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Abstract

‘Double edge swaps’ transform one graph into another while preserving the graph’s degree
sequence, and have thus been used in a number of popular Markov chain Monte Carlo (MCMC)
sampling techniques. However, while double edge-swaps can transform, for any fixed degree
sequence, any two graphs inside the classes of simple graphs, multigraphs, and pseudographs,
this is not true for graphs which allow self-loops but not multiedges (loopy graphs). Indeed,
we exactly characterize the degree sequences where double edge swaps cannot reach every valid
loopy graph and develop an efficient algorithm to determine such degree sequences. The same
classification scheme to characterize degree sequences can be used to prove that, for all degree
sequences, loopy graphs are connected by a combination of double and triple edge swaps. Thus,
we contribute the first MCMC sampler that, asymptotically, uniformly samples loopy graphs
with any given sequence.

1 Introduction

Understanding what properties of an empirical graph are noteworthy, as opposed to those which
are merely the consequence of the degree sequence, is often addressed by comparing the empirical
graph with an ensemble of sampled graphs with the same degree sequence [17, 18]. While uniformly
sampling graphs with a fixed degree sequence seems straightforward, it can be surprisingly complex.
How one samples and the resulting graph statistics are dependent on the space of graphs considered:
e.g. whether self-loops and/or multiedges are considered, and whether graphs with distinct ‘stub-
labelings’ are considered unique [6, 11].

Graphs which allow self-loops can arise in many disparate applications. For example, self-loops
may represent: an author citing themselves; a protein capable of interacting with itself [14, 23];
gene operon self-regulation [20]; cannibalism in a food web [24]; users on photo sharing site Flickr
linking to themselves; a loop road or cul-de-sac in a road network [8]; a repeated word in a word
adjacency network; traffic flow inside an autonomous system on the Internet [15], along with many
other possible interpretations. Considering networks which may include self-loops can be important
both because self-loops are often of interest themselves, and because the inclusion of self-loops
effectively reduces the number of edges that aren’t self-loops, potentially affecting many different
network statistics, especially in small networks. Moreover, while it is commonly thought that self-
loops are asymptotically rare [3], they only are for particular assumptions on degree sequences,
and are more rare in ‘stub labeled’ spaces as thoroughly detailed in [11]. In contrast, a so called
‘vertex-labeled’ graph is more likely to have self-loops, yet techniques for sampling from this space
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are largely undeveloped [11]. This paper discusses loopy graphs, graphs where each vertex can have
at most a single self-loop and edges are either present or absent (i.e. no multiedges).

For many different types of graphs, one of the most popular sampling techniques is Markov
chain Monte Carlo sampling via ‘double edge swaps’ or the more recent ‘curveball’ alteration
[21, 5, 4]. Confidence in these MCMC methods rest upon two considerations: whether the stationary
distribution of the Markov chain is uniform; and how quickly the chain approximates its stationary
distribution as commonly measured by the mixing time. There have been recent advances in
proving polynomial mixing times for chains on simple graphs with constrained degree sequences
[7, 12, 16], suggesting that future analytical results for loopy graphs are possible. In the meantime,
there are established numerical methods of accessing the convergence of Markov chains, such as
though based on autocorrelation. In contrast, determining whether double edge swaps result
in a uniform distribution seemingly requires an analytic proof and such guarantees are founded
on several properties, the most difficult of which is whether an MCMC sampler can sample every
possible graph, or equivalently, whether the associated Markov chain is irreducible (equivalently,
the associated graph of the Markov chain is strongly connected). For any degree sequence, the
following spaces are connected and thus can be sampled using MCMC techniques: simple graphs
[25, 2, 1, 10, 22], simple connected graphs [22, 2], multigraphs [13] and multigraphs with self-
loops [9]. Absent from this list is the space of loopy graphs. Indeed, for some degree sequences,
the standard MCMC approach applied to the space of loopy graphs cannot sample all possible
such graphs. In this paper, we investigate which degree sequences have disconnected Markov
chains, developing an algorithm that can detect this disconnectivity and prove that augmenting
the standard MCMC ‘double edge swap’ with ‘triple edge swaps’ guarantees the chain is connected
for all degree sequences. These techniques allow the space of loopy graphs to be used in the study
of empirical networks.

2 The graph of loopy-graphs

Consider a graph with self-loops G = (V,E), with n vertices in vertex set V and edge set E, which
may or may not include self-loops: edges of the form (u, u). Notice that loopy-graphs include simple
graphs as a special case. As opposed to multigraphs, edges can appear at most once in E. For
a vertex u, we denote the set of adjacent vertices, or ‘neighbors’ of u, as N(u), and we refer to
ku = |N(u)| as the degree of vertex of u. We adopt the convention that each self-loops contributes
two to a vertex’s degree1.

Transforming one graph into another with the same degree sequence is possible through a double
edge swap [19], where, as in figure 2, swapping edges (u, v) and (x, y) replaces those edges with
(u, x) and (v, y), a process we denote as (u, v), (x, y) (u, x), (v, y). Repeatedly performing double
edge swaps (resampling the current graph whenever a proposed swap would create a multiedge) is
the basis of MCMC samplers of loopy graphs. Conceptually, repeatedly performing double edge
swaps is a random walk on a graph whose vertices are loopy graphs, with the same prescribed
degree sequence. Specifically, this allows us to develop a notion of a ‘graph of loopy graphs’:

Definition 2.1 (graph of loopy graphs, G({ku})). For a given degree sequence {ku} let G({ku}) =
{V, E} be the graph of loopy graphs under double edge-swaps, where vertex set V contains each
possible loopy graph with degree sequence {ku} and edge set E contains (Gi, Gj) if and only if there
is a single double edge swap that takes Gi to Gj.

1Consider modifications of the method in [5] if a self-loop contributes only one to a vertex’s degree.
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Figure 1: (a, b) For any pair of edges there are two possible double edge swaps. (c) Swapping
adjacent edges creates self-loops, and swaps which involve a single self-loop can remove it. (d) In
Theorem 6.1 we show that including a triple edge swap in addition to double edge swaps leads to
a connected graph of loopy graphs G4.

Showing that a MCMC sampler can sample from graphs with degree sequence {ku} requires showing
that G({ku}) is connected, otherwise random walks will not be able to reach all possible loopy-
graphs.

In fact though, the space of loopy-graphs is not connected under double edge-swaps for every
possible degree sequence. In section 3, we introduce two classes of graphs, Q1 and Q2 such that if
G contains a loopy-graph G ∈ Q1 ∪ Q2, then G is disconnected. Both classes Q1 and Q2 require
high degree nodes, and in section 5 we discuss tests to determine whether a given degree sequence
can create a graph in Q1 or Q2.

Moreover, Q1 and Q2 exactly characterize the graphs which cause G to be disconnected, as
shown in the first main theorem, Theorem 4.30 in section 4. In contrast, any two graphs not in
Q1 or Q2 are connected with each other, and this will be established by studying special maximal
elements of G.

The general outline is as follows: from any graph Gi, let Ĝi be the graph in the same connected
component of G as Gi with the maximum number of self-loops (see definition 4.1 for for additional
technical requirements), as in Figure 2.

Next, we utilize the following classification of vertices inside a graph:

Definition 2.2 (V k). For graph G, let V 0 be the set of all vertices in G that lack self-loops (i.e.
V 0 = {u|(u, u) 6∈ E}) . Let V k be the set of all vertices with a shortest path distance of k from any
vertex in V 0. Let V∞ be those vertices which are disconnected to any vertex in V 0.

Based on the largest clique K0 ⊆ V 0 (see definition 4.6), we classify the structure of Ĝi as one of five
different types (see definition 4.7 for additional technical requirements), (four types are displayed

in Figure 4), two of which (Ĝ3 and Ĝd, d > 3) belong to Q1 and Q2.
The categorization of possible structures of Ĝ suggests Algorithm 2 which determines whether

a degree sequence has a connected or disconnected G. Another consequence of Theorem 4.30 is
that any degree sequence {ku} that is disconnected, is disconnected because there are graphs with
triangles which cannot be changed into self-loops, which naturally suggests Theorem 6.1, which
states that the space of graphs with self-loops is connected under the combination of double and
triple edge swaps. Based on this theorem we suggest a MCMC approach that uniformly samples
graphs with self-loops and a fixed degree sequence.
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Figure 2: Each of the above graphs has the maximal number of self-loops accessible through double
edge swaps. Vertices are categorized by their distance to a vertex without a self-loop and graphs
are labeled by the size of the largest clique in V 0 such that a graph Gd has an d-clique in V 0 (see
definition 4.7). Graphs with cliques of size 3 or greater in V 0 are of class Q1 or Q2, as shown by
theorems 4.28 and 4.29.

3 Degree sequences with disconnected G
First we consider a simple disconnected case, which establishes that for some degree sequences G
is not connected.

3.1 Cycles and cliques

The simplest example of a degree sequence that is not connected is {2, 2, 2}, which can be wired
either as a triangle, or as 3 self-loops. Since there are no valid double edge swaps of either the
triangle graph or 3 self-loops (all swaps would create multiedges) the space is disconnected. The
disconnectivity of {2, 2, 2} can be extended in two ways, to larger cycles and to larger cliques. The
degree sequence of a cycle, {2, 2, ..., 2} clearly has a disconnected space, since a graph composed
only of nodes with self-loops has no valid double edge swaps. Similarly a clique with additional
self-loops on no more than n − 3 vertices has alternate configurations, but lacks any valid double
edge swaps, implying that the degree sequence: {n + 1, ..., n + 1, n − 1, ..., n − 1, n − 1} is also
disconnected.

As a useful exercise, we consider the structure of G({2, 2, ...., 2}) in more detail. Any graph
with degree sequence {2, 2, ...., 2} is composed of isolated self-loops and cycles of length at least 3.
Further, any valid double edge swap either:

1. creates a self-loop and reduces a k cycle, k ≥ 4, to a k − 1 cycle (swapping adjacent edges);

2. combines a self-loop with a k cycle to create a k + 1 cycle (swapping a self-loop and an edge
in a cycle);

3. merges two cycles into a larger cycle (swapping edges in separate cycles);

4. cuts a cycle into two smaller cycles, each with length at least 3 (non-adjacent edges in the
same cycle);
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5. swaps two edges in the same cycle without changing its length (non-adjacent edges in the
same cycle).

If double edge swaps are augmented with a triple edge swap that takes a triangle to three
self-loops (and another triple edge swap that does the reverse), then it is clear that every graph in
the space can be taken to the graph made entirely of self-loops (and thus G is connected) via the
following procedure:

1. by swapping edges in different cycles, combine all cycles into a single long cycle;

2. from the graph’s one cycle, swap adjacent edges to create self-loops until the single cycle has
length 3;

3. use a triple edge swap to replace the only length 3 cycle with 3 self-loops.

3.2 Other disconnected graphs

These disconnected examples will be generalized into two classes of graphs Q1 and Q2, displayed
in Figure 3, which generalize the problems with the clique and the cycle respectively. In section 4
we show that Q1 and Q2 describe all disconnected graphs.

Figure 3: Both the degree sequence {n + 1, ..., n + 1, n − 1, ..., n − 1} and {2, 2, ..., 2} have a dis-
connected G whose disconnectivity can be generalized to classes Q1 and Q2. The schematic for Q2

includes {2, 2, ..., 2} as a special case if when V 1 is empty, V 2 is relabeled as V∞.

Definition 3.1 (Q1). A graph G is of class Q1 when the following conditions are true of G:

1. There exists a clique K0 in V 0 with |K0| ≥ 4 (recall: V 0 is the set of nodes without self-loops)
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2. For any u ∈ V 0, either u has no neighbors in V 0 or u is in the clique K0,

3. V 1 ∪K0 is a clique,

4. V 2 = V∞ = ∅.

We will later show that all Ĝd, d > 3 are of class Q1. The important feature of Q1 is that it is
closed under any double edge swap.

Lemma 3.2. For any two graphs G1 and G2 connected via a double edge swap, if G1 ∈ Q1 then
G2 ∈ Q1.

Proof. The structure of Q1 implies that all edges have at least one endpoint in V 1 ∪ K0. Since
V 1 ∪K0 is a clique, there are thus no valid swaps involving any edge in V 1 ∪K0 as any such swap
would create a multiedge. Similarly, a swap between a self-loop in V 1 and an edge from V 0 to V 1

would also create a multiedge. The only possible swaps are between two edges (u, v) and (x, y)
where u, x ∈ V 0 \K0 and v, y ∈ V 1. Notice that swap (u, v)(y, x)  (u, x), (y, v) is precluded by
the presence of edge (v, y) ∈ V 1, while swap (u, v)(x, y) (u, y), (x, v) does not create a new edge
in V 0, alter the fact that V 1 ∪K0 is a clique or create a vertex in V 2 or V∞. Thus Q1 is closed
under edge swaps.

We will later show that all Ĝ3 are of class Q1. While Q1 includes cliques as a special case, a simi-
lar structure, Q2 generalizes the problems associated with cycles and degree sequences {2, 2, 2, ..., 2}.

Definition 3.3 (Q2). A graph G is of class Q2 when the following conditions are true of G:

1. There are at least three vertices in V 0 and there exists u ∈ V 0 such that |N(u) ∩ V 0| = 2

2. For any u ∈ V 0, either u has no neighbors in V 0, or u has exactly two neighbors in V 0 and
is adjacent to all of V 1.

3. V 1 is a clique

4. For any u ∈ V 2, N(u) = V 1,

5. V 3 = ∅,

6. Either V∞ is empty or both V 1 is empty and ku = 2 for u ∈ V∞.

Implicit in the definition of Q2 is that there is a cycle in V 0 of length at least 3. Similarly to
Q1, Q2 is also closed under double edge swaps.

Lemma 3.4. For any two graphs G1 and G2 connected via a double edge swap, if G1 ∈ Q2 then
G2 ∈ Q2.

Proof. If V∞ is non-empty then condition 6 of Q2 implies that V 1 = ∅ and that ku = 2 for all
u ∈ V∞. Since V 1 = ∅ then condition 2 implies that all non-isolated vertices in V 0 have degree 2.
Thus, the degree sequence of non-isolated nodes is {2, 2, ..., 2}, and this scenario was fully described
earlier.

If V 1 6= ∅, a quick check reveals that the only edge swaps that are possible (all others would
require multiedges) involve swaps between two edges in V 0, swaps between an edge in V 0 and a
self-loop in V 2, and swaps between two edges joining V 0 to V 1. However, each of these three
swaps preserves the properties of Q2: swaps between the two edges in V 0 rearrange the cycle
structure of V 0 and potentially move a node from V 0 to V 2, but this preserves the properties of
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Q2; swaps between a self-loop in V 2 and an edge in V 0 move a node from V 2 to V 0, reversing the
previous swap; For edges (u, v) and (x, y), u, x ∈ V 0 and v, y ∈ V 1 swap (u, v)(y, x) (u, x), (y, v)
is precluded by the presence of edge (v, y) ∈ V 1, while swap (u, v)(x, y)  (u, y), (x, v) is only
possible if both |N(u) ∩ V 0| = |N(x) ∩ V 0| = 0 and such a swap does not affect the properties of
Q2.

This implies the first half of Theorem 4.30:

Corollary 3.5. Any G which contains a graph in Q1 or Q2 is disconnected.

Proof. All graphs in Q1 and Q2 contain a closed cycle of length at least 3 in V 0. For a graph G ∈ G
and G ∈ Q1 ∪ Q2 let C be all the cycles in V 0. Deleting each edge in C and placing a self-loop
at each node in C preserves the degree sequence and thus creates a graph H ∈ G, but H does not
satisfy the first criterion of either Q1 or Q2. By lemmas 3.2 and 3.4, Q1 and Q2 are closed under
double edge swaps and thus G is not connected to H.

Thus, we have generalized the the disconnectivity of {2, 2, 2} in two directions, first to cliques,
and then to Q1, and second to cycles and then to Q2. As shown in the next section, Q1 and Q2

exactly characterize all disconnected G.

4 Categorizing the components of G
First consider the following definitions. For any graph Gi ∈ G, let V∗(Gi) be the graphs in the same
connected component of G as Gi with the maximum number of self-loops.

Definition 4.1 ( Ĝi). For an initial graph Gi, of the graphs in V∗(Gi), let Ĝi ∈ V∗(Gi) be a graph
with the maximum number of edges inside V 0.

To emphasize, Ĝi has the maximum number of self-loops of any graph path-connected to Gi, and
secondly, has as many edges inside V 0 as any other path-connected graph with the same number of
self-loops. This definition implies that there are no sequence of edge swaps which can net increase
the number of self-loops in a graph Ĝi. While Ĝi has at least as many self-loops as any other
graph connected to Gi, if G is not connected, Ĝi may not have the maximum number of self-loops
possible.

Before we formalize the meaning of a graph with the maximum number of self-loops, let {k̄u}
denote the ‘simplified degree sequence’ of a graph G:

Definition 4.2 (simplified degree sequence {k̄u}). For a graph G, with degree sequence {ku}, let
{k̄u} be the simplified degree sequence, where k̄u = ku if (u, u) 6∈ E and k̄u = ku − 2 if (u, u) ∈ E.

The simplified degree sequence of a graph is the new degree sequence that results from deleting all
self-loops in that graph. For the following, assume the degree sequence {ku} is in decreasing order.

Definition 4.3 (m-loopy graph and m∗-loopy graph). A graph G is m-loopy if G has m self-loops
on vertices i ≤ m. We denote an m-loopy graph as m∗-loopy if it has no fewer self-loops than any
other m-loopy graph in G.

We will show in corollary 4.17 that every G contains an m∗-loopy graph, and that each such graph
contains the maximum number of self-loops possible (not just the maximum of m-loopy graphs).
Notice that the question of whether a m-loopy graph is m∗-loopy is equivalent to whether there is
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a m1 > m such that k̄u = ku − 2 for u ≤ m1 and k̄u = ku for u > m1 is a simple-graphical degree
sequence (i.e. if there exists a simple graph with that degree sequences).

Determining the cases where Ĝ is m∗-loopy will be critical in the categorization of different
possible Ĝ for the following reason.

Lemma 4.4. For G1, G2 ∈ V, if both G1 and G2 are m∗-loopy then G1 is connected to G2.

Proof. Since both G1 and G2 are m∗-loopy they have self-loops at the same vertices and the same
simplified degree sequences and thus, by the connectivity of simple graphs [22], G1 and G2 are
connected.

In some degree sequences, a graph is obviously m∗-loopy because all nodes with degree at least
two have self-loops. It is not always as straightforward though. For example, the degree sequences
{4, 4, 2} and {6, 6, 5, 3, 3, 3, 2} have no configurations where all vertices have self-loops, as {2, 2, 0}
and {4, 4, 3, 1, 1, 1, 0} are not simple-graphical degree sequences. Instead, these graphs have valid
configurations where all but the vertex with degree 2 has self-loops.

For any degree sequence there are thus two possibilities, either all graphs in G are connected
to m∗-loopy graphs and G is connected, or there exists some graph not connected to any m∗-loopy
graph and G is not connected.

Understanding the possible forms ofm∗-loopy graphs will comprise the majority of the remaining
effort, but the simplest case may also be the most common case.

Lemma 4.5. For any Ĝi where V 0 contains only vertices of degree 0 and 1, Ĝi is m∗-loopy.

Proof. If V 0 has only vertices of degree 0 and 1 then all other vertices have self-loops. Since vertices
of degree 0 and 1 can not have self-loops Ĝ is m∗-loopy.

We now turn our attention to the much more complicated scenarios where there exists some
u ∈ V 0 with ku ≥ 2.

In order to further classify the different possible structures of different Ĝi consider the following
definitions:

Definition 4.6 (K0). In a graph Ĝi, Let K0 refer to any of the largest sized cliques inside V 0.

As we will show, if |K0| > 2 then V 0 houses only a single clique, in which case K0 is the unique
clique. We now classify Ĝi based upon the cliques inside V 0:

Definition 4.7 (Ĝd). Ĝd is a graph Ĝi with |K0| = d where some u ∈ V 0 has ku ≥ 2.

Following the proof of lemma 4.15 we will assume WLOG that in a graph Ĝd, ku ≤ kx for any
u ∈ V 0 and x 6∈ V 0.

The critical lemmas to prove will be Lemmas 4.15, and 4.23. Lemma 4.15 states that there
exists a sequence of double edge swaps which can exchange any vertex in V0 with any other vertex
of equal or lower degree. Thus any Ĝi is connected to another graph Ĝj where V 0

j contains only the

smallest degrees. Building on this, Lemma 4.23 states that a graph Ĝd, d ≤ 2, is m∗-loopy. Thus,
by lemma 4.4 only degree sequences that can wire a Ĝd, d ≥ 3 can be disconnected and, as will be
shown in theorem 4.30, any graph Ĝd, d ≥ 3 implies disconnectivity because a graph Ĝ3 ∈ Q2 and
Ĝd ∈ Q1 for d > 3 and Q2 and Q1 are closed.

Before proving lemmas 4.15 or 4.23 we first construct some general purpose lemmas. We begin
with some investigations into restrictions on the sets V k for all Ĝd. Consider the following definition:
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Figure 4: The size of K0 imposes strict requirements on the possible structure of Ĝd. When K0 is
a clique larger than 3 vertices (d > 3), Ĝd is simply a clique of vertices some with self-loops, some
without, and a number of vertices with connections only into members of the clique which have
self-loops. Note: in Ĝ3 either V∞ or V 1 must be empty.
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Definition 4.8 (Open Wedge xuv). If (u, v) ∈ E, (u, x) ∈ E and (v, x) 6∈ E then there exists open
wedge xuv.

Lemma 4.9. A graph Ĝi does not have an open wedge xuv where u ∈ V 0.

Proof. Suppose not, then the swap (u, x), (u, v)  (u, u), (x, v) is possible and creates a self-loop,
violating the assumption that Ĝi had the maximum number of self-loops in its connected component
of G.

Lemma 4.10. For a graph Ĝi, any u ∈ V 0, and v ∈ N(u), if u connects to a vertex x, so does v.

Proof. If not, then there exists open wedge xuv, contradicting lemma 4.9.

Lemma 4.10 implies that any subgraph of V 0 are cliques plus isolated vertices, as is the subgraph
on vertices u ∪N(u) for u ∈ V 0.

Lemma 4.11. For a graph Ĝi, if there exists disjoint (u, v) and (x, y) both in V 0, ku ≥ 2 then
N(u) ∩ V 1 = N(x) ∩ V 1

Proof. Suppose first that N(u) ∩ V 1 6⊆ N(x) ∩ V 1, then there exists w ∈ N(u) ∩ V 1 such that
w 6∈ N(x). If (u, x) exists, then by lemma 4.10 x must be connected to w, a contradiction. Thus
(u, x) isn’t present, and similarly, lemma 4.10 also implies that (u, y), (v, x) and (v, y) aren’t present.
Swap (u, v), (x, y)  (u, x), (v, y) is thus possible but creates open wedge wux contradicting that
Ĝ has the maximal number of self-loops.

If instead N(x) ∩ V 1 6⊆ N(u) ∩ V 1 then kx ≥ 2 and the above argument holds.

Lemma 4.12. For a graph Ĝi, if there exists u ∈ V 0, ku ≥ 2 then any edge which is not a self-loop
contains a vertex in V 0, V 1 or V 2.

Proof. Suppose to the contrary that there exists (x, y) with neither x nor y in V 0, V 1 or V 2.
For v, w ∈ N(u), notice (v, w) must exist, otherwise there exists an open wedge vuw, swap
(v, w), (x, y) (x, v), (y, w) is thus valid, but creates an open wedge at u.

This implies that V d is empty for all finite d > 3, and V 3 contains no edges asside from self-
loops. This also implies that the set of vertices disconnected from V 0 can only contain isolated
self-loops.

Lemma 4.13. For Ĝd with d ≥ 3, V 1 ⊂ N(u) for all u ∈ K0.

Proof. Suppose not, then there exists x ∈ V 1, u ∈ K0 such that (u, x) 6∈ E. By Lemma 4.10 it
must be that x does not neighbor any vertices in K0. Since x ∈ V 1 there exists y ∈ V 0 \K0 along
with edge (x, y). Let u, v, w ∈ K0. Lemma 4.10 implies that since y 6∈ K0 then y does not neighbor
any vertices of K0. Swapping (u, v), (x, y) (u, x), (v, y) creates an open wedge yvw.

Lemma 4.14. In a graph Ĝi, if there exists u ∈ V 0, ku ≥ 2, then V 1 is a clique.

Proof. If |V 1| = 1, then V 1 is trivially a clique. If |V 1| ≥ 2, then suppose to the contrary that
there exists x, y ∈ V 1 such that (x, y) 6∈ E. Consider the two possible cases:

1. There exists some u ∈ V 0 such that x, y ∈ N(u). In this case, if (x, y) 6∈ E then there is an
open wedge xuy. Thus (x, y) ∈ E.
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2. There exists u, v ∈ V 0, such that (u, x) and (v, y) are in E but (u, y) and (v, x) are not. If
(u, v) ∈ E then there exists an open wedge xuv. Thus both (x, y) and (u, v) are not in E and
the swap (u, x), (v, y) (x, y), (u, v) is valid, but produces a graph with one additional edge
in V 0, contradicting that Ĝ has the maximum number of edges in V 0.

Lemma 4.15. In Ĝi, for any vertex x 6∈ V 0, and any vertex u ∈ V 0, if kx ≤ ku then there exists
a sequence of swaps that exchanges x for u in V 0 without decreasing the number of edges in V 0.

Proof. First, we consider the case where x ∈ V 1 and show that kx ≥ ku. For d ∈ {1, 2}, since V 1 is
a clique, each x ∈ V 1 contains a self-loop and any u ∈ V 0 contains at most a single neighbor not
in V 1 then kx ≥ ku. For d ≥ 3, lemmas 4.13 and 4.14 imply that K0 ∪ V 1 is a clique, and lemma
4.10 implies that all subgraphs of V 0 are cliques, then kx ≥ ku + 2 for any x ∈ V 1 and u ∈ V 0.

For x ∈ V m, m ≥ 2 suppose that there exists x with degree less than u. Consider two cases,
first that N(u) ⊆ V 1 and second that there exists edge (u, z) ∈ V 0.

1. N(u) ⊆ V 1: Since (x, x) contributes 2 to x’s degree, N(u) ⊆ V 1 and kx ≤ ku then there exists
v, w ∈ N(u) and v, w 6∈ N(x). In such a case, notice that swap (x, x), (v, w)  (x, v), (x,w)
and subsequent swap (u, v), (u,w) (u, u), (v, w) exchanges x for u in V 0.

2. There exists edge (u, z) ∈ V 0: First, swap (x, x), (u, z)  (x, u), (x, z). Since kx ≤ ku and x
is connected to z while z 6∈ N(u) then there must be some y ∈ N(u) but y 6∈ N(x). Thus
there exists open wedge xuy and swap (x, u), (u, y)  (u, u), (x, y) exchanges x for u in V 0.
Since it was originally the case that z ∈ N(u), then N(z) \u = N(u) \ z by lemma 4.10. Now
that x ∈ N(z) then it must be that N(x) \ z = N(z) \x or else, as in lemma 4.10 there would
exist an open wedge, leading to a graph with additional self-loops. That N(x) \ z = N(z) \ x
implies that the new graph has the same number of edges in V 0.

Lemma 4.16. Every Gi is connected in G to an m-loopy Ĝi.

Proof. Suppose Ĝi is not m-loopy. Lemma 4.15 implies that there exists a series of swaps that
preserve the number of self-loops, but place all self-loops on the first m largest degree vertices.
Since these swaps do not decrease the number of edges in V 0, the resulting graph has at least as
many self-loops and as many edges in V 0 as Ĝi and is thus also a valid Ĝi.

Corollary 4.17. Every nonempty V contains an m∗-loopy graph, and every m∗-loopy graph con-
tains the maximum number of self-loops.

Proof. Let Gj be such that Ĝj has the maximum number of self-loops of all graphs in V. By lemma
4.16, one of these Ĝj is m-loopy, and since it has the maximum number of self-loops possible, it
must also be m∗-loopy

Based on lemma 4.16 we will assume WLOG that Ĝd refers to a m-loopy graph. It thus
remains to show that Ĝd is m∗-loopy for d ∈ {1, 2} (lemma 4.23) and to further restrict the
possible structures when d ≥ 3.
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Figure 5: If there exists a graph with more self-loops than a graph Ĝ1 then an alternating cycle
argument can show that there exists a graph G, with the same simplified degree sequence as Ĝ but
with an open wedge at u ∈ V 0.

4.1 The structure of Ĝ1

Lemma 4.18. Every m-loopy Ĝ1, is m∗-loopy.

Proof. Suppose not, then by lemma 4.16 there exists m-loopy Ĝ1 which is not m∗-loopy. Let Ĝj
be the m∗-loopy graph guaranteed by corollary 4.17, and let S be the vertices on which Ĝj but not
Ĝ1 has self-loops (namely, the sequential indicies S = {m + 1, · · ·m∗}). Next, let G∗ = {V ∗, E∗}
be the simple graph attained from Ĝj by deleting all self-loops, as in Figure 5.

For each u ∈ S there must be at least two vertices lu, ru ∈ N(u) where lu, ru 6∈ N∗(u). Let
B =

⋃
u∈S{lu ∪ ru} and let G′ = Ĝ1 except without self-loops and edges (u, lu) and (u, ru) for each

u ∈ S. Notice that G′ and G∗ have the same degree sequence, except at vertices B, where those in
G∗ have a greater degree.

Let Ω′ = E′ \ E∗ be the edges in G′ not in G∗ and let Ω∗ = E∗ \ E′ be the edges in G∗ not in
G′. Now consider the edge disjoint cycles and paths which alternate between edges in Ω′ and Ω∗.
Since the degrees of all vertices in V \ B is the same in G′ and G∗, there exists a decomposition
that consists entirely of alternating cycles and alternating paths beginning and ending with edges
in Ω∗ at vertices in B. We now consider three cases:

1. There exists an alternating cycle C, containing some edge of the form {(lu, ru)}: Let C ′ =
C ∩ E′ and C∗ = C ∩ E∗. Since the cycle is alternating, removing edges C ′ from Ĝ1 and
adding edges in C∗ to create a new graph G is possible and preserves the degree sequence.
Further, since the graph of simple graphs is connected, there exists a sequence of double edge
swaps to create G from Ĝ1. However, G still contains edges (u, lu) and (u, ru) as these edges
were precluded from set Ω′, but since (lu, ru) was in C ′ it is not in G and thus (u, lu) and
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(u, ru) form an open wedge luuru contradicting the maximality of Ĝ1.

2. There is an alternating path L beginning and ending with edges in Ω∗ at nodes u, v ∈ B
where u 6= v: Since B ⊆ V 1, lemma 4.14 grants that (u, v) ∈ E′ and thus not also in Ω∗. The
union (u, v) ∪ L produces a cycle with edges alternatingly in E′ and not in E′ and, as in the
first case, augmenting Ĝ1 with this cycle produces a graph without a edge (u, v), in violation
of lemma 4.14 (Note, by classification G1 cannot contain any edges in V 0).

3. There is an alternating path Ll beginning and ending at the same vertex lu ∈ B and with
edges in Ω∗: Since ru has a lower degree in G∗ than in G′, there must be some alternating
path Lr beginning at ru. Further, if the second case doesn’t hold, then neither Ll nor Lr can
visit any other vertex in B other than lu and ru respectively. Let r1 be the first vertex in path
Lr. Since (r1, ru) ∈ Ω∗, then by lemma 4.14 r1 ∈ V 2. Next, if (lu, r1) ∈ E′, then notice that
the union (lu, r1)∪Ll ∪ (lu, ru)∪ (ru, r1) creates an alternating cycle that includes (lu, ru), as
in the first case. If (lu, r1) 6∈ E′ then the union of (ru, u) ∪ (u, r1) ∪ Lr \ (ru, r1) creates an
alternating cycle, and augmenting Ĝ1 with this cycle would create open wedge luur1

4.2 The structure of Ĝ2

A similar alternating path argument can be applied to Ĝ2, but in some ways it’s easier to investigate
Ĝ2 directly.

First, notice that in a graph Ĝ2, V 1 is nonempty, since a vertex u ∈ V 0 with ku ≥ 2 must
have two neighbors but since V 0 does not contain a triangle only one of u’s neighbors can be in
V 0. Since it is also possible that there are multiple pairs of connected vertices in V 0, we will let
K0 refer to any pair of connected vertices in V 0. We will show that each such K0 shares the same
connections into V 1. First though:

Lemma 4.19. For Ĝd, d ≥ 2, for u ∈ K0 and any x ∈ V 0 then ku ≥ kx.

Proof. Suppose to the contrary that there exists x ∈ V 0 with kx > ku. Since u ∈ K0 there exists
v ∈ N(u) ∩ V 0. Lemma 4.10 implies that x 6∈ N(u) ∪ N(v) as otherwise u must have the same
neighbors as x contradicting that kx > ku. Further, since kx > ku there exists y, z ∈ N(x) with
y, z 6∈ N(u). Lemma 4.10 again implies that y 6∈ N(v), as otherwise y ∈ N(u). Notice that swap
(x, y), (u, v) (x, u), (v, y) creates open wedge zxu, a contradiction.

Since, the definition of Ĝ2 requires that there is some u ∈ V 0 with ku ≥ 2, lemma 4.19 also implies
that ku ≥ 2 for u ∈ K0. Consider the following abbreviations:

Definition 4.20 (V 1
u , V 1

K and nk). In a graph Ĝi, and u ∈ V 0, let V 1
u = N(u)∩V 1. For any clique

K in V 0, let V 1
K =

⋃
u∈K V

1
u . Finally denote nk = |V 1

K |.

Lemma 4.21. For Ĝd, d ≥ 2, u ∈ K0 and any x then either V 1
u ⊆ N(x) or N(x) ⊆ V 1

u .

Proof. Consider the contradiction: that V 1
u 6⊆ N(x) because there exists w ∈ V 1

u , w 6∈ N(x) and
N(x) 6⊆ V 1

u because there exists y ∈ N(x), y 6∈ V 1
u . x is not connected to u as otherwise there

exists open wedge xuw. If y ∈ N(u), then it must be that y ∈ V 0 (otherwise y ∈ V 1
u ) and thus

there exists open wedge xyu. Thus y 6∈ N(u).
As d ≥ 2, there exists v ∈ N(u)∩K0. Since y, x 6∈ N(u) then by lemma 4.10 y, x 6∈ N(v). Now

notice that swap (x, y), (u, v) (u, x), (v, y) creates open wedge xuw.
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Notice that this also gives that V 3 = ∅, that ky ≥ kx for any y ∈ V 1
K and any x and, in

conjunction with lemma 4.10, that V 1
u = V 1

K for any u ∈ K0. Together lemmas 4.21, and 4.19 give
that all vertices u ∈ V 0 have at most one neighbor outside of V 1

K (for any K), which is the key to
the following lemma.

Lemma 4.22. Every m-loopy Ĝ2, is m∗-loopy.

Proof. We will show that any m-loopy Ĝ2 is m∗-loopy by showing that the simplified degree se-
quence of Ĝ2 become a non-simple-graphical if a self-loop is added to any vertex in V 0. The proof
will be based off the following principle: For any simple graph and subset U ⊆ V , the sum of the
degrees in U can be no larger than 2 times the possible number of edges internal to U plus the
number of edges coming into U . Since the number of edges internal to U is less than 1

2 |U |(|U | − 1)
and an external vertex w can contribute at most min(kw, |U |) edges, then:2 We will let U = V 1

K ,

and show that for any given m-loopy Ĝ2 the number of edges are tight with the available degree,
implying that adding any number of additional self-loops results in non-simple-graphical degree
sequences. First, since each node in V 1

K has a self-loop, the total available degree for edges in V 1
K

is
∑

u∈V 1
K
ku − 2 =

∑
u∈V 1

K
k̄u. Next consider the edges with endpoints in V 1

K . Since V 1
K ⊆ V 1, it is

a clique and thus contributes nk(nk − 1) to the degrees inside V 1
K . Lemmas 4.10 and 4.21 implies

that for all u ∈ K0, u connects to all of V 1
K . Further, lemma 4.21 gives that for any remaining

vertex x, either N(x) ⊆ V 1
u , in which case all kx edges from x connect to V 1

K , or V 1
K ⊆ N(x) in

which case x connects to all of V 1
K . Aggregating these leads to the statement:∑

u∈V 1
K

k̄u = nk(nk − 1) +
∑
u∈K0

(k̄u − 1) +
∑

u∈V \(K0∪V 1
K)

min(nk, k̄u), (2)

where k̄u is the simplified degree sequence (definition 4.2) and k̄u − 1 = ku − 1 = nk for u ∈ K0.
Notice if any subset of vertices S ∈ V 0 have their degree reduced by 2 then each vertex u ∈ S
connects to at least one less vertex in V 1

K . Thus, reducing the degree of any vertex in V 0 by 2
reduces the right side of equation 2, but not the left side, thereby inverting the inequality required
by equation 1. Thus, the new degree sequence would not be simple-graphical implying that Ĝ2 is
m∗-loopy.

Thus we have shown:

Lemma 4.23. A m-loopy graph Ĝd, d ≤ 2, is m∗ loopy.

However, as seen in Figure 2 there exists Ĝd, d ≥ 3 which are not m∗-loopy.

4.3 Structure of Ĝd, d ≥ 3

Finally we investigate the possible structures of Ĝd for d ≥ 3, showing that any Ĝ3 is in the class
Q2, any Ĝd for d > 3 is in the class Q1 and thus Ĝd, d ≥ 3 indicates a disconnected G. First, we
show the following:

Lemma 4.24. For Ĝd, when d ≥ 3 all edges in V 0 are contained in K0.

2Notice that this is the necessary condition and the easier proof direction of the Erdős-Gallai theorem.∑
u∈U

ku ≤ |U |(|U | − 1) +
∑
w 6∈U

min(kw, |U |). (1)
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Proof. Suppose not, then there exists (x, y) ∈ V 0 where (x, y) 6∈ K0. Since (x, y) 6∈ K0 then there
is some u ∈ K0 with u 6∈ N(x), and since V 0 is wedge free it must be that x, y are disjoint from
K0. Let u, v, w ∈ K0, then swap (x, y), (u, v) (x, u), (y, v) creates wedge xuw.

Lemma 4.25. For Ĝd with d ≥ 3, and any edge (x, y), x 6= y then either x or y must be in V 0∪V 1.
If d > 3, the above result holds even if x = y

Proof. Suppose not, then there exists (x, y) with both x, y 6∈ V 0 ∪V 1. For u, v, w ∈ K0 notice that
swapping (u, v), (x, y) (u, x), (v, y) creates open wedges xuw and yvw. If x 6= y then closing either
xuw or yvw creates a graph with an additional self-loop. If x = y and there are u, v, w, z ∈ K0

then the additional swaps (x, u)(u,w)  (u, u)(x,w) and (x,w)(w, z)  (w,w)(x, z) create two
new self-loops, compensating for the loss of the self-loop (x, x).

Lemma 4.26. For Ĝ3, either V∞ or V 1 is empty.

Proof. Suppose not, then there exists x ∈ V∞ and y ∈ V 1. Let u, v, w ∈ K0. Lemma 4.13 implies
that u, v, w ∈ N(y). Consider the following swaps: (x, x)(u,w) (u, x)(w, x), then (y, u)(u, x) 
(u, u)(y, x) and (v, w)(w, x) (w,w)(v, x) which net creates a self-loop.

Lemma 4.27. For m-loopy Ĝd, when d = 3, all vertices in V 2 have degree |V 1| + 2, while when
d > 3, V 2 = ∅ .

Proof. Consider a vertex u ∈ V 2 and v ∈ V 0. Since V 3 = ∅ and V 2 has no internal edges by lemma
4.25, then ku ≤|V 1| + 2, while kv =|V 1| + |K0| − 1 = |V 1| + d − 1. Since Ĝd is m-loopy, then
ku ≥ kv, implying that |V 1|+ 2 ≥ ku ≥ kv = |V 1|+ d− 1. Thus, d = 3, vertices in V 2 have degree
|V 1|+ 2, and when d > 3, V 2 must be empty.

Taken together, lemmas 4.27 and 4.24 imply that Ĝd for d ≥ 3 is composed of a single large
clique on K0 ∪ V 1 along with vertices that solely connect into that clique. Further, all vertices in
V 0 have less than or equal degree than all other vertices. Meanwhile, the degrees of vertices in V 2,
and K0 are |V 1| + 2 and |V 1| + d − 2 respectively while those in V 1 and V 0 \K0 have lower and
upper bounds |V 1| + |V 2| + d + 1 and |V 1| respectively. Taken together, these constraints on the
form of Ĝd, d ≥ 3 (as summarized in Figure 4), can be used to detect degree sequences for which
G is disconnected.

Theorem 4.28. A graph Ĝ3 is in the class Q2 .

Proof. The first criterion in the definition of the class Q2, that there exists u such that |N(u)∩V 0| =
2, is satisfied by the definition of Ĝ3. Lemma 4.24 establishes that there aren’t edges in V 0 outside
of K0, and lemma 4.13 gives that any node in K0 connects to all of V 1; together these satisfy the
second criterion. Lemma 4.14 shows hat V 1 is a clique, the third criterion of Q2. Lemmas 4.25 and
4.27 imply that each u ∈ V 2 has N(u) = V 1, the fourth criterion of Q2. The last two criteria of
Q2 are satisfied by lemmas 4.26 and 4.25. Thus, Ĝ3 ∈ Q2.

Theorem 4.29. A graph Ĝd for d > 3 is in the class Q1.

Proof. The first criterion in the definition of the class Q1, the existence of a clique inside V 0 is
satisfied by the definition Ĝd for d > 3. The second criterion of Q1 is given by Lemma 4.24. The
third criterion for Q1, that V 1 ∪K0 is a clique, is given by lemmas 4.14 and 4.13. Finally, lemmas
4.27 and 4.25 imply that in Ĝd for d > 3, V 2 = V∞ = ∅, the fourth criterion of Q1. Thus, Ĝd ∈ Q1

for d > 3.
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An immediate consequence of these two theorems, along with lemmas 4.23 and 4.5 and corollary
3.5 is the following:

Theorem 4.30. A degree sequence has a disconnected G if and only if there is some graph in Q1

or Q2 in G.

Corollary 4.31. Aside from the degree sequences associated with the cycle and the clique all simple
graphical degree sequences have a connected G.

Proof. Applying the Erdős-Gallai theorem to the set V 1 in a graph in Q1 or Q2 reveals that such a
graph’s degree sequence is not simple-graphical, unless |V 1| = 0, in which case the graph is either
a clique, or has degree sequence {2, 2, 2, ...., 2}.

Thus, many of the most commonly examined degree sequences have a connected G. However,
in the space of loopy-graphs, there are many possible degree sequences which are loopy-graphical,
but not simple-graphical (for example, those in Figure 2). In this next section, we discuss several
ways to detect if a loopy-graphical degree sequence has a connected or disconnected space.

5 Detecting connectivity in G
For many applications, detecting if a degree sequence is not at risk of being disconnected can be
achieved simply by examining the maximum degree. Let n∗ be the number of nodes with nonzero
degree in a degree sequence {ki}.

Theorem 5.1. For degree sequence {ki} 6= {2, 2, 2, ..., 2}, if maxi ki < 2
√
n∗ − 3 + 1 then G({ki})

is connected.

Proof. Since only degree sequences that can create a graphs in Q1 and Q2 have a disconnected
graph of graph, we need only show that the maximum degree of graphs in Q1 and Q2 is never less
than 2

√
n∗ − 3 + 1. For a graph G ∈ Q1 ∪ Q2, let α = |V 1|. Notice that the highest degree node

in G must be in V 1. Counting the edges into V 1: at least three nodes in K0 connect to all nodes
in V 1 and the remaining n∗ − 3 − α nodes have at least one edge into V 1. Since V 1 is a clique,
there are at least α(α − 1) + 3α + (n∗ − 3 − α) edge endpoints into V 1, and thus the maximum
degree of a node in V 1 must be at least α + 1 + n∗−3

α . Minimizing this over α yields the bound
2
√
n∗ − 3 + 1

When the maximum degree is larger than the bound in theorem 5.1, the following procedure can
exactly identify all degree sequences that can create a Q1 or a Q2 other than {ki} = {2, 2, 2, ..., 2}
and {ki} = {n − 1, n − 1, ..., n − 1}. Namely, the procedure either creates a Q1 or Q2 graph or
terminates. In the following, let na and nb denote the number of vertices which have remaining
degree equal to a and b respectively.

1. If all remaining non-zero degrees have exactly two different values b > a ≥ 3, na ≥ 3,
b − 2 = na + nb − 1 and a − 2 = nb then it is possible to place nodes with degree b in V 1,
three vertices with degree a into K0 and the remaining vertices with degree a as vertices in
V 2, creating a graph Q2.

2. If all remaining non-zero degrees have exactly two different values b > a ≥ 3, na ≥ 3, a = b−2
and a = na + nb − 1 then it is possible to create a clique with self-loops at each vertex of
degree b, creating a graph Q1.
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3. Let u = argmini{ki|ki 6= 0}

4. Connect u to the ku largest degree vertices

5. Reduce the largest ki degrees by 1, and set ku = 0

6. Return to step 1.

To illustrate this procedure, consider the following example of degree sequence {8, 3, 3, 3, 3, 3, 1}
(the example Q2 graph seen in figure 3 has this degree sequence). As the degree sequence contains
more than two different values, the first pass of the algorithm skips steps 1 and 2 and connects the
degree 1 vertex to the degree 8 vertex, resulting in degree sequence {7, 3, 3, 3, 3, 3, 0}. The degree
sequence now only has two non-zero values, 7 and 3, so that in steps 1 and 2, a = 3, na = 5 and b = 7
with nb = 1. The corresponding checks in step 1, check that na = 5 ≥ 3, that b−2 = 5 = na+nb−1,
and that a − 2 = 1 = nb. Since the degree sequence passes each of these checks, it’s possible to
create a graph Q2. Applying the procedure to the degree sequence {9, 8, 5, 5, 5, 5, 2, 1} would first
connect the degree 1 vertex to the degree 9 vertex and subsequently connect the degree the 2
vertex to the first two vertices resulting in a new degree sequence {7, 7, 5, 5, 5, 5, 0, 0}. Since this
new degree sequence has only two non-zero values the procedure halts on the third iteration and
creates the graph displayed as an example Q1 graph in figure 3.

The validity of this procedure is established below, while we provide full pseudo-code as Algo-
rithm 2 in the appendix.

Theorem 5.2. For any degree sequence, the above procedure correctly identifies whether G is con-
nected or disconnected.

Proof. Theorem 4.30 implies that G({ku}) is disconnected if and only if {ku} can construct a graph
in Q1 or Q2. It will follow that correctness simply requires understanding the structure of Q1 and
Q2 presented in figure 3 and attempting to naively construct such a graph. If the construction
succeeds, then clearly {ku} can create a Q1 or Q2, and if it fails, then we will show that no such
construction is possible.

To see the correctness of this procedure, we will simply run through the logic in reverse order.
Suppose that G is any Q1 or Q2 with degree sequence {ku}, we will show the procedure produces
a graph connected to G by trivial edge-swaps. As given by the definition of Q1 or Q2, and as
apparent in figure 3, if all vertices not contained in V 1, K0 or V 2 and their attached edges are
deleted from G, the remaining degree sequence has only two non-zero values, which we denote as
b > a ≥ 3. Let na and nb denote the number of vertices with degrees a and b. Consider these two
cases corresponding to steps 1 and 2:

1. If G was a Q1 then V 1 ∩K0 form a clique (condition 3 of Q1). Counting the number of edges
incident to nodes inside V 1 and K0 reveals that vertices of degree b compose V 1, those of
degree a compose K0, na ≥ 3, b = a+ 2 and a = na + nb − 1.

2. If G was a Q2 then V 1 is composed of vertices of degree b and all remaining vertices in K0 and
in V 2 have degree a (conditions 1-4 of Q2). It would thus follow from these same properties
that na ≥ 3, that each node in V 1 connects to all remaining nodes: b − 2 = na + nb − 1,
and that each node in V 2 or K0 neighbors all of V 1 and has either two other neighbors or a
self-loop a− 2 = nb.

Thus, steps 1 and 2 of the above procedure exactly identify a Q1 and Q2 which have had all vertices
not contained in V 1, K0 or V 2 deleted.
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Thus, the only challenge is to identify which vertices are in V 0\K0, so that deleting these nodes
allows for the tests in the first and second steps of the procedure. Thankfully, this is not hard.
The definition of Q1 and Q2 ensure that the vertices in V 0 \K0 can only connect into V 1, which
guarantee that these vertices have the smallest degrees. Similarly, the vertices in V 1 of a Q1 and
Q2 graph must have a degree at least two higher than vertices in V 0 or V2 (see figure 3). It follows
immediately that if there are vertices in V 0 \K0, then connecting the smallest degree vertex u, to
the ku largest vertices, connects a vertex in V 0 \K0 to ku vertices in V 1.

Since vertices in V 0 \ K0 have strictly smaller degree than those in K0 then so long as there
remain vertices in V 0 \K0, the degree sequence has more than 2 unique values. Thus, repeating
the procedure would eventually delete all vertices in V 0 \K0.

The final concern to address is the possibility that while this procedure can create a Q1 or Q2

the particular choices of which vertices in V 1 connect to which vertices in V 0 \K0 may cause the
procedure to miss some Q1 or Q2. We alleviate this concern by showing that if a degree sequence
can construct a Q1 or Q2 then there are a sequence or edge swaps that could also create one with
the same connections from V 1 to V 0 \K0 as the procedure creates. Notice that for two edges (u, v)
and (x, y) with u, x ∈ V 0 \ K0 and v, y ∈ V 1, swap (u, v), (x, y)  (u, y), (x, v) exchanges u and
x’s neighbors in V 1. Thus, if a degree sequence {ku} can create a Q1 or Q2 graph, then it can also
create a Q1 or Q2 graph with any permutation of the edges from V 0 \K0 to V 1, such as the one
which was just constructed. Thus this algorithm constructs a Q1 or Q2 if it is possible. If it is not
possible to construct a Q1 or Q2 then the procedure will eventually delete every vertex, or step 4
will fail because there will be fewer than ku non-zero degree vertices remaining.

6 Sampling loopy-graphs

A small change to G can connect the space. For distinct u, v, w consider the following triple edge
swap, the ‘triangle-loop’ swap, (u, v), (v, w), (w, u)  (u, u), (v, v), (w,w) along with its reverse
(u, u), (v, v), (w,w)  (u, v), (v, w), (w, u). Let G4 be the graph G but with additional edges con-
necting graphs which are separated by a single triangle-loop swap along with an additional number
of self-loops in G4 to preserve detailed balance (as discussed below).

Theorem 6.1. G4 is connected.

Proof. Since every Ĝd, d ≥ 3 contains a triangle in V 0, no such graph has the maximal number of
self-loops. Thus for every degree sequence, any graph is connected to a Ĝd for d ≤ 2, which are
m∗-loopy and since all m∗-loopy graphs are connected, the space is thus connected.

This allows for an MCMC sampler of the uniform distribution of graphs in G4. For a given
degree sequence, if Algorithm 2 indicates that G is connected then the standard double edge swap
MCMC in [11] suffices. On the other hand, if Algorithm 2 returns a valid Gd for d ≥ 3 then
triangle-loop swaps are required to connected the space, as in Algorithm 1. Stated succinctly the
stub-labeled version does the following:

From any graph G: with probability ε > 0 pick three edges from G, if possible perform a
triangle-loop swap, otherwise resample G; with probability 1− ε pick 2 edges at random, if possible
perform a double edge swap, otherwise resample G.

For any ε > 0, theorem 6.1 gives that this procedure will be able to reach all graphs in V,
however, since the majority of proposed triple swaps will not result in a new graph, the value of
ε that produces the optimal mixing time is likely small. In order to see that triangle-loop swaps
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Algorithm 1 MCMC step (labeled stubs)

Input: loopy-graph G, stubs labels ∈ [True, False]
Output: a loopy-graph adjacent to G in G4

if Unif(0, 1) < ε then
choose three edges at random
if edges create a triangle or are self-loops & triangle-loop wouldn’t create multiedges then

perform triangle-loop swap
end if

else
choose two edges e1 and e2 at random
if double edge swap wouldn’t create multiedges then

if neither e1 or e2 is a self-loop OR not stubs labels then
perform double edge swap

else
if Unif(0, 1) < 1

2 then
perform double edge swap

end if
end if

end if
end if
return G

preserve detailed balance (P (G,G′) = P (G′, G)) notice that since each triangle-loop swap is
reversible and that at any graph G each of the exactly

(
m
3

)
sets of three distinct edges corresponds

to an incoming edge, either from a graph-of-graph self-loop, or a valid triangle-loop swap.
To see that G4 is aperiodic consider several cases. Notice that for any degree sequence, if

|V| ≥ 2, G4 must contain a graph with at least one of the following: a triangle, an open wedge, two
self-loops or two independent edges. Attempting to swap two sides of a triangle or two self-loops
would create a multiedge, and this attempted swap corresponds to a self-loop in G4, which implies
that G4 is aperiodic. Any graph with an open wedge or two independent edges has a sequence of
three double-edge swaps which return to the same graph, this combined with the reversible nature
of double-edge swaps implies that G4 is aperiodic.

This leads to the following theorem, which lets us conclude that Algorithm 1 forms the basis
for a MCMC sampler of loopy-graphs.

Theorem 6.2. A random walk on G4 has a uniform stationary distribution.

Proof. As an aperiodic, connected graph G4, with transitions that obey detailed balance, a random
walk has a unique uniform stationary distribution.

7 Conclusion

By examining the possible structures of graphs with the maximum number of self-loops reachable
via double edge swaps we have a complete categorization of the degree sequences where double
edge swaps can change any graph into any other valid graph. This understanding is exemplified in
Algorithm 2, which can detect whether a degree sequence has a connected space or not. Further, we
proved that augmenting double-edge swaps with triangle-loop swaps connects the space of loopy-
graphs, creating the first provably correct MCMC technique for sampling loopy-graphs. In addition
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to filling a gap in the understanding of graph space connectivity, this work builds a tool to allow
for the sampling of loopy-graphs and their subsequent use as statistical null-models. As greater
emphasis is placed on sampling graphs without labeled-stubs the need for carefully sampling loopy-
graphs will likely increase.
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9 Appendix

In this appendix we formalize the procedure for determining whether a degree sequence has a
connected G.

Algorithm 2 Attempt non m∗-loopy wiring

Input: degree sequence {ki}
Output: a non m∗-loopy graph Ĝ, otherwise

False
1: n = |{ki|ki > 0}|
2: G← graph initialized with vertices from {ki}
3: sort {ki} in decreasing order
4: if n ≤ 2 then
5: return False
6: end if
7: if mini ki = maxi ki = 2 then
8: return a cycle graph on n vertices
9: end if

10: if mini ki = maxi ki = n− 1 then
11: return a clique on n vertices
12: end if
13: for j ∈ 0 : n do
14: if {ki} has exactly two unique values then
15: a← mini ki
16: b← maxi ki
17: na ← number of occurrences of a in {ki}
18: nb ← number of occurrences of b in {ki}
19: nt ← na + nb
20: if a ≥ 3 and na ≥ 3 then
21: if a = b− 2 and a = nt − 1 then
22: for u ∈ 0 : nb do
23: add edge (u, u) to G
24: end for
25: add clique on vertices 0 : nt to G
26: return G

27: end if
28: if b−2 = nt−1 and a−2 = nb then
29: for u ∈ 0 : nb do
30: for v ∈ 0 : nt do
31: add edge (u, v) to G
32: end for
33: end for
34: for u ∈ 0 : (nt − 3) do
35: add edge (u, u) to G
36: end for
37: create clique on vertices (nt−3) : nt
38: return G
39: end if
40: end if
41: end if
42: MinInd← n− j − 1
43: MinDeg ← kMinInd

44: delete(kMinInd)
45: if MinDeg > |{ki}| then
46: return False
47: end if
48: for y ∈ 0 : MinDeg do
49: ky ← ky − 1
50: add edge (MinInd, y) to G
51: end for
52: sort {ki} in decreasing order
53: end for
54: return False
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