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Spreading processes are ubiquitous in natural and artificial systems. They can be studied via a plethora of
models, depending on the specific details of the phenomena under study. Disease contagion and rumour
spreading are among the most important of these processes due to their practical relevance. However,
despite the similarities between them, current models address both spreading dynamics separately. In this
article, we propose a general spreading model that is based on discrete time Markov chains. The model
includes all the transitions that are plausible for both a disease contagion process and rumour propagation.
We show that our model not only covers the traditional spreading schemes but that it also contains some
features relevant in social dynamics, such as apathy, forgetting, and lost/recovering of interest. The model
is evaluated analytically to obtain the spreading thresholds and the early time dynamical behaviour for
the contact and reactive processes in several scenarios. Comparison with Monte Carlo simulations shows
that the Markov chain formalism is highly accurate while it excels in computational efficiency. We round
off our work by showing how the proposed framework can be applied to the study of spreading processes
occurring on social networks.

Keywords: complex networks; Markov chain models; epidemic spreading; rumour propagation.

1. Introduction

Disease spreading and information dissemination are two processes intimately linked that have been the
subject of intense study since long time ago. These contagion phenomena are pervasive in nature, society
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and engineering [1]. As a result, we nowadays can describe and understand many of the mechanisms that
are behind the propagation of pathogens among humans and other species, of digital viruses and malware
through the Internet and diverse socio-technical systems, and of rumours among individuals, to mention a
few examples [1]. Moreover, with the advent of modern communication technologies and transportation
means and the increasing availability of data (often in real time or with a highly detailed time resolution),
previous theoretical-only models are being fed with data [2], making data-driven simulations an effective
tool for decision-making and for the design of efficient viral algorithms in the case of information
dissemination.

The early models dealing with epidemic and rumour spreading considered only homogeneous mixing,
in which the probability that a given node interacts with any other node in the network is the same for
all nodes [3]. Although the homogeneous approximation facilitates the theoretical analysis of contagion
processes, this approach turned out to be too simple as to capture the architecture of real-world complex
systems, whose structure is largely heterogeneous [4]. Indeed, the availability of data about the topology
of real systems spurred the development of network models [5], which in turn led to the inclusion of
network’s interaction patterns into disease spreading models [6].

One of the first and most used methods to study disease (and rumour) propagation is the so-called
degree-based mean-field (DMF) approximation [6]. This approach groups vertices into classes and
assumes that all nodes with the same degree are equivalent from a dynamical point of view. However,
the DMF does not provide information about the probability of individual nodes. Recently, a formalism
based on probabilistic discrete-time Markov chains was introduced to generalize existing MF approxi-
mations [7]. Differently from the MF approximation, discrete-time Markov chains enable the description
of individual node dynamics as well as the determination of the macroscopic critical properties and the
whole phase diagram [7].

Epidemic and rumour spreading processes are similar in many aspects. Indeed, the creation mecha-
nism is the same in classical models: with a given (spreading) probability, a disease (rumour) is transmitted
to any of the neighbours of an infected (spreader) individual. On the contrary, the annihilation mecha-
nisms are completely different by the very nature of the processes being studied. In disease contagion,
spreaders die out because they recover from the infection with a given probability. This is independent
of their neighbours’ dynamical states and of any interaction. Rumour-like processes are fundamentally
different: in traditional models, rumours decay as a result of the interactions between spreaders and other
individuals that already know the rumour—no matter whether they are actually propagating it (spreaders)
or have already stopped (stiflers). Despite the differences between these two contagion processes, they
have been studied using the same methodological approaches, albeit independently [1]. Surprisingly, the
phenomenological similarities between them have not been fully exploited and there is not a general
framework that allows studying both processes under the same formulation. Admittedly, rumour-like
dynamics on complex topologies have been studied only at the mean-field level, and approaches like the
discrete-time Markov chains are not available yet.

Here, we fill the existent gap and propose a general information-spreading model that captures the
dynamical behaviour of epidemic and rumour spreading processes. Our model includes, as particular
cases, not only the traditional models of rumour and epidemic spreading, but also other mechanisms
such as apathy [8], forgetting [9], lost of interest [9, 10] and a new mechanism proposed here that
characterizes cases in which the interest in the rumour can be recovered once lost. We thoroughly study,
both analytically and numerically, the dynamics of the model in random synthetic graphs as well as in real
social networks. Moreover, we analyse several plausible scenarios and obtain the corresponding critical
spreading probabilities for the contact and reactive limiting cases, in addition to analyse the early time
dynamics of the spreading process. We also perform extensive numerical simulations and show that the
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discrete Markov chain approach developed here is highly accurate, both at the micro and the macroscopic
levels. Finally, we discuss potential applications of this framework in the context of social contagion and
the design of new viral algorithms for efficient information dissemination.

The rest of the article is organized as follows. In the next section, we present some related works
summarizing the main previous results and approaches that have been adopted so far. Section 3 presents
our model. Its early time behaviour and the steady state analysis are presented in Section 4. Section 5
analyses several special cases before turning our attention to the numerical analysis of the model, which
is performed in Section 6. Finally, applications are discussed in Section 7, whereas our conclusions are
presented in Section 8.

2. Previous spreading models

Spreading processes in networks, such as the propagation of diseases or rumours, are based on (i) spon-
taneous processes, in which each node might change its state without any external interference, or on
(i) contact based processes, in which the state of each individual might change following a contact with
its neighbours. In the simplest case, each element performs only one contact per time unit. This process
is called contact process (CP). On the other hand, when every neighbour of a node is contacted in one
time step, the process is called reactive process (RP). Intermediate situations between CP and RP can be
defined by considering a parameter that defines the activity of each node [7, 11]. Here we only consider
the CP and RP schemes.

We assume that a contagion process could refer to a disease or a rumour that spreads on top of complex
networked systems. Although one can study other variants of disease compartmental models, here we
explore epidemic models in which there are at most three different dynamical states: (i) susceptible,
which accounts for subjects that do not have the disease; (ii) infected, which denotes individuals who
have the disease and are transmitting it, and (iii) recovered or removed, which stands for immunized or
cured subjects. The simplest epidemic model is the susceptible-infected (SI), which models a disease
with no cure. On the other hand, in the susceptible-infected-susceptible (SIS) model, individuals recover
but do not acquire immunity in front of the disease, and, therefore, they can catch the disease again,
that is, once recovered, they go back to the susceptible state. At variance with the SIS scenario, in the
susceptible-infected-recovered (SIR) model, the recovery is permanent, that is, each individual acquires
lifetime immunity. Above the critical point, the SIS model exhibits a steady state, where the number of
susceptible and infective individuals are constant proportions of the population. More precisely, above
the threshold, the SIS model presents a meta-state, where the probability that a macroscopic fraction of
the population is infected is large than zero. It is worth mentioning that the only absorbing state of such
a dynamics is the disease free configuration. In contrast, in the same regime, the SIR model presents
infinitely many absorbing states when the fraction of infective is zero, being the number of recovered
larger than zero.

The rumour models here considered also have three classes: (i) ignorant, which represents individuals
that have not heard the rumour; (ii) spreader, which refers to those individuals that are aware of the rumour
and are actively spreading it further, and (iii) stifler, who are those subjects that already know the rumour,
but are not disseminating it any longer. The two main models of rumour spreading are due to Daley and
Kendall (DK) [12—14] and Maki and Thompson (MT) [14, 15]. In the DK model, an edge of a network is
sampled randomly, characterizing a contact. If this edge has a spreader and an ignorant, then the rumour
is propagated from the spreader to the ignorant at a rate A. On the other hand, if this edge is composed
by two spreaders (or a spreader and a stifler), then the two spreaders turn into stiflers at a rate «. In the
MT model, on the other hand, directed contacts are accounted for. Thus, if a spreader contacts a stifler
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or another spreader, then only the initial spreader, who performed the contact, becomes a stifler at the
same rate . The traditional DK and MT models have been adapted to allow for heterogeneous contact
patterns [16] and spontaneous lost of interest [8, 10].

For the sake of generality, given that we shall aim at developing a general model for spreading
processes —no matter if a disease or a piece of information—, we consider throughout this paper the
following states: (i) susceptible or ignorant, which we denote by state X, (ii) infected or spreader, which
is represented by state Y; and (iii) recovered or stifler, corresponding to state Z. The reader is also
referred to Table 1, where we have summarized the main rumour and epidemic models studied so far.
The transitions between states in each model and the thresholds, when available, are also shown for
completeness.

3. The general model

Here we introduce a general model that captures all the features of the models sketched in the previous
Section 2. We consider a spreading dynamics on a population of N individuals whose contact pattern
is given by a network. The structure of the interaction graph is encoded by a network with adjacency
matrix A, where A; = 1 if there is a connection between nodes i and j, and A; = 0 otherwise. We
consider undirected networks, that is, A; = Aj;, for all i, j. The spreading process described by the model
could refer to the transmission of a rumour, a disease or information that could be disseminated (also, a
malware over a communication network, innovations, etc). In order to be more clear and precise, we will
use henceforth a terminology that mostly refers to information transmission, but we stress that depending
on the transitions that one allows to take place, the dynamics could represent other spreading processes.
Therefore, let’s assume that a ‘piece of information’ is being transmitted. An individual holding this piece
of information and willing to spread it is called a spreader, whose state is represented by Y. On the other
hand, a stifler, whose state is denoted by Z, is a subject who knows the information and does not spread
it. An individual who is not aware of the information is called ignorant, and its state is denoted as X.
In this way, the notation X, Y and Z, refers to subjects (or system’s elements like devices) that have not
participated in the spreading process, that are active, and that have taken part on the dynamics but are
not active any longer, respectively. Hence, when we deal with an infectious disease, X, Y , and Z are,
respectively, the susceptible, infective, and removed states.

The general model here described includes the transitions represented in Fig. 1. Specifically, at each
time step, the spreading dynamics proceeds as follows for any given node i:

(i) Anindividual in state Y changes to state X with probability §,. This, for instance, refers to the case
in which in a rumour process, a spreader forgets the rumour (meaning the piece of news becomes old
and therefore Y is ignorant again). It also represents transitions of the type infected— susceptible in
a SIS model.

(i) An individual in state Y changes to state Z with probability §,. For rumour processes, it represents
the case in which a spreader spontaneously (that is, not as a result of interactions with others Y or Z
individuals) loses the interest in further propagating the rumour and becomes stifler. It also accounts
for transitions of the type infected— recovered in a SIR model.

(iii) Iftransitions (i) and (ii) do not happen, which occurs with probability (1 —§; —§,), then the spreader
i interacts with its neighbours. The outcome of such interactions are:
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TABLE 1 A brief literature review: a summary of previous epidemic and rumour spreading models. The
states are (i) susceptible or ignorant (X), (ii) infected or spreader (Y ) and (iii) recovered or stifler (Z)

Model Interactions Threshold Networks Comments References
NE Y+X 5 v4Y - Yes Only two fixed points. [141,[17]
A 2 ; .
SR Y+X ;) Y+Y A s Yes Absorbing state, Z; [14], [17]
é Y > Z " presence of influential spreaders.
Q
=] A 3 : .
2SI Y+ X T Y+7Y 3 A,; Yes Presents an active steady state; [6], [18], [19],
Y 5> X " discrete and continuous time.  [20], [21], [14], [22],
[23], [171, [7], [24]
Y+ X i) Y+Y © Presents an active steady state; [17], [25], [26]
SIRS vz A> 8@ Yes short-term immunity.
z5 x
Y+X A Y+Y Absorbing state, Z; [15], [14], [27]
Maki — Thompson Y+Y S5 Z+Y % >0 Yes directed contact.
Y+z5z+2
Y+X i) Y+Y Absorbing state, Z; [10]
3
Nekovee et al. Y+r 7 Z+Y % z % Yes presents a
Y+Z—>Z+Z ‘lost of interest’ mechanism.
y >z
Y+X ﬂ) Y+Y Absorbing state, Z; [8]
(1=
§ Borge er al. * Y+X Mom, Z+Y _ Yes presents an
E Y+Y35Z+4+2Z apathy mechanism;
Y+z35z+2z models activity.
Oy Oxy
Y+Xx 25 v 4y (1
oy (1—=yy)
Y+X ——Y+Z
XZQXZ
Z+x S 74y
: vz (1 =0z .
Kawachietal.> 7 +X M Z+Z - No Presents an active steady state.
B

Y+vyLv+z

z+vLz+z

z+7z% 74x
Yy B x
z5x

I'This models is similar to the Eden model [28].

2This expression is obtained in details in [17], assuming uncorrelated networks. In [14], the authors show another compartmental based approach,
which yields % > ﬁ The first follows a quenched mean field (QMF) approach, where the process takes place on a fixed network, while the
second expression is obtained considering the degree-based mean field (DMF) approach, where we assume that every node with the same degree is
statistically equivalent.

3This expression is obtained in details in [17], assuming uncorrelated networks. In [14] the authors show that % > %, that is completely analogous

to the expression in the table, since A = <(]‘72)) for a random network generated by the configuration model [29] considering scale-free networks in
which P(k) ~ k¢ and2 < ¢ < % Observe that those expressions are valid on finite networks and the threshold tends to zero in the thermodynamic
limit, since (k?) — oo.

4Considering the Model II in [8], which takes into account the apathy of the individuals.

3The authors considered even more interactions, but did not evaluate most of the possibilities numerically. In addition, the transitions follow the
notation used in [9] and are rates, not necessarily probabilities, since the authors follow a continuous time approach.
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FiG. 1. A simplified diagram of all possible transitions between the three different dynamical states in our model. X, Y and Z stand
for ignorant or susceptible, spreader and stifler or recovered, respectively. Most of the transitions involve interactions between two
individuals, however, spontaneous ones are also allowed (represented by dashed lines).

(iv)

)

(iii.1)

(iii.2)

If the individual contacted (the one at the other end of the edge) is in state X, then the latter
turns into Y with probability An. This transition is the classical susceptible— infected one in
disease models for n = 1. Traditional rumour models also include the very same transition
(ignorant— spreader, also for n = 1), but here, in order to be as general as possible, we also
consider that an ignorant X can directly go to the stifler class Z with probability (1 — n),
thus the probability that a transition X — Z occurs is A(1 — 1). This mimics information
dissemination in systems like Twitter, in which reading the tweet does not imply that the user
spreads it —as a matter of fact, the most common situation is that in which the user does not
retweet the piece of news [8].

On the contrary, if the neighbour of the spreader i is in state Y or Z, then i turns into Z with
probability «. Note that this spreader— stifler transition is only found in rumour models and
it is not present in disease contagion.

Finally, at variance with traditional rumour models [12, 15], we also ascribe an active role to stiflers
Z. We assume that individuals in state Z can go back to state X with probability y. This represents
scenarios in which stiflers might spontaneously ‘forget’ the rumour, thus becoming ignorants again.
We also note that this transition can be identified with a recovered— susceptible one in SIRS disease
models, in which it is assumed that after some time, individuals might lose their acquired immunity
and become susceptible to catch the same disease again.

If (iv) does not happen, which occurs with probability (1 — y), then the node i in state Z interacts
with its neighbours. If the contact is with a subject in state X (ignorant), the stifler (state Z) might
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recover the interest on the rumour propagation and with probability 8 turns into Y. This transition
mimics cases in which an individual who knows the rumour but is not transmitting it, learns that the
rumour is still active and new, and therefore starts spreading it again.

In summary, our model presents the following transitions:

An

Y+X — Y+7Y,

A(1—n)
—_—

Y+X Y +Z,
Y+Y % zZ+4v,
Y+Z % z+7z,
z+x 5 v4x
31
Y — X,
5z
z L X,

and our next goal will be to describe a process with such transitions through a suitable Markov chain
approach.

3.1 First order approximation

In order to describe the evolution of this phenomenon in a given network made up by a set of nodes
[N] := {1,2,...,N}, and adjacency matrix A, we construct a discrete time Markov chain (&;),>o with
state space . = {(1,0,0), (0, 1,0), (0,0, 1)}!¥. More precisely, we define & := {(X;(¢), Y:(?),Zi(?)) :
i € [N]}, where X;(¢), Y;(¢) and Z;(¢) are Bernoulli random variables indicating whether the node i € [N]
is an ignorant (susceptible), a spreader (infected), or a stifler (recovered) at time ¢, respectively. So,
(1,0,0), (0,1,0) and (0,0, 1) represent the states X, Y and Z, respectively. Each point § € . is called
configuration. To construct the Markov chain, we consider random objects defined on the same suitable
probability space (2, .%#,P), where Q2 is the sample space, .% is a o-algebra of subsets of 2, that is, the
set of configurations, and [P is a probability measure function. For every i,j € [N] we take the following
independent collections, each of independent and identically distributed (i.i.d.) random variables

Collection Associated to Influence a choice on

{Ui(D}150 Y state Y

{7 () }[ZO 4 state Z

{Il.;(z‘)}fZO Y+X state Y 3.1
{If‘(t)}tzo Y+YorY+Z state Y

{If} (t)} Z+X state Z

>0
{'® }[ZO Y+X state X
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where U;(1) is a random variable uniformly distributed on (0, 1), and 1} (1), Il.j.(l), I (1), If(l) and I/ (1)
are Bernoulli random variables with parameter y, A, «, 8 and n, respectively. In addition, for each node
i, we consider a sequence of i.i.d. random objects uniformly distributed on the neighbours of i, that is, a
sequence U (1), U (2), ... such that P(U"(1) = j) = 1/k;, for all j € [N] satisfying A; = 1, where
ki =3 ;cn Aij is the number of neighbours of node i.

The main idea is to define a stochastic process that evolves according to the realization of the random
variables defined above. For example, let’s think of a rumour process. If at a fixed time ¢ the node i
is in state Y, then it forgets the rumour if U;(f) < §; (transition (i) above), it loses the interest on the
propagation whenever §; < U;(t) < &; + 8, (transition (ii) above), or contacts its neighbours when
U;(t) > & + 8, (i.e., transition (iii) above). In the last situation, if node i contacts node j, and j is in
state X, then the rumour is propagated from i to j if Ig(t) = 1. On the other hand, if the contacted
node j is a spreader, then i turns into a stifler, that is, I*(#) = 1. We can proceed in a similar way to
represent the remaining transitions and interactions of the process. Given the above description, it is
not difficult to see that the transitions of this stochastic process can be written, for each i € [N] and
t >0, as:

Xit+1) = X@OA®O + YOy, +Z0I] (1)

Yi(t+ 1)

X0 (1 — A0 (1) +
Yi(O) Lyts, 45, Bi(0)+
Z()(1 =17 (1)(1 — C,(t)), (3.2

Z(t+1) X1 —A0) A - L['®)+

Vi) (Votzseom (= BiO) + L oty ) +

Z(n)(A = I ) Ci(1),

where 14 is the indicator function, which is equal to 1 if the condition A is satisfied and O otherwise
and A;(?), B;(t) and C;(¢) are Bernoulli random variables indicating that a node i, given the influence of
its neighbours, will not be informed, will not become a stifler, or will not recover the interest in rumour
propagation, from time ¢ to time ¢ + 1, respectively. Observe that these variables depend on the contacts
between node i and its neighbours.

Here we study two limiting cases, namely, the CP, in which each node performs only one contact per
unit time; and the fully RP, in which each vertex contacts all its neighbours at each time step. The contact
based variables for the CP are given by

A0 =TT [ 1= Oy Lz o O |
B0 = 1= X, [ oy (50 +Z0)], (3.3)

an=1-yV, [1;3(:)1 [U;lh(,):_ile(t))].
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On the other hand, the contact-based variables for the RP are

A0 =TT [ = A g, KO |
B =TT, [1 - I2(0A; (Y1) + Z()]. (3.4)

o =11, [1 i (t)A,-,-X,—(r))].

Therefore, the contact-based variables of the node i, that is, A;(¢), B;(¢) and C;(¢) in equations (3.2), (3.3)
and (3.4) are dependent on the parameters A, @ and B, the state of its neighbours and the process, that
is, whether it is a CP or a RP. The variables B;(r) and C;(t) describe the feedback from the contacts to
the node. Note that in rumour dynamics, interactions can also change the state of the spreading node,
returning an immediate feedback, in contrast to epidemic spreading models [1] where the state of the
spreader changes at a rate that is independent of the interaction network. These relations modelled by
B;(t) and C;(r) are absent in the recent work by Stanoev et al. [30], since their formalism does not allow
for instantaneous feedback over node i. We also highlight that the CP and RP mimic different situations
in, for instance, social networks. The CP models one-to-one communication, when the rumours spread in
friendship networks, email networks or networks in which each individual interacts with only one contact
at each time step. On the other hand, the RP is best suited for one-to-many information dissemination,
as in Twitter-like networks, since when a user posts a tweet, all its followers receive this information.
Finally, we also point out that Equation (3.2) ensures the existence of a function f such that

§t+1 :f(f;,ejf),

where

7 ={vo.ro.co.re.lone. o)

i=1

is the collection of all the (independent) random variables at time ¢. This in turns implies that (&), is a
discrete-time Markov chain.

3.2 The mean-field approximation

Although the above Markovian description of the model is exact, its analysis is rather complex. This is
because, while the Markov chain (&;), is defined from the realizations of independent random variables
through (3.2), the state of each node as well as of its neighbours have dependencies, whose complexity
might change according to the network. We solve this difficulty by considering a mean-field approximation
for the Markovian description. We denote the probabilities that a node i is in state X, ¥ and Z at time ¢
by pX (1), p! (1) and p? (1), respectively, and note that

pi = PXm=1) = EX®),
pi( = PTm=1) = ET@®), (3.5)
pi = PZ®=1) = EZ®),
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where [E denotes expected values. Therefore, the mean-field approximation is obtained by considering
expected values in equations (3.2), (3.3) and (3.4). We also assume that there are no dynamical correlations
at first order. In other words, we assume that the expected values of variable pairs factorize. The resulting
system of equations obtained for a node i € [N], for all ¢ > 0, is given by

pre+1) = pf®ait) +pl 08 +pf )y
plae+1 = pfOU—a@®)n+

Pl (1 =8 = &)b;(1)+

PEO = y)(1 = (1)), (3.6)
pia+1) = pfO)—a)(1—mn+

Pl =8 — 8)(1 — bi(1)) + p) (1)8

pi — y)e(),

where a,(t), b;(¢) and ¢;(t) are the probabilities that a node i, given a contact with its neighbours, remains
at state X (e.g., it’s not informed), does not change to state Z from state Y (that is, will not become a
stifler), or remains at state Z (i.e., will not recover the interest in rumour propagation) in the time interval
from ¢ to f + 1, respectively (see also Fig. 1). These probabilities depend on the number of contacts per
unit time. Thus, the contact based probabilities for the CP are given by

a;i(t) =TT, [1 — APy(1 = 8, — 82)p) ()],
bit) =1 =31, [aPy (p) (1) + pF ()], (3.7)
a()=1=3" [BPirX )],

where P;; := A;;/k;. On the other hand, the contact based probabilities for the RP are

a;(t) = [T, [1 — 2;(1 = 8; — &)p! (1],
bi(t) = [T, [1 = aA; (] 0 + pF )], (3.8)
a0 =TT, [1 = BAwf )]

The system of equations (3.6) describes the micro-state evolution of the system, that is, the evolution

of the probabilities of each node to be in a given state. The macro-state variables can be defined as the
average of the individual probabilities, namely,

1 N
Pl = 2 pi(o0), (3.9
i=1

where pf(0c0) is the probability of node i to be in state ¢, with £ € {X,Y,Z}, as t — oo. Note that
the generalization for weighted and directed networks is straightforward. In weighted networks, it is
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GENERALIZED SPREADING MODEL IN COMPLEX NETWORKS 225

necessary to consider the weight matrix whose rows must sum up to one. In directed networks, the degree
must be substituted by the out-degree, k,,,. For the CP case, the directed network must be an ergodic
Markov chain. Another possibility of generalization is the consideration of heterogeneous parameters,
which is treated naturally in the set of equations (3.6), (3.7) and (3.8). In the following analysis we
assume that the parameters have the same values for every nodes. In addition, we consider all networks
as undirected and unweighted.

Furthermore, it is important to emphasize the differences between our model and the continuous
formulation and consequently its embedded Markov chain, which is also a discrete time approach. In the
continuous formulation, the probability of two events taking place at the same time vanishes as At — 0.
This implies that just one contact or one spontaneous process happens at a time. In the same spirit,
the embedded Markov chain also captures this dynamics, however the time in this approach is discrete.
Finally, we also note that in our approach every node performs its contacts in a time step -no matter
whether a CP or a RP. Note that our formulation is similar to a cellular automaton, since every node
changes its probabilities based on their neighbour probabilities.

3.3 Homogeneously mixed population

For the sake of comparison and completeness, we next study our model on a homogeneously mixed
population, that is, we evaluate our model on a complete graph when the number of nodes goes to
infinite. For a complete graph with N nodes, and for all i € [N], we have thatA; = 1, forallj € [N]\ {i},
which implies P; = ]ﬁ We obtain for the CP, from the set of equations (3.7), and by taking the
thermodynamic limit N — oo, that the probabilities that a node does not perform a transition to another
state after a pairwise interaction at time ¢ are given by

a(t) = e[fk(l*r?l*f?z)py(t)]

b(t) =1—a[p'®) +p (0], (3.10)
c(t)y =1 — Bp* ().

Note that we omit the index i in our notation, since the probabilities are the same for every node.
We observe that the probability a(¢) decays exponentially fast as a function of pY (¢), with a parameter
1! = A(1 — 8, — &,). After including the probabilities (3.10) into equation (3.6), we obtain the steady
state behaviour of this simplified model shown in Fig. 2. As it can be seen, the expected values for the
densities of ignorant, spreaders and stiflers depend on ¢, which is the tuning parameter in this scenario.

Interesting enough, the behaviour of the RP scenario is radically different. For the RP, after taking the
limit N — oo in Equation (3.8), we get that a(t) = 0, b(t) = 0 and c(¢) = 0, since those probabilities are
based on the product of infinite terms with absolute values less than unity. As a consequence, the system
of equations (3.6) for the RP becomes in the limit N — oo

pXt+1) =p' ()8 +p*(1)y,
pra+ 1) =pOn+p A —y), (3.11)
Pr+ 1) =p*(d—n)+p'HA -8).

The evolution of the fraction of spreaders, ignorants and stiflers are also shown in Fig. 2. Note that these
quantities are constant in « in sharp contrast to the results for the CP.
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—— Spreaders (CP) === Spreaders(RP)
—— Ignorants (CP) === Ignorants (RP)

— Stiflers (CP) === Stiflers (RP)

0.6

0.0 0.2 0.4 0.6 0.8 1.0
e

FIG. 2. Phase diagram of the steady state ( — o0) considering the complete infinity graph. The dynamical parameters have been
settod; =8 =y =01, A=1,=05andn = 1.

4. Analytical analyses

In this section, we evaluate our model in terms of its early time behaviour and perform the steady state
analysis. We derivate some closed expressions for the thresholds of the CP and RP cases in terms of the
spectra of the probability transition and the adjacency matrices, respectively.

4.1 Early time behaviour

Consider the first steps of the process. For a small time 7 we may assume that p! (1) ~ €/, and p? (1) ~ €7,
for any ¢ < 7, where €/ and €’ are constants such that 0 < €/ < 1, and 0 < €/ < 1. This in turns
implies that pf (1) = 1 — p)(t) — p?(1) = 1 — ¢/ — €/ ~ 1. This approximation takes into account that
the information spreading starts from at most a few spreaders. Neglecting second-order terms for the RP
in equation (3.8) we obtain, for t < 7

ai(t) ~ 1= Y0 M1 =8 — &)p! (1],
bty ~ 1= 3, [aAy (p) () +pf )], (4.1)

)~ 1=, (BApf (1)),
Notice that

ci(t) ~ 1 — Bk, 4.2)
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sincepf( (t) = 1,fori = 1,2,...,N.Substituting equations (4.1) and (4.2) in the system of equations (3.6),
we obtain, for the equations of p¥ and p!,

—A(1 =81 —8) Y1 Aye) + 81€] + yel ~0,

“4.3)
nA(1 =8 — &) Y0 Agel + (1= 81 — 8r)€) + Bhi(1 — y)e? ~ ¢/,
where ejy + EJ-Z ~0,Vj=1,2,...,N.Isolating € on the second equation, we get
2 Gt &)e —ni(l—8 — &) S Ae) )
l Bki(1 —y) ' '
which describes el.z as a combination of ejy ,Vji = 1,2,... N. Substituting equation (4.4) on the first
equation of (4.3) we have
ny . €l (81 +6))
= A1 =8, —8) ) Aye) + 81 +y LT ~, (4.5)
( ﬂki(l—y)) b ; e Bki(1 =)
whose factorization is
N
8+ 6 §;(1— k;
|:Aij_8i/‘< y (81 4 82) + 8, ( v)B ):|6iY%O' (4.6)
£ P\ =8 =) (1 = y)Bki + yn)

J

Notice that equation (4.6) does not decouple the structure and the dynamics of the system, since it is
not possible to isolate the terms depending on k;. However, it is possible to evaluate the threshold for

B(1 —y) =~ 0. In this case, the system has non-trivial solutions when (nx(%fz—sy) is an eigenvalue of A.
Thus, the critical value, which depends on the largest eigenvalue of the adjacency matrix A, is given by
5 +34
A ™ <—‘ +o ) : 4.7
na(l =681 -6/,

where (-). denotes the critical point. Considering the critical point as a function of A, that is, assuming
that the other dynamical parameters are fixed, the threshold vanishes in the thermodynamic limit for
scale-free networks with a divergent second moment, similarly to epidemic spreading [6].

The numerical evaluation of equation (4.7) is shown in Fig. 3. As it can be seen, there is a good agree-
ment between the theoretical predictions (equation (4.7)) and the numerical solution of the system (3.6).
The calculation was performed for a scale-free network with ¢ &~ 2.7, N = 10* and (k) ~ 10. As initial
conditions, we considered that each node is set as a spreader with uniform probability ¥;(0) = 0.01,
Vi € {1,2,...N}. The values of A in the figure are close to zero, since A depends on the inverse of the
leading eigenvalue. We can also see that the limiting cases for o do not change the critical point. Further-
more, the density of nodes that holds the rumour, that is, of spreaders and stiflers, is higher for « = 0 and
n = 1, while the lowest density is obtained for « = 1 and n = 0.5. Such observation reinforces the role
of stifling rates, similarly to what happens in classical rumour models.

The approximation of the critical point in the RP is restricted by (1 — y) & 0, since there is an
explicit dependence on the degree k;. However, for the CP the critical point can be evaluated without
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FI1G. 3. Numerical evaluation of equation (3.6) considering the RP for 8 = 0, §; = y = 0.25, §2 = 0.2 and varying the spreading
probability A. The network considered is a scale-free network with ¢ 2 2.7, N = 10* and (k) ~ 10. The dashed line indicates the
critical point (equation (4.7)) for n = 1, whereas the continuous line corresponds to the critical value for the case in which n = 0.5.

any constraint. The contact based probability in equation (3.7) can be obtained using the same set of
equations as in the RP (equation (4.1)). Notice that only the first equation, that is, that for a;(¢), is an
approximation, whereas the equations for b;(¢) and c;(¢) are exact. Following the same approach as for
the RP, the expression for the critical point for the CP is similar to that in equation (4.6) — the only two
changes are (i) the use of the matrix P instead of A and (ii) Zj P; =1,¥j =1,2,..N. Another important
result is that the leading eigenvalue of the transition probability matrix is always equal to unity [31]. In
this way, the critical point for the CP is given by

AP :1%( y (@1 +8)+80—y)B ) . 438)

" A1 =381 =8&) (1 =y)B+yn)

P
max

Note that such expression does not depend on the network structure, since the leading eigenvalue A
is the same for every connected network.

The numerical evaluation of the expression (4.8) is shown in Fig. 4 considering a scale-free network
with ¢ &~ 2.7, N = 10* and (k) ~ 100. In (a) we consider n = 0.5 and « = 1, while in (b) we assume
n = 1. Similarly to the RP case, here we also observe a very good agreement between the theoretical
results and the numerical evaluation of the system (3.6) for all parameter values explored. The conclusions
thus are similar as for the RP scenario, being the only difference the average degree of the network, a
dependency that we shall analyse in more details later on.

The parameters of the model (with the exception of « that does not affect first order terms) can be
used as control parameters of the system’s dynamics. In particular, it is interesting to analyse the effect of
B, which has been introduced here to account for the possibility of recovering the interest in the rumour.
Isolating 8 on equation (4.8) we obtain

B, ~ Y (81 + 8 — ni(l — & — &)
Sl =8 =8) -8 -y’

(4.9)
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FIG. 4. Numerical evaluation of equation (3.6) considering the CP with parameters §; = y = 0.15, §2 = 0.1 and varying the
spreading probability A. The network considered is a scale-free network with ¢ 2 2.7, N = 10* and (k) & 100. In panel (a) n = 0.5
and o = 1, whereas in (b) we have set = 1 and also explored the limiting cases of « = 0 and & = 1. The vertical lines correspond
to the critical point. Equation (4.7) evaluated for the parameters used here.

e0e Spreader a=0n=0.01 x*x Spreader a=17n=0.01
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FIG. 5. Numerical evaluation of equation (3.6) considering the CP and, without loss of generality, fixing the parameters §; = y =
5 = 0.2, A = 1 and varying the parameter f. The network considered is a scale-free network with ¢ & 2.7, N = 10* and (k) ~ 100.

which defines the minimum value of g that allows for the spreading of the rumour to a macroscopic
fraction of the population for a given spreading rate A —as it is the case in most applications. Figure 5
shows the evaluation of equation (3.6) for the CP near the critical point considering a scale-free network
with ¢ ~ 27, N = 10* and (k) = 100, and, without loss of generality, fixing the parameters
81 =y = & = 0.2, x = 1 and varying the parameter 8. Similarly to the results shown in Figs 3 and 4,
our approximations agree with the simulated values.

As for the other important parameter, «, that defines at which rate spreaders decay into stiflers after
Y — Y or Y — Z interactions, we stress that any approximation neglecting second-order terms does not
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230 G. F. DE ARRUDA ET AL.

involve the parameter «, since it controls the stifling rate on the expression for b;(¢). In other words, b; is
a conditional probability, and it is multiplied by the probability of an individual being an spreader. Thus,
« does not affect the thresholds for the RP, since it always appears on second order terms (see Fig. 3). The
same occurs for the CP, as shown in Fig. 4. Note that while the macroscopic behaviour of the system (the
expected final densities of the different classes) is different for each parameter analysed, the threshold is
always the same. An equivalent analysis was done in [10], where the authors proposed a model with a
rate similar to §, (in our model) and showed the independence of the threshold on the parameter «.

4.2 Steady state analysis

On the previous section, we analysed the early time evolution of the system aiming at finding its critical
point. In this section, for the sake of completeness, we perform a similar analysis for the steady state
solution. An analogous approach was used in [7], but for the specific case of a SIS model. At the steady
state, we can assume, for 7 large enough, p!(r) ~ !, p! (1) = n} and pX(r) ~ =k, fori =1,2,...,N.
Neglecting second-order terms, inserting (4.1) on the system (3.6) and after some algebra, the steady-state
solution is

ol = 01+ y+381 (=1+y)ci)

i (2 (14+y—aj)+38) 2+n(=1+a;)—aj+(—14y)c;) = (= 14a;) (A1—cj+y (=1+n+c;)))

Y _ (=14a;))(A=cj+y (=14+n+c;))
= (8 (—1—y+a)+81 (=2+n+a;—naj+c;—yc;)+(—1+a;) (1—c;+y (—1+n+c;))) (410)
TR = — (@146 =81 ) (=144))

T Gy —ap+8; Q+n(=1+ap) —aj+(=1+y)c) = (= 1+a;) (I —cj+y (= 141+¢)))) °

where the time dependence does not appear any more.
Considering that ¥; = ¢;, where 0 < ¢; < 1, and after substitution in the second equation of the
system (4.10), we obtain

€y +é1(ci—yci— 1)) =(a—DU -ci+ym+c—1)). (4.11)

Taking into account the approximation for ;(¢) in equation (4.1), we have

N
€ by +81(kif(y — 1) —y)) = —A(1 =81 = 6)((1 = Y)kiB +yn) ZAUE;, (4.12)

j=1

which is the same equation as (4.6). This result is for the RP process. For the CP case, we only need to
change the adjacency matrix A by the transition probability matrix P. It is also worth highlighting that for
an arbitrary choice of model parameters, in general, and at variance with classical rumour models, there
is no absorbing state corresponding to the absence of spreaders. Regarding the parameter configurations
where we have infinitely many absorbing states in the thermodynamic limit, we mention the classical
SIR and Maki-Thompson models. Besides, observe that the SI model also has an absorbing state, which
is the configuration in which every node is infected.

5. Special cases

The model proposed includes new transitions, formulates rumour dynamics in terms of discrete Markov
chains and generalizes several previous spreading models (see Section 2). It is instructive to show how
to obtain some of the main epidemic and rumour models from our approach, which we do next.
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5.1 Disease spreading

We can obtain a particular case of the SIS model by settingn = 1,8, =y =0, 8 =0 and « = 0 in our
model (see Fig. 1). This model is not exactly a SIS model, since we assume that each node cannot spread
the disease and become susceptible at the same time step. Such modification implies that the parameters
used on the traditional models change. However, in both cases the SIS dynamics can be studied in terms
of the final fraction of spreaders. From equation (4.7), the epidemic threshold is given by

)
max ™ )\.(1—81) C~ .

Comparing with the results in Table 1, the recovery probability in this SIS model is thus given by
8 = 25 while the spreading probability is 1.

In [7], the authors used a discrete time Markov chain approach to model the SIS dynamics considering
a reinfection term and a parameter that allows to explore a family of contact-based scenarios, including
as limiting cases the CP and the fully RP. Concerning the reinfection, our model does not include such
a feature, however we note that reinfection within the same time step is rarely taken into account in SIS
like models. On the other hand, the second ingredient can be easily incorporated into our framework by

exchanging the matrix A by the matrix

A Vi
Rj=1- (1 - 7’) (5.2)

where ; is the activity parameter. Observe that the limiting cases are obtained setting ¥; = 1, Vi =
1,2,...,N for the CP, and ; — oo, Vi = 1,2,...,N for the fully RP.

The SIR model is obtained from our model by settingn = 1,8, =y = 0,8 =0ando = 0. In
this case, the recovery rate is § = (122). Additionally, our framework also includes the SIRS scenario
as advanced before. By considering the model introduced in [26] (see also Table 1) the SIRS scheme is
recovered by setting n = 1, §; = 0, 8 = 0 and @ = 0. The system can then be written as a function of A,

8, and y. From equation (4.7), such reduction implies that the threshold is given by

~ 52
Amax ~ (m)c (53)

which depends only on §, and A.

5.2 Rumour spreading

All rumour models in Table 1 can be obtained from our general model. However, it is worth mentioning
that the DK model is not covered by our model, since it considers edge sampling and undirected contacts
(see Section 2). The difference between our approach and the previous models is that our approach does
not allow an individual to perform two transitions (or two attempts) at the same time step.

The MK model can be obtained by considering n = 1, 8 = 0, §; = §, = y = 0 in equation (3.6),
letting the system be a function of @ and A. Such model does not have a critical threshold. On the other
hand, it is possible to obtain the threshold for the variant introduced by Nekovee et al. [10], which
considers an spontaneous process to model the lost of interest in the propagation of the rumour. The
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probability of turning a spreader into a stifler is called § in the original paper. Such parameter is similar
to &, here, which leads us to a threshold equivalent to that in [10]

A ~<5—2> 5.4)
max ™ )\,(1—82) C~ (

Finally, the model by Borge-Holthoefer et al. [8] considers a feature that is very common in human
communication through online social networks, namely, apathy, in which an ignorant might turn into a
stifler after being informed—this is often the case observed in Twitter for instance, where the fact that
a tweet appears in a user’s timeline does not directly imply that the user spreads it further. This feature
has been used to identify influential spreaders in rumour-like dynamics [8, 32—34]. The model by Borge-
Holthoefer et al. [8] is recovered from our approach by setting 8 = 0, §; = §, = y = 0 in equation (3.6).
Note that the system’s dynamics depends on 7, & and X in this scenario.

6. Numerical analysis and simulations

Once we have got some analytical insights, we next compare results from extensive Monte Carlo (MC)
simulations with the numerical solution of the system of equations (3.6) that describe the dynamics of the
model, showing that they agree at the micro (e.g., at the individual level) and macro (e.g., at the system
level) scales. We obtain the respective phase diagrams for the limiting cases of CP and RP for several
combinations of the model’s parameters as well as for different topologies of the underlying network of
contacts.

6.1 Phase diagrams

First, we present the (1, B) phase diagrams for the CP and the RP cases. They are obtained by solving
the dynamical set of equations (3.6) and varying these parameters from O to 1 in intervals of AA =
AB = 5 x 1072, In addition, when 8 < 0.05 (A < 0.05), that is, near the critical region, we set
AL=AB=5x 1073,

Figures 6 and 7 show the (X, 8) phase diagrams obtained from the numerical evaluation of the system
of equations (3.6) for the CP and the RP, respectively. We represent (colour-coded) in the two figures
the fraction of ignorants, spreaders and stiflers in panels (a), (b) and (c), respectively. The underlying
network is the same in both cases (scale-free graph with ¢ ~ 2.7, N = 10*), except for the average
degree, which is (k) ~ 100 in Fig. 6 and (k) =~ 10 in Fig. 7. The rest of parameters have been set to
n=0.01,6 =86 =y =0.1anda = 1.0 forthe CPandton = 0.01,8; =5, =y =025and ¢ = 1.0
for the RP. As discussed in the previous section, it is possible to obtain an analytical expression for the
critical point in the CP scenario (equation (4.8)), which is indicated by the continuous black line. This is
not possible for the RP.

The comparison of the results shown in Figs 6 and 7 indicates that there are important differences in
the system’s behaviour for the CP and RP schemes, notably with respect to the final fraction of stiflers,
which is in most practical scenarios the quantity that we would like to be as higher as possible—as that
would mean that the piece of information reached a large fraction of the population and therefore that
it was spread efficiently. The CP exhibits a critical point that does not depend on the network structure,
and although it cannot be evaluated for the RP in a closed form, the numerical solutions shows that this
scenario is more complex with some interesting dependencies on the network structure and the dynamical
parameters of the model. As a matter of fact, as it can be seen in Fig. 7c, there is a non-linear effect in

Downl oaded from https://academ c. oup. comf commet/articl e-abstract/6/2/215/ 4060524
by University of Manchester user
on 26 March 2018



: - 1.0, 0.16 1.0
f.9 0,14
0.8 0.90 0.8] 0.8
0.12
0.85
0.6 oo 06 010 g6
= 075 ™ 0.08 =
0.4 070 04 1 [loos 04
0.85 0.04
0.2 0.2) 0.2
060 0.02
(a) (b

) )

' 0o P 028 10 :
; 0.88 08 024 o 0,98
0.80 55 0.40
. § z::i ﬂn.ﬁ e “QU.E 0.32
0.4 0.56 0.4 E 0.12 0.4 B2
0.48 0.08 0.16
0.2 z:z 0.2 1 G 0.2 0.08
0. 02 04 \ 06 08 10 o R 06 08 1o 000 OBg0Z  o0a o6 o8 10 0%

A

GENERALIZED SPREADING MODEL IN COMPLEX NETWORKS 233

(a) (b) (c)

1.0 100 .

0.28

0.24

0.20

! 0.16

0.12

0.08

0.04

.0 0.2 0.4 \ 0.6 0.8 1.0 g0

FIG. 6. (A, B) phase diagrams at the stationary state for the CP case on a scale-free network with degree distribution P(k) ~ k¢
and ¢ ~ 2.7. The network is made up of N = 10* nodes and has an average degree (k) ~ 100. The rest of dynamical parameters
have been setto n = 0.01,8; = 82 = y = 0.1 and @ = 1.0. The intensity of the colour (as given by the legend) represents the final
fraction of ignorants (panel (a)), spreaders (panel (b)) and stiflers (panel (c)). The continuous lines are the analytical values for the
critical point.

0.55

0B 02 04 06 08 10 g0 02 04 06 08 10
A A

0.00 0.8

(c

FIG.7. (A, B) phase diagrams as in Fig. 6 but for the RP. The underlying network of contacts has the same features except for the
average degree that is (k) &~ 10. The rest of parameters are n = 0.01, §; = §, = y = 0.25 and o = 1.0. The intensity of the colour
(as given by the legend) represents the final fraction of ignorants (panel (a)), spreaders (panel (b)) and stiflers (panel (c)).

B for fixed values of A. Admittedly, for large values of A > 0.7, when B starts to increase from zero,
the final density of stiflers also grows. However, at some point (roughly around 8 =~ 0.1), this density
reaches its maximum value and starts decreasing beyond that value of 8.

6.2 Monte Carlo simulations

In order to check whether our analytical and numerical solutions are accurate at describing both indi-
vidual states and the macroscopic behaviour of the system, we have performed large-scale Monte Carlo
simulations. All results reported henceforth are averages taken over at least 100 MC simulations with an
initial fraction of spreaders and ignorants equal to p¥ (0) = 0.01 and p*(0) = 0.99, respectively.

In Fig. 8, we present results for the dependency of the densities of X, Y and Z as a function of o with
all the other model parameters fixed. The p x « plots correspond to the CP (panel (a)) and the RP (panel
(b)) scenarios. As it can be seen, the continuous lines, which are obtained by numerically evaluating
equation (3.6) perfectly match results from MC simulations in both limiting cases. In order to check
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FIG. 8. Phase diagram at the steady state for (a) a CP considering a scale-free network with ¢ ~ 2.7, N = 10* and (k) ~ 100,
and (b) a RP simulated on top of a scale-free network with ¢ ~ 2.7, N = 10* and (k) ~ 10. The simulations have been carried
out using the following dynamical parameters: §1 = 6 = y = 0.1, A = 1, B = 0.5 and n = 1. The continuous lines are the
theoretical predictions, whereas the symbols are the results of MC simulations. The standard deviation has approximately the size
of the symbols.

whether this agreement is also verified at the individual scale, we have represented in a scatter plot, see
Fig. 9, the probability of finding an individual in the ignorant, spreader or stifler class at the stationary
state. Despite of finite size effects and stochastic fluctuations, the analytical results capture the micro
dynamical states in the large 7 limit, since there is a strong correlation between the probabilities obtained
from MC and the solutions of the system equation(3.6). These results thus convincingly show that one
can explore the model in terms of either the individual probabilities or the macroscopic expected values
by solving the equations describing the system’s dynamics, without the need to rely on extensive and
costly MC simulations. This is, from a practical point of view, an added value of the proposed framework,
as we shall discuss later on.

Spreading processes have been shown to be greatly affected by the topological features of the networks
on top of which they take place. It is therefore of further interest to investigate network effects on the
dynamical evolution of the spreading phenomenon. To this end, we have explored the impact of three
characteristics of the contact networks, namely, the exponent of the degree distribution P (k) for scale-free
graphs—for which P(k) ~ k~%—, the size of these networks and finally how dense they are by tuning the
average degree of the network’s nodes. Figure 10 shows the results of these analyses. First, we note that
in all cases, the previous agreement between the numerical solution of the system’s equations and MC
simulations still holds. Other aspects worth highlighting include the fact that the value of ¢ influences the
outcomes of the spreading process mainly for the CP, unless ¢ is larger than 3. This is because for larger
exponents, the networks are effectively equivalent to homogeneous graphs, and therefore there are no hubs
anymore, leading to fairly similar results independently of the specific value of {. Another interesting
effect of the network structure, and in particular of ¢, is the one observed in Fig. 10(b). Admittedly,
the final density of ignorants is independent of this network parameter. In other words, variations of the
exponent mainly affect the number of spreaders and stiflers, with the number of ignorants remaining
roughly constant.

As for finite size effects, our results, see Fig. 10(c), show that they do not appear to play a major role
on the rumour spreading dynamics. This is not the case with respect to the last parameter analysed, the
average degree of the network. As it can be seen in Fig. 10(d), the steady-state fractions of spreaders and
stiflers strongly depend on the density of connections, while the fraction of ignorants is (as it happened
with respect to ¢) almost the same for different average degrees. In summary, it seems that the most
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FIG. 9. Probability of finding a node i in any of the dynamical states of the model (X, Y or Z) obtained by solving analytically the
system of equations (3.6) as compared with Monte Carlo simulations. The probabilities are calculated by averaging 10> simulations.
Panel (a) corresponds to the CP, whereas the RP is represented in panel (b).
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FIG. 10. Phase diagram of the system’s dynamics at the steady state as a function of «. In all panels, the rest of parameters have
been fixedto §; =8, =y = 0.1, A = 1, B = 0.5 and n = 1 and the continuous lines are the theoretical predictions, while the
symbols correspond to the MC simulations. Panels (a) and (b) show results obtained varying the exponent ¢ of the power law degree

distribution, P(k) ~ k~¢, of the underlying networks of contacts of size is N = 10* and (k) ~ 100 (CP, panel (a)) and (k) ~

10

(RP, panel (b)). We considered the following exponents ¢: 2.3 (o), 2.5 (x), 2.7 (1), 3.3 (V) and 3.5 (). The effects of the network
size are shown in Panel (c) for scale-free networks (P(k) ~ k=% with ¢ & 2.7) with (k) ~ 100 (main plot) and (k) ~ 10 (inset)
and the following sizes: N = 5 x 102 (o), N = 103 (O), N = 5 x 10° (¢) and N = 10* (V). Finally, in panel (d), we represent
results obtained for the RP and different average degrees: (k) ~ 10 (o), (k) ~ 20 (x), (k) ~ 35 (), (k) ~ 45 (V) and (k) ~ 60

(¢). The rest of network’s parameters are the same as in panel (c).
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FiG. 11. Time evolution of the average probabilities for the (a) CP and (b) RP. The continuous lines are the theoretical predictions,
while the symbols are obtained by Monte Carlo simulations.

important dependencies with respect to the networks’ topological properties are given by its heterogeneity
(characterized by ¢ ) and the density of connections (e.g., (k)). Both features mainly affect the ratio between
spreaders and stiflers at the stationary state, but do not significantly affect the final number of ignorants.
Altogether, and from a practical point of view, one can then conclude that, with the exception of the
heterogeneity of the degree distribution, the size and average degree of the networks have a somewhat
minimal impact on the propagation of the rumour, at least in what concerns its main outcome: the number
of individuals that learned the rumour—both spreaders and stiflers represent states in which individuals
are aware of the news, that is, they have been reached by the contagion process (but also see below).

Finally, we also show Fig. 11 that the numerical solution of the system (3.6) and Monte Carlo
simulations are in good agreement not only in the large ¢ limit, but also when we explore the system’s
behaviour at intermediate times, that is, in transient states. The figure shows the evolution in time of the
fraction of ignorants, spreaders and stiflers for both the CP and RP limiting cases when the substrate
network is a scale-free graph with ¢ ~ 2.7, N = 10* and (k) ~ 100. As we will see in the next section,
the fact that the temporal dynamics can be captured accurately by numerically solving the set of equations
(3.6) could be used to study real spreading dynamics for which highly resolved temporal data is available.

We round off this section by pointing out some limitations of the mean field approximation. Gleeson
et al. [35] discussed that the accuracy of the mean field theory is higher when three main assumptions are
satisfied, that is, (i) vanishing local clustering, (ii) non-modular network organization and (iii) absence of
dynamical correlations. Conditions (i) and (ii) depend on the structure of the network. They are satisfied
in our analysis, because we consider the configuration model, which satisfies the properties (i) and (ii). We
will next analyse how our model performs in real online networks. However, the dynamical correlations
might represent a major source of error, since we assume that the state of each node is independent of the
state of the rest of vertices. Nevertheless, a node is more likely to be informed from one of its neighbours
than from other vertices. In [35], the authors exemplified such effect by considering a SIS dynamics,
suggesting that the error is reduced with the increase of the mean first neighbour degree. To quantify
the error between our numerical experiments and MC simulations, we set the dynamical parameters to
8 = 8 =y = 0.1, A = 1 and vary «. The differences between the theoretical predictions and MC
simulations are then quantified by the absolute error. We found (results not shown) that, for the RP, the
error vanishes as soon as (k) > 10, whereas for the case of a CP, the error is close to zero only for
(k) > 100, as shown in Fig. 12.
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FIG. 12. Phase diagram at the steady state for the CP considering a scale-free network with ¢ ~ 2.7, N = 10* and the dynamical
parameters §; = 8, = y = 0.1 and 2 = 1. The continuous lines are obtained by the least squares method.

7. Applications to real social systems

Up to now, we have explored the model in computer-generated networks. While these networks share
some of the topological features that have been found in real-world systems, they do not account for all
of them, specially when it comes to clustering properties or several kinds of correlations. It is therefore
important to run our model on top of real systems and check whether the results reported so far also
hold for more realistic topologies. In doing so, we will also show how the model could be used to get a
better understanding of the mechanisms driving real spreading phenomena. In what follows, we inspect
whether the model gives accurate results at the microscopic scale for both the CP and the RP scenarios,
as we have done before for the synthetic networks. Finally, we also reproduce the temporal dynamics of
a real spreading process that took place over online social networks (Twitter in our analysis) when the
confirmation of the existence of the Higgs boson was announced.

To verify that our model performs well also in real networks, we use two social networks. The first
is an email network, in which messages are mostly spread as a contact processes (that is, one-to-one
communication at a time), and the second network considered is the contact patterns of Twitter. The latter
is an online social system where the information dynamics is mainly of the form one-to-all, that is, a user
posts a message that reaches out all the user’s followers at the same time, thus corresponding to the RP
limit in our formulation. We also consider n = 0.01 to simulate the apathy as in [8].

The email contact network was created from emails exchanged between users within the Universitat
Rovira i Virgili [36]. The network is composed by N = 1133 nodes and (k) = 9.6; connections are
directed and unweighted. However, here we consider an undirected version of this network. The Twitter
network was extracted from the mobilizations in Spain during 2011 [33, 37, 38]. Here we consider a
simplified version of this network, composed by N = 85712 nodes and (k) = 109.9, with undirected
and unweighted contacts. Both networks have an average clustering coefficient (cc) &~ 0.22. In addition,
while the email network is slightly assortative, » = 0.08, the Twitter network is disassortative r = —0.14.

We compare the results obtained via MC simulations of the model with the numerical solution
of equation (3.6) in Fig. 13(a) and (b) using the Twitter and the email networks as underlying graphs,
respectively. The results show that despite the new topological features of the real networks, the agreement
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FiG. 13. Application of the proposed discrete time Markov chain formulation to the analysis of spreading processes that take place
on top of social networks. Panels (a) and (b) show the probability of node i belonging to state X, Y or Z obtained by solving
numerically the system of equations (3.6)) and by Monte Carlo simulations. Panel (a) corresponds to a RP that takes place over
the Twitter network, where as panel (b) has been obtained simulating a CP on the email network. The model parameters: A = 1.0,
n=0.01,8 =8 =y =0.01,8 =1.0and « = 1.0 for the RP;and A = 1.0, » = 0.01,8; =8 =y = 0.1, 8 = 1.0 and
o = 1.0. Results for MC simulations are averages over 103 different simulations. Panel (c) depicts the time evolution of the Higgs
boson rumour spreading, taking into account tweets of the dataset shown in [32]. The dashed lines represent the real data, while the
continuous lines are the numerical solutions of our model. The vertical lines mark the three time windows used, with the following
parameters: (i) 0 <t < 77, A = 0.00025, « = 0.0002, 6 = 0.0001 and n = 0.85; (i) 77 < t < 106, A = 0.021, « = 0.00075,
8, =0.0015 and n = 0.17; (iii) r > 106, A = 0.065, « = 0.002, §, = 0.002 and n = 0.01.

is still very good. Panel (a) corresponds to a RP and the probabilities of finding a node in each of the three
possible states at the large time limit match fairly well. This indicates that the new topological ingredients
that were not present in the synthetic networks play a minor role when it comes to evaluate the accuracy
of the discrete Markov chain formulation—or at the very least for this particular network. Panel (b) on
the contrary shows the results obtained when simulating a CP on top of the email network. Again, the
numerical solutions of the set of equations describing the dynamics of the system agree well with MC
simulations, albeit having larger deviations and more dispersion along the diagonal line. This could be
due to the fact that (k) = 9.6 for the email network, and as discussed and shown earlier (see Fig. 12),
for a CP errors are vanishingly small only beyond (k) &~ 100. Other new topological characteristics or
even some dynamical correlations [35] might have an impact as well. Additionally, note that another
possible source could be the relative small size (N = 1133) of the email network. Admittedly, the Twitter
network also has triangles, modular organization and degree—degree correlations [8, 37], but it is an order
of magnitude larger.

We also apply the formalism to simulate the time evolution of a real information dissemination process.
Specifically, we have modelled the temporal dynamics of the rumour spreading on Twitter during and
after the announcement of the discovery of a new particle with the features of the elusive Higgs boson on
4 July 2012. Such dataset was formerly analysed in [32]. Here, we consider the giant component of an
undirected network of the friend/follow network, which is composed by N = 456626 individuals, with
(k) = 54.79, an average clustering coefficient (cc) = 0.189 and assortativity r = —0.098. This database
describes the timestamps (in seconds) of mentions, replies and retweets. In our analysis, we consider
these three timestamps as events. However, if two events occur at the same time and are generated by
the same user, we consider them as just one event. For instance, if an user retweets a mention we would
have two events at the same time, one for the mention and the other for the retweet. In such a case we
consider it as just one tweet.
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Moreover, how to assign the state a node belongs to (that is, spreader or stifler) is not trivial, because
we cannot distinguish between: (i) a spreader turns into a stifler, then recovers the interest in the rumour
and becomes a spreader again or (ii) a spreader that remains as a spreader during the observation time.
Here, we assume that an individual is an ignorant if he/she did not tweet about the Higgs boson. An
ignorant becomes a spreader the time he/she first tweets about this topic, and remains as such up to its
last tweet, when it becomes a stifler. The only special case considered are the users that tweeted just once.
In such a case, we consider that these individuals are spreaders during just one time step, that is, 1 unit
time, and they become stiflers the next time-stamp. Additionally, the initial conditions are given by the
activities before the observation time window, which implies to start with a certain fraction of spreaders
and also stiflers, since some users that tweeted about the Higgs boson do not tweet during the observation
time window. Note that the modelling assumes that a user is aware of the rumour only if he/she tweets
about it. Finally, it is important to define Az. For our analysis, we have assumed that each discrete time
window represents 1 h of the real data. Such a choice implies that we are not able to distinguish events that
occur at a faster rate. However, setting Ar = 1h drastically reduces the computational cost. We remark
that our goal here is to verify whether our model is capable of describing the behaviour observed in the
real data, not to perform a detailed forensic analysis of the actual rumour spreading process.

In order to fit simulations of the model with the data, we assume that the forgetting mechanisms can
be neglected, since the total observation time is reasonable small (1 week), implying that §, = y = 0.
Moreover, we assume 8 = 0, since we consider that there is no transition from stifler to spreader, that is,
the possibility of recovering the interest in the rumour is neglected—this is in part also due to the constraint
that we cannot distinguish such transitions in real data. Additionally, observe that §, is the probability
that a spreader loses the interest about the rumour spontaneously, while « represents the probability of
turning into stiflers after contacting spreaders or stiflers. Note that 1, y and o might produce similar
effects, depending on the defined time-steps.

Figure 13(c) compares the time evolution of the spreading dynamics as extracted from the real data
with results obtained from our model using three different time windows. The latter is needed as it is
known that in viral processes like the one we are analysing, there are different phases of the dynamics: an
early stage in which the number of messages exchanged increases slowly (subcritical regime) followed
by an explosive period (critical and supercritical regimes) that signals the moment beyond which the
piece of news goes viral and finally a phase in which the active spreaders die out and stop propagating
the rumour any farther [8]. For the first time window, we thus assign initial probabilities of being in state
X, Y or Z as given by the real data, but considering them to be the same for every node. For the following
time windows, these probabilities come from the output of the previous simulation window. On the first
time window, 0 < t < 77, we consider A = 0.00025, « = 0.0002, §, = 0.0001 and 1 = 0.85. On the
second, 77 < t < 106, A = 0.021, « = 0.00075, §, = 0.0015 and n = 0.17. Finally, for t > 106,
A =0.065, « = 0.002, 5, = 0.002 and n = 0.01.

The results show that the model is indeed able to accurately reproduce the temporal evolution of the
real spreading dynamics. We however stress that we chose those sets of parameters by simple inspection,
that is, we did not apply any fitting algorithm. In order to obtain a better fit, one may use statistical
inference tools or even a simulated annealing algorithm. As this is beyond the scope of this work, we
leave this line of research as a potential future work. The simulation performed is nevertheless worth
carrying out. The fact that a model like the one discussed here could be adapted without the use of
sophisticated fitting algorithms to describe the temporal dynamics of a real rumour spreading process is
an important step towards getting a better understanding of the mechanisms at work in this real contagion
dynamics. Admittedly, without knowing the parameters, real-time projections of the temporal evolution
of the rumour dynamics cannot be done. But once we know the parameters that give the best matching
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with the real data, we are in the position to know which mechanisms (that is, what transitions) are more
important and which do not, thus gaining valuable phenomenological insights. In turn, given the universal
features behind spreading processes, this would allow to perform other analyses, such as detecting who
are potential candidates to be influential spreaders in other online social systems or for the propagation
of other rumours in the very same network.

8. Conclusions

Spreading processes play an important role in nature, society and engineering [1]. Due to their relevance,
several models have been developed aiming at understanding, modelling and predicting how viruses,
diseases, rumours and information propagate through complex networked systems. Despite the theoretical
approaches that have been developed to model, for instance, epidemic and rumour dynamics [1], there are
still important mechanisms that have not been taken into account, nor there exists a coherent and unifying
theoretical and computational framework that deals with as many of these mechanisms as possible at the
same time. In this paper, we provide such a unifying methodology using a discrete Markov chain approach,
which includes and generalizes previous epidemic and rumour models by accounting for non-traditional
behaviours, such as apathy, forgetting, and lost and recovering of interest.

We have focused our study on the theoretical and numerical analysis of the model, and have shown
that results obtained by numerically solving the system of equations describing the system’s dynamics are
in good agreement with extensive MC simulations for three different scales: macro, micro and temporal.
Regarding analytical results, we have obtained closed forms for the thresholds and the steady state
densities of individuals in the different dynamical classes for the CP scenario and some special cases
of the RP. Additionally, we have thoroughly analysed the influence of the model parameters as well as
several network properties on the spreading dynamics. Our findings indicate that using synthetic networks
could help getting a first insight into what are the effects of the different mechanisms at work with a high
degree of accuracy. Finally, we have studied the propagation of rumours considering real networks on
top of which both a contact process and a reactive process might take place. Importantly, we were able
to reproduce the time evolution of a rumour propagation using Twitter’s user activity during and after the
announcement of the discovery of the Higgs boson.

Our formalism is general and covers many models on the literature. This opens new opportunities for
the analysis of real data. It is also worth stressing that in information spreading on real systems like online
social networks, rumour models play an important role. With this work, we have provided a framework
that paves the way to developing new algorithms that could explore accurately and very fast different
mechanisms and scenarios for viral information spreading. At variance with disease spreading, in which
one is constrained to model a real outbreak, when it comes to design new ways to efficiently disseminate
information, one is free to design the mechanisms that would optimize such a spreading process. In other
words, one can design the viral process without being constrained to fit a given past or ongoing outbreak.
To this end, performing MC simulations would be prohibitively costly given the size of the parameters’
phase space. This practical hurdle might be surmounted by using the discrete Markov chain approach
proposed here, as the computational cost of solving the set of equations is significantly low as compared
to MC simulations. This is of special relevance when we are dealing with online social systems, whose
sizes go from a few hundreds of individuals to millions of users. We plan to explore this line of research
in the future.
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