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1. INTRODUCTION

Networks studied in the biological, social, and technological sciences perform various
tasks, which are determined by both the network’s topology as well as the network’s dy-
namics. In the biological setting gene regulatory and metabolic networks allow cells to
organize into tissues and tissues into organs whose dynamics are essential to the network’s
function [} 2], e.g. a beating heart in a circulatory network. Neuronal networks are re-
sponsible for complicated processes related to cognition and memory, which are based on
the network’s structure of connections as well as the electrical dynamics of the network’s
neurons [3]]. Social networks such as Facebook, Twitter, the interactions of social insects
[4, 5], and professional sports teams [6] function as a collection of overlapping commu-
nities or a single unified whole based on the underlying topology and hierarchies present
within the network’s social interactions. Technological networks such as the internet to-
gether with the World Wide Web allow access to information based on the topology of
network links and the network’s dynamic ability to route traffic.

In the study of networks a network’s fopology refers to the network’s structure of inter-
actions while a network’s dynamics is the pattern of behavior exhibited by the network’s
elements [3]. It is worth emphasizing that real-world networks are not only dynamic in
terms of the behavior of their elements but also in terms of their topology, both of which
effect the network’s function. For example, the World Wide Web has an ever changing
structure of interactions as web pages and the hyperlinks connecting these pages are up-
dated, added, and deleted (see [/]] for a review of the evolving topology of networks).

A number of network formation models have been proposed to describe the type of
growth observed in real networks. These models fall to a large extent into three categories.
The first are those related to the Barabasi and Albert model [8]] and its predecessor the Price
model [9]], in which elements are added one by one to a network and are preferentially
attached to vertices with high degree, i.e. to vertices with a high number of neighbors or
some variant of this process [10, (11} [12]. The second are vertex copying models in which
new elements are added to a network by randomly choosing an existing network element.
A new element is then connected to each neighbor of this existing network element with
probability p € (0, 1) or to some other element with probability 1—p [13,114,[15]. Third are
the network optimization models where the topology of the network is evolved to minimize
some global constraint, e.g. operating costs vs. travel times in a transportation network
[16,17].

These models are devised to create networks that exhibit some of the most widely ob-
served features found in real networks. This includes (i) having a degree distribution that
follows a power-law, i.e. being scale-free, (i1) having a disassortative neighbor property
where vertices with high (low) degree have neighbors with low (high) degree, (ii1) having
a high clustering coefficient indicating the presence of many triangles within the network,
and (iv) having the small-world property, meaning that the average distance between any
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two network elements is logarithmic in the size of the network (see [18] for more details
on these properties).

Aside from these structural features, one of the hallmarks of a real network is that, as
its topology evolves, so does its ability to perform complex tasks. This happens, for in-
stance, in neural networks, which become more modular in structure as individual parts of
the brain become increasingly specialized in function [[19]. Similarly, gene regulatory net-
works can specialize the activity of existing genes to create new patterns of gene behavior
[20]]. In technological networks such as the internet, this differentiation of function is also
observed and is driven by the need to handle and more efficiently process an increasing
amount of information.

Here we propose a very different class of models than those described above, which are
built on this notion of specialization. We refer to these as specialization models of network
growth. These models are based on the fundamental idea that as a network specializes the
function of one or more of its components, i.e. a subnetwork(s) that performs a specific
function, the network first creates a number of copies of this component. These copies are
attached to the network in ways that reflect the original connections the component had
within the network only sparser. The new copies “specialize” the function of the original
component in that they carry out only those functions requiring these specific connections
(cf. Figure|I)).

The components which are specialized in this growth process form motifs, i.e. statisti-
cally significant structures in which particular network functions are carried out. As copies
of these motifs are placed throughout the network via the process of specialization the re-
sult is an increase in the network’s modularity [21]. Consequently, repeated application of
this process results in a hierarchical topology in which modular structures appear at multi-
ple scales. Moreover, because new components are far less connected to the network than
the original components the result is an increasingly sparse network topology. Hence the
network acquires a modular [22], hierarchical [23] 24]], as well as sparse topology [25}26]]
each of which is a distinguishing feature of real networks when compared, for instance, to
random graphs (see [[/] Section 6.3.2.1).

Importantly, our model of network growth is extremely flexible in that a network can
be uniquely specialized over any subset B of its elements. We refer to any such subset
B as a network base. Since B can be any subset of a network’s elements there is an
significant number of ways in which a network can be specialized. Hence, many network
growth models. An obvious application is, given a particular network, to find a base over
which this network can be specialized that evolves the its topology in a way that models
its observed growth. Finding a rule 7 that generates this base is a natural objective of a
network scientist using this model to investigate their particular network(s) of interests.
The reason is that finding such a rule suggests a mechanism for the particular network’s
growth that can then be tested against the growth of the actual network.
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A particularly simple rule we consider here is the rule r = r,, for p € (0, 1) that uniformly
selects a random network base consisting of p percent of the network’s elements. Under
this specialization rule we find that an initial network evolves under a sequence of special-
izations into a network that is numerically (1) scale free, (ii) has a disassortative neighbor
property, (iii) has a power-law like clustering coefficients and (iv) the small-world prop-
erty. Hence, this random variant of the specialization model appears to capture a number
of the well-know properties observed in real networks. To our knowledge this is the only
such class of models to capture these properties along with creating an increasingly sparse,
modular, and hierarchical network topology.

Additionally, we show how specialization rules can be used to compare the topology of
different networks. Specifically, two graphs G and H are considered to be similar to each
other with respect to a rule 7 if they specialize to the same graph under 7. This notion of
similarity, which we refer to as specialization equivalence, can be used to partition any set
of networks into those that are similar, i.e. are specialization equivalent, with respect to a
given rule 7 and those that are not (see Section [2] Theorem [I]). One reason for designing
such a rule 7 is that typically it is not obvious that two different graphs are in some sense
equivalent. That is, two networks may be similar but until both are specialized with respect
to 7 this may be difficult to see. Here we show that by choosing an appropriate rule T one
can discover this similarity (see example [4.1)). Of course, it is important that this rule be
designed by the particular biologist, chemist, physicist, etc. to have some significance with
respect to the nature of the networks under consideration.

In a following paper we rigorously show that these specialization models also preserve
a number of spectral and dynamical properties of a network. Specifically, we show that as
a network is specialized the eigenvalues of the resulting network are those of the original
network together with the eigenvalues of the specialized components, extending the the-
ory of isospectral network transformations found in [27]]. Additionally, we show that the
eigenvector centrality of the base vertices of a network remain unchanged as the network
is specialized. In terms of dynamic properties we prove that if a dynamical network is
intrinsically stable, which is a stronger form of a standard notion of stability (see 28] for
more details), then any specialized version of this network will also be intrinsically sta-
ble. Hence, network growth given by our models of specialization will not destabilize the
network’s dynamics if the network has this stronger version of stability. This is important
in many real-world application since network growth can have a destabilizing effect on a
network’s dynamics, e.g. cancer, which is the abnormal growth of cells has this effect in
biological networks.

The paper is organized as follows. In Section [2] we introduce the specialization model
and the notion of specialization rules. In Section 3| we show that if a network is randomly
specialized over a fixed percentage of its elements the result is a network that has many
properties found in real-world networks including the small-world property, power-law
like degree distributions and clustering coefficients. In Section [4| we describe the notion
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of specialization equivalence and how this notion can be used to compare the structure of
different networks. The last section, Section E] contains some concluding remarks.

2. SPECIALIZATION MODEL OF NETWORK GROWTH

The standard method used to describe the topology of a network is a graph. A graph
G = (V,E, w) is composed of a vertex set V, an edge set E, and a function w used to weight
the edges of the graph. The vertex set V represents the elements of the network, while the
edges E represent the links or inferactions between these network elements. The weights
of the edges, given by w, give some measure of the strength of these interactions. Here
we consider weights that are real numbers, which account for the vast majority of weights
used in network analysis [18].

The edges E of a graph can either be directed or undirected, weighted or unweighted.
Here we consider, without loss in generality, those graphs that have weighted directed
edges. The reason is that an undirect edge is equivalent to two directed edges pointing in
either direction and any unweighted edge can be weighted by giving the edge unit weight.

For the graph G = (V, E,w) we let V = {vy,...,v,}, where v; represents the ith network
element. We let e;; denote the directed edge that begins at v; and ends at v;. In terms of the
network, the edge ¢;; belongs to the edge set E if the ith network element has some direct
influence or is linked to the jth network element.

As mentioned in the introduction, one of the hallmarks of real networks is that as a
network evolves so does its ability to perform various tasks. It has been observed that to
accomplish this a network will often specialize the tasks performed by of one or more of
its components, i.e. subnetworks. As motivation for our model of network growth we give
the following example of network specialization.

Example 2.1. (Wikipedia Disambiguation) The website Wikipedia is a collection of
webpages consisting of articles that are linked by topic. The website evolves as new arti-
cles are either added, linked, and modified within the existing website. One of the ways
articles are added, linked, and modified is that some article within the website is disam-
biguated. If an article’s content is deemed to refer to a number of distinct topics then the
article can be disambiguated by separating the article into a number of new articles, each
on a more specific or specialized topic.

Wikipedia’s own page on disambiguation gives the example that the word “Mercury”
can refer to either Mercury the mythological figure, Mercury the planet, or mercury the
element [29]. To emphasize these differences the Wikipedia page on Mercury has been
disambiguated into three pages on Mercury; one for each of these subcategories. Users
arriving at the Wikipedia “Mercury” page [30] are redirected to these pages (among a
number of other related pages).

The result of this disambiguation is shown in Figure Il In the original undifferenti-
ated Mercury page users arriving from other pages could presumably find links to other
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Ficure 1. This figure shows the effect of disambiguating the Wikipedia
page on “Mercury” into three distinct webpages, which are respectively
Mercury the mythological figure, Mercury the planet, and mercury the ele-
ment.

2 &6

“mythology”, “planet”, and “element” pages (see Figure [I] left). After the page was dis-
ambiguated users were linked to the same pages but only those relevant to the particular
“Mercury” page they had chosen (see Figure [I] right). In terms of the topology of the
network, this disambiguation results in the creation of a number of new “Mercury” pages
each of which is linked to a subset of pages that were linked to the original “Mercury”
page. Growth via disambiguation is a result of the new “copies” of the original webpage.

However, what is important to the functionality of the new specialized network is that
the way in which these new copies are linked to the unaltered pages should reflect the
topology of the original network. In our model the way in which we link these new com-
ponents, which can be much more complex than single vertices, is by separating out the
paths and cycles on which these components lie, in a way that mimics the original network
structure.

Hence, to describe our models of network specialization and its consequences we first
need to consider the paths and cycles of a graph. A path P in the graph G = (V,E, w)
is an ordered sequence of distinct vertices P = vy,...,v, in V such that ¢;;,; € E for
i=1,...,m— 1. If the vertices v, and v,, are the same then P is a cycle. If it is the case
that a cycle contains a single vertex then we call this cycle a loop.

Another fundamental concept that is needed is the notion of a strongly connected com-
ponent. A graph G = (V, E, w) is strongly connected if for any pair of vertices v;,v; € V
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FiGure 2. A representation of a path of components is shown, consisting
of the sequence S, ...,S,, of components beginning at vertex v; € B and
ending at vertex v; € B. From S, to Sy, there is a single directed edge
ex+1- From v; to §'| and from S, to v; there is also a single directed edge.

there is a path from v; to v; or G consists of a single vertex. A strongly connected compo-
nent of a graph G is a subgraph that is strongly connected and is maximal with respect to
this property.

Because we are concerned with evolving the topology of a network in ways that pre-
serve, at least locally, the network’s topology we will also need the notion of a graph
restriction. For a graph G = (V, E, w) and a subset B C V we let G|g denote the restriction
of the graph G to the vertex set B, which is the subgraph of G on the vertex set B along
with any edges of the graph G between vertices in B. We let B denote the complement of
B, so that the restriction G|z is the graph restricted to the complement of those vertices not
in B.

The key to specializing the structure of a graph is to look at the strongly connected
components of the restricted graph G|z. If S4,...,S,, denote these strongly connected
components then we will need to find paths or cycles of these components, which we refer
to as components branches.

Definition 1. (Component Branches) For a graph G = (V, E, w) and vertex set B C V let

S1,...,8 . be the strongly connected components of G|z. If there are edges ey, ey, ..., e, €
E and vertices v;,v; € B such that
(i) ey is an edge from a vertex in S to a vertex in Sy fork=1,...,m—1;

(ii) ey is an edge from v; to a vertex in S |; and
(iii) e,, is an edge from a vertex in S ,, to v;, then we call the ordered set

ﬁ = {vi’eOaSbel’SZ’ oo 7Sm’emavj}

a path of components in G with respect to B. If v; = v; then 8 is a cycle of components.
We call the collection By(G) of these paths and cycles the component branches of G with
respect to the base set of vertices B.

A representation of the path of components is shown in Figure 2l The sequence of
components S, ...,S,, in this definition can be empty in which case m = 0 and g is the
path 8 = {v;,v;} or loop if v; = v;. It is worth emphasizing that each branch g € By(G)
is a subgraph of G. Consequently, the edges of S inherit the weights they had in G if G is
weighted. If G is unweighted then its component branches are likewise unweighted.



8 SPECIALIZATION MODELS OF NETWORK GROWTH

S V3

V2 ——
% N 2
\ S/ \
V]o \

o 0V4

Vlo/ \‘3'/ o V4 \ P
\/\/ s
v, o v -
G

Ficure 3. The unweighted graph G = (V, E) is shown left. The components
S and §, of G with respect to the vertex set B = {v, v4} are shown right.
These components are the subgraphs S| = Gy, and S» = Gl .y, I0-
dicated by the dashed boxes, which are the strongly connected components
of the restricted graph G|z.
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Once a graph has been decomposed into its various branches we construct the special-
ized version of the graph by merging these branches as follows.

Definition 2. (Graph Specialization) Suppose G = (V,E,w) and B C V. Let Sg(G) be the
graph which consists of the component branches Bp(G) = {4, . . ., B¢} in which we merge,
i.e. identify, each vertex v; € Bin any branch ; with the same vertex v; in any other branch
Bi. We refer to the graph Sp(G) as the specialization of G over the base vertex set B.

A specialization of a graph G over a base vertex set B is a two step process. The first step
is the construction of the components branches. The second step is the merging of these
components into a single graph. We note that, in a component branch 8 € B(G) only the
first and last vertices of 8 belong to the base B. The specialized graph Sz(G) is therefore
the collection of branches Bg(G) in which we identify an endpoint of two branches if they
are the same vertex. This is demonstrated in the following example.

Example 2.2. (Constructing Graph Specializations) Consider the unweighted graph
G = (V,E) shown in Figure 3| (left). For the base vertex set B = {vy,v4} the special-
ization Sp(G) is constructed as follows.

Step 1: Construct the branch components of G with respect to B. The graph G|z has the
strongly connected components S; = Glj,1,.5 and S, = Gy, ,,), Which are indicated
in Figure 3| (right). The set B(G) of all paths and cycles of components beginning and
ending at vertices in B consists of the component branches

Bi = {vi,e1,81, €34, va} B2 = {va, €46, S 2, €71, v1}

Bs ={vi,e12,51, 56,82, €71,vi} Ba ={vi,€12,51,€57, 82, €71, v1};
which are shown in Figure 4{ (left).
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Ficure 4. The component branches Bg(G) = {81, 52,83, B4} of the graph
G = (V,E) from figure [3] over the base vertex set B = {v;, v4} are shown
(left). The specialized graph S(G) is shown (right), which is made by
merging each of the vertices v; and v,4 respectively in each of the branches
of Bp(G). The edge labels and vertex labels are omitted, except for those
vertices in B, to emphasize how these vertices are identified.

Step 2: Merging the branch components. By merging each of the vertices v € B in
all branches of B(G) = {B1, 2,53, L4} shown in Figure 4| (left) and doing the same for
the vertex v4 € B, the result is the graph Sz(G) shown in Figure {4 (right), which is the
specialization of G over the base vertex subset B.

To summarize, our model of network growth consists in evolving the topology of a
given network by selecting some base subset of the network’s elements and specializing
the graph associated with the network over the corresponding vertices. We refer to this
process as the specialization model of network growth.

The idea is that in an information network, such as the World Wide Web, this model of
specialization can model the differentiation and inclusion of new information (cf. Example
[2.1). In a biological model this can be used to describe various developmental processes,
for instance, the specialization of cells in to tissue. In a social network this model can sim-
ilarly be used to model how new relationships are formed when, for example, an individual
is introduced by someone to their immediate group of friends.

It is also worth mentioning that a network specialization evolves the network’s topol-
ogy by maintaining the interactions between its base elements B and by differentiating the
other network functions into sequences of components. The result is a network with many
more of these components. These components are important for a number reasons. The
first is that they form network motifs, which are statistically important subgraphs within
the network that typically perform a specific network function [31]]. Second, because there
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are very few connections between these components the resulting network has a far more
modular structure, which is a feature found in real networks (see [22]] for a survey of mod-
ularity). Third, because of the number of copies of the same component, the specialized
graph has a certain amount of redundancy in its topology, which is another feature ob-
served in real networks [32,,133]. Last, specializations results in sparser graphs, i.e. graphs
in which the ratio of edges to vertices is relatively small, which is again a characteristic
found in real networks [25} 26]].

Additionally, many networks exhibit hierarchical organization, in which network ver-
tices divide into groups or components that further subdivide into smaller groups of com-
ponents, and so on over multiple scales. It has been observed that these components often
come from the same functional units, e.g. ecological niches in food webs, modules in bio-
chemical networks including protein interaction networks, metabolic networks or genetic
regulatory networks or communities in social networks [23,24]. Because new components
are created each time a graph is specialized a network becomes increasingly hierarchial as
this process of specialization is repeated.

3. SpECIALIZATION RULES

As a significantly large number of bases are possible for any reasonably sized network
a natural question is, given a particular real-world network (or class of networks) can we
find a base or sequence of bases that can be used to model this network’s growth via
specialization. Another way of stating this is, is it possible to find a specialization rule that
selects network base(s) that can be used to specialize the network in a way that mimics its
actual growth.

Here a specialization rule 7 is a rule that selects for any graph G = (V, E, w) a base
vertex subset V,(G) C V. For simplicity, we let

7(G) = Sv.((G) and T(G) = 7(7*"'(G)) for k>0

denote the specialization of G with respect to T and the kth specialization of G with respect
to 7, respectively. Each rule 7 generates a different type of growth and as such can be
thought of as inducing a different model of network growth.

The specialization 7(G) is unique if T selects a unique base vertex subset of G. Not all
rules produce a unique outcome as 7 can be a rule that selects vertices of G in some ran-
dom way. For the moment we consider an important example of a random specialization
rule. The reason we focus on this particular rule is that its repeated use leads to graphs
(networks) that exhibit some of the most well-know properties observed in real networks.

Example 3.1. (Random Specializations) For p € (0, 1) let r = r, be the specialization
rule that uniformly selects a random network base consisting of p percent of the network’s
elements rounded to the nearest whole number. To understand the effect this rule has on
general types of networks we start by first describing its effect on a single specific network.
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Ficure 5. The top row shows the graph G as well as its specializations
r2(G), r*(G), and r%(G) for r = rg;. Each column in this figure corresponds
to the graph in the top row, respectively. The second row shows the degree
distribution of each graph on a log-log plot with a best-fit line with slope
—7i, demonstrating the degree to which each distribution follows a power-
law. Row three displays each graph’s assortativity (mean-neighbor degree
distribution) plotted on a log-log plot with a best-fit line with slope —7;,
where an increasingly downward trend can be seen. Row four displays
each graph’s clustering coefficients plotted vs. vertex degree on a log-log
plot. A best-fit line with slope —a; is given for each demonstrating the
degree to which this data follows a power-law.
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Displayed in Figure [5]is an initial network given by the graph G on ten vertices and
fifteen edges, which is sequentially specialized using the rule r = r, for p = .91. The graph
G is specialized a total of seven times, which generates the sequence G, r(G), ..., r"(G) of
graphs. The top row of Figure [5|shows the graphs G, r*(G), r*(G), and r°(G).



12 SPECIALIZATION MODELS OF NETWORK GROWTH

To get a sense of how this sequence of graphs compare to real observed networks, we
investigate the (i) degree distribution, (ii) the assortativity, and (iii) the clustering coeffi-
cients of these graphs. The degree distribution of each graph is shown in the second row of
Figure[5] in which the number of vertices of each graph of a specific degree is plotted vs.
vertex degree on a log-log plot. For each we plot a best-fit line, which is the straight-line
approximation of this data that minimizes the associated R*-value, i.e. coeflicient of deter-
mination, of the original data plotted on a linear-linear plot ignoring zeros. We note that
as the graph is repeatedly specialized the R>-value of these best-fit lines increase mean-
ing that the graph’s degree distribution becomes more power-law like as its topology is
specialized.

The third row of the figure shows a plot of each graph’s assortativity (mean-neighbor
degree), which is plotted vs. the degree of each vertex. As the graph is specialized we
see a strong downward trend, meaning that, on average, vertices with a large number of
neighbors are increasingly connected to vertices that have a small number of neighbors.
That is, the network becomes increasingly disassortative as it is specialized.

The last row in Figure [5] displays the clustering coefficient for each graph plotted vs.
vertex degree on a log-log plot. Again, for each we plot a best-fit line. As can be seen in
the figure the graph evolves under the rule r = rg; in such a way that its distribution of
clustering coefficients becomes more and more colinear meaning that this distribution is
becoming increasingly like a power-law.

For this sequence of graphs we also track how the mean distance between all pairs
of vertices change with each iteration. This is shown in Figure [6| where each point is
an iterate’s mean shortest-distance between all pair of vertices plotted vs. the number of
vertices in the graph. These points are then fit with the logarithmic function L(j) = logﬁ(c J)
with base 8 ~ 2.35 and some constant c. As this fit is quite good (R? = 0.999598),
suggesting that this sequence of specializations has what is referred to as the small-world
property (or small-world effect).

To better establish that specialization under r = r, leads to graphs (networks) with
the real-world properties (i)-(iv) we create a thousand realizations of this process and in-
vestigate the statistics of this ensemble of specializations. For each trial we start with a
randomly generated undirected, connected graph G with ten vertices and fifteen edges as
in Figure [5 and sequentially specialize the graph using the rule rg;. Once the (th iterate
“(G) has at least a thousand vertices we stop this process.

We then investigate properties (i)-(iii) of the collection of first iterate, the second iter-
ates, and so on, until we reach the collection of twelfth iterates. For property (i), degree
distribution, we take the collection of ¢th iterates for £ = 0,1, ..., 12 and to each of these
iterates we again fit a power-law of the form D(j) = c¢j” to each graph’s degree distri-
bution. The result is a collection of y-values from which we find the mean, median, and
first and third quartile-values. We plot these four values for each collection of ¢th iterates.
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Figure 6. For the graph G in Figure [5] and the rule r = ryg;, the
mean shortest-distance between every pair of vertices in the graphs
G, r(G),...,r'(G) is plotted vs. each graph’s number of vertices. As this
data can be fit quite well by a function of the form L(j) = logﬁ(c J), this
suggests that G evolves with the small-world property under the rule r.

This is shown in the top-left of Figure (7l For each power-law fit we compute an R>-value
and similarly plot the mean, median, and first and third quartiles for each iterate in the
bottom-left of Figure

It is worth noting that as the graphs grow the average value of y quickly increases to
roughly 1.5 where it stays for the remainder of these iterations. Similarly, the average R*-
value rises to roughly 0.7. Although R? is not extremely close to 1, which would indicate
a perfect power-law fit, it is nonetheless quite high suggesting that as a graph is repeatedly
specialized using the rule r = rg; the result is a graph (network) with a power-law like
degree distribution.

Similarly, for property (i), assortativity, we similarly fit a power-law of the form A(j) =
cj~" to each graph’s mean-neighbor degree distribution. The result is a collection of 7-
values from which we again find the mean, median, and first and third quartile-values. We
plot these values for each collection of (th iterates along with the quantities associated
with the R*-values. These are shown in the top-middle and bottom-middle of Figure
respectively. For property (iii), the distribution of clustering coefficients, we similarly fit
a power-law of the form C(j) = ¢j~* to each graph’s distribution of clustering coefficients
and find the average, media, and first and third quartile-values for each collection of it-
erates. These values along with the associated R>-values are shown in the top-right and
bottom-right of Figure (/| respectively.

These plots indicate that a typical graph develops and/or maintains disassortativity in its
mean-neighbor degree distribution as its best-fit line has a nearly constant negative slope
under the rule r. Additionally, these numerics indicate, especially the R>-values, that a
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Ficure 7. Statistical properties are shown for a thousand sequential spe-
cializations of a randomly generated graph with 10 vertices and 15 edges
under the rule r = ry9;. Each graph is sequentially specialized until it
has at least one-thousand vertices. The average, mean, and first and third
quartiles-values of the quantities y, n, and a representing degree, assortativ-
ity, and clustering coeflicients, respectively, are shown for each collection
of (th iterates for £ = 1,...,12. The mean is shown in green, the median
in red, and the first and third quartile-values in blue. The corresponding

R?-values are also shown using the same convention.

graph quickly develops a clustering coefficient distribution that has a power-law similar
what is found in real networks. Hence, in summary, these numerics suggest properties
(1)-(ii1) of real networks are either developed or maintained by sequentially specializing a
graph under the rule r = rg;. (Property (iv) is not considered in this case as it is a property
of a collection of iterations not a single iterate.)

It is worth noting that the data gathered in Figure [/| is done using the specific value
p = .91. To further investigate how graphs evolve under the rule r = r, we also consider
a range of p-values. In doing so, the idea is to track how properties (i)-(iv) change in
response to a change in p. For each value of p, as before, we start with a random graph
G on ten vertices and fifteen edges. We then sequentially specialize using r = r, until
r/(G) has at least one-thousand vertices, so that 7/(G) is the final graph in this sequence
of specializations. Repeating this process a thousand times we create a thousand “final”
graphs for this particular p-value.

Similar to figure|/, we plot the average, median, and first and third quartile-values of y =
v(p), n =n(p), @ = a(p), and B = B(p) corresponding to properties (i)-(iv), respectively for
p =0.6,0.62,0.64,...,0.98. The quantity 3 is the base of the logarithm S (j) = logs(c})
the pairwise shortest mean distance plot of a sequence of graph specializations (cf. Figure



SPECIALIZATION MODELS OF NETWORK GROWTH 15

26
0.8 185
| 180 25
18 06 175 24
Y Moa a'o Bas
16 1.65
0.2fe e 1.60 —] 22
1.55 21
00 1.50 20

60 65 70 75 80 85 90 95 60 65 70 75 80 85 90 95 60 65 70 75 80 85 90 95 60 65 70 75 80 85 90 95

1.00
o8 \_N’\/"x\,‘
_—

0.97 099 e

5 2

) /\M\/ R o0

95

y /\/_N 0.997
0.93

0.0! 0.0 0.996
60 65 70 75 B0 85 90 95 60 65 70 75 80 85 90 95 60 65 70 75,80 85 90 95 60 65 70 75 80 85 90 95
p-axis p-axis p-axis p-axis

=
ooMcc
/7
)
%
k\\\
I

FiGure 8. For the values p = 0.6,0.62,0.64, .. .,0.98 a thousand graphs are
sequentially specialized under the rule r = r,,. The statistical properties of
each collection of specializations are shown above including the average,
mean, and first and third quartiles-values of the quantities y(p), n(p), a(p),
and B(p). These represent the degree distribution, assortativity, clustering
coeflicients, and small-world property, respectively. The mean is shown in
green, the median in red, and the first and third quartile-values in blue. The
corresponding R*-values are also shown using the same convention.

[6). Hence, we have one-thousand values for each of y, n, @ and S for each value of p we
consider.

The plot of the average, media, and first and third quartile-values for each of vy, n, «,
and S are shown in Figure |8l We also show the corresponding R>-values for each of these
approximations. In this figure the quantity y shows a monotonically decreasing trend as
does its R*-values. Interestingly, if this trend continues through all values of p € (0, 1)
then for p € (0, 0.45) the average value of y in this range will be between 2 and 3, which
are the values of y typically observed in many real networks [[18]]. The reason we do not
consider the values p € (0, 0.6) in this simulation is that it is computationally prohibitive to
specialize graphs over these values. That is, for these p-values the graphs grow so quickly
in size, the time required to generate a statistically meaningful number of them is quite
considerable.

For each of the quantities vy, i, @, and 8 we observe a monotone relationship in p, sug-
gesting one can tune the properties of a graph specialized by r = r,, by carefully choosing
p. Moreover, the R*>-values associated with y, «, and S are quite close to 1 for these p-
values indicating that properties (i), (ii1), and (iv) of graphs generated by r = r,, on average
develop these real-world properties as they are specialized under r = r,,. Property (ii) does
not have a high R2-value but this is not an issue as observations of real networks find only
a negative (or positive) trend in a networks mean-neighbor degree distribution. Here we
see a negative and therefore disassortative trend for each p-value we consider.
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4. SPECIALIZATION EQUIVALENCE

As mentioned before Example there are two types of specialization rule; those that
select a unique base vertex subset and those that do not. For instance, the random special-
ization rule in Example 3.1|does not select unique bases. We refer to 1 as a structural rule
if it does select a unique nonempty subset of vertices from any graph G. For instance, T
could be the rule that selects all vertices with a certain number of neighbors, or eigenvec-
tor centrality, etc. (cf. example {.T)). An important property of structural rules is that they
gives us a way of comparing the topologies of two distinct networks. In particular, any
such rule allows us to determine which networks are similar and dissimilar with respect to
the rule 7.

To make this precise we say two graphs G = (Vi,E|,wy) and H = (V,, E», w,) are
isomorphic if there is a relabeling of the vertices of V; such that G = H as weighted
digraphs. If this is the case, we write G =~ H. The idea is that two graph are similar with
respect to a rule 7 if they both evolve to the same, i.e. isomorphic graph, under this rule.
This allows us to partition all graphs, and therefore networks, into classes of similar graphs
with respect to a structural rule 7. This can be stated as the following result.

Theorem 1. (Specialization Equivalence) Suppose 7 is a structural rule. Then T induces
an equivalence relation ~ on the set of all weighted directed graphs where G ~ H if
7(G) = 7(H). If this holds, we call G and H specialization equivalent with respect to 1.

Proof. For any G = (V, E, w) and structural rule 7 the set 7(V) C V is unique implying
the graph 7(G) = 8;)(G) is unique up to a labeling of its vertices. Clearly, the relation
of being specialization equivalent with respect to 7 is reflexive and symmetric. Also, if
7(G) ~ 17(H) and 7(H) =~ 7(K) then there is a relabeling of the vertices of 7(G) such
that 7(G) = v(H) and of 7(K) such that 7(K) = 7(H). Hence, 7(G) = 7(K) under some
relabeling of the vertices of these graphs implying 7(G) ~ 7(K). This completes the
proof. O

Theorem I]states that every structural rule 7 can be used to partition the set of graphs we
consider, and by association all networks, into subsets. These subsets, or more formally
equivalence classes, are those graphs that share a common topology with respect to 7. By
common topology we mean that graphs in the same class have the same set of component
branches and therefore evolve into the same graph under 7.

One reason for studying these equivalence classes is that it may not be obvious, and
most often is not, that two different graphs belong to the same class. That is, two graphs
may be structurally similar but until both graphs are specialized this similarity may be
difficult to see. One of the ideas introduced here is that by choosing an appropriate rule 7
one can discover this similarity as is demonstrated in the following example.

Example 4.1. (Specialization Equivalent Graphs) Consider the unweighted graphs G =
(V1,Ey)) and H = (V,, E,) shown in Figure [9] Here, we let £ be the rule that selects all
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Ficure 9. The graph G and the graph H are specialization equivalent with
respect to the rule ¢ that selects those vertices of a graph that have loops.
That is, the graphs £(G) and ¢(H) are isomorphic as is shown.

vertices of a graph that have loops, or all vertices if the graph has no loops. The vertices
of G and H selected by the rule ¢ are the vertices highlighted (red) in Figure [9]in G and
H, respectively. Although G and H appear to be quite different, the graphs ¢(G) and ¢(H)
are isomorphic as is shown in Figure [9 (center). Hence, G and H belong to the same
equivalence class of graphs with respect to the structural rule .

It is worth mentioning that two graphs can be equivalent under one rule but not another.
For instance, if w is the structural rule that selects vertices without loops then w(G) # w(H)
although ¢(G) ~ {(H).

From a practical point of view, a specialization rule 7 allows those studying a particular
class of networks a way of comparing the specialized topology of these networks and
drawing conclusions about both the specialized and original networks. Of course, the rule
7 should be designed by the particular biologist, chemist, physicist, etc. to have some
significance with respect to the networks under consideration.

5. CoNCLUDING REMARKS

In this paper we introduce a class of models of network formation, which we refer to
specialization models of network growth. These models are based on the observation that
most, if not all, real networks specialize the function of their components as they evolve.
As a first observation we note that by specializing a network via this model the result is a
network whose topology becomes sparser, more modular, and more hierarchical. This is
particularly relevant since each of these properties is found throughout networks studied
in the biological, technological, and social sciences.

Our method of specialization is highly flexible in that a network can be specialized over
any subset of its elements, i.e. any network base. Since so many bases are possible, a
natural question is, given a particular real-world network can we find a rule that generates
a base that can be used to accurately model this network’s growth.
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To give evidence that this is possible, we consider the simple rule that randomly selects
a certain percentage of a network’s elements. We show numerically that this rule evolves
the topology of a network in ways that are consistent with the properties widely observed
in real networks. This includes (i) having a degree distribution that follows a power-law,
i.e. being scale-free, (i1) having a disassortative property, (iii) having a high clustering
coefficient, and (iv) having the small-world property. So far as the authors know this is
the only such model to capture these properties that also creates an increasingly sparse,
modular, and hierarchical network topology.

Additionally, we show how certain specialization rules, which we refer to as structural
rules, can be used to compare the topology of different networks. This notion of similarity,
which we refer to as specialization equivalence, can be used to partition all networks into
those that are similar and dissimilar with respect to a given rule 7. It is worth emphasizing
that in practice it is important that this rule be designed by the particular biologist, chemist,
physicist, etc. to have some significance with respect to the nature of the networks under
consideration.

The notion of specialization and the associated specialization growth model introduced
in this paper also lead to a number of open questions, a few of which we mention here. The
first, and likely most important, is whether specific specialization rules can be designed to
model the growth of specific networks in a way that captures the network’s “finer details,”
1.e. more than properties (1)-(iv) that are more widely observed in many networks. Such
rules will likely be very network dependent and therefore need to be devised and examined
again by the particular biologist, chemist, physicist, etc. who has some expertise with the
nature of the particular network.

Related to this, properties (i)-(iv) are numerically observed as consequences of special-
izing using the random rule introduced in example [3.1] It is currently unknown whether
these properties can be proven rigorously even for a specific class of initial graphs. More
generally, it is unknown for a given rule 7 and graph G what the spectrum of 7%(G) is as k
increases. Similarly, the topology of the graph 7%(G) as k increases is unknown. That is,
it is unknown what the graph’s asymptotic spectrum and asymptotic topology are going to
be like under 7.

Last, it is worth reiterating that specialization preserves a number of spectral and dy-
namic properties of the network including the network’s eigenvalues, eigenvector central-
ities, and its dynamic stability under mild conditions. These more technical results are
addressed and proven in a following paper.
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