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Abstract The rapid evolution of network services demands new paradigms for studying and designing
networks. We propose a framework to investigate the underlying mechanisms of wireless network
functions. This framework isolates and analyses a network function as a complex system. We propose
functional topologies to visualise and systematically study the relationships between system entities.
We also define a complexity metric CF (functional complexity) which quantifies the variety of structural
patterns and roles of nodes in the topology. This complexity metric provides a wholly new approach to
study the operation of telecommunication networks. We study the relationship between CF and graph
structures by analysing graph theory metrics in order to recognize complex organisations. CF is equal
to zero for both a full mesh topology and a disconnected topology. We show that complexity is high
for a structure with shorter average path length and higher average clustering coefficient. We make
a connection between functional complexity, robustness and response to changes that may appear in
the system configuration. We also make a connection between the implementation and the outcome of
a network function which correlates the characteristics of the outcome with the complex relationships
that underpin the functional structure.

Keywords Complex system science, functional complexity framework, telecommunication networks,
structural complexity, frequency allocation.

1 Introduction
The transition of humanity into the Information Age has precipitated the need of new

paradigms to comprehend and overcome a new set of challenges. Specifically, the telecommuni-
cations networks that underpin modern societies represent some of the largest scale construction
and deployment efforts ever attempted by humanity, with renovations occurring nearly contin-
uously over the course of decades. The result is networks that consist of numerous subsections,
each of which following its own trajectory of development, commingled into a complex ca-
cophony. Considering the high degree of heterogeneity and dense interplay of network elements
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in proposed 5G and Internet of Things (IoT) systems, achieving holistic understanding of net-
work operation is poised to become an even more challenging prospect in the near future. The
focus of our paper is to provide the paradigms necessary for comprehension of the multi-faceted,
intermingled, and vital foundation of new networks by introducing a metric that quantifies the
organisational structure of network functions.

Every telecommunication network is designed to provide different services. Network func-
tions are the building blocks of these services. Understanding the mechanisms that provide
network functions implies understanding the function and thus the network itself. In order to
analyse functional aspects of a telecommunication network we introduce a framework to map
the network function into a functional topology. The functional topology enables a complex
systems approach to analyse functions of telecommunications networks. We also introduce a
metric which quantifies the complexity∗ of a particular implementation of a network function.
Specifically, the proposed metric analyses the underlying communication between network en-
tities which provide the network function.

Using complex systems science we can analyse network functions holistically. This interdis-
ciplinary field draws attention from researchers in physics, mathematics, engineering and many
others. As we plan future networks, the experience of these fields is useful to draw upon. Pa-
pers like [1–7] testify about the interdisciplinary nature of the complex systems analysis. The
authors of [8] discuss issues of different research areas. This discussion leads to the conclusion
that different scientific fields face similar problems. An interdisciplinary approach, which im-
plies borrowing solutions from other scientific fields, would save time and effort that researchers
put into solving problems.

Different sciences faced the problem of increasing complexity differently. In [9] the author
presents a categorization of different complexity metrics and emphasises the interdisciplinary
applicability of these metrics. The authors of [10–14] focus on community detection which allows
us to analyse the structural organisation of a complex system. In [10] the authors investigate
the underlying interactions between mobile phone users which determine the affiliation to a
community. Similarly, in [13, 14] the authors focus on the modularity of the system. The
authors of [11, 12] focus on links rather than nodes, which enables the detection of overlapping
communities. Additionally, their approach allows them to analyse the hierarchical structure of
a complex system. In contrast, we focus on the structural features of the graph representation
of a network function implementation, rather than on community detection.

The authors of [15–17] examine social networks and user behaviour from a complex systems
science perspective. In [15], the authors propose a data-to-model process which allows them to
analyse complex social interactions. This approach enables the prediction of the developments
of eventual disasters in the system, which makes it possible to prepare the disaster recovery
scenarios. The authors of [16] propose an agent-based framework for modelling competitive
and cooperative behaviour under conflict (i.e. Common-Pool Resource (CPR) Dilemma). The
framework allows them to study how and why do we reach some outcomes, and to determine
∗With the term "complexity" we refer to a specific set of complex systems science quantities, related to the

interactions between functional entities (rather than to the entities themselves).
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the conditions needed to achieve desirable outcomes in a complex system. In [17], the authors
analyse the human travel patterns based on the trajectory of 100,000 mobile phone users. The
understanding of the mobility patterns allows them to predict the movement and therefore the
influence on spreading viruses, urban planning, mobile network planning, etc. We propose a
framework that treats the implementation of a network function as a complex system, which
allows us to focus on the network function itself, rather than the impact of the unpredictability
of human behaviour on the network.

Authors of [18–22] analyse telecommunications networks as complex systems. The approach
in [18, 19] involves analysis of complex phenomena in telecommunication networks (spreading
patterns of mobile viruses and connection strengths between nodes in a social network) which are
the result of complex user behaviour. The authors of [21, 22] analyse the complexity of outcomes
of a self-organising frequency allocation algorithm. In [22], they analysed a relationship between
robustness and complexity of the outcome. In contrast to the approach in [18–22], the work we
propose here targets the network function itself, which means that we analyse the mechanisms
that enable complex user behaviour and system outcome. We use the same frequency allocation
algorithm proposed in [22] to show an example of how to map a network function (i.e. frequency
allocation) into a functional topology.

The main contributions of this paper are:

• We introduce a framework which enables the functional analysis of a telecommunication
network;

• We provide several examples that show how to map a network function into a functional
topology;

• We provide a new complexity metric that quantifies the organisational structure of a
telecommunication network function.

2 Network Function Framework
The approach to planning, configuration, management and optimization of network func-

tions is changing and moving towards self-organisation. The traditional approach to most
network functions involves the use of central control or optimization. However, the increasing
heterogeneity of wireless technologies contributes to the rapid evolution, change, and growth of
networks that makes the centralised approach unsustainable. If controlled in a self-organizing
way, network functions such as handover, transmit power control, user allocation, data rate
control and frequency allocation provide more flexibility and robustness in response to changes
that may appear in the network [23].

In order to specify and analyse the complexity of a network function, we introduce the func-
tional framework. Our framework represents an abstraction of a telecommunication network
modelling its operation by capturing all elements, i.e. nodes and connections, necessary to per-
form a given function. Our framework includes functional topologies which are graphs created
based on the functional connectivity between system entities. In contrast to logical topologies
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which refer to data flows between network nodes, functional topologies depict the connectivity
pattern of a network function, which implies a broader meaning to nodes and links.

A node in our topology represents a functional entity of a network node or any information
source that is part of the given network function. The links indicate dependencies between
nodes. The topology as a whole depicts the specific implementation of the network function.
The topology allows us to apply our model to analyse the complexity of the implementation.
The functional complexity quantifies the organisational structure by analysing the variety of
relationships between system entities and roles that these entities have in the topology.

As an instructive example, we focus on self-organization from a frequency allocation per-
spective. More precisely, we use the frequency allocation algorithm from [22] to describe the
process of mapping a network function into a topology and in the end to calculate the functional
complexity.

The self-organising frequency allocation algorithm considers a cellular network as a two-
dimensional cellular automaton. Each cell in the model represents a self-organizing wireless
system. The algorithm works based on the local information that nodes gather from their
neighbours. Briefly, every cell senses the given frequency channels, and allocates a channel with
no interference. For more details about the algorithm the reader is referred to [22].

We focus on two frequency allocation algorithms (self-organizing algorithm and random
frequency assignment) from [22]. Here we analyse the implementation rather than the outcome
of the function. Each autonomous network is modelled as a node in a lattice which means that
the physical topology is the same for both implementations. The physical topology according
to the Moore neighbourhood is shown in Figure 1. Different implementations of the network
function are mapped into different functional topologies.

Figure 1: The physical topology according to the Moore neighbourhood from cellular automata.

By analysing the physical topology shown in Figure 1, we recognize a motif that represents
the Moore neighbourhood. The motif consists of nine neighbouring cells, as shown in Figure
2(a). The motif depicts the local connections between neighbouring cells. The entire network
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is simply a repetition of that motif. The functional topology of an implementation of a network
function is built upon the motif (Figure 2).

We start with the random frequency allocation algorithm. It assumes that every cell assigns
the frequency completely randomly from the set of available frequency channels. In order to
create the functional topology let us imagine a virtual decision maker entity that is moving
from one cell to another. At every cell the decision maker entity has no information about
the allocated frequencies of other cells, which means that there are no functional connections
between any two nodes. The result is a functional topology represented with a non-connected
graph (Figure 2(b)).

(a) The functional topology
that represents the distributed
self-organising frequency allo-
cation algorithm; the Moore
neighbourhood motif.

(b) The functional topology
that represents the random
frequency allocation approach.
Independent network functions
have no interconnections

Figure 2

To examine the functional topology of the self-organising frequency allocation algorithm we
use the same approach presented in the previous example. We imagine a virtual decision maker
entity which is responsible for the frequency allocation of every node. In order to determine
the functional connections of a node we analyse the interactions to other nodes in the process
of decision making at our target node. As the self-organising algorithm assumes only the
knowledge about allocated frequencies at the neighbouring cells, the functional connections
exist only between physical neighbours. This results in a functional topology that is equivalent
to the Moore neighbourhood motif of the physical topology (Figure 2(a)).

In general network functions are not as simple as the above example. Therefore, to analyse
the organisational structure of a network function we apply a multi-scale approach. The func-
tional topology itself is built upon the local relationships between network cells according to the
specified frequency allocation algorithm. The local interactions represent the lowest scale size.
Analysis of higher scales is enabled by a multi-hop interaction examination. The reachability
among nodes represents the interactions between them. By restricting the reachability to a
certain number of hops along the topology we may examine the scale size of interest.

In [2] the authors discussed the relation between the scale size and the complexity, and
they emphasize the importance of the scale size noting that the same system can show high
complexity on one scale and low complexity on the other. The functional connectivity of each
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node represents the lowest scale in the functional framework and describes the interactions in
the process of making a decision on this particular node. From the functional point of view
the lowest scale size models a decision that is made by one node (in our case the frequency
allocation of one cell). In order to apply a multi-scale approach we include higher scales in our
analysis as follows. As every node represents a functional part, a subtask or an informational
source, every group of nodes represents a group of subtasks that are part of the same function.
The 2-hop scale size considers the node, its neighbouring cells and neighbours of its neighbours.
On this scale size the topology includes the interactions of nodes that are inside the radius
of two hops. In our examples this scale size represents the frequency allocation of a two hop
neighbourhood and the interactions between nodes in the process of making a decision among
a group of nodes. Note that the reachability of nodes increases with the scale size. In this case
every node can reach any other node that is two or less than two hops away. The highest scale
size implies a full mesh topology, where every node can reach any other node in the topology.
This approach enables a multi-scale functional analysis which is presented in the results section.

3 Complexity Model
The traditional reductionist approach attempts to explain an entire system in terms of its

individual components. In contrast, complex systems analysis is based on the relations between
system parts which result in a greater outcome than would be expected from a simple sum of
the outcomes of the individual parts. Therefore, complex systems move the focus from the node
to the network.

As we represent network functions with topologies, the complex systems approach allows
us to analyse the relations between functional parts. Such analysis captures the joint effort
of functionally interconnected system parts and provides a measurement of the deviation of
the complex behaviour compared to a linear (non-complex) system. In order to capture this
deviation, we analyse the joint effort of system sub-parts which are represented with subgraphs
of the functional topology. Different subgraphs with the same size capture the variety of or-
ganisational structures in the topology, whereas different subgraph sizes allow us to understand
the gain from increasing number of nodes and interactions.

In order to capture the non-linear joint effort of functional parts we analyse the interactions
of nodes involved in the decision making process on different scales. The scale size r determines
the maximum number of allowed hops between two nodes in order to reach each other. In
modelling a network function, our focus from the complexity point of view is the degree of
interconnectivity which is represented by the reachability of functional parts. R is the maximum
scale size of the system, which is defined as the longest shortest path in the entire topology (i.e.
the graph diameter of the functional topology). If r = R the reachability of every node in the
topology is equal to 1.

Table 1: The notation used in the equations.
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Symbol Meaning

n node

N total number of nodes in the functional topology

j subgraph size - number of nodes in the subgraph

r scale size

R maximum scale size, which is defined as the longest shortest
path in the whole functional topology

Λj
k one of the k subgraphs with j nodes that is induced from

the functional topology graph

inr number of nodes that can reach node n for a given subgraph

xn Bernoulli random variable. xn = 1 indicates that an in-
teraction in the course of function operation involves node
n, whereas xn = 0 indicates that the interaction does not
involve node n, for a given scale

X since xn is a Bernoulli random variable X = {0, 1}

pr(xn = 1), pr(xn = 0) probabilities that any given interaction in the course of
function operation involves or does not involve node n for
a given scale r

Hr(xn) entropy of node n which indicates the uncertainty of in-
volvement of node n in the operation of a network function
for a given scale size r

In order to capture the relationships that underpin the operation of a given network function,
we consider the interactions enabled by the structure of the functional topology on various scales
of operation. Specifically, we consider that a node interacts if another node can reach this node
on a particular scale. As such, we employ the Bernoulli random variable xn to describe the
potential for a node to interact on a particular scale, under the assumption that interactions
are uniformly initiated by all nodes within the topology. Therefore, the probability distribution
of xn is determined by the reachability of node n for a given scale size r. Equation (1) provides
the relative reachability of node n, where inr is the number of nodes that can reach node n for a
given scale r and j represents the number of nodes for the given subgraph. Table 1 summarises
the notation used in our equations.

pr(xn = 1) =
inr
j

(1)

Shannon entropy for each node of the given subgraph with size j, and scale size r is calculated
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with equation (2).

Hr(xn) =
∑
xn∈X

pr(xn) · log2

1

pr(xn)
(2)

Since the probabilities in equation (1) and (2) indicate the relative reachability of a node,
entropy in our functional model represents the uncertainty of interaction of node n during the
operation of a network function for a given scale size r. The uncertainty of interaction of a
node depends on the role of this node in the graph that represents the function (e.g. hub, stub,
disconnected node). A node with zero entropy functionally represents a hub or a disconnected
node. A hub in the functional topology is a node connected to all other nodes, which means
that the reachability of this node is pr(xn = 1) = 1. Conversely, a disconnected node has the
non-reachability pr(xn = 0) = 1. A hub is a functionality or informational source that interacts
with each subtask in the functional topology. In contrast, a disconnected node in the functional
framework represents a functionality not related to the modelled function, which means that
this node does not provide information of interest for any part of our model.

The total amount of information of the kth subgraph with j nodes for scale r is calculated
with equation (3). Λjk is one of the k subgraphs with j nodes. The total amount of information
represents the total uncertainty which is related to the actual roles of nodes that appear within
a subgraph and different subgraph patterns.

Ir(Λ
j
k) =

∑
n∈Λj

k

Hr(xn) (3)

The average amount of information for a given subgraph size j is calculated with equation
(4). βj in the equation represents the number of connected subgraphs with size j.

〈Ir(Λj)〉 =
1

βj

βj∑
k=1

Ir(Λ
j
k) (4)

Functional complexity is calculated with equation (5).

CF =
1

R− 1

R−1∑
r=1

N∑
j=1+r

|〈Ir(Λj)〉 −
r + 1− j
r + 1−N

Ir(Λ
N )| (5)

Note that ΛN is the set of all nodes in the functional topology. For j < 1 + r the amount
of information is equal to zero, because every subgraph with size j < 1 + r for the scale size r
represents a full mesh topology in terms of reachability, therefore Hr(xn) = 0 and Ir(Λ

j
k) = 0.

In order to determine the complexity of an implementation of a network function we have
to compare this particular implementation to a non-complex model of itself. A non-complex
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model assumes that every functional part always contributes the same amount of information.
Describing the functional parts provides full information about such a network function because
the function is the sum of functionalities of its parts. Conversely, a complex implementation
implies that the network function relies on communication between its parts which results in a
higher utility outcome, i.e. greater than the sum of its parts. Complexity captures the variety
of roles that each node has and the variety of structural patterns in the functional topology.

The variety of roles emphasises the importance of interconnectivity of functional parts. Since
nodes represent functional parts, different roles refer to different interactions that underpin the
operation of a network function. If one node is highly connected to a group of nodes, this
means that it influences the entire group. At the same time the group has a high influence
on the operation of this node. In our frequency allocation example, the disconnected topology
shows that every node is independent, which results in one simple role (disconnected node)
for every subgraph. Describing the relationship between a single element and the rest of the
functional topology provides all necessary information needed to understand the relationships
of the entire topology. Therefore this structure is not considered as complex. Conversely, the
self-organising algorithm provides different roles for nodes. This results in a complex structure,
where the outcome depends on the communication between the structural parts, which means
that the communication between system entities becomes more important to understand than
the entities themselves.

4 Analysis
In this section we apply our complexity model to several functional topologies to examine

the main properties of the functional complexity metric. In addition to the two implementations
of the frequency allocation function, we also investigate common graph structures (e.g. ring,
star, bus, full mesh) that describe complex and non-complex functional relations. In the course
of this analysis, we present the relationship between the complexity of a function and graph
theory metrics that describe the functional topology representation of the network function.

A complex system, and hence a complex function, is determined by many parameters. We
compare our metric to the following graph theoretic notions to highlight the utility of our
methodology:

• number of nodes,

• average path length,

• clustering coefficient.

Intuitively, if the number of nodes increases the system becomes more complex. The average
path length indicates the distance between elements, which implicitly refers to the relationship
strengths in the network. The clustering coefficient provides information about the overall
strengths of functional dependencies between nodes grouped around a central entity. All these
metrics provide useful information about certain organisational characteristics of the system.
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We start the analysis with common graph structures like a bus, ring, star and full mesh topology
to investigate the impact of different graph structures on the amount of complexity. Figure 3
shows complexity values of theses topologies in the range of six to ten nodes. Additionally, we
present the correlation between the complexity metric and different graph theory metrics.

Figure 3: Complexity of a bus, ring and star topology.

4.1 Bus, ring, star and full mesh topologies

A full mesh topology results in zero complexity for any number of nodes. Therefore, even
though a full mesh topology provides a densely connected structure, the overall relationships
between functional parts represented by a full mesh topology are non-complex. The structures
of any subgraph in a full mesh topology are also full mesh connectivity patterns. This means
that a full mesh topology represents a function in which every functional part interacts with
all other entities in order to make a decision. The functional structures and roles of nodes in a
graph that represents such functions are always the same (each individual node is a hub). This
means that in order to describe the system (the function), it is enough to describe an individual
element and such functions are considered as non-complex.

All the nodes in a bus topology are fairly spread out (i.e. the average path length between
nodes is high). In other words, the bus topology represents a connectivity pattern with weak
overall connections among parts of the topology. The bus topology does not provide a great
variety of organisational structures, which results in low complexity. According to Figure 3,
functional complexity of the bus topology increases with the increase in the number of nodes.

Figure 3 shows that the functional complexity of a ring topology is higher than the complex-
ity of a bus topology for the same number of nodes. The ring topology conforms to the same
trend in which complexity increases with the number of nodes. The ring topology compared to
the bus is less spread out (i.e. the average path length is shorter) and therefore provides tighter
connections between the nodes. As the nodes are closer to each other, due to the additional
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path, this functional topology represents tighter functional relationships compared to the bus
topology. Tighter functional relationships result in higher complexity.

The star topology is a functional relationship in which one node interacts with all other
nodes in the decision making process. It also conforms to the same trend in which complexity
increases with the number of nodes in the topology. The star structure has tight connections
between its parts. This means that the star topology depicts stronger functional relationships
compared to the bus and ring topology. Therefore, the star topology has the highest complexity
value compared to the other structures presented in Figure 3.

The analysis of simple graph structures (bus, ring, star and full mesh) gives a general
overview of the impact of different graph organisations on the amount of complexity. The
functional complexity metric captures the diversity of structures and roles of nodes, which
provides a different perspective to analyse the complex relationships between system entities.
According to Figure 3, the star topology is the most complex structure compared to the bus, ring
and full mesh topologies. Considering the sparse connectivity and short average path length
between entities represented with a star topology, we believe that this type of relationship
contributes to the increase in complexity. Based on the analysis of different sizes of ring and
bus topologies, we believe that spreading (distributing) the functionality all over the topology
also affects the increasing complexity values. We expect that a combination of these two types
of relationships results in highly complex organisational structures. Such a structure consists of
local centres (star subgraphs/clusters) that are highly interconnected. As functional complexity
captures the variety of structural patterns, we expect that complexity is high if the number of
local centres is high.

4.2 Comparison with graph theory metrics

To describe the relationship between the average path length and the functional complexity
of an implementation of a network function we analyse all possible graph organisations (distri-
butions of links) between six nodes - see Figure 4. The Pearson product-moment correlation
coefficient for these two metrics is -0.43 (see Table 2). Notice in Figure 4 that the highest
functional complexity for six nodes is 2.9. Compared to the bus, ring and star topology the
highest functional topology is at least 1.5 times higher. An important fact is that for the same
average path length we have a range of different complexity values. Therefore, despite the high
correlation between the average path length and complexity, we can’t predict the complexity of
a structure based on the average path length. Additionally, the maximum value of complexity
occurs for an extremely low average path length, which is still higher than one. Figure 4 also
shows that the envelope of the complexity values is a non-monotonic function. That is, there
exist complexity values for longer average path lengths that are larger than all complexity val-
ues for some shorter average path lengths. Notice also that complexity is equal to zero for the
average path length equal to one. This value of the average path length represents a full mesh
topology.
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Figure 4: The relationship between the average path length and functional complexity for
all possible distributions of links between six nodes. The Pearson product-moment correlation
coefficient for these two variables (average path length and functional complexity) is -0.43.

As shown in Table 2, the correlation between the clustering coefficient and complexity is low
(0.15) for six nodes. Figure 5 depicts the relationship between the average clustering coefficient
and complexity for six nodes. The average clustering coefficient is a graph theory metric that
measures the average number of neighbouring nodes that are neighbours to each other [24].
Therefore, the average clustering coefficient quantifies the strength of functional connections
between nodes grouped around local centres. Again, the envelope of the complexity values in
this relationship is also non-monotonic. Notice in Figure 5 that complexity has its maximum
for an average clustering coefficient close to one. This is expected because this value of the
clustering coefficient represents a network with tight functional connections between nodes
grouped around local centres. Notice also that complexity is zero for the average clustering
coefficient equal to one. According to the definition of the clustering coefficient, the value one
indicates that all neighbours of every node in the functional topology are neighbours to each
other, which represents a full mesh topology.
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Figure 5: The relationship between the clustering coefficient and the functional complexity for
all possible distributions of links between six nodes. The Pearson product-moment correlation
coefficient for these two variables (clustering coefficient and functional complexity) is 0.15.

In order to analyse the joint relationship between complexity and both of the graph theory
metrics presented above (the average path length and the average clustering coefficient) we
plot all these metrics together on one graph (see Figure 6). The x and y axis represent the
average clustering coefficient and the average path length respectively and the complexity is
represented by the radius of the circles. Additionally, the circles are coloured differently to
emphasize the different complexity values. The multivariate correlation between these three
variables is 0.47 (see Table 2). Notice that we have overlapping circles with different radii
on the graph which means that for the same average path length and clustering coefficient
we observe functional topologies with different complexities. As shown in the analysis above,
graph theory metrics allow us to analyse individual aspects of the functional topology, whereas
complexity adds additional information about the diversity of relationships between functional
parts and provides a different approach to analyse complex network functions.
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Figure 6: The relationship between the clustering coefficient, average path length and the
functional complexity for all possible distributions of links between six nodes. The complexity
value is represented by the colour and diameter of circles.

Table 2: Correlation between graph theory metrics and the functional complexity metric for all
possible distributions of links between six nodes.

Correlation variables Correlation

Average Path length - Complexity -0.43

Clustering coefficient - Complexity 0.15

Avg. Path length - Clustering coef. - Complexity 0.47

Figure 7 shows that the correlation between complexity and different graph theory metrics
decreases as the number of nodes in the graph increases. This is expected, because the number
of graph combinations increases exponentially with the number of nodes. The rapid increase
of graph combinations allows us to create a variety of complex structures for the same value
of certain graph theory metrics. Hence, the complexity range increases for an individual value
of a graph theory metric. The decrease of correlation between complexity and different graph
theory metrics suggests that graph theory metrics do not target the same properties of the
system. This means that the complexity metric adds new information, which leads to better
understanding of the relationships between system entities.
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Figure 7: The relationship between the correlation coefficients of the graph theory metrics
(average path length, clustering coefficient) and the complexity metric for different sizes of
functional topologies.

4.3 Complexity of the frequency allocation algorithms

In order to analyse the functional complexity of the two frequency allocation algorithms
presented in the framework section we apply our complexity model to the functional topology
representation of these network functions. Our complexity metric, when applied over the func-
tional topology, gives insight into the functional relationships between system entities, which
allows us to focus on the joint effect of functional parts in order to execute the modelled network
function.

The random frequency allocation algorithm is represented by a disconnected graph. Each
element represents a closed system which results in the absence of connections between them.
From the system perspective the functional parts of this implementation represent a set of
independent elements. As the elements do not interact with each other, in order to describe
the set we can simply describe its elements. More precisely, to describe the set we have to
describe only one element, because each element of the set is the same. Each element of the set
simply assigns one of the available frequencies. Such a set that is represented with independent
elements has zero functional complexity.

Finally, the self-organising distributed frequency allocation algorithm is represented by a
functional topology shown in Figure 2(a). In order to analyse the complexity of this implemen-
tation of the frequency allocation function we apply our complexity model to the functional
topology representation. Figure 8(a) depicts the deviation in the amount of information with
increasing subgraph sizes from a linear increase. The linear increase represents an equivalent
simple system implementation, meaning that all the subgraphs of a specific size feature the
same uncertainty of interaction. Every functional part contributes with the same amount of
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information, which results in a linear increase over increasing subgraph sizes. The non-linear
increase represents the heterogeneity of structures within the functional representation of a
network function, which indicates that the relationship between functional parts is complex.
Considering that for the functional topology of the self-organising algorithm R = 2, the multi-
scale approach applied on this functional topology implies only a single scale analysis, that
is r = 1. The subgraph sizes of interest are in the range of two to nine. Considering that
r = 1, subgraphs with the size two or smaller represent full mesh topologies. The maximum
value of the subgraph size is nine because the functional topology consists of nine nodes. The
complexity of the self-organising frequency allocation algorithm is 1.69 and it is represented
by the area between the linear and non-linear functions in Figure 8(a). Figure 8(b) shows the
distance between the uncertainty of interactions for all subset sizes and the uncertainty which
is expected from the calculation performed on the whole system, i.e. the functional complexity
of the self-organising frequency allocation approach. More precisely, Figure 8(b) depicts the
single scale complexity function which is represented by the inner sum of equation (5). The
functional complexity is the sum of the function depicted in Figure 8(b).

(a) The relationship between the uncertainty of in-
teractions for all subset sizes and the uncertainty
which is expected from the calculation performed
on the whole system.

(b) The distance between the uncertainty of interac-
tions for all subset sizes and the uncertainty which
is expected from the calculation performed on the
whole system, i.e. the functional complexity of the
self-organising frequency assignment approach.

Figure 8: The functional topology has nine nodes; the maximum scale size R is 2; the functional
complexity is represented by the area between the linear and non-linear function.

Similarly, the authors of [22] analyse the two frequency allocation algorithms. In contrast
to our work, they analyse the complexity of the outcome (i.e. the frequency allocation) of
these implementations. The results that are presented in their work show that the random
approach produces an outcome with zero complexity†, whereas the self-organising distributed
frequency allocation algorithm produces a complex outcome. Here, our functional complexity
metric analyses the complexity of the implementation itself. As discussed above, the functional
†The complexity metric used in [22] is excess entropy.
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complexity of the random frequency allocation algorithm is zero, and the functional complexity
of the self-organising distributed frequency allocation algorithm is 1.69. This suggests that a
complex implementation of a function results in a complex outcome. In [22] the authors show
that the response to a change of a system with highly complex output happens in a more
manageable fashion causing less disruption. The authors of [22] also emphasize the higher
robustness of a complex outcome compared to a non-complex outcome. Making a connection
between the implementation and the outcome of a function correlates the characteristics of the
outcome with the complex relationships that underpin the functional structure.

5 Conclusion
The growing size and heterogeneity of telecommunication networks leads to a need to change

the way we analyse and model them. Also the rapid evolution of network services demands a new
approach to analyse them. The aim of this paper was to contribute to this new way of studying
networks. We focus on network functions as building blocks of services. We consider network
functions as complex systems. In order to provide a new approach to analyse and understand
the impact of complex functional relationships between system entities, we developed a new
framework. The framework allows us to visualise an implementation of a network function
with graphs called functional topologies. We provide several examples that show how to map
a network function into a functional topology. The graph visualisation of the implementation
allows us to focus on the relationships between entities rather than the entities themselves.

The next step after mapping an implementation of a network function into a functional
topology was to provide a metric that quantifies the organisational structure of the topology.
Our functional complexity (CF ) captures the variety of roles that each node in the topology has
and the variety of structural patterns present in the topology. CF quantifies the deviation of the
implementation of a network function from the non-complex model of itself. The quantification
of this deviation as presented in Section 3 provides a new approach to understand increasingly
complex telecommunication networks.

In order to study the impact of different structural patterns on the functional complexity
in Section 4, we start by analysing the complexity of simple graph structures (bus, ring, star
and mesh). Additionally, we provide a detailed study that investigates the impact of several
graph theory metrics on the functional complexity. We investigated the correlation between the
combination of the graph theory metrics and complexity, due to the absence of high correlation
between any graph theory metrics and the functional complexity. This analysis allowed us to
make conclusions about the organisational structures that is needed in order to achieve high
complexity.

In this paper we also analysed the functional complexity of two different implementations of
the frequency allocation function (random and self-organising). First, in Section 2 we explain
how to map these implementations into functional topologies, and in Section 4, we apply our
complexity metric to quantify the functional complexity of these implementations. We showed
that the random frequency allocation has zero complexity (and represents therefore a non-
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complex implementation), whereas the self-organising implementation shows higher complexity.
This allowed us to make a connection between our results and the results from [22], where the
authors calculated the complexity of the outcome of these implementations and got the same
kind of results. This implies that a complex implementation results in a complex outcome of
the function and allows us to make assumptions about the robustness and response to change
similar to [22].

Overall, our complexity metric quantifies telecommunication networks in terms of their
functional relationships and provides a wholly new approach to understanding the operation of
networks. More precisely, the complexity metric quantifies the relationships employed during
operation of network functions. This provides a new approach to study networks which is
especially relevant for next generation networks.
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