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Receiver-Based ACK Splitting Mechanism for TCP over
Wired/Wireless Heterogeneous Networks

Go HASEGAWA†a), Member, Masashi NAKATA†, Nonmember, and Hirotaka NAKANO†, Member

SUMMARY With the rapid development of wireless network technolo-
gies, heterogeneous networks with wired and wireless links are becoming
common. However, the performance of TCP data transmission deteriorates
significantly when a TCP connection traverses such networks, mainly be-
cause of packet losses caused by the high bit error rate of wireless links.
Many solutions for this problem have been proposed in the past literature.
However, most of them have various drawbacks, such as difficulties in their
deployment by the wireless access network provider and end users, viola-
tion of TCP’s end-to-end principle by splitting the TCP connection, or in-
applicability to IP-level encrypted traffic because the base station needs to
access the TCP header. In this paper, we propose a new mechanism without
such drawbacks to improve the performance of TCP over wired and wire-
less heterogeneous networks. Our mechanism employs a receiver-based
approach, which does not need modifications to be made to the sender TCP
or the base station. It uses the ACK-splitting method for increasing the con-
gestion window size quickly in order to restrain the throughput degradation
caused by packet losses due to the high bit error rate of wireless links. We
evaluate the performance of our mechanism and show that our mechanism
can increase throughput by up to 94% in a UMTS network. The simula-
tion results also show that our mechanism does not significantly deteriorate
even when the receiver cannot perfectly distinguish whether packet losses
are due to network congestion or bit errors on the wireless links.
key words: TCP, wired/wireless heterogeneous networks, ACK splitting
mechanism, congestion control mechanism

1. Introduction

Various wireless network technologies have become popu-
lar in recent years, and as their bandwidths become larger,
they are coming to be used as access networks to the Inter-
net. In particular, heterogeneous networks with wired and
wireless links have become common. We can now utilize
the Internet access environment out of doors in public wire-
less LAN spots. Furthermore, a lot of people have mobile
phones which embody third-generation mobile technologies
typified by the Universal Mobile Telecommunications Sys-
tem (UMTS) [1], and mobile phone’s wireless network tech-
nologies are often used as the last-mile access network to the
Internet.

In such heterogeneous networks, except for P2P appli-
cations, the sender of the data transmission is a server on the
Internet (the wired-side network), and the receiver is a client
at the edge of the wireless network. That is, the sender and
receiver are connected via wired and wireless networks, and
data transmission is done from the wired network hosts to
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wireless network hosts by using Transmission Control Pro-
tocol (TCP) [2], the most popular transport-layer protocol
in the current Internet. However, it is a well-known prob-
lem that the performance of TCP deteriorates significantly
when a TCP connection traverses wired and wireless het-
erogeneous networks [3], [4]. TCP was originally designed
for wired networks, so it regards all packet losses detected
at the TCP sender as losses caused by network congestion:
the result of buffer overflow of the intermediate routers. In
response, the TCP sender slows down its data transmission
rate by reducing the congestion window size to half in order
to avoid further network congestion. Unfortunately, in het-
erogeneous networks, since the bit errors occur with a high
ratio on wireless links [5], the packets with bit errors are dis-
carded at a lower layer and this causes packet losses in the
upper-layer TCP. In this paper, we define such packet losses
as wireless losses, and packet losses caused by network con-
gestion as congestion losses. Wireless losses are not the re-
sult of the network congestion, and it is unnecessary to slow
down data transmission rate in response to them. However,
since TCP lacks a function to know the reason for a packet
loss, it decreases the data transmission rate regardless of the
cause. This results in a situation in which the higher the
bit error rate of the wireless link is, the more often wire-
less losses occur, and TCP’s data transmission performance
deteriorates more significantly.

Many solutions to this problem have been proposed in
the past literature [6]–[18]. Some of them [6]–[11] modify
the functions of the base station, which is the border node
of the wired and wireless networks. They aim to hide the
occurrence of wireless losses from the TCP connection in
the wired network. However, such solutions violate TCP’s
end-to-end principle because they split the TCP connection
into a wired part and a wireless part at the base station. Fur-
thermore, they can not be applied when a lower-layer en-
cryption mechanism such as IPSec [19] is utilized because
they need to access TCP header at the base station. Other
solutions [12]–[18] modify the sender-side TCP algorithm.
They try not to slow down TCP’s transmission rate when a
wireless loss is detected. Since these solutions do not split
the TCP connection and do not access the TCP header at
nodes other than the end hosts, they preserve the end-to-end
principle and can be applied when the traffic is encrypted
at a lower-layer. However, they face another difficulty in
their deployment path. That is, the TCP sender is generally
the server in the wired network, and server administrators
do not prefer solutions that introduce additional costs or in-
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stability to their systems. Because of the above drawbacks,
the most of the existing solutions are not widely deployed.
To be universally used in the current and the future Internet,
what is really needed is a solution without such drawbacks,
that is, one which can be deployed by wireless access net-
work providers or end users seeking to improve TCP’s per-
formance over heterogeneous networks.

The main contribution of this paper is the proposal
of a receiver-based ACK splitting mechanism to improve
TCP throughput over wired and wireless heterogeneous net-
works. Our mechanism only requires one to make a mod-
ification to the TCP algorithm at the receiver host that di-
rectly connects to the wireless access network. Therefore,
it preserves TCP’s end-to-end principle, and it can easily be
deployed and applied to IP-level encrypted traffic.

Regarding the modification of the receiver-side TCP
algorithm, it is impossible to prevent the sender’s conges-
tion window size from being reduced when wireless losses
occur. Instead, we restrain the throughput degradation by
using the ACK-splitting method [20], which can be accom-
plished by modifying the receiver’s TCP. The ACK-splitting
method increases the congestion window size of the sender-
side TCP more quickly than usual by sending multiple AC-
Knowledgement (ACK) packets when a data packet arrives
at the receiver. Although ACK-splitting is helpful in it-
self, an inappropriate execution of it has a bad influence
on the network and the sender-side TCP. Consequently, we
introduce functions to control ACK-splitting appropriately:
packet loss distinction, control of ACK-splitting duration,
and control of ACK sending rate.

To evaluate the effectiveness of our mechanism, we
compared the throughput of the proposed mechanism with
that of the original TCP by simulation. The simulation re-
sults show that the throughput is 93% higher than that of the
original TCP when the proposed mechanism is incorporated
into a receiver TCP on wireless network clients of heteroge-
neous networks in a UMTS network. The simulations also
show that our mechanism is effective even when the receiver
can not perfectly distinguish the cause of packet loss.

The rest of this paper is organized as follows. In Sect. 2,
we explain the details of performance degradation problem
of TCP over wired and wireless heterogeneous networks,
and describe the existing solutions and the ACK-splitting
method. In Sect. 3, we describe our receiver-based ACK
splitting mechanism in detail. In Sect. 4, we present the re-
sults of a simulation to evaluate the mechanism. Section 5
concludes this paper and offers an outline for future work on
this topic.

2. Research Background

In this section, we introduce the problem of TCP over wired
and wireless heterogeneous networks that is addressed in
this paper, describe some of the existing solutions for this
problem, and point out their drawbacks. We also explain the
ACK-splitting method that is the basis of our mechanism.

Fig. 1 Unnecessary degradation of the congestion window.

2.1 Problems on TCP over Wired/Wireless Heterogeneous
Networks

The congestion control algorithm of TCP-Reno increases
the congestion window size by its inverse when the sender
receives an ACK packet, as long as no packet loss is de-
tected. That is, the congestion window size increases addi-
tively by one segment every RTT. When TCP-Reno detects
packet losses, it reduces the congestion window size by half
to slow down the data transmission rate. These behaviors
are based on an assumption that all packet losses are caused
by network congestion when buffer overflow occurs at in-
termediate routers. This assumption works well if the TCP
connection traverses only wired networks, since the bit error
rate of wired links is now negligible [21], [22]. However,
when wireless links are in the transmission path, this as-
sumption becomes inappropriate because wireless network
links have a high bit error rate, and this causes packet losses
that are not the result of the network congestion. In this
paper, we define such losses as wireless losses and losses
caused by network congestion as congestion losses.

Wireless loss is not a sign of network congestion, so
it is unnecessary to slow down the data transmission rate
and TCP should not decrease its congestion window size in
response to it. However, TCP can not distinguish wireless
losses from congestion losses, and thus, it reduces the con-
gestion window size by half in response to either type of
packet loss. Figure 1 depicts unnecessary changes in the
congestion window size against wireless losses. This figure
indicates that the performance of TCP’s data transmission
decreases, even when there is unutilized bandwidth that is
available for the TCP connection.

2.2 Existing Solutions

The past literature proposes many solutions to solve perfor-
mance degradation problem of TCP over networks includ-
ing wireless links [6]–[18]. Here, we focus on the solutions
with modification of the sender-side TCP, since the proposed
mechanism is this paper is also an end-to-end approach. We
suppose that the TCP sender is in the wired network and
the TCP receiver is connected to it through a wireless ac-
cess network. This supposition is valid because the situa-
tion is commonplace on wired and wireless heterogeneous
networks.

In [12]–[18], the sender-side TCP algorithm is modi-
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fied so that it does not unnecessarily reduce the congestion
window size. These approaches modify the congestion con-
trol mechanism of the sender TCP so that it will not shrink
the congestion window in response to wireless losses.

In TCP-Westwood [12], the sender dynamically esti-
mates the available network bandwidth by measuring the ar-
rival rate of ACK packets. When packet losses are detected,
the sender sets a slow start threshold (ssth) to a value calcu-
lated from the measured available bandwidth, regardless of
whether the losses are wireless or congestion losses. The ef-
fectiveness of a rate-based solution such as TCP-Westwood
depends on the accuracy of the available bandwidth estima-
tion. The other literature describes many algorithms for esti-
mating available bandwidth, e.g., TCP-Jersey [15] and these
are used to solve the performance degradation problem of
TCP.

Jitter-based TCP (JTCP) [16] is different from the rate-
based solutions. It makes the sender-side TCP able to dis-
tinguish the causes of packet loss. Only when congestion
losses are identified does the sender reduce its congestion
window by half. The cause of packet loss is distinguished
calculating Jr, i.e.,

Jr =
(Rn−1 − Rn−w) − (S n−1 − S n−w)

Rn−1 − Rn−w
(1)

where Ri is the receiving time for the i th data packet, S i

is the sending time for the i th data packet, and w is the
current congestion window size in packets. Jr is an estimate
of the network congestion level from the jitter of the one-
way transmission delay of data packets. Using this value,
JTCP distinguishes the cause of packet loss as follows:{

Jr > k/w → congestion losses
Jr ≤ k/w → wireless losses

where k is a control parameter. If k is greater than 1, the
sender may misjudge congestion losses as wireless losses.
If k is less than 1, the sender will become more sensible,
but some wireless losses might be misjudged as congestion
losses. In [16], the authors’ experiments indicate that JTCP
has the best performance with k = 1.

Although these solutions can avoid unnecessary reduc-
tions in congestion window size in response to wireless
losses, their deployment scenarios face problems. In many
cases, the TCP sender is a server host on the wired network
and the TCP receiver is a wireless client machine. As such,
we would need to deploy the above solutions on the net-
work’s servers. The problem is that server administrators
might see this as an undesirable additional cost, since only
the wireless network users would receive the benefit of the
modification. Furthermore, the server administrators would
likely prefer not to change the system kernel of their servers
because doing so may cause instabilities in their system.

2.3 ACK-Splitting Method

As described in Sect. 2.2, the existing solutions which mod-
ify the base station or the sender-side TCP have various

drawbacks. In this paper, we propose a mechanism that
modifies only the receiver-side TCP and does not have the
drawbacks mentioned above. Here, we describe the ACK-
splitting method [20] which is the basis of our mechanism.

ACK-splitting increases the speed at which TCP’s con-
gestion window size changes by sending back multiple ACK
packets for one data packet received by a TCP receiver.
This method is derived from the incongruence of the er-
ror control and congestion control of TCP. TCP is a basi-
cally byte-stream protocol. Therefore, each data packet has
a sequence number field that refers to byte offsets within a
TCP data stream. For example, let’s say a packet has a se-
quence number 4001 and the previously transmitted packet
has a sequence number 3001. Thus, the former packet in-
cludes data represented by byte offsets from 3001 to 4000.
An ACK packet also has a sequence number field that in-
dicates the last byte offsets received consecutively. When
the TCP sender receives an ACK packet whose sequence
number is 4000, it means the data has fully arrived at the
receiver until 4000 bytes from the first byte. On the other
hand, TCP’s congestion control mechanism is maintained in
terms of packets rather than bytes. For example, at the TCP
sender, the congestion window size is updated on receiving
each ACK packet which acknowledges new data, regardless
of the acknowledged data size. During the slow start phase,
the TCP sender increases its congestion window size by 1
segment size for each ACK packet, and during a congestion
avoidance phase, the congestion window size is increased
by its inverse value for each ACK packet.

The mismatch between the byte granularity of the error
control and the packet granularity of the congestion control
enables an ACK-splitting method as follows. Upon receiv-
ing a data packet containing N bytes, the receiver generates
M separate ACK packets (M < N) rather than 1 ACK packet
as the normal TCP does. Each of M separate ACK packets
covers one of M distinct pieces of the received data packet.
That is, each ACK packet has a different acknowledgement
sequence number to acknowledge new data. Without ACK-
splitting, the sender updates its congestion window size only
once upon receiving the original ACK packet. With ACK-
splitting, the sender receives M ACK packets and updates
the congestion window size M times. Because the conges-
tion window size increase for 1 ACK packet is independent
of the acknowledged data size, the congestion window size
increases more rapidly.

The behavior of ACK-splitting is depicted with the
time chart in Fig. 2. In this figure, each data and ACK packet
exchanged between the sender and the receiver is indicated
with an arrow, and time increases toward the bottom of the
chart. The numbers on the sender side indicate the sequence
number of sent data packets, and those on the receiver side
indicate the sequence number of ACK packets. In this ex-
ample, the sender-side TCP is in a slow start phase. Initially,
the congestion window size is 1 segment, and a packet with
sequence number 1 and whose size is 1000 bytes is sent. On
receiving the data packet, the receiver normally sends back
an ACK packet with sequence number 1000. Instead, in this
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Fig. 2 Time chart of ACK-splitting during slow start phase.

example, the receiver splits it into three ACK packets with
different sequence numbers: 300, 600, and 1000 (other sets
of acknowledgement numbers are acceptable). On receiv-
ing the ACK packet with sequence number 300, the sender
updates the congestion window size since the ACK packet
acknowledges new data. On each reception of the remain-
ing two ACK packets with sequence numbers 600 and 1000,
the sender updates the congestion window size, since those
ACK packets also acknowledge new data. As a result, the
congestion window size increases by 3 segments in 1 RTT,
whereas it increases by only one segment per RTT in the
slow start phase of the normal TCP.

SPACK [11] is a solution that uses ACK-splitting at
the base station. It detects wireless loss at the base sta-
tion by comparing the sequence numbers and the acknowl-
edgement numbers of packets passing through the base sta-
tion, and splits the first ACK packet which acknowledges
new data of N bytes after the wireless loss into N separate
ACK packets. This means that each separate ACK packet
acknowledges only 1 byte. SPACK can not be applied if
the IP level encryption mechanism is utilized, since it reads
the TCP header at the base station, and it does not consider
the trade-off between effectiveness and the bad influence of
ACK-splitting.

Although ACK-splitting is helpful in avoiding unnec-
essary reductions in congestion window size, it may in-
crease the load of the sender-side TCP and may increase net-
work congestion on the path from the sender or to the sender.
From another viewpoint, ACK-splitting can be made into
an attack on network servers [20]. In [20], TCP-Daytona
is mentioned as a variant that does not increase the con-
gestion window size for split ACK packets. If such a TCP
variant is introduced in the server, we can not use an ACK-
splitting method to recover the congestion window size. In
fact, operating system of Linux 2.2 and latter versions adopt
such an anti-ACK-splitting mechanism [20]. Therefore, our
mechanism is invalid for servers with Linux2.2 or latter ver-
sions. On the other hand, FreeBSD6.0 and Solaris10 do not
deploy such a mechanism, so our mechanims is valid for
them. However, since we believe the advantage of the pro-
posed mechanism as presented in this paper, we would pro-
pose that TCP sender should react the splitted ACK packets,
with the appropriate mechanisms for distinguishing ACK-
splitting mechanisms and vulnerabe attacks, that is one of

important research topics as our future work. The investi-
gation of the effectiveness of the proposed mechanism for
TCP sender of other OSes, especially variants of Microsoft
Windows, would be also one of our future works.

3. Proposed Mechanism

3.1 Overview of Proposed Mechanism

Our mechanism requires a modification only to a TCP re-
ceiver connected to a wireless link in order to be easily de-
ployed and to be applicable to IP level encrypted traffic,
and to preserve end-to-end principle. That is, our mech-
anism doesn’t change the congestion control mechanism of
the sender to prevent the congestion window size from being
reduced in response wireless losses. Instead, it quickly in-
creases the congestion window size back to its original value
just before wireless losses occur, by using the ACK-splitting
method explained in the previous section. However, since
ACK-splitting has some demerits when it is used inappropri-
ately, it is necessary to control its execution. In the follow-
ing subsections, we outline three problems stemming from
inappropriate execution of ACK-splitting and functions to
alleviate them.

Figure 3 is an overview of how the mechanism works.
When packet loss occurs, the mechanism distinguishes
the cause of the loss by using the functions described in
Sect. 3.2. If the loss is wireless loss, it executes ACK-
splitting to recover the congestion window size. Here, the
function described in Sect. 3.3 determines the duration of
ACK-splitting, and the function described in Sect. 3.4 con-
trols the rate of the congestion window’s increase so as not
to congest the uplink of the wireless network.

3.2 The Cause of Packet Loss Distinction

The purpose of our mechanism is to increase the congestion
window size more quickly than usual after wireless losses
occur and the congestion window is halved. This is desir-
able because wireless losses do not indicate network con-
gestion. On the other hand, congestion losses are a sign
of network congestion, and halving the congestion window
size is the correct way to avoid further network congestion.
Consequently, ACK-splitting should not be executed in re-
sponse to congestion losses because enlarging the conges-
tion window size ends up increasing the network congestion.
To avoid such a situation, we introduce a function to distin-
guish wireless losses from congestion losses at a receiver
host. There are three distinct methods (Sects. 3.2.1–3.2.3)
to distinguish the cause of packet loss.

3.2.1 MAC-Method

It is possible to distinguish the cause of packet loss perfectly
at a receiver host connected to a wireless link by using infor-
mation from the MAC layer. We call this method the MAC-
method. In most wireless networks, a packet is divided into
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Fig. 3 Overview of the proposed mechanism.

multiple frames before it is transmitted. The base station
retransmits transmitted frame in which unrecoverable bit er-
rors occur by using Automatic Repeat Request (ARQ) [23].
The frame is discarded if the retransmission fails a specific
number of times (usually three times). The packet including
a discarded frame(s) is then discarded in the MAC layer, and
this results in a wireless loss. Because the receiver checks
the bit error in the MAC layer, we can use MAC layer infor-
mation to identify which packets have bit errors. However,
since such a method requires cooperation between the trans-
port layer and MAC layer, it is undesirable from the view-
point of the hierarchical structure of network protocols. In
addition, its implementation is difficult because the behavior
of the MAC layer would have to be modified. (For example,
we would need to put additional codes in the device driver
of the wireless NIC at the receiver host.) The MAC-method
does have the advantage of providing complete information
on the cause of packet loss, whereas the following non inter-
layer approaches can not distinguish the cause of packet loss
perfectly.

3.2.2 JTCP-Method

This non inter-layer distinction method leverages the Jitter-
based TCP [16] described in Sect. 2.2.2. In JTCP, the net-
work congestion level Jr is estimated from the jitter of the
one-way delay of data packets (Eq. (1)). The required infor-
mation to calculate Jr is the receiving time for the i th data
packet, Ri, the sending time for the i th data packet, S i, and
the current congestion window size of the sender, w. These
values are obtained or estimated at the receiver.

Ri can be directly obtained when the i th data packet
arrives at the receiver, and S i can be obtained from the TCP
header of the i th data packet by using TCP’s timestamp op-
tion [24]. The sender’s time and the receiver’s time are usu-
ally not perfectly synchronized, but this does not affect Jr’s
derivation, since the difference in the times at each host are
used in Eq. (1): S n−1 − S n−w and Rn−1 − Rn−w. Furthermore,
the clock skew time is not the same at the sender and the re-
ceiver. However, this difference is negligible when one con-
siders that the clock skew time is tens of pico-seconds [25],
whereas the one-way transmission delay is usually larger
than milli-second order.
w is not directly obtained at the receiver; Instead, a sim-

ple estimation method is used as follows. The congestion
window size of a TCP connection can be approximated by
the product of RTT and average throughput of the TCP con-
nection. At the receiver host, RTT can be obtained with the
timestamp option, and the average throughput can be gotten
by counting the total bytes of arrival data packets in each
RTT, under the assumption that the receive socket buffer size
is sufficiently large. We calculate cwnd r, the estimated size
of the congestion window, as

cwnd r = s rtt × ρ (2)

where s rtt is smoothed RTT, and ρ is average throughput
during the last RTT. This estimation is done every RTT.
Since the actual congestion window of the sender TCP in-
creases in size during the period between estimations, there
would be an error between cwnd r and the window’s actual
size. To reduce the estimation error, we update cwnd r every
time an ACK packet is sent to acknowledge new data. That
is, we increase cwnd r by its inverse for every ACK packet.

We then calculate Jr and when a packet loss occurs,
we judge it as congestion loss if Jr > 1

w
, and wireless loss

otherwise (we chose 1 as the value of the control parameter
k, which the author of [16] says is the best value)

3.2.3 RTT-Method

The other non inter-layer distinction method is the RTT-
method, which distinguishes the cause of packet loss at ran-
dom by using only the RTT value. Reference [26] proposes
a flexible mechanism for controlling the congestion win-
dow size of a TCP connection. The flexible mechanism dy-
namically changes the congestion window size according to
the network congestion level estimated from RTT observa-
tions. Our RTT-method uses this mechanism to distinguish
the cause of packet loss.

We assume that the receiver-side TCP uses the times-
tamp option in backward way. From the description of RFC
[24], the behavior of TCP with timestamp option in back-
ward way is that the receiver TCP adds a timestamp to the
option field of each ACK packet to be sent, and the sender
TCP copies the timestamp to the data packets triggered by
receiving the ACK packet.

We assume that the more congested the network is, the
larger RTT will be, because the queuing delay at congested
routers will increase. Thus, when packet loss is detected, we
determine it to be congestion loss with the following proba-
bility, Pc:

Pc =
RTTloss − RTTmin

RTTmax − RTTmin
(3)

where RTTloss is the RTT when packet loss is detected,
RTTmin and RTTmax are the minimum and maximum RTTs
of the TCP connection. Since RTTloss is between RTTmin

and RTTmax, Pc would be between 0 and 1. Pc is 0 when
RTTloss is identical to RTTmin, it increases additively as
RTTloss increases. It reaches 1 when RTTloss is the same
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as RTTmax. This behavior is clearly based on the assump-
tion that increasing the network congestion level increases
RTT. Note that the receiver TCP determines packet loss type
in on stochastic behavior: it determines the loss is wireless
loss with the probability of Pc, and congestion loss with the
probability of 1 − Pc.

3.3 Control of ACK-Splitting Duration

ACK-splitting begins after a packet loss is distinguished as
wireless loss by using distinction method we explained in
the previous subsection. However, executing ACK-splitting
too long after the wireless loss occurs would increase the
load of the sender-side TCP or networks by sending too
many ACK packets and by making the congestion window
size larger than expected. Thus, we need to control the du-
ration of ACK-splitting to avoid such a situation. Note that
our purpose is to recover from unnecessary reductions in the
congestion window size. Therefore, ACK-splitting should
be executed until the congestion window size reaches the
value just before the wireless loss occurred. By maintaining
an estimation of the congestion window size as described
in Sect. 3.2.2, we can realize such a behavior to control the
duration of ACK-splitting:

1. When a wireless loss occurs, we record the conges-
tion window size as target cwnd. We do not over-
ride target cwnd when the wireless loss occurs during
ACK-splitting since it has been already set at a prece-
dent wireless loss.

2. During ACK-splitting, the current estimation of the
congestion window size (cwnd r) is compared with
target cwnd. Then, while cwnd r < target cwnd,
ACK-splitting continues, and when cwnd r ≥
target cwnd, ACK-splitting stops.

3. If congestion loss occurs during ACK-splitting, the
ACK-splitting stops, to avoid network congestion.

According to the above procedure, the congestion window
size changes as depicted in Fig. 4.

The fairness between TCP with the proposed meth-
ods and the traditional TCP Reno is important when we
propose enhancement of TCP congestion control mecha-
nism. We have injected our fundamental idea for fairness
into the proposed mechanism, that is, we stop splitting ACK

Fig. 4 Expected changes in congestion window size with our
mechanism.

packets when the window size is enough recovered, as ex-
plained in Sect. 3.3. That is, the proposed mechanism mim-
ics the behavior of the original TCP Reno without wireless
packet losses. Therefore, if the network congestion occurs
in wired networks, the proposed mechanism share the bot-
tleneck bandwidth equally with competing TCP Reno con-
nections.

Note that the proposed algorithm for recovering the
congestion window size is used both in the slow start phase
and the congestion avoidance phase. Since we stop the re-
cover of the congestion window size when it reaches the
size when the wireless loss occurred, the rapid increase of
the window size in slow start phase would last only for 1
RTT.

3.4 Control of ACK Sending Rate

During ACK-splitting, if the sending rate of split ACK pack-
ets is too high, the amount of data transmitted on the return
path to the sender increases excessively. Consequently, the
uplink of the wireless network becomes congested, because
the uplink bandwidth of the wireless networks is usually
small. Thus, our mechanism incorporates a function to con-
trol dynamically the sending rate of split ACK packets. The
sending rate of split ACK packets is tuned by changing their
number for one data packet. That is, the ACK sending rate is
low if a few ACK packets are sent back for one data packet,
and the ACK sending rate is high if many ACK packets are
sent back for one data packet. To control the number of split
ACK packets, we estimate the congestion level of the uplink
by referring to the length of the sending queue for the uplink
network interface at the receiver.

We denote the sending queue length of an uplink net-
work interface just before sending back ACK packets for the
i th data packet as r queuei, and the length just after send-
ing back ACK packets for the i th data packet as s queuei.
Then, ∆Qi, the number of ACK packets which are sent out
on the uplink from the sending queue between the arrivals
of the (i − 1) th data packet and the i th data packet, can be
described as follows:

∆Qi = s queuei−1 − r queuei (4)

Assuming that the arrival interval of data packets does not
change rapidly, at least ∆Qi ACK packets can be sent out
between arrivals of the i th data packet and the (i+1) th data
packet without making the uplink congested. Thus, after
ACK packets for the i th data packet are put on the send-
ing queue, the number of ACK packets in the sending queue
should become ∆Qi. Furthermore, if the sending queue is
empty when the ACK packets are sent, we can guess that the
uplink can transmit more ACK packets. Given these consid-
erations, ACKi, the number of ACK packets for i th data
packet, is calculated as

ACKi =

{
∆Qi − r queuei (if r queuei > 0)
∆Qi + 1 (if r queuei = 0)

(5)

Figure 5 depicts typical changes in the sending queue length
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Fig. 5 Typical changes in the number of ACK packets for each data
packet.

during ACK-splitting with this control function. The ar-
rival timing of data packets and values of s queuei, r queuei,
∆Qi, and ACKi are shown. Note that we set the number of
ACK packets for the first data packet to 1, because there is
no information to determine the congestion level of the up-
link.

4. Performance Evaluation with Simulation Experi-
ments

This section presents the results of a simulation that evalu-
ated the performance of our mechanism.

4.1 Simulation Settings

We used ns-2 [27] for the simulation experiments. To evalu-
ate our mechanism over simulated wired and wireless het-
erogeneous networks, we compared the throughput when
our mechanism was installed at the receiver with throughput
of the original version of TCP-Reno. The network model is
depicted in Fig. 6. It consisted of a sender host, a receiver
host, a base station, a wired link connecting the sender and
the base station, and a wireless link between the base sta-
tion and receiver. The bandwidth and propagation delay of
the wired link were 10 Mbps and 45 ms. We determined the
settings of the wireless link from the UMTS specifications
[1], [5], [28], [29] and the model of wireless links reported
in [30]. The wireless channels were used independently as
download and upload links, and the downlink bandwidth
and propagation delay were 2 Mbps and 1 ms. The uplink
had a bandwidth of 384 kbps and a propagation delay of
1 ms. We assumed that bit errors occurred with a constant
ratio when packets were transmitted on the wireless link.
The bit error rate was set between 10−5 and 10−4. We mod-
eled the transmission delay on the wireless network as fol-
lows: we calculated the packet error rate for the bit error
rate and packet size in bits. When at least one bit in the
packet had an error, we added 6.16 ms, which is the sum of
the round-trip propagation delay of the wireless link and the
time needed to send a packet of 1000 bytes on the wireless
link, to the transmission delay of the packet. The packet was
retransmitted up to three times, according to the default set-
ting of ARQ, and it was discarded if these retransmissions
failed, meaning that wireless loss occurred. The base station
had a packet buffer of 50 data packets, and congestion loss

Fig. 6 Network model of the simulation experiments.

Fig. 7 Average throughputs in the simulation.

occurred when the buffer overflowed.
One TCP connection was set between the sender and

the receiver, and the sender sent balk data to the receiver for
1000 seconds. We used the SACK option of TCP, since the
most operating systems implement it.

4.2 Simulation Results

Figure 7 shows the throughput results. The x-axis indicates
the bit error rate of the wireless link, and y-axis is the aver-
age throughput of the TCP connection. Results are plotted
the four kinds of TCP. One is the normal TCP-SACK, which
does not deploy our mechanism at the receiver. The other
three are our mechanism using three different methods to
distinguish the cause of packet loss (MAC-, JTCP-, or RTT-
method as described in Sect. 3.2). The results indicate that
the throughputs of all four methods deteriorate with increas-
ing bit error rate of the wireless link. However, our mech-
anisms perform better than the normal TCP-SACK, and the
mechanism with the MAC-method performs the best. The
MAC-method increases throughput by up to 94% in com-
parison with that of TCP-SACK when the bit error rate is
around 7×10−5, and the throughput is up to 640 kbps higher
than that of normal TCP-SACK when the bit error rate is
around 4.5×10−5. The JTCP-method and RTT-method yield
a maximum throughput improvement of 61% and 90%, or
up to 340 kbps and 530 kbps higher throughput than that of
normal TCP-SACK, respectively. We note that the effective-
ness of the proposed mechanism depends on the method of
distinguishing the cause of packet loss, because it strongly
affects the effectiveness of ACK-splitting.

Figure 8 depicts the ACK sending rate, which is de-



HASEGAWA et al.: RECEIVER-BASED ACK SPLITTING MECHANISM FOR TCP
1139

Fig. 8 Comparison of the sending rate of ACK packets.

Fig. 9 Distinction accuracies of JTCP-method and RTT-method.

fined as the average number of ACK packets sent from the
receiver per second. Because additional ACK packets are
generated by using ACK-splitting, our mechanism increases
the number of ACK packets. Basically, throughput increases
with the number of ACK packets, except when the bit error
rate is low. When the bit error rate is low, fewer ACK pack-
ets are necessary since normal TCP-SACK does not degrade
the throughput. However, the mechanism with the JTCP-
method significantly increases the number of ACK packets.

Next we discuss how the method of packet-loss dis-
tinction affects the effectiveness and number of ACK pack-
ets. Figure 9 depicts Acc w, the accuracy of detecting wire-
less losses, and Acc c, the accuracy of detecting congestion
losses. These values are calculated as follows:

Acc w =
Nwc

Nwa
(6)

Acc c =
Ncc

Nca
(7)

where Nwc is the number of correctly distinguished wire-
less losses, Nwa is the total number of wireless losses, Ncc is
the number of correctly distinguished congestion losses, and
Nca is the total number of congestion losses. Note that there
is no data on the accuracy for detecting congestion losses
when the bit error rate is higher than 6.5 × 10−5, since no
congestion losses occur.

For wireless losses, the accuracy of the RTT-method

of is higher than that of the JTCP-method. Since ACK-
splitting is not executed when a wireless loss is not detected
correctly, our mechanism becomes less effective if the ac-
curacy of detecting wireless losses becomes small. Con-
sequently, in Fig. 7, the mechanism with the JTCP-method
has a lower throughput than those with the MAC-method
or RTT-method. On the other hand, because the accu-
racy of detecting wireless losses with the RTT-method is
high enough in the high bit error rate region, ACK-splitting
is correctly executed for wireless losses, when necessary.
Therefore, the mechanism with the RTT-method is similar
in effect to the mechanism with the MAC-method.

Neither the JTCP-method nor the RTT-method accu-
rately detects congestion losses. If congestion loss is mis-
taken for wireless loss, ACK-splitting is unnecessarily exe-
cuted, meaning that the number of ACK packets increases
unnecessarily. The effect of such a situation can be clearly
seen in the low bit error rate region in Fig. 8. In that region,
the JTCP- and RTT-methods send out more ACK packets
than the MAC-method does, and the performance of MAC-
method is the highest among the three. In fact, the degree of
throughput improvement is not heavily affected by the ac-
curacy of detecting congestion losses, because the through-
put of normal TCP-SACK does not deteriorate much in the
low bit error rate region where the throughput is not depen-
dent on whether ACK-splitting is executed or not. Mean-
while, congestion losses hardly occur when the bit error
rate is high since wireless losses occur before the buffer
overflows. Therefore, the accuracy of detecting congestion
losses has little impact on the performance of our mecha-
nism. However, since unnecessary ACK-splitting may make
the network more congested, it is desirable for the conges-
tion losses to be detected with high accuracy.

The RTT-method has a very simple algorithm, so its
accuracy may be improved by using another algorithm. For
example, in [31], the change in packet transmission delay
is divided into two types, one reflecting a short-term trend
and the other a long-term trend, and packet loss (conges-
tion loss) is predicted with a weighting function dependent
on the congestion level. By applying such an algorithm, the
RTT-method could distinguish the cause of packet loss more
accurately. In this paper, we do not investigate such a modi-
fication, so it remains as a future work.

5. Conclusion

In this paper, we proposed a new mechanism to improve the
performance of TCP over wired and wireless heterogeneous
networks. The mechanism restrains the throughput degra-
dation by increasing the congestion window size faster than
the original TCP-Reno by using an ACK-splitting method
when wireless losses occur. It needs a modification only to
the receiver TCP algorithm. Consequently, it doesn’t have
the drawbacks of the existing solutions: it can be deployed
easily and applied to IP level encrypted traffic, and it pre-
serves TCP’s end-to-end principle. Through simulation ex-
periments, we confirmed that the mechanism can improve
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TCP-SACK throughput by up to 94% on wired and wireless
heterogeneous networks (assuming UMTS for the wireless
network). The simulations also showed that the mechanism
is effective even when the receiver can not perfectly distin-
guish the cause of packet loss.

In the future, we will consider a more accurate method
to distinguish the cause of packet loss and confirm its effec-
tiveness in simulation experiments. We also plan to imple-
ment the mechanism in the actual wireless network environ-
ments and confirm its effectiveness in actual operation.
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