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The von Neumann entropy of a graph is a spectral complexity measure that has re-

cently found applications in complex networks analysis and pattern recognition. Two

variants of the von Neumann entropy exist based on the graph Laplacian and nor-

malized graph Laplacian, respectively. Due to its computational complexity, previous

works have proposed to approximate the von Neumann entropy, effectively reducing

it to the computation of simple node degree statistics. Unfortunately, a number of

issues surrounding the von Neumann entropy remain unsolved to date, including the

interpretation of this spectral measure in terms of structural patterns, understanding

the relation between its two variants, and evaluating the quality of the corresponding

approximations.

In this paper we aim to answer these questions by first analysing and comparing

the quadratic approximations of the two variants and then performing an extensive

set of experiments on both synthetic and real-world graphs. We find that 1)

the two entropies lead to the emergence of similar structures, but with some

significant differences; 2) the correlation between them ranges from weakly positive

to strongly negative, depending on the topology of the underlying graph; 3) the

quadratic approximations fail to capture the presence of non-trivial structural

patterns that seem to influence the value of the exact entropies; 4) the quality of

the approximations, as well as which variant of the von Neumann entropy is bet-

ter approximated, depends on the topology of the underlying graph. Graph, Entropy.

a) Corresponding author

1

http://arxiv.org/abs/1809.07533v1


I. INTRODUCTION

Complex networks provide a natural way to model the underlying structure of a large

number of biological, social, and technological systems. Examples of such systems include

metabolic networks18, brain networks7, social networks8, collaboration networks20, and trans-

port networks15. The ability to measure the complexity of these networks plays a central

role in the analysis of the corresponding systems. Intuitively, the complexity of a network

should capture the level of organization of its structural features, e.g., the scaling behaviour

of its degree distribution. To this end, a number of entropic complexity measures have been

proposed in the past years1,2,5,12,14,26.

The von Neumann entropy of a network was introduced by Braunstein et al.6 and then

analyzed further in a number of later works1,2,9,10,13,26,28. The intuition behind this measure

is that of associating graphs to density matrices and measuring the complexity of the graphs

in terms of the von Neumman entropy of the corresponding density matrices. This in turn

is based on the mapping between quantum states and the combinatorial graph Laplacian

proposed by Braunstein et al.6. In26, Passerini and Severini briefly investigated the use of the

normalized Laplacian, although their analysis mainly focused on the unnormalized version.

In both cases, a necessary step is the computation of the eigenvalues of the (normalized)

graph Laplacian. This has computational complexity quadratic in the number of nodes of

the network, thus making the application to large networks unfeasible.

Han et al.16 sought to overcome this by looking at the second order polynomial approxi-

mation of the Shannon entropy. They considered the von Neumann entropy obtained from

the normalized graph Laplacian and they showed that its quadratic approximation can be

computed in terms of degree statistics. A similar result was obtained by Lockhart et al.21

for the graph Laplacian. With this approximation to hand, the von Neummann network

entropy has found applications in the analysis of several real-world networks16,27,31 as well

as in pattern recognition3,17. More recently, Simmons et al. showed that the von Neumann

entropy can be used as a measure of graph centralization28, i.e., the extent to which a graph

is organized around a number of central nodes. Unfortunately, due to the spectral nature of

this measure, it remains unclear how different structural patterns influence its value. Despite

several attempts, a general structural interpretation of the von Neumann entropy remains

an open problem.
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In this paper, our aim is three-fold. We intend to: 1) shed light on the relation between

the structure of a network and its von Neumann entropy, both for the version based on the

graph Laplacian and the normalized Laplacian, thus also 2) deepening our understanding of

the difference between these two entropies; 3) evaluate the quality of the quadratic approxi-

mation. Han et al.16 also briefly analysed the accuracy of the quadratic approximation, but

only for the version of the von Neumann entropy based on the normalized Laplacian. As

explained in Section IV, their analysis is also strongly influenced by the use of datasets with

graphs of varying size, whereas our experimental evaluation is on datasets of fixed graph

size. Finally, in the present work we are particularly interested in looking at how different

edges contribute to the overall graph entropy, revealing additional inaccuracies introduced

by the quadratic approximation.

Our analysis shows that:

• the two versions of the von Neumann entropy based on the Laplacian and normalized

Laplacian (respectively) are connected to the presence of similar structural patterns,

although with some significant differences;

• the correlation between these two entropic measures ranges from weakly positive to

strongly negative, depending on the underlying graph structure;

• the quadratic approximations fail to explain the presence of non-trivial structures

observed when the growth is driven by the exact entropies;

• the quality of the approximations, as well as which variant of the von Neummann

entropy is better approximated, depends on the topology of the underlying graph;

The remainder of this paper is organized as follows: Section II introduces the necessary

mathematical and physical background. Section III introduces the quadratic approximation

of the two variants of the von Neumann entropy considered in this paper. In Section IV we

empirically compare the exact and approximated entropies. Finally, Section V discusses the

results of our investigation and concludes this paper.
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II. BACKGROUND

A. Quantum states and density matrices

In quantum mechanics, a system can be either in a pure state or a mixed state. Using the

Dirac notation, a pure state is represented as a complex-valued column vector |ψi〉. A mixed

state, on the other hand, is a statistical ensemble of pure states |ψi〉, each with probability pi.

Density matrices are trace-one positive semidefinite matrices introduced to describe mixed

state systems23. For such a system, ρ =
∑

i pi |ψi〉 〈ψi|, where |ψi〉 is a pure state and pi is

the probability associated to it. Density matrices play a pivotal role in quantum mechanics

and are linked with the observables of quantum systems, e.g., the expectation value of the

measurement of an observable O is 〈O〉 = tr(ρO).

B. The von Neumann entropy

Given a quantum mechanical system described by a density matrix ρ, its von Neumann

entropy23 is defined as

S(ρ) = − tr(ρ ln ρ), (1)

where tr denotes the trace operator and ln denotes the matrix logarithm. The von Neumann

entropy of ρ can also be computed as the Shannon entropy of the spectrum of ρ, i.e.,

S(ρ) = −
n
∑

i=1

λi lnλi (2)

where λi denotes the i-th eigenvalue of ρ, with the convention 0 ln 0 = 0.

The von Neumann entropy measures the maximum amount of classical information that

we can extract from a mixture of pure states30. It has also been extensively used in the

literature to study correlated systems and to define entanglement and distinguishability

measures22,24,25. Finally note that the von Neumann entropy of a pure state ρ = |ψi〉 〈ψi| is

always zero. On other hand, a mixed state always has non-zero entropy. Therefore, the von

Neumann entropy S(ρ) can also be seen as a measure of how close ρ is to being a pure state.
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C. Graph density matrices

Let G be an undirected graph with vertex set V and edge set E ⊆ V × V . Recall that

the adjacency matrix of the graph G is the symmetric matrix with elements

Auv =







1 if (u, v) ∈ E

0 otherwise
(3)

Let D be the diagonal matrix with elements du =
∑n

v=1A(u, v), where du is the degree of

the node u. Then L = D − A is the graph Laplacian, the combinatorial analogue of the

Laplace-Beltrami operator19.

Braunstein et al.6 proposed to use the graph Laplacian to map graphs to quantum states.

More specifically, let G be a graph with Laplacian L, then its density matrix is defined as

ρ(L) = L
tr(L)

= L
2m

, where m denotes the number of edges of G. Passerini and Severini26 pro-

posed an alternative version of the von Neumann entropy for graphs based on the normalized

Laplacian L = D−1/2LD−1/2. Given a graph G with n nodes and normalized Laplacian L,

they define the density matrix of G as ρ(L) = L
tr(L)

= L
n
.

D. The von Neumann entropy of a Graph

With the density matrix of a graph to hand, one can compute its von Neumann entropy

using either Eq. 1 or Eq. 2. In the remainder of this paper, we refer to the von Neumann

entropies computed on ρ(L) and ρ(L) as the Laplacian entropy and normalized Laplacian

entropy, respectively.

A number of previous works have made steps toward a general interpretation of the

Laplacian entropy, although this remains an open problem1,2,9,10,13,26. Passerini and Sev-

erini26 have observed that the Laplacian entropy of a graph tends to grow with the number

of connected components, long paths and nontrivial symmetries. They have also shown that

the Laplacian entropy of a graph G is upper bounded by ln(n − 1), where n denotes the

number of nodes of G, and that this upper bound is saturated by both complete graphs and

regular graphs (for large n), suggesting that the Laplacian entropy can be interpreted as a

measure of regularity. Du et al.13 proved that the same bound holds also for Erdös-Rényi

random graphs, highlighting a connection between randomness and regularity. In1, the au-

thors showed that for scale free networks the Laplacian entropy of a graph is linearly related
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to the Shannon entropy of the graph ensemble1. More in general, Anand et al. observed in2

that for graphs with heterogeneous degree distributions there exists a correlation between

these entropies.

De Beaudrap et al. have shown that the Laplacian entropy of a graph can be interpreted

as a measure of the amount of entanglement between a system corresponding to the vertices

and a system corresponding to the edges of the graph10. This in turn allows them to

identify cospectral graphs (i.e., graphs having the same graph spectrum) as graphs with

local unitarily equivalent pure states10. Finally, Dairyko et al.9 show that adding an edge

to a graph can result in a decrease of its Laplacian entropy, i.e., the Laplacian entropy does

not satisfy the subadditivity property11. More recently, Simmons et al.28 have proved that

the Laplacian entropy of a graph is related to both the graph Theil index and the graph

Jain fairness index, highlighting an interesting connection between the Laplacian entropy

and the level of centralization across a graph.

III. QUADRATIC APPROXIMATION OF THE VON NEUMANN

ENTROPY

While the von Neumann entropy entropy of a graph has found many applications in the

analysis of real-world networks3,16,17,31, a major drawback of this entropic measure is the fact

that it requires the computation of the eigenvalues of the (normalized) graph Laplacian. This

has computational complexity which is quadratic in the number of nodes of the network,

thus making the application to large networks unfeasible.

For this reason, a number of researchers resorted to a quadratic approximation of the

entropy16,21,31. Although this only captures simple degree statistics of the graph, Han et

al.16 show that for Erdös-Rényi, scale-free, and Delaunay graphs this is a sufficiently good

approximation. However their analysis is limited to the normalized Laplacian entropy, and

does not consider the unnormalized version. In fact, to the best of our knowledge, no

previous study has investigated the difference between the Laplacian and the normalized

Laplacian entropies. Interestingly, despite a lack of evidence suggesting that one formulation

should be preferred to the other, most works in the literature make use of the normalized

version3,16,17,31.

One of the main aims of this paper is indeed that of shedding light on the differences
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between these two formulations. To this end, we rewrite the Shannon entropy −
∑

i λi ln(λi)

using the second order polynomial approximation k
∑

i λi(1 − λi), where the value of k

depends on the dimension of the simplex. Given a graph G, let ρ(G) denote its associated

density matrix, i.e., ρ(G) is either ρ(L) or ρ(L). We obtain

S(ρ) = − tr (ρ ln ρ) ≈ tr (ρ(In − ρ)) , (4)

where n is the number of nodes of G, In is the n×n identity matrix and we the ignored the

node set size-dependent factor |V | ln(|V |)
|V |−1

.

In the next subsections we look at the specific form of these approximations in the case

of the Laplacian and normalize Laplacian entropies. We also derive the expressions for the

change in approximated entropy when a single edge is added to the graph, which in turn

allows us to shed light on the type of structures that lead to maximal entropy changes.

A. Laplacian

We start by considering the Laplacian entropy. Recall that in this case ρ(L) = L
2m

, where

m denotes the number of edges of G. Using simple algebra, we can rewrite Eq. 4 as

S(ρ(L)) ≈ 1−
1

2m
−

1

4m2

∑

v∈V

d2v (5)

In other words, the quadratic approximation of the Laplacian entropy can be expressed

in terms of simple degree statistics. More interestingly, this allows us to probe into the

behaviour of the (approximated) Laplacian entropy as the edge set of the graph grows.

This was already investigated numerically in Passerini and Severini26, but the quadratic

approximation allows us to get a deeper analytical insight, although dependent on the ap-

proximation.

Let ∆(ρ(L)) = S(ρ(L∪(x,y)))− S(ρ(L)) be the increment in entropy when a new edge is
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added to a graph G. From Eq. 5, we see that

∆(ρ(L)) ≈
1

2m
+

1

4m2

∑

v∈V

d2v −
1

2(m+ 1)
−

1

4(m+ 1)2

(

∑

v 6=x,y

d2v + (dx + 1)2 + (dy + 1)2

)

=
1

2m(m+ 1)
−

1

4m2(m+ 1)2

(

(m+ 1)2
∑

v∈V

d2v −m2

(

∑

v 6=x,y

d2v + (dx + 1)2 + (dy + 1)2

))

=
1

2m(m+ 1)
−

1

4m2(m+ 1)2

(

(2m+ 1)
∑

v∈V

d2v − 2m2(dx + dy + 1)

)

=
1

2m(m+ 1)
−

2m+ 1

(m+ 1)2

(

1−
1

2m
− S̃(ρ(L))

)

−
dx + dy + 1

2(m+ 1)2

=−
dx + dy

2(m+ 1)2
−

1 + (2m+ 1)(1− S̃(ρ(L))

(m+ 1)2
, (6)

where S̃(ρ(L)) denotes the approximated Laplacian entropy. Eq. 6 indicates that edges

connecting low degree nodes produce the maximum increment in the graph entropy, while

connecting high degree nodes has the opposite effect. This in turn suggests that highly

regular graphs with low average degree will be assigned higher values of the approximated

Laplacian entropy. This is also the case for the exact version of the Laplacian entropy, as

shown in Section IV.

Note, however, that this does not explain the emergence of structures such as long paths,

connected components, and non-trivial symmetries observed by Passerini and Severini in the

Laplacian entropy26 and confirmed in our experimental evaluation. Indeed, the quadratic

approximation provides an interesting but incomplete picture of the structural patterns

captured by the Laplacian entropy.

B. Normalized Laplacian

We now consider the normalized Laplacian entropy. In this case ρ(L) = L
n
, where n

denotes the number of nodes of G. We can rewrite Eq. 4 as

S(ρ(L)) ≈ 1−
1

n
−

1

n2

∑

(u,v)∈E

1

dudv
, (7)

as previously observed by Han et al.16. As for the Laplacian entropy, the quadratic approx-

imation is based on simple degree statistics. Unlike the approximated Laplacian entropy,

however, Eq. 7 shows that the approximated normalized Laplacian entropy is defined in

terms of degree statistics for pairs of nodes that are connected by edges.
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As in the previous subsection, we now turn our attention to the increment in entropy

when the edge set of G grows. Let ∆(ρ(L)) = S(ρ(L∪(x,y)))−S(ρ(L)) denote this increment.

Then let Nx and Ny denote set of vertices connected to x and y in G (before introducing

the edge (x, y)), respectively. We have that

∆(ρ(L)) ≈−
1

n2

(

∑

v∈Nx

1

dv(dx + 1)
+
∑

v∈Ny

1

dv(dy + 1)
+

1

(dx + 1)(dy + 1)

−
∑

v∈Nx

1

dvdx
−
∑

v∈Ny

1

dvdy

)

=−
1

n2

(

dx − (dx + 1)

dx(dx + 1)

∑

v∈Nx

1

dv
+
dy − (dy + 1)

dy(dy + 1)

∑

v∈Ny

1

dv
+

1

(dx + 1)(dy + 1)

)

=
1

n2

(

1

dx(dx + 1)

∑

v∈Nx

1

dv
+

1

dy(dy + 1)

∑

v∈Ny

1

dv
−

1

(dx + 1)(dy + 1)

)

=
1

n2

(

1

(dx + 1)H(dNx
)
+

1

(dy + 1)H(dNy
)
−

1

(dx + 1)(dy + 1)

)

, (8)

where H(dNx
) and H(dNy

) denote the harmonic means of the degrees of the vertices in Nx

and Ny, respectively. Compared to Eq. 6, Eq. 8 shows a more complex relation between

the node degrees and the graph entropy. The third term of the last line of Eq. 8 drives the

entropy change in the opposite direction of Eq. 6, as maximizing (minimizing) the entropy

requires establishing connections between high (low) degree nodes. The first two terms, on

the other hand, highlight the importance of the neighbourhood of the nodes being connected,

with the connection of pairs of low degree nodes with low average degree neighbourhoods

yielding the maximum increment in the entropy of the graph.

C. Discussion

The analysis of the quadratic approximations of the two entropies suggests that these may

be only weakly correlated, if not perhaps negatively correlated, depending on the topology

of the underlying graphs. Note that simply looking at Eq. 5 and Eq. 7 one may conclude

that the correlation between the quadratic approximations of the Laplacian and normalized

Laplacian entropies should be negative. However the actual relation is more subtle, and it is

better understood through Eqs. 6 and 8. In fact, note that while Eq. 5 involves a summation

over the nodes of the graph, Eq. 7 involves a summation over its edges, thus making the
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relation between the two quantities more complex. Indeed, the negative correlation suggested

by Eqs. 5 and 7 is also observed when examining Eqs. 6 and 8, though the second pair

of equations reveals a more subtle relation between the two entropies, with the degree

distribution of the nodes neighbourhoods playing an important role.

As for the exact version of the entropies, it is harder to draw any conclusion on their rela-

tion as we do not know what type of structural information (beyond simple degree statistics)

is being lost in the approximation. In the next section we aim to answer the following ques-

tions: 1) are the Laplacian and normalized Laplacian capturing similar structural patterns?

and 2) can we rely on the quality of their quadratic approximations when the high com-

putational complexity of the exact version becomes an issue? To answer this questions, in

the next section we run an extensive set of numerical experiments on both synthetic and

real-world graphs.

IV. EXPERIMENTS

In the previous sections we have introduced the concepts of (normalized) Laplacian en-

tropy of a graph and its quadratic approximation. This in turn provided us with a partial

intuition of the relation between graph structure and entropy. In this section we aim to val-

idate these initial intuitions with an extensive set of experiments and to investigate further

the relation between the normalized and unnormalized Laplacian entropies, as well as the

quality of their quadratic approximation.

A. Entropy-driven Graph Evolution

We commence by investigating how the structure of a graph changes as we add new nodes

and edges to it. To this end, we introduce a simple growth model where new connections are

established if they maximise (minimise) the graph entropy. We perform the same experiment

for both the Laplacian and the normalized Laplacian entropy, as well as their quadratic

approximations.
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(a) Min LE (b) Max LE (c) Min ALE (d) Max ALE

FIG. 1: Evolution of the edge structure of a path graph over 8 nodes when we iteratively

add edges that (a) minimize and (b) maximize the Laplacian entropy (LE). (c) and (d)

show similar results for the approximate Laplacian entropy (ALE).

1. Edge Growth Model

We first consider the case where the number of nodes is fixed and new edges are iteratively

added to the graph. Fig. 1 shows the first four stages of the evolution of a graph with eight

nodes where the growth process is driven by the Laplacian entropy. Each column of Fig. 1

corresponds to a different choice of the process (maximization or minimization) and entropy

(exact or approximated). Similarly, Fig. 2 shows the results for the normalized Laplacian

entropy.

Figs. 1(c) and (d) confirm what already observed when looking at the quadratic approx-

imation of the Laplacian entropy. Indeed, edges that maximize the approximate Laplacian
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(a) Min NLE (b) Max NLE (c) Min ANLE (d) Max ANLE

FIG. 2: Evolution of the edge structure of a path graph over 8 nodes when we iteratively

add edges that (a) minimize and (b) maximize the normalized Laplacian entropy (NLE).

(c) and (d) show similar results for the approximate normalized Laplacian entropy

(ANLE).

entropy are edges that connect low degree nodes, as shown in Fig. 1(d). In contrast to

Fig. 1(b), where we maximize the exact entropy, in Fig. 1(d) all pairs of nodes with min-

imum degree sum have the same probability of being connected. This is not the case in

Fig. 1(b), where, given two pairs of nodes with equal sum of their degrees, the pair of nodes

with the highest geodesic distance? leads to a higher increment in the entropy. As a result

of this, each new edge added in the Fig. 1(b) seems to act as an axis of symmetry. While

it would be tempting to argue that the latter is evidence of structural symmetries being

picked up by the exact Laplacian entropy as opposed to its approximated version, a quick

numerical investigation proves that this hypothesis is incorrect.
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(a) Erdös-Rényi (b) Scale-free (c) Small world

FIG. 3: Average accuracy when predicting the edge whose addition maximizes the

Laplacian entropy when using four different heuristics, i.e., choose (1) the pair of nodes

with minimum degree sum; (2) the pair of nodes with maximum geodesic distance; (3) the

pair of nodes with minimum degree sum and maximum geodesic distance; (4) a pair of

nodes u and v picked at random, with (u, v) /∈ E.

It is also not true, for a general graph, that the pair of nodes being connected is always

one with minimum degree sum and maximum distance. However the distance between

the nodes being connected clearly plays a role, together with a number of yet unspecified

structural properties. To show this, we perform the following experiment. Starting from

a random graph G, we use four different heuristics to predict what edge will lead to the

maximum increment of the Laplacian entropy. Each of the four heuristics selects the pairs

of nodes that optimize the following measures, respectively: (1) the pair of nodes with

minimum degree sum (which corresponds to the structural information contained in the

approximated Laplacian entropy); (2) the pair of nodes with maximum geodesic distance;

(3) the pair of nodes with minimum degree sum and maximum geodesic distance; (4) a pair

of nodes u and v picked at random, with (u, v) /∈ E. The prediction accuracy of a heuristic

is computed as the fraction of edges it identified correctly. Fig. 3 shows the results for the

different random graph models, the Erdös-Rényi model, the Watts-Strogatz model, and the

Preferential Attachment model4 (see Section IVB1 for a detailed description of the models

and their parameters). In all cases, the addition of the path length information leads to a

significant increment in the accuracy of the heuristic which solely looks for the pair of nodes

with minimum degree sum. In other words, both degree statistics (captured by the quadratic

approximations) and path length information are important structural patterns captured by

the exact version of the Laplacian entropy. Note also that as the graphs becomes denser

13
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FIG. 4: Top-to-bottom: Average path length, index of dispersion, and average clustering

coefficient at different steps of the temporal evolution of the graphs in Fig. 1.

(which, given a fixed number of nodes, for the three random models considered correspond to

increasing values of p, m, and k, respectively) the path length information loses importance.

This is due to the fact that for sufficient higher densities all pairs of nodes lie at the same

distance from each other.

We also compute a number of statistics that capture different structural properties of the

graph during its evolution, namely the average shortest path length, the index of dispersion

of the degree distribution, and the average clustering coefficient, as shown in Fig. 4. Recall

that the index of dispersion of a distribution measures the ratio of its variance to its mean,

and the clustering coefficient quantifies the degree to which nodes in a graph tend to cluster

together. Fig. 4 highlights once again the differences between the structural information

captured by the Laplacian and the normalized Laplacian entropy, as well as their quadratic
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approximations. The tendency of the process which maximizes the exact Laplacian entropy

to connect low degree nodes is particularly evident in the plots of the index of dispersion.

As explained above, maximizing the (approximated) Laplacian entropy tends to create con-

nections between low degree nodes. This in turn tends to create a regular structure where

each node has the same degree, thus keeping the index of dispersion of the degree distribu-

tion low throughout the graph evolution. Note that this does not happen when maximizing

or minimizing the (approximated) normalized Laplacian entropy. The difference between

the exact Laplacian entropy and its approximated version is instead clear by looking at the

average clustering coefficient. By connecting nodes that have both low degree sum and high

distance, maximizing the exact Laplacian entropy keep the clustering coefficient as it effec-

tively attempts to avoid creating triangles, at least in the first stages of the evolution. This

however does not happen for the approximated Laplacian entropy, where the connection of

two nodes with a common neighbour introduces a new triangle and thus increases the value

of the average clustering coefficient.

2. Node Growth Model

We also consider the case of graph where the both the number of nodes is not fixed over

time. Instead, at each time step we add a new node and we connect it to the m nodes that

lead to a maximal increment of the entropy. Each column in Fig. 5 corresponds to a different

choice of the process (maximization or minimization) and entropy (exact or approximated).

Similarly, we show the results of the same experiment for the normalized Laplacian entropy

in Fig. 6. In both cases we start from a clique over three nodes. We only show the results

for m = 1, as we observe the same behaviour for larger values of m. In contrast to the edge

growth model, here maximizing (minimizing) the exact and approximated entropies yields

the same structural evolution. Interestingly, while minimizing the (approximated) Laplacian

entropy yields the formation of hubs, minimizing the (approximated) normalized Laplacian

entropy leads to the formation of a long tail of low degree nodes. We observe opposite be-

haviour when maximizing the (approximated) Laplacian and normalized Laplacian entropy,

respectively.
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(a) Min LE (b) Max LE (c) Min ALE (d) Max ALE

FIG. 5: Evolution of the graph structure when we iteratively add a new node and we

connect it to the graph so as to (a) minimize and (b) maximize the Laplacian entropy

(LE). (c) and (d) show similar results for the approximate Laplacian entropy (ALE). Here

the seed graph is a clique over 3 nodes.

B. Experiments on Random Graphs

While the previous experiments gave us some first interesting insights in the nature of

the structural pattern captured by the (approximated) Laplacian and normalized Laplacian

entropies, in this section we aim to perform a more thorough analysis of the two entropies

and their approximated versions on a large set of synthetically generated graphs.
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(a) Min NLE (b) Max NLE (c) Min ANLE (d) Max ANLE

FIG. 6: Evolution of the graph structure when we iteratively add a new node and we

connect it to the graph so as to (a) minimize and (b) maximize the normalized Laplacian

entropy (NLE). (c) and (d) show similar results for the approximate normalized Laplacian

entropy (ANLE). Here the seed graph is a clique over 3 nodes.

FIG. 7: We choose the optimal value of p in order to generate graphs displaying the

small-world property29.
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1. Datasets

We perform our experiments on synthetic networks generated by three well-known ran-

dom graph models: 1) the Erdös-Rényi model, 2) the Watts-Strogatz model and 3) the

Preferential Attachment model4. For each model we vary its parameters as explained below,

except from the number of nodes, which is fixed to n = 100 in all three cases. This is to

control for the well-known dependency between the value of the von Neumann entropy of

a graph and its vertex set size, which would otherwise skew the results of our correlation

study. This is particularly evident when our results are compared to those of Han et al.16,

where no such control was introduced.

Erdös-Rényi model: the graphs in this dataset are generated by varying the parameter

p, namely the probability of connecting two nodes, between 0.1 and 0.9. Unless otherwise

stated, for each choice of p we generate 100 instances, for a total of 900 graphs.

Preferential Attachment model: the parameter of this model is m, i.e. the number

of edges to add from a new node to the existing nodes, at each temporal iteration. We let

m vary from 2 to 10, and, unless otherwise stated, we generate 100 instances for each choice

of m, for a total of 900 graphs.

Watts-Strogatz model: here the model parameters are k and p. Starting from a ring

graph where each node is connected to its k nearest neighbours, we rewire each edge with

probability p. When p = 0, the graph is regular. As p increases the graph structure

becomes more random. We follow the quantitative metric presented in29 to measure the

small-worldness of a graph and we select the value of p = 0.1, as shown in Fig. 7. More

precisely, in29 the authors propose a way to measure the small-worldness of a network based

on the original model described by Watts and Strogatz, comparing the network clustering

coefficient to an equivalent lattice network and the path length to a random network. This

in turn ensure that the generated graphs display the small-worldness property29, i.e., they

simultaneously have high clustering coefficient and low path length. As for the parameter

k, we let it vary from 2 to 10. Unless otherwise stated, we generate 100 instances for each
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FIG. 8: Entropies correlations on the Erdös-Rényi graphs for p = 0.1 (top), p = 0.4

(middle), and p = 0.7 (bottom).
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FIG. 9: Correlation between entropy and number of edges for Erdös-Rényi graphs with

p = 0.1.

choice of k, for a total 900 graphs.

2. Correlation Analysis

With the synthetic graph datasets to hand, we perform a correlation study between the

various version of the von Neumann entropy considered so far. More specifically, we measure

the Pearson correlation coefficient (denoted as ρ in Figs. 8-11) between 1) the approximate

and exact Laplacian entropy, 2) the approximate and exact normalized Laplacian entropy,

19



0.82 0.84 0.86 0.88 0.9

LE

0.94

0.95

0.96

0.97

0.98

A
LE

� = 0.96

0.94 0.95 0.96

NLE

0.9855

0.986

0.9865

0.987

0.9875

A
N

LE

� = 1

0.94 0.95 0.96 0.97 0.98

ALE

0.9855

0.986

0.9865

0.987

0.9875

A
N

LE

� = -0.56

0.82 0.84 0.86 0.88 0.9

LE

0.94

0.945

0.95

0.955

0.96

0.965

N
LE

� = -0.75

0.91 0.92 0.93 0.94 0.95

LE

0.977

0.978

0.979

0.98

0.981

0.982

0.983

0.984

A
LE

� = 0.96

0.98 0.981 0.982 0.983

NLE

0.98835

0.9884

0.98845

0.9885

0.98855

0.9886

A
N

LE

� = 0.99

0.976 0.978 0.98 0.982 0.984

ALE

0.98835

0.9884

0.98845

0.9885

0.98855

0.9886

A
N

LE

� = -0.58

0.91 0.92 0.93 0.94 0.95

LE

0.98

0.9805

0.981

0.9815

0.982

0.9825

0.983

N
LE

� = -0.74

0.94 0.945 0.95 0.955 0.96

LE

0.9825

0.983

0.9835

0.984

0.9845

0.985

0.9855

0.986

A
LE

� = 0.97

0.987 0.9875 0.988 0.9885 0.989

NLE

0.98896

0.98898

0.989

0.98902

0.98904

0.98906

0.98908

A
N

LE

� = 0.99

0.982 0.983 0.984 0.985 0.986

ALE

0.98896

0.98898

0.989

0.98902

0.98904

0.98906

0.98908

A
N

LE

� = -0.67

0.94 0.945 0.95 0.955 0.96

LE

0.9874

0.9876

0.9878

0.988

0.9882

0.9884

0.9886

0.9888

N
LE

� = -0.76

FIG. 10: Entropies correlation on the scale-free graphs for m = 1 (top), m = 3 (middle),

and m = 5 (bottom).

3) the exact Laplacian entropy and the exact normalized Laplacian entropy, and 4) the

approximate Laplacian entropy and the approximate normalized Laplacian entropy. Note

that, for each model and each choice of the model parameters (see Section IVB1), we

generate 1000 graphs.

Fig. 8 shows the results of the correlation analysis on the Erdös-Rényi graphs. The first

column refers to the Laplacian entropy, the second one to the normalized Laplacian entropy,

whereas the third and fourth columns concern the approximate and exact formulation. Here,

we consider three choices of p. We first observe that there exists a strong correlation between

the exact and approximate versions of each entropy. On the other hand, when we compare

the normalized Laplacian entropy and unnormalized Laplacian entropy, both in their exact

and approximate forms, the correlation becomes weaker. Indeed, as observed in the previous

section, we expect the quadratic approximations of the two entropies to show a weak positive,

or potentially negative, correlation. We posit that the weak positive correlation observed for

Erdös-Rényi graphs is a consequence of the degree distribution of the nodes neighbourhoods

being close to uniform. Interestingly, here we observe that this result holds also for the exact

20



0.924 0.926 0.928 0.93 0.932 0.934

LE

0.984

0.9842

0.9844

0.9846

0.9848

0.985

A
LE

� = 0.99

0.932 0.933 0.934 0.935 0.936

NLE

0.98495

0.985

0.98505

0.9851

0.98515

A
N

LE

� = 0.96

0.984 0.9845 0.985

ALE

0.98495

0.985

0.98505

0.9851

0.98515

A
N

LE

� = -0.46

0.924 0.926 0.928 0.93 0.932 0.934

LE

0.9325

0.933

0.9335

0.934

0.9345

0.935

0.9355

N
LE

� = -0.48

0.961 0.962 0.963 0.964

LE

0.9869

0.987

0.9871

0.9872

0.9873

0.9874

0.9875

A
LE

� = 0.66

0.963 0.964 0.965 0.966 0.967

NLE

0.98748

0.98749

0.9875

0.98751

0.98752

0.98753

A
N

LE

� = 0.33

0.9868 0.987 0.9872 0.9874 0.9876

ALE

0.98748

0.98749

0.9875

0.98751

0.98752

0.98753

A
N

LE

� = -0.2

0.961 0.962 0.963 0.964

LE

0.9635

0.964

0.9645

0.965

0.9655

0.966

0.9665

0.967

N
LE

� = -0.02

0.9735 0.974 0.9745 0.975 0.9755

LE

0.98805

0.9881

0.98815

0.9882

0.98825

0.9883

A
LE

� = 0.48

0.974 0.975 0.976 0.977 0.978

NLE

0.988328

0.98833

0.988332

0.988334

0.988336

0.988338

0.98834

A
N

LE

� = 0.19

0.9881 0.9882 0.9883

ALE

0.988328

0.98833

0.988332

0.988334

0.988336

0.988338

0.98834

A
N

LE

� = -0.12

0.9735 0.974 0.9745 0.975 0.9755

LE

0.9745

0.975

0.9755

0.976

0.9765

0.977

0.9775

N
LE

� = 0.26

FIG. 11: Entropies correlation on the small-world graphs for k = 2 (top), k = 4 (middle),

and k = 6 (bottom).

versions of the entropies. This in turn suggests that the structural patterns captured by the

two entropies are not necessarily the same. This is an important observation, as it implies,

for example, that when using the von Neumann entropy in pattern recognition applications

swapping one entropy for the other is likely not to give the same result.

As for the strong correlation observed between the exact and approximate version of the

normalized Laplacian entropy, this is likely to be due to the tight relationship with the

number of edges of a graph and its normalized Laplacian entropy, as shown in Fig. 9. More

precisely, in Fig. 9 we show the correlation between the number of edges of a graph and its

entropy for Erdös-Rényi graphs with p = 0.1. Indeed, Eq. 7 suggests a strong dependency

between the number of edges of a graph and the quadratic approximation of the normalized

Laplacian entropy. Note however that we do not observe a strong correlation between the

(approximate) Laplacian entropy and the number of edges.

We then continue the correlation study on the set of scale-free graphs generated by

the Preferential Attachment model. The results are shown in Fig. 10. On the one hand,

when we consider the relationship between the approximate and the exact versions of the
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FIG. 12: Average predictability error (± standard error) on Erdös-Rényi graphs.

entropies, we observe a similar behaviour to that seen for the Erdös-Rényi graphs, with a

strong correlation for both the Laplacian and the normalized Laplacian entropy with their

quadratic approximations. Note that in this case, given a pair of values for n and m, the

number of edges of the generated graphs does not vary, so the observed effect cannot be

explained by a varying edge set size.

On the other hand, in this case we observe a negative correlation between the two en-

tropies, both in their exact and approximated versions. The correlation is stronger between

the approximated entropies. Indeed, in Eq. 5 the term −
∑

u∈V d
2
u prevails, whereas in Eq. 7

the leading term is −
∑

(u,v)∈E
1

du dv
. In other words, when a graph contains very high degree

nodes, the Laplacian entropy becomes very small while the normalized counterpart tends to

increase.

We conclude this correlation study on the small-world graphs generated by the Watts-

Strogatz model. As for the scale-free graphs, note for a choice of the parameters n and k

the number of edges in the generate graphs does not vary. Fig. 11 shows a stark contrast

between the results obtained for k > 2 and those obtained for k = 2. To understand why

this happens, recall that k controls the number of neighbours for each node in the initial ring

graph. The higher the value of k, the more robust the graph structure is to the edge flips

that turn the ring into a small-world graph by reducing the average path length. The result

is a quasi-regular ring lattice structure with relatively uniform degree where the approximate

entropy. Since the approximated entropies only capture simple degree statistics, they are

unable to capture the structural differences observed by the exact entropies, which go beyond

22



structural information at degree level. As a consequence, the correlation between the exact

entropies and the approximated ones decreases as k increases, until the two are practically

uncorrelated. However this does not happen when k = 2. In fact, in this case the regularity

of the initial ring graph is easily disrupted by the noise addition process, with the removal

and addition of a few edges causing significant deviations from the initial lattice structure.

3. Edge Predictability

From the previous analyses it is clear that the quality of the quadratic approximations

of exact entropies depend on the topology of the underlying graphs. We have also seen

that the Laplacian and the normalized Laplacian entropies generally capture different types

of structural information. We now take our investigation one step further and we look at

entropic contribution of a single edge, when either the approximate entropy or the exact

entropy ares used. Previous works21 have looked at the entropic content of an edge as a way

to measure its centrality. More in general, our interest is again to understand how well the

quadratic approximations of the Laplacian and normalized Laplacian entropies are able to

capture the contributions of single edges to the overall graph entropy.

We generate three sets of synthetic graphs as described in IVB1. Let G = (V,E) be

one such graph with edge set E ⊆ V × V , where V denotes the node set. For each edge

not in E, we calculate the increase in entropy obtained by adding that connection to the

graph, both for the exact and the approximate form of the entropy. Let listE and listA

be two edge-indexed lists containing the values of the exact and the approximate entropic

increases, respectively. Given listA, we choose the index iM of the edge that leads to the

maximum entropic increment, and the index im of the edge that leads to the minimum

entropic increment. With these indices to hand, we select the corresponding value of the

entropic increment for the same edges in the exact case, i.e., listEiM and listEim. Then, we

define the predictability error for the edge that leads to the maximum entropic increment

as

PrdM = 1−
listEiM

max (listE)
. (9)

Similarly, we define the predictability error for the edge that leads to the minimum entropic

increment as

Prdm = 1−
min (listE)

listEim
(10)
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FIG. 13: Average predictability error (± standard error) on scale-free graphs.

In both cases, the smaller the predictability error the better we are able to approximate the

exact maximum using the quadratic entropy.

Figs. 12, 13, and 14 show how the error changes as we vary the model parameters of the

Erdös-Rényi, Preferential Attachment and Watts-Strogatz model, respectively. We observe

that in general, regardless of the model, the error tends to decrease. In other words, as

graphs become denser the number of non-existing edges decreases and thus it becomes easier

to correctly identify the edges associated to the maximum (minimum) entropic increment.

The only exception is that of the Watts-Strogatz model, where the error first increases and

then decreases, as shown in Fig. 14a. Note that this fits with our previous observation of a

higher correlation between the approximate and exact entropies for this type of graphs when

k = 2. However while in the correlation study we observe that for k > 2 the correlation

decreases, in this case the graph densification appears to dominate and to lead to a decrease

of the observed predictability error.

Interestingly, we see that the predictability error is significantly lower when we are trying

to approximate the Laplacian entropy as opposed to the normalized Laplacian entropy, with

the only exception being that of scale free graphs. This is probably due to an ambiguity

created by the approximate version. Indeed, according to Eq. 6, in order to maximize the

approximate Laplacian entropy, two nodes with low degree should be linked. However, when

we take into account networks whose degree distribution follows a power law, the choice gets

nearly random. More specifically, the formula does not consider the node neighbourhood
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FIG. 14: Average predictability error (± standard error) on small-world graphs.

and thus two nodes belonging to the same hub or two nodes belonging to different hubs

may be indistinctly connected. However, the exact version could be making a distinction

and favouring the connection between nodes belonging to different hubs. This in turn could

be explained as an effort to connect distant nodes, already observed in Fig. 3. Such an

ambivalence between the approximate and exact Laplacian entropy eventually leads to a

poor predictability. On the other hand, Fig. 13b shows no substantial difference between

the two entropies because there is less uncertainty in choosing which pair of nodes (with

high degree) to connected.

C. Experiments on Real-world Networks

We conclude our analysis by considering networks extracted from real-world complex

systems.

1. Datasets

Dataset 1: the USSM dataset is extracted from a database consisting of the daily prices

of 431 companies in 8 different sectors from the New York Stock Exchange (NYSE) and

the Nasdaq Stock Market (NASDAQ). To construct the dynamic network, 431 stocks with

historical data from January 1995 to December 2016 are selected. The dataset is arranged

to be around 5500 trading days. In order to build an evolving network, a time window of 28
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FIG. 15: Correlation between the entropies (top) and entropy and number of edges

(bottom) on the USSM dataset.

days is used and it is moved along time to obtain a sequence (from day 29 to day 5500); in

this way, each temporal window contains a time-series of the daily return stock values over a

28 day period. Afterward, trades among the different stocks are set as a network. For each

time window, we compute the cross correlation coefficients between the time-series for each

pair of stocks and create connections between them if the absolute value of the correlation

coefficient exceeds a threshold. The result is a stock market network which changes over the

time, with a fixed number of 431 nodes and varying edge structure for each of trading days.

Dataset 2: this dataset collects protein-protein interaction PPI networks related to histi-

dine kinase? . Histidine kinase is a key protein in the development of signal transduction.

The graphs describe the interaction relationships between histidine kinase in different species

of bacteria. If two proteins (graph nodes) have direct (physical) or indirect (functional) asso-

ciation, they are connected by an edge. PPIs are collected from 5 different kinds of bacteria

with the following evolution order (from older to more recent): 4 PPIs from Aquifex aeli-

cus and 4 PPIs from Thermotoga maritima, 52 PPIs from Gram-Positive Staphylococcus

aureus, 73 PPIs from Cyanobacteria Anabaena variabilis and 40 PPIs from Proteobacteria

Acidovorax avenae.
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2. Correlation Analysis

The USSM dataset contains a time-evolving complex network consisting of graphs having

components of different sizes. Thus, we selected only some defined instances among the

available ones. Specifically, we chose 707 samples. Each sample has to satisfy two require-

ments: a) being a connected graph, b) having maximum size (431 nodes). The correlation

plots between the entropies are shown in Fig. 15 (top), where ρ denotes the Pearson corre-

lation coefficient. We first observe that the correlation is always strong. This is presumably

due to the fact all instances belong to the same time-varying process, making them intrin-

sically correlated to each other. However, it is worth recalling that another factor may be

causing this dependence. We have already stressed that the entropy can be influenced by

the volume of a graph (i.e., the number of node it contains) as well as by its density (i.e.,

the number of edges it contains). While in this case the volume is fixed, the density changes

over time. Indeed, in Fig. 15 (bottom) we see that the normalized Laplacian entropy of is

highly correlated with the graphs density, in accordance to what already observed in Fig. 8.

The PPI dataset consists of connected graphs with varying number of nodes. Due to the

limited number of graphs in the PPI dataset, we prefer not to restrict our analysis to same

size graphs. Fig. 16 (top) shows the correlation plots for the PPI dataset. Once again, we

observe a high (Pearson) correlation between all pairs of entropies. With the exception of

the Laplacian entropy, this appears to be largely due to the correlation between the entropy

of a graph and its number of edges and nodes (Fig. 16, middle and bottom). Finally, note

that in Fig. 16 σ denotes the Spearman rank correlation coefficient. Indeed, we observed

the existence of a non-linear relation between the entropy and the number of edges (nodes).

V. CONCLUSION

In this paper we have investigated two variants of the von Neumann entropy of a graph,

based on the normalized and unnormalized Laplacian, respectively. With their quadratic

approximations to hand, we have studied the entropic change as the new edges are added

to the graph, giving new insight in the type of structural patterns that influence the value

of the (approximated) entropy.

We performed an extensive set of experiments which showed that 1) the Laplacian and
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FIG. 16: Correlation between entropies (top), entropy and number of nodes (middle) and

edges (bottom) on the PPI dataset.

the normalized Laplacian entropies capture the presence of related yet different structural

patterns, 2) the quadratic approximation fail to explain the emergence of non-trivial struc-

tures, in particular for the case of the Laplacian entropy, and that in general 3) the quality

of the quadratic approximation, as well as which variant of the von Neumann entropy is

better approximated, depends on the topology of the underlying graph. Our results suggest

that the quadratic approximation of the von Neumann entropy can be an efficient way to

measure the complexity of large networks, however the quality of this approximation de-

pends on the topology of the network being studied. In particular, with the exception of

small world networks, we find that the Laplacian entropy is easier to approximate. The nor-

malized Laplacian entropy, on the other hand, can be approximated better for Erdös-Rényi

and scale-free networks with low edge density.
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