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Abstract

We propose new activity-dependent adaptive Boolean networks inspired

by the cis-regulatory mechanism in gene regulatory networks. We analyti-

cally show that our model can be solved for stationary in-degree distribution

for a wide class of update rules by employing the annealed approximation of

Boolean network dynamics and that evolved Boolean networks have a pre-

assigned average sensitivity that can be set independently of update rules if

certain conditions are satisfied. In particular, when it is set to 1, our theory

predicts that the proposed network rewiring algorithm drives Boolean net-

works towards criticality. We verify that these analytic results agree well with

numerical simulations for four representative update rules. We also discuss

the relationship between sensitivity of update rules and stationary in-degree

distributions and compare it with that in real-world gene regulatory networks.

1 Introduction

Boolean networks (BNs) [1] were originally proposed as a model of gene regulatory
networks (GRNs) by S. Kauffman in 1969 [2]. Since then, it also has been used
as a useful representation for modeling other complex systems such as neuronal
networks [3] and social networks [4]. Although Boolean abstraction of real-world
complex systems ignores fine details of them, it enables us to study some important
aspects of their generic features. One such feature of BNs is the phase transition
between ordered phase and disordered phase [5]. It has often been argued, but
still is controversial, that real-world living systems such as GRNs and neuronal
networks adjust their dynamical behavior towards the boundary between the two
phases, criticality [6–10]. The advantages of criticality also have been studied:
Optimal computational ability [11, 12], maximal sensitivity to external stimuli
[13], maximal memory capacity [14] and so on.

So far, many plausible theoretical models of network self-organization towards
criticality have been proposed although the exact mechanisms in gene regulatory

1

http://arxiv.org/abs/1704.08586v2


or neuronal networks have not yet been known. For example, the following liter-
atures discuss biologically inspired mechanisms: Hebbian learning [15, 16], spike-
timing dependent plasticity [17, 18], dynamical synapses [19, 20] and homeostatic
plasticity [21] for neuronal networks and local control of feedback loops [22] and
adaptation towards both adaptability and stability [23] for gene regulatory net-
works. Such models have been collectively called adaptive networks, in which
network structure and network state coevolve, and have been paid much attention
recently [24, 25]. The study of adaptive networks originates from the work by
Bornholdt and Rohlf [26], which is also motivated by a preliminary work on the
relationship between network structure and network state [27]. They showed that
a simple activity-dependent rewiring rule based on measurement of local dynam-
ics drives random threshold networks towards criticality by numerical simulation.
The model has been extended to different situations: Liu and Bassler [28] re-
ported that the activity-dependent rewiring rule drives random Boolean networks
towards criticality by numerical simulation. Recently, this model was extended to
networks with modular structure [29]. In spite of the structural constraint, self-
organization towards criticality was shown to be preserved. Rohlf introduced an
activity-dependent threshold change into the original Bornholdt-Rohlf model [30].
In his model, the threshold change and rewiring are switched stochastically. It was
shown that the adaptive thresholds yield a new class of self-organized networks.
However, it was confirmed numerically that networks still evolve towards criticality
in the large size limit. In summary, these previous works based on numerical sim-
ulation suggest that the activity dependent rewiring rule robustly drives networks
towards criticality in different conditions.

However, in these adaptive Boolean network models, no analytic approach has
been reported so far to the best of the author’s knowledge. One reason for this
would be the fact that the definition of activity is dependent on attractors which
are usually avoided to discuss the phase transition of Boolean networks in the limit
of large system size [5]. In the activity-dependent rewiring rule of Bornholdt and
Rohlf [26], a node is defined to be active if it does not change its state on the
attractor reached from a random initial condition. Otherwise, the node is said to
be static. The rewiring rule is as follows: The active node loses one of its incoming
link randomly and the static node acquires a new incoming link randomly. Indeed,
it seems that the activity on attractors is crucial for self-organization towards crit-
icality. Bornholdt and Rohlf [26] numerically identified a first-order-like transition
of the frozen component defined as the fraction of static nodes and argued that this
transition is the main mechanism of robust self-organization of networks towards
criticality.

In this paper, we propose a new activity-dependent adaptive Boolean network
model inspired by the cis-regulatory mechanism of real-world GRNs in which ac-
tivity does not dependent on attractors but is defined by typical states that will be
defined in Sec. 2. By this change of the definition of activity, we expect that our
model admits analysis based on a mean-field theory called the annealed approxima-
tion in the limit of large system size. In the following, we show that our model can
be solved for stationary in-degree distribution for a wide class of update rules to
which the annealed approximation of the Boolean dynamics is applicable. At first
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sight, one would suspect that our network rewiring rule is designed towards a de-
sired result, namely, criticality. However, it turns out that whether our model can
self-organize towards criticality depends on a parameter of our network rewiring
rule independent of update rules. We analytically show that the average sensitiv-
ity of stationary BN dynamics is equal to the parameter if certain conditions are
satisfied. Thus, only when the value of the parameter is set to 1, we expect that
BNs evolve towards criticality. The analytic result is verified by numerical simula-
tion in four representative update rules. We also discuss the relationship between
sensitivity of update rules and the tail of stationary in-degree distributions and
compare it with that in real-world GRNs.

2 Model

Boolean networks (BNs) consist of a directed network with N nodes that can take
two states 0 and 1. The state of node i at time step t is denoted by xi(t) and is
updated by a rule fi selected from a given ensemble of Boolean functions Ei:

xi(t + 1) = fi(xi(t)), (1)

where xi(t) = (xj1 (t), . . . , xjki
(t)) and j1, . . . , jki

are nodes from which node i
receives inputs. The number of inputs ki is called in-degree of i. In this paper, all
nodes are updated simultaneously. We also assume that the ensemble of Boolean
functions Ei associated with node i only depends on its in-degree ki.

Our activity-dependent rewiring rule for network evolution is different from
those proposed in previous work [26, 28] in the following two respects. First, both
nodes and arcs can be selected at each time step of network evolution, in contrast
to the previous models where only nodes are assumed to be selected. Second, we
consider activity of arcs rather than that of nodes. In the previous models, activity
of a selected node is measured by time-averaging its state value along a reached
attractor and the decision whether the selected node gets a new incoming arc or
loses an existing arc is made depending on the value of activity. In our model, when
a node is selected, the node gets a new incoming arc. On the other hand, when an
arc is selected, it is deleted when it is active. Here, activity of the arc is evaluated
by the response of the target node i to perturbations on the arc given a typical state.
That is, given an input xi = (xj1 , . . . , xjki

) sampled randomly from a collection
of states after sufficiently long time steps starting from a random initial condition,
the arc is said to be active if fi(xi) 6= fi(x̃i) where x̃i = (x̃j1 , . . . , x̃jki

) is given by
x̃jl = 1 − xjl if jl is the source of the selected arc and x̃jl = xjl otherwise. These
modifications are motivated by the following biological consideration: Deletion of
an arc in a GRN of an organism can be caused by mutations in cis-regulatory
elements (CREs) [31, 32] of a gene that are nearby non-coding regions of DNA
where a number of proteins called transcription factors (TFs) that are themselves
products of other genes can bind. TFs regulate expression of the gene by increasing
or decreasing the frequency of transcription initiation. If mutations in existing
CREs of a gene change the binding pattern of TFs and the expression level of the
gene, it could result in undesirable behavior of the organism and the corresponding
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arcs in its gene regulatory network are deleted in an evolutionary time scale [33].
On the other hand, mutations in a non-coding region of DNA within functional
interaction range that is not involved in existing CREs could give rise to binding of
a new TF. This means addition of a new incoming arc to the node representing the
gene. Thus, nodes in a GRN can be conceived as carrying capacity to accept new
incoming arcs incarnated by non-coding regions of DNA rather than coding DNA.
In summary, when considering rewiring of a GRN, it is natural to treat nodes and
arcs on the same footing because the physical basis of them is the same.

In detail, our algorithm for network evolution in this paper is as follows:

(i) An initial BN with a given ensemble of Boolean functions is generated. The
in-degree of each node is sampled from a Poisson distribution with mean k0
and the source of each arc is chosen randomly.

(ii) The state of the BN is evolved from a random initial state for sufficiently
long time steps to find a typical state. For any BN of finite size N , its state
trajectory eventually falls onto an attractor. Hence, it is ideal to choose a
state randomly from the attractor. However, when numerically simulating
the model, it is difficult to find an attractor in a reasonable time if the BN
is in the disordered phase. For efficient numerical simulation, we limit the
maximum length of attractors to be detected as T . If no attractor is found
within 2T + T ′ time steps, the last T steps are stored and a state is chosen
randomly from the T states. In this paper, we set T = 1000 and T ′ = 100.
We expect that this way of sampling a state approximates that of sampling
from true typical states in the limit of large N because correlations between
nodes are negligible for N ≫ 1 if the underlying network is locally tree-like
and thus whether a state is on an attractor or not does not matter if it is
reached after many time steps from a random initial state [1]. Indeed, this
expectation accommodates to the assumptions of the mean-field theory used
in Sec. 3 and we will see that the numerically obtained in-degree distributions
by this network rewiring algorithm agree well with the theoretical predictions
based on the mean-field theory.

(iii) A particular node or a particular arc is chosen with probability πn or πa,
respectively. Here, we fix the ratio σ := πn/πa throughout the network
evolution. If a node is chosen, then a new incoming arc is added to the node.
The source of the new arc is chosen uniformly at random. If an arc is chosen,
then its activity in the state chosen in step (ii) is assessed. If the arc is active,
then it is deleted. Otherwise, do nothing.

(iv) The Boolean function on the chosen node or the target of the chosen arc in
step (iii) is re-assigned following the given ensemble of Boolean functions.

(v) Go back to step (ii).

The steps (ii)-(v) constitute time unit of network evolution. We call it epoch after
[28]. Note that πnN + πaz(e)N = 1 should hold for all epoch e where z(e) is
the average in-degree of the underlying directed network of BN at epoch e. Thus,
πn = σ/[(σ + z(e))N ] and πa = 1/[(σ + z(e))N ].
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In each epoch, the network topology and Boolean functions assigned are fixed
as in typical applications of BNs for modeling real-world complex systems. Thus,
in the above model, the time scale separation between BN dynamics and network
evolution is taken for granted.

3 Analytic results

In this section, first we develop a general mean-field theory of network evolution
that can be applied to any update rule which satisfies certain conditions mentioned
below. Second, we apply the analytic result derived from the mean-field theory to
four update rules that have been paid attention in the literature.

3.1 Mean-field theory

If the large system size limit N → ∞ is taken and the underlying directed network
is random networks with a specified degree distribution P (k, l) [34], where P (k, l) is
the probability that a randomly chosen node has in-degree k and out-degree l, the
stability of BN dynamics can be analyzed by a mean-field theory so-called annealed
approximation [5, 35]. In the annealed approximation, correlations between nodes
are neglected. This is manifested as the following ansatz taken in the mean-field
calculation of BN dynamics [1]: The sources of incoming arcs to a node are chosen
randomly at each time step and the Boolean functions are also re-assigned randomly
at each time step.

We apply the annealed approximation to BN dynamics in each epoch and assess
its stability. For this purpose, we need to calculate sensitivity of Boolean functions
selected from a given ensemble for each input [36]. Let λk,j be the probability that
the output of an assigned Boolean function with k inputs changes when j−th input
is flipped for 1 ≤ j ≤ k. We put λk :=

∑k
j=1 λk,j . In general, λk,j depends on the

fraction bt of nodes with state 1 at time step t. bt evolves by the following equation

bt+1 =
∑

k

βk(bt)Pin(k), (2)

where βk(bt) is the probability that the output of a node with k inputs is 1 at
time step t + 1 and Pin(k) =

∑

l P (k, l) is the in-degree distribution. Although
Eq. (2) can have periodic or chaotic solutions depending on update rules [1], we
only consider the case that Eq. (2) has a unique stable stationary solution b∗ in
the following.

Now let us suppose that the dynamics of a BN settle down to the stationary
regime and apply a small perturbation. Let d̃t be the fraction of damaged inputs
at time step t. That is, d̃t is the probability that the source node of a randomly
chosen arc is flipped. Neglecting the higher order terms of d̃t, we obtain

d̃t+1 = λd̃t (3)

for the time evolution of d̃t by a similar reasoning with previous work [35, 37],

where λ =
∑

k,l
lP (k,l)

z λk which we call average sensitivity, z =
∑

k kPin(k) is the
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average in-degree and λk is evaluated at b∗. Let dt be the fraction of damaged
nodes at time step t. Since dt+1 = λ̄d̃t where λ̄ =

∑

k Pin(k)λk, dt also follows
Eq. (3). When in-degree and out-degree are independent as we expect for networks
evolved by the proposed network rewiring algorithm, we have

λ = λ̄ =
∑

k

Pin(k)λk. (4)

When λ < 1, dt dies out eventually and the dynamics are said to be ordered or
stable. If λ > 1, dt grows exponentially at first and the dynamics are said to be
disordered or unstable. λ = 1 is the boundary between the two cases and the
dynamics are said to be critical.

Now let us write down the equation for the time evolution of in-degree distri-
bution by assuming the annealed approximation for the dynamics of BN at each
epoch. Let Pin(e, k) be the in-degree distribution at epoch e. According to the
proposed network rewiring algorithm, we have

Pin(e+1, k) = (1 − πn − πaλk)Pin(e, k)+πnPin(e, k−1)+πaλk+1Pin(e, k+1) (5)

for k ≥ 1 and

Pin(e + 1, 0) = (1 − πn)Pin(e, 0) + πaλ1Pin(e, 1). (6)

In order to iteratively solve Eqs. (5) and (6), in each iteration one must calculate λk

which is in general a function of b∗, which in turn depends on the entire in-degree
distribution at epoch e through Eq. (2). In addition, πn and πa are functions of
average in-degree z(e). A stationary solution P s

in(k) of Eqs. (5) and (6) should
satisfy

πnP
s
in(k) = πaλk+1P

s
in(k + 1) (7)

for k ≥ 0 if it exists. When the stationary solution exists, we obtain

λ = πn/πa (8)

by substituting Eq. (7) into Eq. (4). Thus, we predict that we can control the
stability of evolved BNs by adjusting the ratio σ = πn/πa which we call target

average sensitivity (TAS) hereafter. Note that σ can be given independently of
update rules. In particular, when σ = 1, that is, when a node or an arc is selected
uniformly at random, the proposed network rewiring algorithm is expected to drive
BNs towards criticality.

The limitation of our mean-field theory arises from the normalization condition
for the stationary in-degree distribution. If Eq. (7) has a solution, it is solved by

P s
in(k) = P s

in(0)σk

(

k
∏

l=1

λl

)−1

. (9)

Hence the infinite series
∑∞

k=0 rk must be convergent, where rk = σk
(

∏k
l=1 λl

)−1

.

Since rk+1/rk = σ/λk+1, this is always the case when λk diverges as k → ∞ by
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d’Alembert’s ratio test. However, when λk converges to a number α as k → ∞, it
must hold that σ ≤ α. When b∗ is independent of P s

in, we can give the condition
for the existence of P s

in as follows: (i) If λk → ∞ as k → ∞, then P s
in exists. (ii) If

λk → α < ∞ as k → ∞, then P s
in exists if σ < α. If σ > α, then P s

in does not exist.
If σ = α, then the existence of P s

in depends on the precise form of λk. Even when
P s
in does not exist in the mean-field theory, we can formally obtain P s

in by truncating
Eq. (9) at k = N for BNs of finite size N . However, it is not guaranteed that the
truncated P s

in can reproduce the stationary in-degree distribution of the evolved
finite size BNs. This is because the assumption of the absence of correlations
between nodes in the annealed approximation of BN dynamics will be violated in
such case due to the existence of non-negligible amount of nodes with in-degree
proportional to system size N .

3.2 Examples

In this subsection, we apply the analytic result presented in Sec. 3.1 to four en-
sembles of Boolean functions: (a) Biased functions (BF) [5]: All Boolean functions
with ki inputs are weighted with bias p. The value of output of fi is assigned to
be 1 with probability p or 0 with probability 1 − p for each input xi. (b) Thresh-
old functions (TF) [38]: Only threshold functions are considered. fi(xi) = 1 if
∑ki

l=1 wjli(2xjl − 1) + hi ≥ 0 or 0 otherwise, where xi = (xj1 , . . . , xjki
) ∈ {0, 1}ki

and wjli = ±1 with equal probability. In the following, we only consider the case
hi = 0 for all i. (c) Heterogeneous biased functions (HBF) [39]: In this update
rule, we allow the bias of BFs to depend on in-degree. That is, a BF with bias
pki

is selected for node i with in-degree ki. (d) Nested Canalizing functions (NCF)
[40]: A nested canalizing function is given by

f(xi) =











































s1 if xj1 = c1

s2 if xj1 6= c1 and xj2 = c2

s3 if xj1 6= c1 and xj2 6= c2 and xj3 = c3
...

ski
if xj1 6= c1 and . . . and xjki

= cki

sd otherwise

(10)

for xi = (xj1 , . . . , xjki
) ∈ {0, 1}ki, where cl ∈ {0, 1} is the canalizing value for input

from node jl and sl ∈ {0, 1} is the corresponding output value for l = 1, . . . , ki.
Here, we consider a weight on NCFs defined by the following parameters [41]:
sl = 1 with probability a and cl = 1 with probability c for l = 1, . . . , ki, and sd = 1
with probability d.

The formula of λk for BFs, TFs and HBFs are given by λk = 2p(1 − p)k,
λk = k2−(k−1)

(

k−1
⌊k/2⌋

)

∼
√

2/π
√
k [38] and λk = 2pk(1 − pk)k, respectively. For

these three rules, λk is independent of b∗. However, λk of NCFs depends on b∗. We
have βk(bt) = a+ (d−a)(1−γ(bt))

k in Eq. (2) where γ(bt) = btc+ (1− bt)(1− c) is
the probability that a randomly chosen input is at its canalizing value [41]. λk of
NCFs is shown to be λk = (1−η)(1−(1−γ(b∗))k)/γ(b∗)+k(1−γ(b∗))k−1(η−η0) ∼
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Figure 1: Time evolution of the average sensitivities for (a) BFs, (b) TFs, (c)
HBFs and (d) NCFs. Insets are enlarged views from epoch 20000 to 30000 for the
first three update rules and that from 50000 to 60000 for NCFs. BNs with NCFs
were simulated for a longer period because their convergence is slower than the
others.

(1−η)/γ(b∗) when 0 < γ(b∗) < 1, where η = a2+(1−a)2 and η0 = ad+(1−a)(1−d)
at stationarity [41].

By substituting λk into the right-hand side of Eq. (9), we obtain stationary in-
degree distributions. For BFs, we get a Poisson stationary in-degree distribution
P s
in(k) = e−zszks /k! with the stationary average in-degree zs = σ/[2p(1 − p)]. The

tail of the stationary in-degree distribution for TFs decays slower than that of
any Poisson distribution but does faster than that of any exponential distribution.
HBFs have different stationary in-degree distributions depending on the functional
form of pk if it exists. For NCFs, the stationary in-degree distribution exists and
is asymptotically equal to an exponential distribution provided that 0 < γ(b∗) < 1
and σ < (1 − η)/γ(b∗) where b∗ satisfies b∗ =

∑

k βk(b∗)P s
in(k).

In next section, we test these analytic predictions for TAS σ close to 1 since
our primary interest is evolution towards criticality. The behavior of our model for
a wider range of σ is investigated in Appendix where we also present an example
in which our mean-field theory fails.
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Figure 2: Comparison between numerical stationary in-degree distributions (sym-
bols) and theoretical stationary in-degree distributions (lines) for (a) BFs, (b) TFs,
(c) HBFs and (d) NCFs.

4 Numerical results

We compared analytic results with numerical simulations for the above four ensem-
bles of Boolean functions. We simulated evolution of BNs with N = 200 for three
different values of TAS: σ = 0.95, 1.00 and 1.05. Parameters used are p = 0.7 for
BFs, pk = (1 +

√
1 − 2qk)/2 with qk = 1/2 if 1 ≤ k ≤ 3 and qk = 2/k if k ≥ 4 for

HBFs (thus, we have λk = 2 for k ≥ 4) and a = 1/3, c = 0.95 and d = 0 for NCFs.
The condition for the existence of the stationary in-degree distribution for HBFs is
σ < 2 and is satisfied in the numerical simulation here. For NCFs, we numerically
checked that 0 < γ(b∗) < 1 and σ < (1 − η)/γ(b∗) hold for the above parameter
values.

Fig. 1 shows time evolution of the average sensitivities for each update rule
from five different initial average in-degree 1 ≤ k0 ≤ 5. For each pair of values of
σ and k0, 100 realizations were averaged. In Fig. 1, the average sensitivity of a
BN at epoch e was calculated by Eq. (4) with a numerical in-degree distribution at
epoch e and analytic values of λk. We can clearly see that the average sensitivities
approach to given values of σ independent of k0.

The numerical stationary in-degree distributions agree well with the theoretical
predictions (Eq. (9)) for all three values of TAS σ (Fig. 2). Here, they were obtained
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Figure 3: The fraction of damaged nodes dt+1 at time step t + 1 as a function of
the fraction of damaged nodes dt at time step t for (a) σ = 0.95, (b) σ = 1.00 and
(c) σ = 1.05. Dotted lines have a slope equal to σ. Insets are enlarged views of the
region 0 ≤ dt, dt+1 ≤ 0.1.

by averaging numerical in-degree distributions over last 10000 epochs in Fig. 1 of
100 realizations for each k0.

Finally, we verified numerically that Eq. (3) (with replacing d̃t and d̃t+1 by
dt and dt+1, respectively) holds in evolved BNs for all three values of TAS σ by
constructing so-called Derrida plots (Fig. 3) [42]. Derrida plots show the fraction
of damaged nodes dt+1 at time step t + 1 as a function of the fraction of damaged
nodes dt at time step t. In Fig. 3, the value of dt+1 was averaged over 200 states
of 500 realizations of evolved BNs (those at the last step in Fig. 1) for each value
of dt. We can see that for all three values of TAS, the slope at the origin agrees
well between numerical calculations and theoretical predictions. In constructing
Derrida plots numerically, a subtlety arises when λk depends on b∗ as in case of
NCFs. For BFs, TFs and HBFs, we can choose a random state and randomly flip
its fraction of dt nodes to compute dt+1 because λk is independent of b∗ in these
update rules. On the other hand, for NCFs, we must choose a typical state and
then randomly flip its fraction of dt nodes. It was predicted that this procedure
produces the correct slope at the origin of Derrida plots [43]. However, in order for
a Derrida plot to be correct for larger values of dt, the perturbed state must also
be a random sample of typical states (This does not guarantee that the Derrida
plot is correct over all the range of dt as shown in [43]). Here, we are interested in
only the slope of the Derrida plots at the origin. Hence, it suffices for our purpose
to adopt the above procedure.

5 Discussion

In this paper, we proposed a new activity-dependent adaptive Boolean network
model and presented its analytic solutions for stationary in-degree distribution by
employing the annealed approximation of Boolean dynamics. We showed analyt-
ically that stationary BNs evolved by the proposed network rewiring algorithm
have in-degree distributions whose average sensitivity is equal to TAS if certain
conditions are satisfied and verified the analytic solutions agree well with numeri-
cal simulations for four representative update rules. We emphasize that TAS can
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be given independently of update rules. In particular, if it is set to 1, our mean-field
theory predicts that BNs evolve towards criticality.

In previous work [44, 45], network self-organization towards criticality has been
explained by the self-organized criticality picture [46, 47]. That is, criticality is
achieved by slowly adding links in the subcritical phase and rapidly deleting links in
the supercritical phase of an absorbing transition of network activity. In particular,
Droste et al. [21] analytically demonstrated this mechanism based on the pair-
approximation of the network activity dynamics. They showed that two different
time-scale separations are necessary to realize self-organization towards criticality:
one is that between state dynamics on networks and topological changes of networks
and the other is that between deletion of links and addition of links. In our model,
the former time-scale separation is incorporated. However, the latter does not hold
because the ratio of the probability of link addition to that of link deletion is finite.
Thus, the self-organized criticality picture seems not to hold. In our model, the
criticality is realized by stochastically balancing the mutually opposed processes,
addition and deletion of links.

In previous work on activity-dependent adaptive Boolean networks, influence
of the update rule on the structure of evolved networks is assessed by only numer-
ical simulations [28, 33]. In our model, we have a simple relationship between the
sensitivity of update rules represented by λk and the stationary in-degree distribu-
tion as shown above. Although our model is parsimonious, it is worth to compare
our result with real-world GRNs. The in-degree distribution of the prokaryote Es-

cherichia coli is best fitted by a Poisson distribution, whereas that of the eukaryote
Saccharomyces cerevisiae is best fitted by an exponential distribution [48]. As for
update rules, NCFs were introduced to model the yeast GRN [40] because NCFs
are found abundantly in eukaryotic GRNs by an extensive literature study [49]. On
the other hand, the analysis by Balleza et al. [8] suggested that BFs are enough
to model the GRN of E. coli. They modeled several real-world GRNs including
the bacterium GRN by biased functions to reveal whether they operate close to
criticality or not and showed that changes in the fraction of canalizing functions
for genes with at least 4 inputs do not affect the near critical dynamical behavior
of the bacterium GRN. On the other hand, most of genes in the bacterium GRN
have at most 3 inputs and canalizing functions are abundant just by chance for
such genes [8]. Thus, there is no need for the bacterium to bias the sampling strat-
egy of update rules towards canalizing functions even if they have an evolutionary
advantage. Our model predicts Poisson and exponential stationary in-degree distri-
butions for BFs and NCFs, respectively, and thus is consistent with the real-world
GRNs.

We are almost ignorant of out-degree distributions in this paper. Under the pro-
posed network rewiring algorithm, the stationary out-degree distribution becomes
a Poisson distribution independent of update rules. This disagrees with real-world
GRNs because they have heavy-tailed out-degree distributions [48]. However, we
can control the shape of stationary out-degree distribution by modifying step (iii)
of the algorithm without changing the value of average sensitivity: selecting the
source of a new arc following an appropriate weight depending on the out-degree
of each node [50].
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Figure 4: Time evolution of the average sensitivity. (a) BFs. The values of TAS
σ are 0.5, 1.0, 1.5, 2.0 and 2.5 from below. (b) HBFs. The values of TAS σ are
0.5, 1.0, 1.5 and 2.0 from below.

Finally, we note that it is an interesting open question whether our model can
be extended to the network ensembles to which the semi-annealed approximation
of Boolean dynamics [39, 51] is applicable.
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Appendix

In this appendix, we compare our theoretical results with numerical simulation for
BFs and HBFs for TAS σ apart from criticality. The parameters of the update
rules are the same as those in Sec. 4. Our theory predicts that P s

in exists for any
σ for BFs, while exists only for σ < 2 for HBFs since λk = 2 for large k. The
condition of numerical simulation is the same as that in Sec. 4 except that we only
show results for k0 = 3 here.

In Fig. 4, time evolution of the average sensitivity for BFs and HBFs is shown.
We can see that the average sensitivity approaches to each specified value of σ
except σ = 2.0 for HBFs. The failure of evolution of BNs with HBFs towards TAS
σ = 2.0 can also be seen from its in-degree distribution (Fig. 5) and the Derrida
plot (Fig. 6). On the other hand, theoretical predictions and results of numerical
simulation for the other cases agree well in both Fig. 5 and Fig. 6. These results
provide further support for the claim at the end of Sec. 3.1 on the applicability and
the limitation of our mean-field theory.
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