
Title
Modeling TCP Throughput over Wired/wireless
Heterogeneous Networks for Receiver-based ACK
Splitting Mechanism

Author(s) Hasegawa, Go; Nakata, Masashi; Nakano, Hirotaka

Citation IEICE Transactions on Communications. 2007, E90-
B(7), p. 1682-1691

Version Type VoR

URL https://hdl.handle.net/11094/23102

rights Copyright © 2007 The Institute of Electronics,
Information and Communication Engineers

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University



1682
IEICE TRANS. COMMUN., VOL.E90–B, NO.7 JULY 2007

PAPER

Modeling TCP Throughput over Wired/Wireless Heterogeneous
Networks for Receiver-Based ACK Splitting Mechanism

Go HASEGAWA†a), Member, Masashi NAKATA†, Nonmember, and Hirotaka NAKANO†, Member

SUMMARY The performance of TCP data transmission deteriorates
significantly when a TCP connection traverses a heterogeneous network
consisting of wired and wireless links. This is mainly because of packet
losses caused by the high bit error rate of wireless links. We proposed
receiver-based ACK splitting mechanism in [1]. It is a new mechanism to
improve the performance of TCP over wired and wireless heterogeneous
networks. Our mechanism employs a receiver-based approach, which does
not need modifications to be made to the sender TCP or the base station. It
uses the ACK-splitting method for increasing the congestion window size
quickly in order to restrain the throughput degradation caused by packet
losses due to the high bit error rate of wireless links. In this paper, we de-
velop a mathematical analysis method to derive the throughput of a TCP
connection, with/without our mechanism, which traverses wired and wire-
less heterogeneous networks. By using the analysis results, we evaluate
the effectiveness of our mechanism in the network where both of packet
losses due to network congestion and those caused by the high bit error
rate of wireless links take place. Through An evaluation of the proposed
method shows that it can give a good estimation of TCP throughput under
the mixture networks of wired/wireless links. We also find that the larger
the bandwidth of the wireless link is, the more effective our mechanism
becomes, therefore, the mechanism’s usability will increase in the future as
wireless networks become faster.
key words: TCP, wired/wireless heterogeneous networks, ACK splitting
mechanism, throughput analysis

1. Introduction

Various wireless network technologies have become popu-
lar in recent years and are being used as access networks
to the Internet. In particular, heterogeneous networks with
wired and wireless links have become common. However,
it is a well-known problem that the performance of TCP
deteriorates significantly when a TCP connection traverses
such networks [2]. This is because TCP can not distinguish
the cause of packet loss: whether a wireless loss which is
caused by the bit error on wireless links or a congestion loss
which is caused by the network congestion. That is, the
TCP sender reduces the congestion window size to half in
response to all packet losses, meaning that the transmission
rate is slowed down unnecessarily when wireless losses take
place.

Many solutions to this problem have been proposed
in the past literature [3]–[6]. Some of them [3], [4] mod-
ify the functions of the base station. They aim to hide the
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occurrence of wireless losses from the TCP connection in
the wired network. However, such solutions violate TCP’s
end-to-end principle because they split the TCP connection
at the base station. Furthermore, they can not be applied
when a lower-layer encryption mechanism such as IPSec
is utilized because they need to access TCP header at the
base station. Other solutions [5], [6] modify the sender-side
TCP algorithm. They try not to slow down TCP’s transmis-
sion rate when a wireless loss is detected. They preserve
the end-to-end principle and can be applied when the traffic
is encrypted at a lower-layer. However, they face another
difficulty in their deployment path. That is, the TCP sender
is generally the server in the wired network, and server ad-
ministrators do not prefer solutions that introduce additional
costs or instability to their systems.

Because of the above drawbacks, most of the exist-
ing solutions are not widely deployed. So, in [1], we have
proposed a receiver-based ACK splitting mechanism to im-
prove TCP throughput over wired and wireless heteroge-
neous networks without such drawbacks. Our mechanism
only requires one to make a modification to the TCP algo-
rithm at the receiver host that directly connects to the wire-
less access network. Therefore, it preserves TCP’s end-to-
end principle, and it can easily be deployed and applied to
IP-level encrypted traffic. To restrain throughput degrada-
tion only with the modification of the receiver-side TCP al-
gorithm, our mechanism uses ACK-splitting method [7]. In
[1], we exhibited the effectiveness of the proposed mecha-
nism by simulation experiments.

In this paper, we develop a mathematical method to de-
rive the throughput of a TCP connection with/without our
mechanism which traverses wired and wireless heteroge-
neous networks. In the analysis, we assume that both of
packet losses take place due to network congestion and the
high bit error rate of wireless links. Then, through analysis
results, we discuss the usability of our mechanism in various
(including future) wireless network environments.

The rest of this paper is organized as follows. In Sect. 2,
we describe our receiver-based ACK splitting mechanism.
In Sect. 3, we explain the details of analysis of our mecha-
nism’s throughput. In Sect. 4, we present numerical results
of our mechanism and discuss its usability. Section 5 con-
cludes this paper and offers an outline for future work on
this topic.

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers
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2. Receiver-Based ACK Splitting Mechanism

Our mechanism requires a modification only to a TCP re-
ceiver connected to a wireless link in order to be easily de-
ployed and to be applicable to IP level encrypted traffic,
and to preserve end-to-end principle. That is, our mecha-
nism doesn’t change the congestion control mechanism of
the sender to prevent the congestion window size from be-
ing reduced in response wireless losses. Instead, it quickly
increases the congestion window size by using the ACK-
splitting method, which is a method to increase the con-
gestion window size of the sender-side TCP quickly than
usual by sending multiple ACKnowledgement (ACK) pack-
ets when a data packet arrives at the receiver.

However, since ACK-splitting has some demerits when
it is used inappropriately, it is necessary to control its exe-
cution. Congestion losses are a sign of network congestion,
and halving the congestion window size is the correct way
to avoid further network congestion. Consequently, ACK-
splitting should not be executed in response to congestion
losses because enlarging the congestion window size ends
up increasing the network congestion. To avoid such a situ-
ation, our mechanism has a function to distinguish wireless
losses from congestion losses at a receiver host.

After a packet loss is distinguished as wireless loss,
ACK-splitting begins. However, executing ACK-splitting
too long after the wireless loss occurs would increase the
load of the sender-side TCP or networks by sending too
many ACK packets and by making the congestion window
size larger than expected. Thus, we need to control the du-
ration of ACK-splitting to avoid such a situation. Because
our purpose is to recover from unnecessary reductions in the
congestion window size, our mechanism continues ACK-
splitting until the congestion window size reaches the value
just before the wireless loss occurred.

Furthermore, during ACK-splitting, if the sending rate
of split ACK packets is too high, the amount of data trans-
mitted on the return path to the sender increases excessively.
Consequently, the uplink of the wireless network becomes
congested, because the uplink bandwidth of the wireless
networks is usually small. Thus, our mechanism incorpo-
rates a function to control dynamically the sending rate of
split ACK packets. The sending rate of split ACK packets is
tuned by changing their number for one data packet. We de-
termine the number of split ACK packets for one data packet
by estimating the congestion level of the uplink by referring
to the length of the sending queue for the uplink network
interface at the receiver. According to these procedures, the
congestion window size changes as depicted in Fig. 1.

The proposed mechanism may be regarded as vulner-
abe attacks by TCP sender. As we know, the proposed
mechanism is useful for TCP sender of FreeBSD and So-
laris, but Linux 2.2 or later versions has already equipped
with the byte-counting TCP mechanism against the vulner-
abe attacks [7]. However, since we believe the advantage
of the proposed mechanism as shown in [1] and the present

Fig. 1 Expected changes in congestion window size with our
mechanism.

paper, we would propose that TCP sender should react the
splitted ACK packets, with the appropriate mechanisms for
distinguishing ACK-splitting mechanisms and vulnerabe at-
tacks, which is one of important research topics as our future
work. The investigation of the effectiveness of the proposed
mechanism for TCP sender of other OSes, especially vari-
ants of Microsoft Windows, would be also one of our future
works.

3. Analysis

This section presents a mathematical analysis of an aver-
age throughput of a TCP connection with/without the pro-
posed mechanism, under wired/wireless heterogeneous net-
work. The analysis is then used to discuss the usability of
the mechanism in various wireless network environments.

The analysis is based on the mathematical method re-
ported in [8]. In [8], the throughput of a long-lived TCP
connection over a wired network is calculated by model-
ing TCP’s congestion avoidance behavior on the assump-
tion that packet losses occur with a constant ratio†. It mod-
els the number of packets transmitted during the period be-
tween packet loss indications (Fig. 2). The period is called
the Triple Duplicate Period (TDP). In Fig. 2, a round indi-
cates how many RTTs have elapsed from the beginning of
the TDP. The average number of packets transmitted in one
TDP and the average time length of one TDP are denoted as
Y [pkts] and A [sec], respectively. The average throughput
of a TCP connection, B [pkts/sec], is calculated as follows:

B =
Y
A

(1)

In this paper, we expand the analysis in [8] to obtain the
average throughput of a long-lived TCP connection using
our mechanism in a heterogeneous network. The following
assumptions from [8] will be used: an ACK packet for first
data packet in RTT returns to the sender after all data packets
in the RTT have been sent out from the sender, and the con-
gestion window size is not limited by the receiver’s adver-
tised flow control window. We assume that our mechanism
can distinguish the cause of packet loss (congestion loss or
wireless loss) perfectly, meaning that we use inter-layer ap-
proach for packet loss type distinction (which corresponds

†The authors assumed that all of the packet losses are caused
by network congestion.
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Fig. 2 Model of the number of packets transmitted in a TDP in [8].

Fig. 3 Network model for the throughput analysis.

to the MAC-method described in [1]).
The network model is depicted in Fig. 3. We define

Cw [bps] to be the bandwidth and Dw [s] to be the propa-
gation delay of the wired link. Cd [bps] and Dd [s] are the
bandwidth and the propagation delay of the downlink of the
wireless network, and Cu [bps] and Du [s] are those of the
uplink of the wireless network. The buffer size of the base
station is denoted as M [pkts]. We assume that there is only
one persistent TCP connection between the sender and the
receiver.

We consider two types of packet loss: wireless loss and
congestion loss. We assume that wireless losses take place
in the wireless network with a constant ratio p. p is calcu-
lated as

p =
{
1 − (1 − e)S

}4
(2)

where e is the bit error rate of the wireless link and S [bits]
is packet size. This is based on the assumption that wireless
loss occurs after the first transmission and three successive
retransmissions of the packet by ARQ fail. Here, we do not
assume any Forward Error Correction (FEC). However, it is
easy to consider the effect of FEC in the analysis, because
all we need to do is change Eq. (2) to decrease p, and the
following analysis remains unchanged.

Congestion loss is assumed to occur when the conges-
tion window size reaches the value of WM [pkts]. WM is
calculated as

WM =
Cd

S
× RTTmin + M (3)

where RTTmin [s] is the minimum RTT of the transmission
path, which is calculated as follows:

RTTmin = 2Dw+Dd+Du+
S +320

Cw
+

S
Cd
+

320
Cu

(4)

where 320 is the size of an ACK packet in bits and we omit
the processing delay at receiver host and the base station.

Fig. 4 Changes in congestion window size in the normal and recovery
cycles.

Equation (3) is based on the assumption that buffer over-
flow takes place when the congestion window size becomes
larger than the sum of the bandwidth delay product of the
network and the buffer size at the base station. Equation (4)
is derived from the sum of propagation delays and transmis-
sion delays on the round-trip transmission path.

In this paper, we define the period between two packet
loss indications as a cycle (corresponding to a TDP in [8]).
We categorize a cycle into two types, since the congestion
window size behaves differently according to whether the
detected packet loss is a wireless loss or a congestion loss.
We denote the cycle which starts just after a congestion loss
as the normal cycle, and the cycle which starts just after
a wireless loss as the recovery cycle. The normal cycle
continues until the next packet loss occurs. On the other
hand, the recovery cycle continues until the congestion win-
dow regains its initial size before the wireless loss by ACK-
splitting and packet loss occurs after that. Figure 4 depicts
typical changes in the congestion window size in normal and
recovery cycles. We assume that a TCP connection uses
TCP-SACK [9] and it is always in the congestion avoidance
phase in both cycles. Therefore, in the normal cycle, be-
cause ACK-splitting is not executed, the speed of the con-
gestion window increase is identical to that of the original
TCP-Reno: 1 segment every RTT. On the other hand, in
the recovery cycle, the speed of the congestion window size
increase is larger than 1 segment per RTT (by using ACK-
splitting), and it becomes 1 segment per RTT after the con-
gestion window size reaches the value it had just before the
wireless loss occurred.

In the analysis, we first derive the average number of
transmitted packets and the average durations of the normal
cycle and the recovery cycle. We also calculate the proba-
bility for which a TCP connection with our mechanism is in
each cycle. We then get the average throughput by averag-
ing these values. Sects. 3.1 and 3.2 explain the analyses of
the cycles. In Sect. 3.3, we derive the average RTT of a TCP
connection, which is needed to derive the duration of cycles,
and in Sect. 3.4, we show how to get the average throughput
from them.

3.1 Analysis of Normal Cycle

The analysis for the normal cycle is almost the same as that
of [8]. Figure 5 depicts typical changes in the number of
transmitted packets in each round of the normal cycle. Since
the normal cycle starts just after the congestion loss occurs,
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Fig. 5 Change in the number of packets transmitted in the normal cycle.

the congestion window size at the beginning of the normal
cycle is WM

2 , and WM
2 packets are transmitted from the sender

in the first RTT. The number of transmitted packets in round
increases by 1 segment every RTT. The normal cycle contin-
ues until wireless or congestion loss occurs. We assume that
congestion loss takes place when the window size reaches
WM , which is calculated with Eq. (3). That is, the normal cy-
cle is terminated when wireless loss occurs before the con-
gestion window size reaches WM or when the congestion
window size reaches WM and congestion loss occurs. Here,
we denote the number of transmitted packets from the be-
ginning of the normal cycle to when the congestion window
size reaches WM as sn [pkts]. sn includes the lost packet,
and it is calculated as the sum of an arithmetic progression
as follows:

sn =
3 WM(WM + 2)

8
(5)

If wireless loss occurs before sn packets are transmitted
from the beginning of the normal cycle, the normal cycle
is terminated. On the other hand, if no wireless loss occurs
while sn packets are being transmitted, the loss must be con-
gestion loss.

In Fig. 5, we assume that the αn-th transmitted packet
from the beginning of the cycle is lost, and define Wn [pkts]
and Xn as the congestion window size and the round number
when the packet loss occurred, respectively. Then, using the
wireless loss probability (Eq. (2)), αn can be calculated as
follows:

αn =

sn−1∑
k=1

(1 − p)k−1 pk +
∞∑

k=sn

(1 − p)k−1 psn

=
1 − (1 − p)sn

p
(6)

From Fig. 5, we can derive Yn [pkts], which is the number
of packets transmitted in the normal cycle, in two different
ways. The sender detects a packet loss when three duplicate
ACK packets arrive, so the packet loss is detected one RTT
after the sender sent the packet that became lost. During the
RTT, the sender sends additional packets corresponding to
the ACK packets that were received before receiving three
duplicate ACK packets; therefore, Yn is calculated as

Yn = αn +Wn + 1 (7)

On the other hand, the congestion window size is incre-
mented by 1 segment per round, so WM

2 + k − 1 packets

are transmitted in the k-th round. By approximating that
Wn
2 packets are transmitted in the (Xn + 1)-th round on an

average [8], Yn can also be obtained as

Yn =

Xn∑
k=1

(WM

2
+ k − 1

)
+

Wn

2
(8)

Here, there is a clear relation between Wn and Xn:

Wn =
WM

2
+ Xn − 1 (9)

From Eqs. (7), (8), and (9), we can obtain Wn and Xn as
follows:

Wn =

√
W2

M − 2 WM + 8αn + 8

2
(10)

Xn =
2 −WM

2
+Wn (11)

Yn can be obtained by substituting Eqs. (6) and (10) to
Eq. (7) as follows:

Yn =
1−(1−p)sn

p
+

√
W2

M−2 WM+8αn+8

2
+1 (12)

Meanwhile, An [s], which is the average duration of the
normal cycle, is obtained by taking the product of average
RTT and the number of rounds in the normal cycle, consid-
ering TCP’s timeout after a packet loss occurs:

An = (Xn + 1)RTTn + Ato (13)

where RTTn [s] is average RTT in the normal cycle, and Ato

is average duration added when timeout occurs. We assume
that timeout takes place only when a retransmitted packet is
lost since we use TCP-SACK as the basis of our mechanism.
Thus Ato is calculated as follows:

Ato=
pRTO
1−p

(1+p+2p2+4p3+8p4+16p5+32p6) (14)

where RTO [s] is TCP’s initial retransmission timeout. The
derivation of RTTn is shown in Sect. 3.3.

3.2 Analysis of Recovery Cycle

In the recovery cycle, if wireless loss occurs during ACK-
splitting, the congestion window size is reduced. After the
reduction, ACK-splitting starts again, and it continues un-
til the congestion window size reaches the value it had just
before the beginning of the recovery cycle. Therefore, the
length of the recovery cycle varies according to how many
wireless losses occur during ACK-splitting, as depicted in
Fig. 6. We define the recovery step as the period which starts
from the beginning of ACK-splitting to when the packet loss
takes place (Fig. 6). The number of recovery steps indicates
how many times ACK-splitting starts in the recovery cycle.
Figure 6 depicts the changes in the congestion window size
in recovery cycles with 1, 2, and 3 recovery steps. Appar-
ently from this figure, in the recovery cycle with r recovery
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Fig. 6 Behavior of ACK-splitting in the recovery cycle.

steps, first (r − 1) recovery steps are terminated by wireless
losses during ACK-splitting, and the final r-th recovery step
is terminated by a packet loss after the completion of ACK-
splitting. Therefore, the form of the last recovery step of the
recovery cycle is different from that of other recovery steps
in Fig. 6.

Here, we assume that the congestion window size in-
creases by δ segments per 1 round during ACK-splitting,
where δ means the average number of ACK packets for one
data packet during ACK-splitting. Under the assumption
that data packets arrive at the receiver with a constant in-
terval according to the bandwidth of the downlink of the
wireless network, δ can be calculated from the packet size
and the bandwidth of the downlink and the uplink of the
wireless network as follows:

Cu

320
÷ Cd

S
=

S Cu

320Cd
(15)

where Cu

320 is the number of ACK packets which can be sent
per second, and Cd

S is the number of data packets which ar-
rive per second. We assume that the arrival interval of data
packets is S

Cd
. However, it becomes small when a data packet

with bit errors is retransmitted by ARQ, because such a data
packet and the ones following it are passed together to TCP
from the MAC layer after it has been successfully retrans-
mitted. Then, our mechanism sends only one ACK packet
for these data packets. That is, the number of ACK packets
for these data packets decreases by ( S Cu

320Cd
− 1). Here, we

denote the probability that a bit error occurs in a data packet
and that the (i− 1) retransmission of the packet fails and the
i-th retransmission succeeds as ei (1 ≤ i ≤ 3), and the prob-
ability that the bit error occurs and retransmission succeeds
as E. They are calculated as follows:

e1 = {1 − (1 − e)S }(1 − e)S (16)

e2 = {1 − (1 − e)S }2(1 − e)S (17)

e3 = {1 − (1 − e)S }3(1 − e)S (18)

E = e1 + e2 + e3 (19)

We calculate the average number of data packets that arrive
at the receiver from when the bit error in a packet is detected
on its first transmission to when that packet is successfully
retransmitted, L [pkts], as follows:

L =
e1 + 2e2 + 3e3

E

(
Du + Dd +

S
Cd

)
÷ S

Cd
(20)

Fig. 7 Model of the number of packets transmitted in i-th recovery step
where i = r.

If the bit error does not occur in L packets, L packets are
passed together with the first erroneous data packet to the
TCP layer from the MAC layer; therefore, the arrival inter-
val of L packets is nearly 0. However, if the bit error occurs
in the k-th packet among L packets, the packets following
the k-th one wait until the k-th one is successfully retrans-
mitted, so the number of data packets which are passed to-
gether with the first erroneous data packet from the MAC
layer to the TCP layer is k − 1. The probability that a bit
error occurs in the k-th packet after k − 1 packets have been
successfully transmitted is (1 − E)k−1E. Thus, the average
number of data packets that are passed together from the
MAC layer to the TCP layer when the bit error occurs is

(1 − E)E + 2(1 − E)2E + · · · + (L − 1)(1 − E)L−1E

+L(1 − E)L =
1 − E − (1 − E)L+1

E
(21)

As a result, δ is

δ =
S Cu

320Cd
−E

(
S Cu

320Cd
−1

)
1−E−(1−E)L+1

E
(22)

(1) i = r Case
We first analyze the i-th recovery step where i = r,

i.e., the recovery step that is terminated by a packet loss
after ACK-splitting finishes. Figure 7 depicts the model
of the number of transmitted packets in the i-th recovery
step, where i = r. During ACK-splitting, all packets are
successfully transmitted and the congestion window size in-
creases by δ segments per round. From Fig. 7, we can de-
rive Y (i)

ra [pkts] and A(i)
ra [s], which are the average number of

transmitted packets and the average duration of the i-th re-
covery step, where i = r, in a similar way to the normal cy-
cle’s derivation. First, we derive the number of transmitted
packets from the beginning of the i-th recovery step until the
recovery of the congestion window size finishes. We denote
it as Y (i)

e [pkts] and calculate it as follows:

Y (i)
e =

X(i)
e (2 W (i)

s + δX
(i)
e − δ)

2
(23)

where X(i)
e is the round number when the congestion window

has recovered to the value just before the recovery cycle be-
gins, and W (i)

s [pkts] is the congestion window size at the
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beginning of the i-th recovery step. X(i)
e is counted from the

beginning of i-th recovery step, and it is obtained by

X(i)
e =

2 W (1)
s −W (i)

s

δ
+ 1 (24)

Since W (1)
s is the congestion window size when the recov-

ery cycle begins, 2 W (1)
s is the congestion window size when

ACK-splitting stops. W (i)
s is obtained from the analysis of

the (i − 1)-th recovery step, which is explained later.
Because the congestion window will have recovered

when Y (i)
e packets are successfully transmitted, a(i)

r , which is
the probability at which a packet loss occurs after recovery
completion, is expressed as

a(i)
r = (1 − p)Y (i)

e (25)

s(i)
r [pkts] is the number of transmitted packets from the be-

ginning of i-th recovery step to when the congestion window
size reaches WM , and it is calculated as

s(i)
r = Y (i)

e +
(WM − 2 W (1)

s )(WM + 2W (1)
s + 1)

2
(26)

The above equation can be obtained easily by watching
Fig. 7 with replacing Wi

ra by WM . We assume that the α(i)
ra -th

packet from the beginning of the i-th recovery step is lost
under the condition that wireless loss does not take place
during ACK-splitting. In a similar way as we derived αn in
Eq. (6), we can derive α(i)

ra as follows:

α(i)
ra =

s(i)
r −1∑

k=Y (i)
e +1

(1 − p)k−1 p

a(i)
r

k +
∞∑

k=s(i)
r

(1 − p)k−1 p

a(i)
r

s(i)
r

=
1 − (1 − p)s(i)

r −Y (i)
e + pY (i)

e

p
(27)

We can derive Y (i)
ra in two different ways:

Y (i)
ra = α

(i)
ra +W (i)

ra + 1 (28)

Y (i)
ra = Y (i)

e +

X(i)
ra −X(i)

e∑
k=1

(2 W (1)
s + k) +

W (i)
ra

2
(29)

where W (i)
ra and X(i)

ra [pkts] are the congestion window size
and the round number when packet loss occurs after recov-
ery completion. Here, there is a clear relation between X(i)

ra

and W (i)
ra :

W (i)
ra = 2 W (1)

s + X(i)
ra − X(i)

e (30)

From Eqs. (28), (29), and (30), we obtain W (i)
ra and X(i)

ra as
follows:

W (i)
ra =

√
4W (1)

s
2
+ 2 W (1)

s − 2Y (i)
e + 2α(i)

ra + 2 (31)

X(i)
ra = X(i)

e − 2 W (1)
s +W (i)

ra (32)

Note that Eq. (31) can be obtained by substituting Eqs. (28)
and (30) to (29) and solving the equation for W (i)

ra . Then,
Y (i)

ra is calculated from Eqs. (27), (28) and (31), and A(i)
ra is

Fig. 8 Model of the number of transmitted packets in i-th recovery step
where 1 ≤ i < r.

calculated as follows:

A(i)
ra = (X(i)

ra + 1)RTT (i)
ra + Ato (33)

where RTT (i)
ra [s] is average RTT of the i-th recovery step,

where i = r. We show how to calculate RTT (i)
ra in Sect. 5.1.3.

(2) 1 ≤ i < r Case
Next, we analyze the i-th recovery step where 1 ≤ i <

r. Figure 8 depicts the model of the number of transmit-
ted packets in the i-th recovery step where 1 ≤ i < r. In
Fig. 8, the congestion window size increases by δ segments
per round. From this figure, we derive Y (i)

rb [pkts] and A(i)
rb [s],

which are the average number of transmitted packets and the
average duration of the i-th recovery step where 1 ≤ i < r,
in a similar way to the normal cycle’s derivation. We as-
sume that the α(i)

rb -th packet from the beginning of the i-th
recovery step is lost if a wireless loss occurs during ACK-
splitting. α(i)

rb is derived as:

α(i)
rb =

Y (i)
e∑

k=1

(1 − p)k−1 p

1 − a(i)
r

k =
1
p
− Y (i)

e a(i)
r

1 − a(i)
r

(34)

We derive Y (i)
rb in two different ways, as we did with Yn in

the normal cycle:

Y (i)
rb = α

(i)
rb +W (i)

rb + 1 (35)

Y (i)
rb =

X(i)
rb∑

k=1

(W (i)
s + δ(k − 1)) +

W (i)
rb

2
(36)

where W (i)
rb and X(i)

rb [pkts] are the congestion window size
and the round number when a wireless loss takes place dur-
ing ACK-splitting. Here, there is a clear relation between
X(i)

rb and W (i)
rb :

W (i)
rb = W (i)

s + δ(X
(i)
rb − 1) (37)

From Eqs. (35), (36), and (37), we obtain W (i)
rb and X(i)

rb as
follows:

W (i)
rb =

√
W (i)

s
2 − δW (i)

s + 2δ + 2δα(i)
rb (38)

X(i)
rb =

δ −W (i)
s

δ
+

W (i)
rb

δ
(39)

Note that Eq. (38) can be obtained by substituting Eqs. (35)
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and (37) to (36) and solving the equation for W (i)
rb . Here,

W (i+1)
s =

W(i)
rb

2 , because the (i + 1)-th recovery step starts if a
wireless loss occurs during ACK-splitting in the i-th recov-
ery step. Then, Y (i)

rb is calculated from Eqs. (34), (35) and

(38), and A(i)
rb is calculated as follows:

A(i)
rb = (X(i)

rb + 1)RTT (i)
rb + Ato (40)

where RTT (i)
rb [s] is the average RTT of the i-th recovery step

where 1 ≤ i < r. We show how to derive RTT (i)
rb in Sect. 3.3.

The analysis results of the i-th recovery step where
i = r and where 1 ≤ i < r can now be used to de-
rive Y (i)

r [pkts] and A(i)
r [s], which are the average number of

transmitted packets and the average duration of the recovery
cycle with i recovery steps as follows:

Y (r)
r =

r−1∑
i=1

Y (i)
rb + Y (r)

ra (41)

A(r)
r =

r−1∑
i=1

A(i)
rb + A(r)

ra (42)

3.3 Derivation of Average RTT

In this subsection, we derive the average RTT of a TCP
connection, which is needed for the analyses in Sects. 3.1
and 3.2. We define the average congestion window size in
a cycle as W̄, and calculate the average RTT from W̄ . In
[8], the RTT is assumed to be a constant of the congestion
window size. However, we derive RTT from the conges-
tion window size to derive the average throughput of our
mechanism precisely, since the RTT significantly depends
on the congestion window size. Furthermore, the derivation
considers the influence of ARQ since the time for retrans-
mission is added to the RTT when a bit error occurs in a
packet.

First, we calculate the duration from when a data
packet is sent out from the base station to when a data packet
corresponding to an ACK packet for that data packet arrives
at the base station as follows:

2Dw + 2Dd + 2Dd +
320
Cu
+

S + 320
Cw

(43)

When the congestion window size is W, W − 1 data packets
are sent out from the base station after first data packet is
sent. Therefore, the number of packets which remain in the
buffer of the base station when a data packet corresponding
to an ACK packet for first data packet arrives at the base
station, N [pkts], is calculated as

N = (W−1)−
(
2Dw+2Dd+2Dd+

320
Cu
+

S + 320
Cw

)
÷ S

Cd

= W−RTTmin÷ S
Cd

(44)

The queuing delay of packets arriving at the base station is
expressed as S N

Cd
. The RTT of the transmission path is the

sum of the queuing delay at the base station and RTTmin;
therefore, it follows that

S N
Cd
+ RTTmin =

S W
Cd

(45)

However, this is the RTT without considering the ad-
ditional ARQ delay. We should consider the influence of
ARQ. When a packet with the bit error is successfully re-
transmitted in the i-th retransmission, the additional delay
for that packet is as follows:

i
(
Du + Dd +

S
Cd

)
(46)

Furthermore, the RTT of a packet increases even if the bit er-
ror occurs in a preceding packet, since the packet is passed
to TCP after the erroneous packet was successfully retrans-
mitted. We denote the additional delay for a data packet
when a bit error occurs in the k-th preceding packet and is
transmitted successfully by the i-th retransmission as Ti,k [s].
It follows that

Ti,k = max

(
i
(
Du + Dd +

S
Cd

)
− k

S
Cd
, 0

)
(47)

We assume that retransmission is repeated up to three times;
therefore, the average RTT in consideration of ARQ be-
comes

S W̄
Cd
+

∞∑
k=0

(e1T1,k + e2T2,k + e3T3,k) (48)

Here, the average congestion window size of the nor-
mal cycle is obtained by dividing the number of transmitted
packets in the normal cycle by the number of rounds in the
normal cycle. Therefore, RTTn, which is the average RTT
of the normal cycle, is obtained from Eq. (48) as

RTTn =
S
Cd
· Yn

Xn + 1
+ T (49)

where T =
∑∞

k=0(e1T1,k + e2T2,k + e3T3,k). Similarly, RTT (i)
ra

and RTT (i)
rb , the average RTT of the i-th recovery step which

is terminated after recovery completion or during ACK-
splitting, are calculated as follows:

RTT (i)
ra =

S
Cd
· Y (i)

ra

X(i)
ra + 1

+ T (50)

RTT (i)
rb =

S
Cd
· Y (i)

rb

X(i)
rb + 1

+ T (51)

3.4 Throughput Derivation

In the previous subsections, we showed how to derive the
average number of transmitted packets and the average du-
rations of the normal and recovery cycles. In this subsection,
we derive the probability with which a TCP connection is in
each cycle, and the average throughput of the mechanism by
taking their average.
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The probability that the number of recovery steps is
r in a recovery cycle is

∏r−1
i=1 (1 − a(i)

r ), because the (r − 1)
recovery step is terminated during ACK-splitting. We define
Pn as the probability with which a TCP connection is in the
normal cycle. Since the normal cycle starts when congestion
loss occurs, the following relation is true:

Pn = Pncn +

∞∑
r=1

⎧⎪⎪⎨⎪⎪⎩(1 − Pn)
r−1∏
i=1

(1 − a(i)
r )c(r)

r

⎫⎪⎪⎬⎪⎪⎭ (52)

where cn = (1 − p)sn−1, which indicates the probability that
a congestion loss occurs in the normal cycle, and c(r)

r =

(1 − p)s(r)
r −1, which is the probability that a congestion loss

occurs in a recovery cycle with r recovery steps. From this
equation, it follows that

Pn =

∑∞
r=1

∏r−1
i=1 (1 − a(i)

r )c(r)
r

1 − cn +
∑∞

r=1
∏r−1

i=1 (1 − a(i)
r )c(r)

r

(53)

Finally, the average throughput of a TCP connection with
our mechanism, B [pkts/sec], is obtained by using Pn as fol-
lows:

B =
PnYn+

∑∞
r=1

{
(1−Pn)

∏r−1
i=1(1−a(i)

r )(1−p)s(r)
r Y (r)

r

}

PnAn+
∑∞

r=1

{
(1−Pn)

∏r−1
i=1(1−a(i)

r )(1−p)s(r)
r A(r)

r

}
(54)

Note that we can also derive the average throughput of a
normal TCP-SACK connection by substituting δ = 1 instead
of using Eq. (22).

4. Numerical Results

In this subsection, we show the numerical results of the
throughput analysis. We first set parameters (Cw, Dw, Cd,
Dd, Cu, Du, M) in Fig. 3 to (10 Mbps, 45 ms, 2 Mbps, 1 ms,
384 kbps, 1 ms, 50 pkts), and we choose 1 second for RTO.
Figure 9 compares the throughputs of the analysis and the
simulation. The figure shows that the analysis gives good
estimations of the throughput of TCP-SACK and or mech-
anism. The throughput of the analysis is a little larger than
that of the simulation especially when the bit error rate is
high. This is because we did not consider the occurrence of
timeout enough in the analysis: timeout caused by a packet
loss which occurs when the congestion window size is not
over 3 segments, or timeout when multiple packet losses oc-
cur in one RTT and the third duplicate ACK packet does not
return. Timeout occurs in the simulation more often than we
expected in the analysis, so the simulated throughput signif-
icantly deteriorates in comparison with the analysis’s pre-
diction.

Next, we show the analysis results for various wire-
less network environments, with different bandwidths for
the downlink and uplink of the wireless network. That is,
we change Cd and Cu in Fig. 3 and keep the other parameters
the same as in Fig. 3. Figure 10 shows the analysis’s results

Fig. 9 Comparison of analysis and simulation results.

Fig. 10 Analysis results for different environments.

for (Cd, Cu) of (2 Mbps, 384 kbps), (2 Mbps, 768 kbps), and
(4 Mbps, 768 kbps). For (Cd, Cu) of (2 Mbps, 384 kbps),
our mechanism increases throughput by up to 74% when
the bit error rate is around 5 × 10−5. This means our mecha-
nism is up to 650 kbps faster than normal TCP-SACK when
the bit error rate is around 4.5 × 10−5. For (Cd, Cu) of
(2 Mbps, 768 kbps), that is, when the uplink bandwidth be-
comes larger, our mechanism becomes more effective. The
throughput becomes 118%; i.e., our mechanism is 850 kbps
faster than normal TCP-SACK. This is because δ, the num-
ber of ACK packets which can be sent for one data packet,
increases when the uplink bandwidth becomes larger, as in-
dicated in Eq. (22). This means that the speed of the conges-
tion window increase during ACK-splitting becomes higher
and the throughput degradation is restrained more promptly.

For (Cd, Cu) of (4 Mbps, 768 kbps), that is, when
downlink and uplink bandwidths both become larger, the
throughput improvement becomes up to 80%, and it does
not change so largely compared with the (2 Mbps, 384 kbps)
case. When the downlink bandwidth becomes larger, the ar-
rival interval of data packets becomes short, so δ does not in-
crease, even if the uplink bandwidth becomes larger. There-
fore, the throughput increase doesn’t change so much. How-
ever, in terms of the amount of throughput, our mechanism
becomes more effective. In this environment, the throughput
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Fig. 11 Analysis results for a large bandwidth network such as a
fourth-generation mobile network.

is up to 1.34 Mbps higher than that of normal TCP-SACK.
The above results indicate that our mechanism works

more effectively in an environment where the bandwidth
of the wireless network is large. Since the bandwidth of
wireless networks will increase significantly in the coming
years, we can conclude that the usability of our mechanism
will increase in the future. Finally, we show some exam-
ples of the analysis results for two kinds of future wireless
network. One network is based on fourth generation mobile
technology, for which we assume that its downlink band-
width is 100 Mbps and its uplink bandwidth is 20 Mbps [10].
We set Cw to 1 Gbps and kept other parameters the same.
The result is shown in Fig. 11. We see that the maximum
throughput improvement is 47%, and it is small compared
with the case when the bandwidth is small. This is because
δ is reduced when the bandwidth of the wireless downlink
is large, according to the second term of Eq. (22). However,
the throughput of our mechanism is up to 17 Mbps higher
than that of normal TCP-SACK.

The other sort of future network is based on the wire-
less LAN technology of IEEE802.11n [11]. We assume
that the bandwidth of the wireless link is 100 Mbps. Since
the wireless channels are shared by the downlink and up-
link in wireless LAN, we calculate the throughput in dif-
ferent allocations of bandwidth for the downlink and the
uplink. Figure 12 depicts the analysis results when we as-
sume that the bandwidth allocations for the downlink and
the uplink are (90 Mbps, 10 Mbps), (80 Mbps, 20 Mbps),
(70 Mbps, 30 Mbps), (60 Mbps, 40 Mbps), and (50 Mbps,
50 Mbps). We see that when the downlink bandwidth is
large, the throughput of our mechanism is large for a low
bit error rate. On the other hand, when the bit error rate
is high, our mechanism is more effective with a large up-
link bandwidth. Here, an interesting characteristic of our
mechanism is that the best allocation of downlink and up-
link bandwidths depends on the bit error rate. Moreover,
our mechanism increases throughput by up to several tens
of Mbps, and its effectiveness is very large regardless of the
bandwidth allocation.

Fig. 12 Analysis results for a large bandwidth network such as
IEEE802.11n.

5. Conclusion

In this paper, we mathematically analyzed the receiver-
based ACK splitting mechanism which improves the TCP
throughput over wired and wirelesss heterogeneous net-
works. The analysis indicates that the larger the bandwidth
of the wireless link is, the more effective our mechanism
becomes. As a result, we concluded that the mechanism’s
usability will increase in the future as wireless networks be-
come faster.

In the future, we plan to implement the mechanism in
the actual wireless network environments and confirm its ef-
fectiveness in actual operation.
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