

P(N(Nex) = 0) =

1−4r2 sin−1
(

C2

2rN

)
− 2C2

N

√
r2−

C2
2

4N2

N−2

=

1− 2C2

N

r+

√
r2−

C2
2

4N2

−O(N−3)

N−2

(3.16)

→ e−4C2r,N→ ∞ (3.17)

where we use sin−1(x) = x+O(x3). In the thermodynamic limit with r =CN−
1
2

P(N(Nex) = 0) =

1− 4C2

N
sin−1

(
C2

2CN0.5

)
− 2C2

N

√
C2

N
−

C2
2

4N2

N−2

=

1− 2C2C

N
3
2

1+

√
1−

C2
2

4C2N2

−O
(

N−3/2
)N−2

→ 1,N→ ∞, (3.18)

this probability goes to one.
With D = 3, two points separated by a distance s have an excluded neighbourhood equal to two

times the volume of a sphere minus four times the volume of the spherical cap with height r− s/2, that
is

||Nex|| =
8πr3

3
− 4π

3

(
r− s

2

)2(
2r+

s
2

)
= 2πsr2− πs3

6
(3.19)

Using s = smin =C3N−
2
3 for constant C3,

||Nex||= 2πr2C3N−
2
3 − π

6
C3N−2 (3.20)
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Hence the probability of seeing no nodes in this excluded neighbourhood is

P(N(Nex) = 0) =
(

1−2πr2C3N−
2
3 +

π

6
C3N−2

)N−2

→ 0 N→ ∞. (3.21)

In the thermodynamic limit with r =CN−
1
3

P(N(Nex) = 0) =
(

1−2πC2C3N−
4
3 +

π

6
C3N−2

)N−2

→ 1 N→ ∞. (3.22)

The difference we see is that in one and two dimensions the probability that points separated by the
minimal distance are symmetric approaches a constant value in the intensive limit of large N whilst in
three dimensions this probability goes to zero. In the thermodynamic limit this probability goes to one.

4. Summary

We have looked at the appearance of symmetric motifs in random geometric graphs. These subgraphs
are of interest as they are prevalent in many real world networks and random geometric graphs but not in
other random graph models. We looked at how the probability of finding symmetric nodes is dependent
on the connection radius and the dimension of the random geometric graph. We found that in one
dimensional random geometric graphs this probability is close to being independent of the connection
radius and the density in that it quickly approaches a constant value as r is increased. In two and three
dimensions in contrast we found that there is a value of r at which the probability attains a maximum
value. In the thermodynamic limit we found that the closest nodes will be symmetric almost surely,
irrespective of the dimension. Whilst in the intensive limit, in three dimensions this probability goes to
zero.

Future work in this direction will look to analytically understand the numerical results we presented
here on the probability of finding symmetric nodes as a function of connection radius. In addition, it
will be possible to study how generalisations of the hard disc connection function affect the appearance
of symmetric nodes.
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[18] HIGHAM, D. J., RAŠAJSKI, M. & PRŽULJ, N. (2008) Fitting a geometric graph to a proteinprotein interac-
tion network. Bioinformatics, 24(8), 1093–1099.
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