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SUMMARY With the rapid increase of link speed in recent years,
packet sampling has become a very attractive and scalable means in col-
lecting flow statistics; however, it also makes inferring original flow char-
acteristics much more difficult. In this paper, we develop techniques and
schemes to identify flows with a very large number of packets (also known
as heavy-hitter flows) from sampled flow statistics. Our approach follows a
two-stage strategy: We first parametrically estimate the original flow length
distribution from sampled flows. We then identify heavy-hitter flows with
Bayes’ theorem, where the flow length distribution estimated at the first
stage is used as an a priori distribution. Our approach is validated and eval-
uated with publicly available packet traces. We show that our approach
provides a very flexible framework in striking an appropriate balance be-
tween false positives and false negatives when sampling frequency is given.
key words: network measurement, packet sampling, flow statistics, a priori
distribution, Bayes’ theorem

1. Introduction

For very high-speed links (e.g., OC-768+), collecting all
packets for on-line analysis is beyond the capability of most
existing measurement equipments. For example, we have
only 8 ns to process a 40-byte packet at a 40 Gb/s link.
Thus the demands for CPU power, memory/storage capac-
ity and access speed to conduct network measurement are
overwhelming. Being proposed as a candidate to meet this
challenge, packet sampling techniques in recent years have
attracted more and more attention from both industry and re-
search communities [3], [4], [7], [12], [24]. Modern routers
already had these techniques embedded, e.g., NetFlow [16]
and sFlow [21]. Also, the Packet Sampling (psamp) Work-
ing Group [19] at IETF has been standardizing the tech-
niques related to packet sampling. As being discussed in
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[2], [5], [6], [11], although packet sampling techniques pro-
vide greater scalability for network measurement, they also
make inferring original flow characteristics much more dif-
ficult.

In this paper, we attempt to answer the following ques-
tion: How many (Y) sampled packets of a specific flow
should be collected to conjecture that the original flow has
more than X packets in total? In particular, we are interested
in identifying flows with a very large number of packets, i.e.,
heavy-hitter flows. Many ISPs need to regulate traffic gen-
erated by heavy-hitters according to their cumulative traffic
volume over a certain time period, so a practical answer to
this question is very useful in choosing an adequate length
threshold of sampled flows to identify heavy-hitters. Here,
flow length is the number of packets in a flow, original flow
length means the number of packets in a flow that actually
appear on a link during a certain time period, and sampled
flow length means the number of sampled packets for a par-
ticular flow.

To answer more than just the above question, in this pa-
per we develop a framework to determine the length thresh-
old of sampled flows for identifying flows of interest. Our
approach follows a two-stage strategy: We first estimate the
original flow length distribution from sampled flow statis-
tics. More specifically, we fit sampled flow statistics to a
truncated Pareto distribution by means of maximum likeli-
hood estimation (MLE). Next, we use Bayes’ theorem with
the estimated a priori distribution for identifying heavy-
hitter flows from sampled flows. As we shall see, this ap-
proach is very flexible in striking an appropriate balance be-
tween false positives and false negatives when sampling fre-
quencies are given. Although we use the usual 5-tuple def-
inition (i.e., source/destination IP addresses and port num-
bers and protocol identifier) for flows in this paper, our ap-
proach is also applicable to aggregated flows defined by
their IP prefixes or AS numbers.

The remainder of the paper is organized as follows.
Section 2 reviews related work and compares it with ours.
Section 3 explains how to characterize the original flow
length (i.e., a priori distribution) with a truncated Pareto dis-
tribution. In Sect. 4, we discuss how to estimate the origi-
nal flow length distribution from sampled flow statistics by
means of MLE. In Sect. 5, we describe our framework to in-
fer the original flow length from the sampled flow length.
We also validate our approach by applying extensive packet
sampling processes to real packet traces. In Sect. 6, we show
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how to identify heavy-hitter flows based on our framework.
Section 7 discusses some related issues. In Sect. 8, we con-
clude this paper with a brief summary.

2. Related Work

There are several papers addressing the problem of infer-
ring original flow characteristics from sampled flow statis-
tics. Duffield et al. [6] investigate how to estimate the orig-
inal flow length distribution from sampled flow statistics.
Their key idea is to use MLE for inference and additional
information in measured flow records, e.g., TCP SYN flag,
which can be used to estimate the number of original flows.

On the other hand, the aim of our work is to develop a
way to infer the original flow length from the sampled flow
length without looking at each packet. To do so, we need the
a priori length distribution of original flows. In contrast to
[6], we adopt a parametric approach to estimating the origi-
nal flow length distribution, since such an approach reduces
operation overhead significantly. As we shall see, our ap-
proach works well in identifying heavy-hitters. Note also
that this work goes beyond our previous work [15] by intro-
ducing the above approach, i.e., the estimation of the origi-
nal flow length distribution from the sampled flow statistics.

Hohn and Veitch [11] also study the related problem.
Using a Poisson flow arrival model, they reveal that there
exists an inherent limit in recovering the original flow length
distribution from sampled flow statistics in a theoretical
fashion. They also show that asymptotic properties of the
heavy-tailed flow length distribution can be recovered from
sampled flow statistics. Barakat et al. [2] study how to de-
tect and rank the largest flows from sampled flow statistics.
Through theoretical analysis and experiments with collected
packet traces, they show that the ranking accuracy strongly
depends on the sampling frequency, e.g., accurate ranking
of the largest (say, the 10 heaviest) flows requires sampling
rate of 10% or greater. They also show that by applying a
protocol-aware ranking method, the required sampling fre-
quency can be reduced by an order of magnitude.

There is another approach to tackling the problem
of identifying heavy-hitter flows, i.e., the data reduction
method. The aim of this approach is to reduce the amount
of memory required for keeping flow statistics. Estan
and Varghese [8] propose two novel techniques, sample-
and-hold and multistage filters. Both techniques improve
the process of extracting flow statistics in high-speed net-
works, while keeping memory consumption reasonably low.
Kumar et al. [13] propose a new technique called space-code
Bloom filter for extracting per-flow traffic statistics in high-
speed networks. Their key ideas are the extension of the
traditional Bloom filter to a one with multiple sets of hash
functions and the use of multi-resolution sampling. Their
approach can capture flow statistics very well, while requir-
ing a small amount of memory resources. Golab et al. [10]
propose a deterministic algorithm to identify frequent items
using a memory-limited sliding window model. The pro-
posed algorithm can fulfill its objective with limited mem-

ory resources. The main difference of these approaches from
ours is their requirement of complex per-packet processing.
That is, those approaches are based on non-sampling tech-
niques, which look up all the coming packets instead of sam-
pling them; thus it can keep rich information such as the rep-
resentation of per-flow statistics. The approach has intrinsic
constraints to operate with small amount of memory space
(such as SRAM) to keep up with per-packet processing. It
also requires to develop dedicated hardware to implement
complexed operations such as hashing. In contrast, packet
sampling schemes, which is our basis, have no requirement
of per-packet processing and provide high scalability and
low implementation cost. Actually, packet sampling is to-
day’s off-the-shelf measurement technique widely used in
actual academic/commercial networks.

3. A priori Distribution of Original Flow Length

It is well known that the flow length distribution in the In-
ternet is heavy-tailed [9], [14], [20], [22], [23], which is con-
sidered as one of the invariant characteristics of the Internet.
The Pareto distribution is a simple model for characteriz-
ing heavy-tailed distributions. However, as we can see, the
flow length distribution should always have an upper bound,
which is dictated by the following facts. First, many Inter-
net flows correspond to data files, and there is a limit on the
file/data size in most file systems. For example, the capacity
of a regular DVD disc is 4.377 GB, and the FAT32 file sys-
tem supports the maximum file size of 4 GB. Also, since the
measurement time period is always finite, the observed flow
length should be bounded by the number of total observed
packets, even if there exists only one flow. Thus, when we
observe the flow length distribution in a finite time period,
there is always a cutoff length that truncates the heavy-tail
distribution. Here, we adopt the truncated Pareto distribu-
tion to approximate the flow length distribution. The trun-
cation point can be estimated from the observed traffic in the
following way.

We assume that there are m flows observed, i.e., with-
out sampling, during a certain time period. Let Xj ( j =
1, 2, . . . ,m) denote the original flow length of the j-th flow,
where a flow is defined by its 5-tuple identity throughout this
paper. We then assume that the distribution of Xj’s can be
approximated by a discrete, truncated Pareto distribution:

Pr
[
Xj = x

]
=

x−θ − (x + 1)−θ

1 − (ν + 1)−θ
(1 ≤ x ≤ ν),

Pr
[
Xj > x

]
=

(x + 1)−θ − (ν + 1)−θ

1 − (ν + 1)−θ
(0 ≤ x ≤ ν).

Note that Xj has its upper bound ν (i.e., Pr[Xj > ν] = 0),
and every flow contains at least one packet (i.e., Pr[Xj ≥
1] = 1). This truncated distribution is a modified version
of the original truncated Pareto distribution studied in [1].
Note also that Xj is a discrete variable for flow length.

Given the observed flow length Xj ( j = 1, 2, . . . ,m),
parameters ν and θ can be estimated by means of MLE. The
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Fig. 1 A priori distribution estimated by the truncated Pareto
distribution.

ML estimator ν̂ of ν is given by

ν̂ = max (X1, X2, . . . , Xm) , (1)

and the ML estimator θ̂ of θ satisfies the following equation:

−m
log (ν̂ + 1) (ν̂ + 1)−θ̂

1 − (ν̂ + 1)−θ̂

+

m∑
j=1

−
(
log Xj

)
X−θ̂j +

{
log

(
Xj + 1

)} (
Xj + 1

)−θ̂
X−θ̂j −

(
Xj + 1

)−θ̂ = 0.

(2)

The proofs of Eqs. (1) and (2) are given in Appendix A.
To evaluate the accuracy of the truncated Pareto ap-

proximation, we use a packet trace collected at an OC-48c
backbone link by the PMA project at NLANR [17]. The
trace was collected from 10:50 to 11:00 on August 14, 2002.
For easy handling, we use the first 107 packets that corre-
spond to about 124 seconds of observed traffic. We refer to
this sliced packet trace as trace-I throughout this paper.
The total number of flows in trace-I is 206, 299.

Figure 1 shows the Log-Log-Complementary-
Distribution (LLCD) plots of the empirical distribution of
the original flow lengths (circles) and the truncated Pareto
approximation for trace-I (curve). We observe that the
truncated Pareto model fits the empirical distribution fairly
well. Note that a rapidly decreasing tail is one of typical
features in the truncated Pareto distribution.

In Fig. 2, we show the corresponding quantiles-
quantiles (Q-Q) plot to further validate the accuracy of the
truncated Pareto approximation. The horizontal axis repre-
sents the empirical quantiles, and the vertical axis represents
the quantiles of the approximate truncated Pareto distribu-
tion. We observe that the curve is fairly close to a straight
line with slope 1 over a wide quantile range, although there
are deviations in the middle of the support of the distribu-
tion.

Fig. 2 Q-Q plot for the flow length distribution: empirical distribution
vs. approximate distribution.

Table 1 Estimated parameters in the truncated Pareto distribution.

ν̂ θ̂

244, 739 .891

Table 1 shows the estimated values of parameters ν and
θ for trace-I. It is interesting to see that the estimated
shape parameter θ̂ is less than 1, which does not imply the
infinite average of flow length. Since we adopt the truncated
distribution, the estimated flow length distribution always
has finite mean and variance.

Since the truncated Pareto distribution is characterized
by only two parameters, it is quite easy to estimate them.
Thus the model offers higher feasibility in actual operation.
Of course, the truncated Pareto distribution might not be
sufficient to characterize the flow length distribution in all
cases. Some statistical metrics such as the weighted mean
relative difference [6], might be useful for quantitatively
studying the limitation of the truncated Pareto distribution.
It is also for our further study. We believe, however, that the
heavy-tailed characteristic is invariant in the Internet traffic,
and the truncated Pareto distribution can capture this char-
acteristic quite well. To support our claim, some examples
of parameter estimation for other packet traces are given in
Appendix B.

4. Estimation of the a priori Distribution

In the preceding section, we showed that the original flow
length distribution could be well modeled by the truncated
Pareto distribution. In this section, we show how to estimate
the unknown parameters ν and θ in the truncated Pareto dis-
tribution from sampled flow statistics. Note that only the es-
timated distribution will be used as the a priori distribution
in estimating the original flow length in the next section.
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4.1 MLE of the a priori Distribution

Suppose N packets appear during a certain time period, and
each of them is sampled independently with probability f .
In other words, we consider random sampling from a pop-
ulation of N packets with sampling frequency f . We de-
fine Xj and Yj ( j = 1, 2, . . . ,m) as the original and sam-
pled flow lengths of the j-th flow, respectively. By defini-
tion, N = X1 + X2 + · · · + Xm. Let ni (i = 1, 2, . . . , ymax)
denote the number of flows whose sampled flow length is
equal to i, where ymax denotes the maximal sampled flow
length. We estimate parameters θ and ν from the observed
n = (n1, n2, . . . , nymax ).

For simplicity, we assume that ν can be estimated in-
dependent of θ. Recall that the ML estimator ν̂ of ν is given
by max(Xj). Further the unbiased estimator of max(Xj) is
given by max(Yj)/ f . Therefore it is possible to estimate ν̂
as

ν̂ =
ymax

f
. (3)

As we shall see in Sect. 7, the estimation error in ν̂ does not
play a crucial role in inferring the original flow length.

Due to random sampling, the conditional sampled
probability q(y | x) = Pr[Yj = y | Xj = x] is given by

q(y | x) =

⎧⎪⎪⎨⎪⎪⎩
(x
y

)
· f y (1 − f )x−y , y = 0, 1, . . . , x,

0, otherwise.

Thus the probability r (y) = Pr[Yj = y] is given by

r(y) =
ν∑

k=y

q (y | k) p (k, θ) ,

where

p (k, θ) = Pr
[
Xj = k

]
=

k−θ − (k + 1)−θ

1 − (ν̂ + 1)−θ
. (4)

Given the observed data n = (n1, n2, . . . , nymax), the like-
lihood function with parameter θ is given by

L (θ; n) =
ymax∏
i=1

(
r (i)

1 − r (0)

)ni

,

since we cannot observe flows without sampled packets.
The log likelihood function is then given by

L (θ) = log L (θ; n)

=

ymax∑
i=1

ni log

⎛⎜⎜⎜⎜⎜⎜⎝
ν̂∑

k=i

q (i | k) p (k, θ)

⎞⎟⎟⎟⎟⎟⎟⎠

−
⎛⎜⎜⎜⎜⎜⎝
ymax∑
i=1

ni

⎞⎟⎟⎟⎟⎟⎠ log

⎛⎜⎜⎜⎜⎜⎜⎝1 −
ν̂∑

k=1

q (0 | k) p (k, θ)

⎞⎟⎟⎟⎟⎟⎟⎠ .
Thus, the ML estimator θ̂ of parameter θ is given by a posi-
tive solution of ∂L(θ)/∂θ = 0, i.e.,

Fig. 3 Estimated a priori distributions with f = 10−3 and f = 10−4.

⎛⎜⎜⎜⎜⎜⎝
ymax∑
i=1

ni

⎞⎟⎟⎟⎟⎟⎠
∑ν̂

k=1 q (0 | k) ∂p(k,θ)
∂θ

1 −∑ν̂
k=1 q (0 | k) p (k, θ)

+

ymax∑
i=1

ni

∑ν̂
k=i q (i | k) ∂p(k,θ)

∂θ∑ν̂
k=i q (i | k) p (k, θ)

= 0,

where

∂p (k, θ)
∂θ

=

{
log (k + 1)

}
(k + 1)−θ − (

log k
)

k−θ

1 − (ν̂ + 1)−θ

−
{
log(ν̂ + 1)

}
(ν̂ + 1)−θ

{
k−θ − (k + 1)−θ

}
{
1 − (ν̂ + 1)−θ

}2
.

We can numerically solve the equation by using a standard
algorithm such as the false position method.

4.2 Evaluation of the Estimation

To evaluate the accuracy of the estimation, we first apply
random packet sampling† to trace-I and obtain the sam-
pled flow statistics, i.e., n = (n1, n2, . . . , nymax), for sampling
frequency f = 10−3 and f = 10−4, respectively. Applying
the MLE method described in the preceding subsection to
these data, we estimate parameters ν̂ and θ̂. Figure 3 shows
LLCD plots of the original a priori distribution (circles) and
the estimated distributions (dashed curves). For the sake of
comparison, we also plot the truncated Pareto approxima-
tion obtained from original flow data (solid curve). We ob-
serve that the estimated distributions from sampled flows fit
the original a priori distribution and its approximate distri-
bution fairly well. Figure 7 shows the corresponding Q-Q
plots to further validate the accuracy of the estimation. We

†Throughout this paper, we use “uniform probabilistic sam-
pling,” which is one of the packet sampling techniques standard-
ized by IETF psamp WG [19]. That is, we independently sample
packets with a uniform probability p = f . We also confirmed that
other sampling processes such as systematic sampling give similar
results.
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Table 2 Estimated parameters for sampling frequency f = 10−3 and
f = 10−4.

ν̂ θ̂

f = 10−3 232,000 .712
f = 10−4 250,000 .860

Fig. 4 Sampled flow statistics n for sampling frequency f = 10−3 (left)
and f = 10−4 (right).

Table 3 Estimated parameters from 10 random sampling processes.

min ν̂ max ν̂ ν̂ min θ̂ max θ̂ θ̂

f = 10−3 225,000 266,000 244,800 .699 .716 .710
f = 10−4 210,000 280,000 237,000 .831 .880 .851

observe that the curve is fairly close to a straight line with
slope 1 over a wide range, although there are some devia-
tions.

Table 2 shows the values of the estimated parameters ν̂
and θ̂. We note that the estimated distribution becomes more
heavy-tailed when f is higher, i.e., the estimated shape pa-
rameter θ̂ for f = 10−3 is smaller than that of f = 10−4.
This behavior can be explained as follows. In Fig. 4, which
shows the measured n for each sampling frequency, we ob-
serve that more sampled information comes from small i’s,
such as 1 ≤ i ≤ 50 for f = 10−3 and 1 ≤ i ≤ 10 for
f = 10−4. These i-packet (sampled) flows roughly corre-
spond to i × 1, 000-packet (original) flows for f = 10−3 and
i×10, 000-packet (original) flows for f = 10−4, respectively.
Thus, for f = 10−4, the estimated flow length distribution re-
flects larger original flows better than the case for f = 10−3.
Since we parameterize the distribution with the truncated
Pareto distribution, the estimated distribution for f = 10−4

fits the original downward curve better, and accordingly be-
comes less heavy-tailed than the case for f = 10−3.

To confirm the above explanation, we then apply packet
sampling to trace-I with different random seeds for 10
times, and estimate the parameters for each sampled flow
statistics. Table 3 summarizes the results. As being indi-
cated above, the estimated θ̂ for f = 10−4 is larger than that
for f = 10−3. We can also find that the estimated ν̂ for
f = 10−3 is relatively close to the estimated ν̂ for original
flows without sampling (recall that ν̂ = 244,739 in Table 1).

Thus, even though we take account of the non-sampled
flows by introducing conditional probability, the estimated

flow length distribution is slightly skewed due to the infor-
mation loss caused by packet sampling. As we shall show
shortly, the difference in estimated flow length distribution
does not affect the inference of the original flow length from
sampled flow statistics with small false probabilities. Some
examples of the estimation for other packet traces are given
in Appendix B.

5. Inferring Original Flow Length

In this section, we provide a framework to infer the original
flow length from the sampled flow length. Our approach is
based on Bayes’ theorem with the a priori distribution esti-
mated in the preceding section.

5.1 Inference Framework

Recall that our task is to answer the following question:
How many (Y) sampled packets of a specific flow should
be collected to conjecture that the original flow has more
than X packets in total? Let y′ = y′(x∗) denote the length
threshold of sampled flows. Namely, if the sampled flow
length of a particular flow is no less than y′, we conjecture
that the flow contains at least x∗ packets. In what follows,
we describe a way to find an appropriate value of y′.

To obtain an appropriate y′, we have to consider and
balance two kinds of false probabilities listed below.

FPR(y′) def
= 1 − Pr

[
Xj ≥ x∗ | Yj ≥ y′

]
,

FNR(y′) def
= 1 − Pr

[
Yj ≥ y′ | Xj ≥ x∗

]
.

Note that FPR(y′) denotes the false positive ratio, i.e., the
conditional probability that the original flow length is less
than x∗ given that the sampled flow length is not less than
y′. On the other hand, FNR(y′) denotes the false negative
ratio, i.e., the conditional probability that the sampled flow
length is less than y′ given that the original flow length is
not less than x∗.

According to Bayes’ theorem, the conditional proba-
bility of Xj ≥ x∗ given Yj ≥ y′ is obtained to be

Pr
[
Xj ≥ x∗ | Yj ≥ y′

]

=

∑ν
k=x∗ Pr

[
Yj ≥ y′ | Xj = k

]
Pr

[
Xj = k

]
∑ν

k=1 Pr
[
Yj ≥ y′ | Xj = k

]
Pr

[
Xj = k

] ,

where Pr
[
Xj = k

]
= p(k, θ̂) denotes the a priori distribution

(see Eq. (4) in Sect. 4) and

Pr
[
Yj ≥ y′ | Xj = k

]
= 1 −

y′−1∑
i=0

Pr
[
Yj = i | Xj = k

]

= 1 −
y′−1∑
i=0

q (i | k) .

Thus, we can calculate FPR(y′) by
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FPR(y′) = 1 −
∑ν

k=x∗
(
1 −∑y′−1

i=0 q (i | k)
)

Pr
[
Xj = k

]
∑ν

k=1

(
1 −∑y′−1

i=0 q (i | k)
)

Pr
[
Xj = k

] .
(5)

Similarly, FNR(y′) can be calculated by

FNR(y′) = 1 −
∑ν

k=x∗
(
1 −∑y′−1

i=0 q (i | k)
)

Pr
[
Xj = k

]
∑ν

k=x∗ Pr
[
Xj = k

] .

(6)

Intuitively, for a fixed x∗, FPR(y′) will be a decreasing
function of y′, while FNR(y′) will be an increasing func-
tion of y′. That is, there is an intrinsic trade-off between
false probabilities. Therefore it prevents us from choosing
an arbitrary y′. Our framework allows us to quantify this
trade-off and make a proper choice, as we shall see shortly.

5.2 Evaluation of the Framework

To evaluate our framework, we use trace-I again (i.e., N =
107) and compare FPR(y′) in Eq. (5) and FNR(y′) in Eq. (6)
with various a priori distributions:

• the empirical distribution of original flows,
• the truncated Pareto approximation of the empirical

distribution (given in Sect. 3),
• the estimated truncated Pareto distribution from the

sampled flow statistics (given in Sect. 4), and
• the uniform distribution, i.e., Pr[Xj = i] = 1/max(Xj)

(i = 1, 2, . . . ,max(Xj)).

The threshold x∗ is set to be 10, 000. FPR(y′) and FNR(y′)
with the empirical distribution are considered as bench-
marks. We plot false probabilities derived from 10 random
sampling processes, and false probabilities are calculated by

FPR(y′) = 1 −
Nf

(
Xj ≥ x∗, Yj ≥ y′

)
Nf

(
Yj ≥ y′

) , (7)

FNR(y′) = 1 −
Nf

(
Xj ≥ x∗, Yj ≥ y′

)
Nf

(
Xj ≥ x∗

) , (8)

where Nf (χ) denotes the number of sampled flows included
in event χ. We show the mean value with dashed error bar,
which indicates the maximum and minimum values among
those of 10 sampling processes.

In the case with the estimated truncated Pareto distri-
bution, we use the sampled flow statistics derived from 10
random packet sampling processes for sampling frequency
f = 10−3 and f = 10−4, respectively. Again, we plot the
mean value with error bar, which indicates the maximum
and minimum values. The results are shown in Figs. 5 and
6.

From these figures, we first observe that there are in-
trinsic trade-offs between false probabilities. In all cases,
an increase in y′ leads to a decrease in FPR(y′) and an in-
crease in FNR(y′). We can also see that the trade-off is more

Fig. 5 False probabilities for sampling frequency f = 10−3: FPR (y′)
(top) and FNR (y′) (bottom). Note that the uniform distribution model
falsely underestimates the false probabilities.

critical at the lower sampling frequency, i.e., f = 10−4.
Secondly, FPR’s derived from the approximate distri-

bution (i.e., without sampling) and the estimated distribu-
tions (i.e., with sampling) fit the one obtained with the em-
pirical distribution fairly well. Thus these FPR’s seem very
reliable. On the other hand, there exist relatively large dis-
crepancies in FNR. These discrepancies are caused by the
fact that the approximate distribution and the estimated dis-
tribution are slightly different from the empirical distribu-
tion in the tail quantiles (see Fig. 7). We can see that the
discrepancies become larger when sampling rate is equal to
10−3, where the discrepancies in the tail quantiles also be-
come larger. Thus this might indicate the limitation of the
truncated Pareto approximation. We also observe that the
false probabilities derived from the estimated distributions
(i.e., with or without sampling) have pretty small discrepan-
cies; i.e., the results are still reliable.

Finally, we observe that the uniform distribution as
the a priori distribution yields quite different false proba-
bilities. The uniform distribution model assumes that the
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Fig. 6 False probabilities for sampling frequency f = 10−4: FPR (y′)
(top) and FNR (y′) (bottom). Note that the uniform distribution model
falsely underestimates the false probabilities.

Fig. 7 Q-Q plot for the flow length distribution: empirical distribution
vs. estimated distribution with sampling.

flow length is uniformly distributed, while the heavy-tailed
model assumes that most flows have small length. Accord-
ingly, the assumption of the uniform distribution falsely un-
derestimates the false probabilities.

Thus, we may conclude that (i) it is essential to use
an appropriate a priori distribution for inferring the original
flow length from the sampled flow length, and (ii) we can
successfully control FPR with the truncated Pareto distribu-
tion.

6. Identifying Heavy-Hitter Flows

As shown in the preceding section, we have to balance
the trade-off between false probabilities appropriately when
inferring the original flow length from the sampled flow
length. In this section, we present an example of identifying
heavy-hitter flows in order to demonstrate such a balancing.

To balance the trade-off between false probabilities, we
consider the following policy as a guideline: For a given
sampling frequency, the false positive ratio should be less
than a predefined threshold ε, while the false negative ratio
should remain reasonably low. Note that this policy is useful
in the following situation. Assume that an ISP wants to reg-
ulate heavy-user’s traffic when a link is severely congested.
For this purpose, the ISP is monitoring traffic flows that tra-
verse its network with packet sampling, and it wants to iden-
tify heavy-hitter flows quickly from sampled flow statistics.
Qualitatively, the characterization of heavy-hitter flows is
that they occupy the majority of total traffic volume (in terms
of the number of packets or bytes). Note that, due to heavy-
tailed characteristics, the number of heavy-hitter flows is
very small, compared with the total number of flows. There-
fore it is quite effective to regulate their transmission rate
when the link is congested. The quantitative definition of a
heavy-hitter flow can be arbitrarily determined by network
operators according to their own criterion. It may be possi-
ble that the criterion is used for the agreement between the
ISP and their users, where too much false positives are not
preferred for the ISP.

As an example, we define a heavy-hitter flow as a flow
with Xj ≥ 10,000; i.e., we set x∗ to be 10,000†. According to
this definition, the number of heavy-hitter flows in trace-I
is equal to 170, while the total number of flows is 206,299.
Note that the heavy-hitter flows contribute about 53% of the
total traffic volume in bytes, whereas they contribute only
.084% in terms of the number of flows. Based on these ob-
servations, our policy seems to be useful for the following
reasons. First, we can avoid mistreating non-heavy-hitter
flows (e.g., shaping their packet rate) when the false posi-
tive ratio is sufficiently low. Secondly, even if a low false
positive ratio may cause a relatively high false negative rate,

†Although we define a heavy-hitter flow by their number of
packets (not by their bytes), the information of the heavy-hitter
flows by this definition is quite useful, e.g., identifying severe net-
work attacks, misconfiguration, and another heavy data streams in
the opposite direction of the link (i.e., the identified flows might be
ack streams).
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Table 4 ŷ, FPR(ŷ) and FNR(ŷ) for trace-I (ε = .05, f = 10−3).

ŷ FPR(ŷ) FNR(ŷ)
13 .039 .178

y real FPR(y) real FNR(y)
13 .057 .318

→ 14 .036 .376

Table 5 ŷ, FPR(ŷ) and FNR(ŷ) for trace-I (ε = .05, f = 10−4).

ŷ FPR(ŷ) FNR(ŷ)
4 .020 .667

y real FPR(y) real FNR(y)
3 .075 .712

→ 4 .000 .812

the amount of traffic volume generated by identified heavy-
hitter flows is already significant. For example, the 10 heav-
iest flows in trace-I account for about 17% of the total
traffic volume.

According to this policy, our goal is to find y′ = ŷ such
that FPR(ŷ) is no greater than ε. Because FPR(ŷ) is a de-
creasing function of y′, threshold ŷ can be determined by

ŷ = min
y′

{
y′ | FPR(y′) ≤ ε} . (9)

Note that Eq. (9) guarantees the lowest false negative ratio
under the constraint FPR(y′) ≤ ε, since FNR(y′) is an in-
creasing function of y′.

To evaluate this policy, we apply a random sampling
process to trace-I, and derive sampled flow statistics.
Here, the sampling frequencies are set to be f = 10−3 and
f = 10−4. We then estimate the flow length distribution
from the sampled flow statistics. Using the estimated flow
length distributions and Eq. (9), we calculate ŷ, FPR(ŷ), and
FNR(ŷ) for each sampling frequency. Tables 4 and 5 list
these results, where ε is set to be .05. We also show the
benchmarks of these values, which are obtained through
Eqs. (7) and (8), for the sake of comparison with the results
from the sampled flow statistics.

When f = 10−3, ŷ is estimated to be 13 with FPR(13) =
.039. On the other hand, in this specific sampled data, the
real FPR for y = 13 is .057 and the real ŷ is 14. Thus there
exists an estimation error. As we observed in the Sect. 5, the
estimated FNR is smaller than the real value. When f =
10−4, the estimated ŷ is the same as the real value and the
corresponding FPR(ŷ) = .020 is more conservative, i.e., it
is greater than the real value 0. Apparently this result is
preferable according to our criteria. We observe, however,
that FNR is underestimated again.

Before closing this section, we summarize the proce-
dure for identifying heavy-hitter flows from sampled flow
statistics. We also give a guideline to set the initial parame-
ters in Step 1.

Step 1: Determine (i) sampling frequency f , (ii) thresh-
old x∗ defining a heavy-hitter flow, and (iii) threshold ε
that FPR should satisfy.

Step 2: Estimate an a priori distribution of Xj from sam-
pled flow statistics n according to Sect. 4.

Step 3: Calculate ŷ according to Eq. (9).

Step 4: If the sampled flow length of a flow is not less
than ŷ, the flow is identified as a heavy-hitter flow.

Guideline of setting initial parameters

The initial parameters in Step 1 can be determined by net-
work operators according to their policies and available re-
sources. However, these parameters are not totally inde-
pendent and there is a trade-off between cost and accuracy.
As we have shown above, our framework is able to address
this trade-off quantitatively, which makes possible for net-
work operators to choose these parameters flexibly and ef-
fectively. First, the network operators might want to set
x∗ when they try to regulate traffic from heavy hitter flows
whose size exceeds certain threshold, x∗. Then, when they
set the sampling frequency f, they can refer to the perfor-
mance of their network equipment. Through the discussion
with network operators, we have found that in most cases,
they are using rule-of-thumb when they set the sampling fre-
quency, e.g., f = 10−3, 10−4, etc, which we chose as exam-
ples in this paper. However, we believe that it is possible
to set the sampling frequency more flexibly rather than us-
ing the rule-of-thumb as we will show below. Finally, the
operators might want to set ε to be as small as possible in
many cases, however, it cannot be too small, since there is
an instrinsic trade-off between FPR and FNR as shown in
Fig. 6 and Fig. 7. One can set ε to be small so that FNR does
not increase too much. If one prefers both FPR and FNR
to be small, it can be achieved by increasing the sampling
frequency as much as their resource allows.

7. Further Discussion

Influence of ν̂— In Sect. 4.1, we adopt ν̂ = ymax/ f as an
estimator of parameter ν (see Eq. (3)). Here we discuss how
the estimation error in ν̂ affects our scheme.

Consider the situation where the j-th flow consists of
Xj packets and Yj packets are sampled with sampling fre-
quency f . As shown in [5], X̂ j = Yj/ f is an unbiased estima-
tor of Xj and the standard deviation σX̂ j

of X̂ j are bounded

above by
√

Xj/ f . To see how the estimation error in X̂ j af-
fects our scheme, we consider the following ν∗1 and ν∗2.

ν∗1 = max Xj − 2
√

max Xj/ f ,

ν∗2 = max Xj + 2
√

max Xj/ f .

Roughly speaking, the estimated ν̂ = ymax/ f lies in [ν∗1, ν
∗
2]

with probability .95.
From the sampled flow statistics of trace-I used in

Sect. 4.2, we obtain two estimators θ̂1 and θ̂2 of parameters
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Table 6 Estimated θ̂1 and θ̂2 for ν∗1 and ν∗2.

ν∗1 ν∗2 θ̂1 θ̂2

f = 10−3 214,356 276,027 .709 .712
f = 10−4 145,796 343,681 .844 .867

Fig. 8 False probabilities for sampling frequency f = 10−3 (top) and
f = 10−4 (bottom).

θ using ν∗1 and ν∗2, respectively. Table 6 summarizes the re-
sults. Recall that max(Xj) = 244,739 for trace-I. We can
observe that the estimated θ̂1 and θ̂2 are quite close to each
other. Thus, we could confirm that the estimation error of ν̂
does not strongly affect the estimation of θ.

Next, we examine how the estimation error in ν̂ af-
fects our framework proposed in Sect. 5.1. Since FPR(y′) in
Eq. (5) and FNR(y′) in Eq. (6) are based on the a priori distri-
bution Pr[Xj = x], it is possible that the estimation error in ν̂
affects these false probabilities. We use the truncated Pareto
distributions with sets of parameters (ν∗1, θ̂1) and (ν∗2, θ̂2) in
Table 6 as a priori distributions, and calculate false prob-
abilities for sampling frequency f = 10−3 and f = 10−4.
Figure 8 shows the results. We observe that the false proba-

bilities in both cases are almost indistinguishable, especially
for FPR. Thus, we may conclude that the estimation of ν̂ by
Eq. (3) is reasonable for our scheme.

8. Conclusions

In this paper, we developed techniques and schemes to eval-
uate the original flow length from the sampled flows. Our
approach consists of two stages. The first stage is to con-
duct a parametric estimation of the original flow length dis-
tribution from sampled flows. The second stage is to use
Bayes’ theorem with the estimated a priori distribution for
inferring the original flow length from the sampled flow
length. We showed that our basic framework is very flex-
ible in striking an appropriate balance between false posi-
tive and false negative when sampling frequency was given.
We further validated and evaluated our approach with some
publicly available traces. Our schemes are generic and re-
quire no per-packet processing; hence, they allow a very
cost-effective implementation for being deployed in large-
scale high-speed networks.
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Appendix A: Parameter Estimation of the Truncated
Pareto Distribution

This section proves Eqs. (1) and (2), which are ML estima-
tors of parameters in the truncated Pareto distribution. Given
the observed flow lengths X1, X2, ..., Xm, the likelihood func-
tion L (ν, θ) is given by

L (ν, θ) =
m∏

j=1

X−θj −
(
Xj + 1

)−θ
1 − (ν + 1)−θ

.

Because L(ν, θ) is a decreasing function of ν and Xj ≤ ν <
∞, we obtain ν = ν̂, where ν̂ is given in Eq. (1).

Note here that the log likelihood function L(θ) is given
by

L (θ) = −m log
{
1 − (ν + 1)−θ

}
+

∑
j

log X−θj −
(
Xj + 1

)−θ
.

Thus, θ = θ̂, which maximizes the log likelihood function,
satisfies the following equation

∂L (θ)
∂θ

= 0,

which yields Eq. (2). �

Appendix B: Examples of Parameter Estimation

To supplement the results obtained from trace-I, we used
other packet traces as well. One was measured at the same
link of trace-I but during a different time period: from
10:00 to 10:10 on the same day. We use the first 107 pack-
ets that correspond to about 138 seconds of the observed
traffic. We call this sliced trace as trace-II, which con-
tains 197,536 flows. The other was measured at an OC-192
backbone link [18] from 23:00 to 23:10 on June 1, 2004.
Again, we use the first 107 packets that correspond to about
99 seconds of observed traffic. We call this sliced trace
trace-III, which contains 498,036 flows.

Fig. A· 1 The estimated distributions from sampled flow statistics for
trace-II (top) and trace-III (bottom)

(
f = 10−3, 10−4

)
.
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First, we approximate the original flow length distri-
butions by the truncated Pareto distribution. We then apply
random packet sampling to the trace-II and trace-III,
with sampling frequency of f = 10−3 and f = 10−4. From
the obtained sampled flow statistics n, we estimate parame-
ters ν and θ of the truncated Pareto distribution. Figure A· 1
shows the results. We can observe that the approximate dis-
tribution and the estimated distribution visually fit well to
the empirical distribution. Although the approximate and
the estimated distributions are slightly skewed from the em-
pirical distributions, we confirmed that the difference did not
play a crucial role in determining the thresholds of sampled
flow lengths, which identify the heavy-hitter flows.

Since our parametric model assumes that the flow
length distribution follows the truncated Pareto distribution,
it would work well as far as the original flow distributions
follow the heavy-tailed model. We believe that this assump-
tion holds in most cases as reported in many measurement-
based studies such as [9], [14], [20], [22], [23]. Moreover,
the reason why the heavy-hitter flows exist among flows
comes from the fact that the distribution is heavy-tailed.
However, it might be possible that the original flow length
distribution shows quite different characteristics. For such
distributions, we might want to introduce another type of
distribution model in our framework.
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