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ABSTRACT

We study diffusion on a multilayer network where the contact dynamics between the nodes is
governed by a random process and where the waiting time distribution differs for edges from
different layers. We study the impact on a random walk of the competition that naturally emerges
between the edges of the different layers. In opposition to previous studies which have imposed a
priori inter-layer competition, the competition is here induced by the heterogeneity of the activity on
the different layers. We first study the precedence relation between different edges and by extension
between different layers, and show that it determines biased paths for the walker. We also discuss
the emergence of cyclic, rock-paper-scissors random walks, when the precedence between layers is
non-transitive. Finally, we numerically show the slowing-down effect due to the competition on a
heterogeneous multilayer as the walker is likely to be trapped for a longer time either on a single
layer, or on an oriented cycle .

Keywords: random walks; multilayer networks; dynamical systems on networks; models of net-
works; simulations of networks; competition between layers.

1 Introduction

The study of random walks has a long tradition in network science [1]. Random walks are at the heart of many algo-
rithms to uncover central nodes or communities of densely connected nodes, and they often serve as a first model to
understand how the topology of a network affects diffusive processes. Random Walks have also been studied mathe-
matically and numerically when the underlying topology is a network enriched with additional features. An important
family of models consists of temporal networks [2, 3], where edges are dynamical entities and diffusion can only
propagate when they are active. In this case, random walks are affected by the interplay between the network topology
and the statistical properties of the edge dynamics [6, 5, 4]. Another important family is made of multiplex networks
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[8, 9, 7], where different types of connections exist between the nodes, as in social networks [11, 10] or transportation
networks [12, 13] for instance. Multiplex networks have a layered organisation and are usually represented as tensors
or by means of a so-called supra-adjacency matrix. Random walks have also been studied in this context, to uncover
how the presence of multiple layers affects diffusion [14, 15] or to define generalized versions of Pagerank [16].

The main objective of this work is to explore phenomena emerging in the case of networks that are temporal and
multiplex [17]. To do so, we extend a generic model of continuous-time random walk on networks [5], where the
waiting time distribution for an edge, that is the time before an edge gets active, depends solely on its layer. We study
the properties of the resulting stochastic process and show that the presence of temporal heterogeneities across layers
results in a competition between them and biases in the random walk dynamics. Here competition means that edges
in one layer may have a higher probability to be selected by a walker than edges in another layer, due to the statistical
properties of their temporal ordering. In other words, competition between layers emerges due to the temporality of
the graph, and not as a model parameter as in previous works [18, 19, 21, 20]. In addition, we show and explain some
apparently counter-intuitive situations, such as the emergence of a cyclic, rock-paper-scissors precedence between the
layers. Note that the notion of non-transitivity is well-known in statistics, and that it has mostly focused on systems
having a finite set of possible states, such as in non-transitive dice [22]. Our work can be seen as an extension to
continuous variables and a study of its impact on diffusion over multilayer networks. As a second step, we explore
numerically the impact of the above mechanism on the dynamics of a walker and, specifically, we study the coverage
of a walker on temporal multilayer network.

2 Random walks on multiplex temporal networks

We consider a diffusion process defined as follows [1]. The system is made of a given network of nodes and edges,
and a random walker jumping between neighbouring nodes according to a given protocol as we now discuss. In a
standard framework of temporal networks, which is a natural model for contacts in social networks, we assume that
when the random walker arrives on a node, it triggers on each incident outgoing edge an associated random waiting
time for so-called ‘activation’ of the edge, and the first edge to reach activation is then followed by the random walker.
The process is restarted on the new node reached by the random walker. Here activation is therefore seen as an event
of infinitesimal duration, allowing the passage of the random walker. The time at which each edge reaches activation
is independently drawn from its own waiting time distribution. The walk is called active since waiting times are drawn
once the walker arrives on a node, as opposite to the passive walk where contacts are taking place on edges regardless
of the presence of a random walker. Note that, when the network is directed and has no short cycles, a passive walk may
be approximated by an active one provided that waiting time distributions are adapted accordingly [28, 1]. Because
only the first edge to reach activation is taken by the walker, there is a underlying competition between different edges.
Even though a general master equation can be derived [5], specific results have often been studied with homogeneous
waiting time distribution [24, 25, 23]. Here, we consider a situation where edges in the same layer of the multiplex
network have the same waiting time distribution but distributions may differ for edges in different layers. The system
thus exhibits intra-layer homogeneity and inter-layer heterogeneity.

2.1 Emergence of biased paths

Let us consider the trajectory of a random walker. Arriving on node u, the walker will leave through the first edge
that reaches activation among the k edges connected to u. Denote T1, . . . , Tk the random variables associated to the
waiting times associated to each edge, with distributions f1(t), . . . , fk(t). The transition time T of the walker, defined
as the time before its next jump is given by:

T = min (T1, T2, ...., Tk). (1)

In our case, each edge belongs to a layer and it is thus natural to determine which layer will be selected by the walker.
In particular, we will be interested in a notion of precedence between the random variables of the layers. The random
variable A is said to precede the random variable B, written A ≺ B, if P (A < B) > 0.5, that is if the edge associated
to A is more likely to reach activation before the edge associated to B.

The existence of precedence relations translates into biased paths for the random walker traveling on the network
since at each step of the walk some edges may be statistically more likely to be selected by the walker. Therefore,
understanding the precedence relation between the random variables associated to the dynamics of the network is of
paramount interest in order to understand the resulting diffusion. In the following, we will exemplify the somewhat
counter-intuitive properties of precedence, then we will numerically investigate its impact on the coverage of a random
walker on a multilayer network with inter-layer heterogeneity.

2



A PREPRINT - DECEMBER 18, 2018

2.2 Basic properties of precedence

2.2.1 Rock-Paper-Scissors

One may see precedence as a relation of dominance between edges in competition to attract the random walker. As
such one may expect transitivity. However it is not the case, and we encounter circular, rock-paper-scissors situations
as follows. We focus on the triangle network of Figure 1 and the three following distributions with expectation equal
to 1:

X =

{

U [0.65, 0.75] with probability 1− 1

ϕ

U [0.3ϕ+ 0.65, 0.3ϕ+ 0.75] with probability 1

ϕ
;

Y ∼ U [0.9, 1.1] ; (2)

Z ∼
{

U [0.75, 0.85] with probability 1

ϕ

U
[

ϕ
5
+ 0.95, ϕ

5
+ 1.05

]

with probability 1− 1

ϕ
,

where U [a, b] stands for the uniform distribution on the interval [a, b], and ϕ = 1+
√
5

2
≈ 1.618.

It is straightforward to show that Y ≺ X , Z ≺ Y and X ≺ Z . As a consequence, a walker jumping on the network
will have a tendency to jump clockwise on the triangle, as illustrated numerically in Figure 1. The emergence of
a circular flow leads to correlations between the successive edges on the random walk trajectory, even if edges are
chosen independently at random at each step. Competition becomes more complex when more than two edges interact
together. For instance, in the above example, even if the pairwise precedence is uniform, that is

P (Y < X) = P (Z < Y ) = P (X < Z) =
1

ϕ
, (3)

when considering the competition between 3 different edges, one finds as P (X < min(Y, Z)) > 1

3
, and thus X will

tend to be favoured by the walker against the others two in the presence of the three types of edges simultaneously.

Figure 1: Numerical simulations of a random walk on a multilayer triangle. Each (colored) pairwise relation belongs
to a different layer and distributions activity of the layers are given by the distribution of (2). The walker position
is incremented +1 at each clockwise jump, and −1 at each anti-clockwise jump. On the right hand side, the four
dash-dot lines represent four realisations of random walk starting at 0 while the blue line represent the average over
1000 independent walks. The precedence relation is not transitive as a random walker jumping on the triangle will
have a tendency to jump clockwise.
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2.2.2 There is no most preceding edge

It is clear that comparing either means or variances of two random variables is not sufficient to determine which one
precedes the other, as the random variables X , Y and Z in the previous example share equal mean but have different
variance. Even more, it is impossible to find a random variable that precedes any random variable with equal mean.
Without loss of generality, we prove this statement for random variables with a mean of 1. First, we observe that for
any random variable X following distribution f(t), it is possible to find a random variable Yn of distribution gn(t)
such that Yn precedes X , by setting

gn(t) =















n

2
(n− 1) if t ∈

[

1

n
− 1

n2 , 1

n
+ 1

n2

]

1

2
√
n

if t ∈
[

n− 1 + 1

n
− 1√

n
, n− 1 + 1

n
+ 1√

n

]

,

0 otherwise

(4)

where n ∈ IN0 is chosen large enough. One possible choice of n is such that 1

n
+ 1

n2 < β, where β is the 10% quantile
of f . From the sequence of random variables (Yn)n∈IN with distribution respectively given by (gn)n∈IN, it is possible

to extract a subsequence of random variables (Zn)n∈IN whose respective distributions have non-overlapping supports.
Such a sequence is increasingly precedent, that is, for any n ∈ IN we have Zn+1 ≺ Zn.

As the series (gn)n∈IN does not converge to a probability distribution, there exists no most preceding random variable.
In terms of diffusion on multiplex networks, this results implies that there is no optimal distribution ensuring that a
given layer always captures a majority of the random walk flow, independently of the distributions in the other layers.
After the choice of the other layers have been made, a layer may always find a distribution that will allow it to be the
most precedent.

2.2.3 Layer Precedence and Node Out-degree

The notion of precedence between random variables naturally extends to precedence between layers when waiting
time distributions inside a layer are homogeneous but vary across layers. In this case, the layer L1 precedes the layer
L2 at node u if the walker sitting on u is more likely to perform her next jump through an edge of L1, that is if L1 is
more likely to capture the flow passing through u. Moreover, in the presence of several layers, L1 precedes L2 and L3

jointly if L1 precedes the artificial layer L2L3 obtained by the union of the layers L2 and L3.

Precedence of layers at a node depends on its out-degree ki on each layer Li, as the layer of the edge selected by
a walker is determined by comparing the smallest time mi to reach activation on each layer Li, where mi is the
minimum of ki random variables with identical distributions associated to the layer Li. In the simplest case of two
duplicate layers L1 and L2 with waiting time on edges of the type X and Y respectively, that is L1 and L2 share the
same nodes and have the same edges, the out-going edges consist of k edges of each type, and L1 precedes L2 if

min
j=1,...,k

Xj ≺ min
j=1...,k

Yj , (5)

where Xj and Yj are duplicates of random variables following the same distribution than X and Y respectively.

The layer precedence may therefore vary between nodes depending on their out-degree, in particular for high and low
out-degree nodes. However, it is worth to note that there always exists a threshold out-degree ν∗ above which one
layer will always precede the other one. Indeed, the distribution f is said to have a larger minimal weight than the
distribution g if there exists ǫ > 0 such that P (X < ǫ) > P (Y < ǫ) and ∀ 0 < σ < ǫ, P (X < σ) ≥ P (Y < σ),
where X and Y are two random variables following the distribution f and g respectively. Then, there always exists
a threshold out-degree ν∗ above which the minimum of at least ν∗ realizations of the distribution with the larger
minimal weight will precede the other one.

In order to investigate this effect in a real-world setting, we construct a multiplex network as follows. We use a dataset
of private messages sent on an online social network at the University of California Irvine [26]. This typical social
network is then duplicated to create a hypothetical two-layer social network, where each layer can be thought of as
corresponding to a different medium of communication. Each layer is thus identical, and is composed of 1899 nodes
and 20296 edges. The difference between the layers is induced by the choice of two different distributions of X and
Y defined in Eq 2, where Y ≺ X . As X has a larger minimal weight than Y , there exists a switch in the precedence
between the variables of type X and Y . In this case, it is straightforward to show that this switch occurs when at least
two edges of each type are competing, that is

min
i=1,...,ν

Xi ≺ min
i=1...,ν

Yi ∀ν ≤ 2. (6)
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Figure 2 shows the probability of taking an edge of type X instead of Y with respect to the out-degree of a node
in the static aggregated network (by construction, twice the out-degree in each layer), where each edge has two
activation times associated to the random variable X and Y respectively. The numerical results confirm a switch
of the precedence when the out-degree of the nodes increases.
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Figure 2: We display the average probability (± the standard deviation) of taking an edge of L1 versus one of L2,
with respect to the out-degree of each node on the replicate layers. We observe a switch in the layers precedence:
as the nodes of out-degree equal to one tend to favor the layer L2, nodes of out-degree ≥ 2 favor the layer L1. The
distribution of the waiting times of the edges of L1 and L2 are the distributions of the random variables X and Y
respectively, defined in Eq 2. Dashed line corresponds to a probability equal to 0.5.

3 Impact of Inter-layer Heterogeneity on the Coverage of the Walker

Finally, we investigate numerically the impact of competition in the case of diffusion in a multiplex social network
with more than two layers. To do so, we use publicly available data introduced in [10] where the layers consist in five
kinds of social relationships between employees. In the numerical simulations, we consider the three types of random
variables defined in Eq.2 and focus on the layers associated to Facebook, Leisure and Co-authorship relations. The
structure of the graph thus corresponds to real-world interactions, while the inter-events time are chosen for the sake
of illustration. Indeed, the presence of three layers and the choice of the specific distributions allow the emergence
of properties of precedence we have previously shown, such as a rock-paper-scissors situation, and thus enables the
investigation of its impact on the random walk.

We compute numerically the exploration rate of a walker, or coverage, defined as the percentage of nodes visited by
the walker over time [15]. We always assume homogeneous waiting time distribution inside a given layer, and consider
homogeneous as well as heterogeneous inter-layer distributions.

A typical simulation is given in Figure 3a, where we observe that the exploration rate of a random walk tends to grow
faster under inter-layer homogeneity compared to inter-layer heterogeneity, irrespective of the choice of the unique
distribution. The slow-down induced by the inter-layer heterogeneity is mainly due to the fact that the flow is captured
inside a single layer. Indeed, when graph density of the layers is large enough, one layer precedes the others two jointly,
the one with edges of type X in our example. Since the random walker has a tendency to stay in this layer, the walk will
mainly take place on this layer, that is less connected than the aggregated network. However, when the graph density
of the layers is weak, a rock-paper-scissors situation may arise, as the switch in precedence between layers might not
occur for lower out-degree nodes. This emergence promotes the switch of the walker between different layers through
lower out-degree nodes, resulting in a more efficient exploratory walk across the network, as illustrated in Figure 3b
where each node has one outgoing edge in each layer, ensuring low density and homogeneous out-degree distribution.
In this case, the exploration rate of the walk is similar to the exploration rate of an homogeneous inter-layer network
(or monolayer network), which is the most efficient in terms of coverage rate.
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Figure 3: Exploration rates over 100 paths starting at each node of the multilayer network. Left: real-world network
[10] with layers corresponding to Facebook, Leisure and Co-authorship relations respectively; Right: artificial network
with out-degree of each node on each layer is set ton one. The waiting time distributions of the layers come from Eq.2
and are provided in parenthesis. The exploration rate is larger under homogeneous inter-layer activity (plain lines) than
under heterogeneous inter-layer activity (dashed lines) [left], except when out-degrees are low, as rock-paper-scissors
situations emerge [right].

4 Discussion

The main purpose of this work is to investigate the competition between different layers of a multiplex network in
situations when the network is temporal. In our framework, edges activations are modeled as independent renewal
processes, each layer being characterised by a different distribution, and we highlight implications of the concept of
precedence on diffusion. In particular, we show that precedence may lead to biases between the different layers of
the network. Despite the simplicity of the process, it may lead to counter-intuitive properties, such as non-transitivity,
out-degree dependence, or rock-paper-scissors situation. Our numerical results also show that precedence may have
important quantitative effects on the speed of diffusion on a multilayer network, as the precedence of one layer over
others may hinder the number of edges available to the walker, and hence slow down its exploration of the graph. We
also show that high out-degree nodes are more prone to favor one single layer, while low out-degree nodes exhibit a
different effect, and may lead to a cyclic exploration between the layers. We study the impact of the precedence on an
active random walk, however it is worth noticing that its impact on the passive random walk may lead to opposite bias
towards layers. Indeed, in the presence of short cycles for the passive walker, an additional competition will emerge
induced by the short cycles [27]. For non-exponential distributions, this effect results in a backtracking bias towards
or against the last traveled edges [28], typically leading to the emergence of short cycle patterns in human-related
network [29].

These results remain mostly mathematical as we used toy-model distributions instead of ones modelled on real-life
data, and an important next step would be to test the resulting ideas in empirical data of multiplex networks where
different layers are associated to different time scales, for instance between physical, mobile phone and social media
interactions [30].
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