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Routing Algorithms for Packet/Circuit Switching in Optical
Multi-log2N Networks
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SUMMARY The multi-log2N network architecture is attractive for
constructing optical switches, and the related routing algorithms are crit-
ical for the operation and efficiency of such switches. Although several
routing algorithms have been proposed for multi-log2N networks, a full
performance comparison among them has not been published up to now.
Thus, we rectify this omission by providing such a comparison in terms
of blocking probability, time complexity, hardware cost and load balanc-
ing capability. Notice that the load balance is important for reducing the
peak power requirement of a switch, so we also propose in this paper a new
routing algorithm for optical multi-log2N networks to achieve a better load
balance.
key words: optical switch networks, multi-log2N networks, log2N net-
works, directional coupler, blocking network

1. Introduction

The optical switching networks (or switches), that can
switch optical signals in optical domain at ultra-high speed,
will be the key supporting elements for the operation and ef-
ficiency of future high-capacity optical networks and high-
speed interconnected systems. The multi-log2N network ar-
chitecture, which is based on the vertical stacking of mul-
tiple log2N networks [1], is attractive for constructing the
optical switches due to its small depth, absolute loss unifor-
mity, etc.

Since a multi-log2N network consists of multiple
copies (planes) of a log2N network, so for each request
(e.g., a connection request between an input-output pair)
we have to select a plane to route this request based on a
specified strategy. We call such a plane selection strategy as
the routing algorithm for multi-log2N networks. The rout-
ing algorithm is important for the operation and efficiency
of a switch, since it directly affects the overall switch hard-
ware cost and also the switching speed. By now, several
routing algorithms have been proposed for multi-log2N net-
works, such as random routing [2]–[4], packing [2], save
the unused [2], etc. It is notable that the available results on
routing algorithms of multi-log2N networks mainly focus on
the nonblocking condition analysis when a specified routing
algorithm is applied [1], [2], [5]–[8]. The recent results in
[2] indicate that although some routing algorithms are ap-
parently very different, such as save the unused, packing,
minimum index, etc., they actually require a same number
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of planes to guarantee the nonblocking property of multi-
log2N networks. The results in [2] also imply that a very
high hardware cost (in terms of number of planes) is re-
quired to guarantee the nonblocking property, which makes
the nonblocking design of multi-log2N networks impractical
for real applications. The blocking design of multi-log2N
networks is a promising approach to significantly reducing
the hardware cost [4]. However, little literature is available
on the performance of the available routing algorithms when
they are adopted in the blocking network design [3], [4]. In
particular, no work is available on the detailed performance
comparison among the available routing algorithms when
they are applied to a blocking multi-log2N network (e.g., a
multi-log2N network with a less number of planes required
by its nonblocking condition).

It is notable that the load-balancing capability of a rout-
ing algorithm is also important for the multi-log2N net-
works, since it directly affects the peak power require-
ment and power dissipation requirement (mainly determined
by the maximum number of connections simultaneously
supported by a plane). Kabacinski et al. [9] mentioned
that heavy loading on a plane results in earlier failures of
switches when switches are built using usage-sensitive tech-
nology. However, little available algorithms take into ac-
count the load-balancing issue in the routing process.

In this paper, to address the above two main issues, we
propose a routing algorithm with good load-balancing capa-
bility and also fully compare all routing algorithms in terms
of blocking probability, hardware cost, complexity and load-
balancing capability for both optical packet switching and
optical circuit switching technologies. The rest of this paper
is organized as follows. Section 2 illustrates the structure
and the features of multi-log2N networks. Section 3 intro-
duces the available routing algorithms and our routing algo-
rithm. Section 4 and Sect. 5 provide the comparison among
the routing algorithms for optical packet switching and op-
tical circuit switching, respectively, and finally, the Sect. 6
concludes this paper.

2. Multi-log2N Networks

2.1 Architecture and Features

The multi-log2 N network architecture was first proposed by
Lea [1]. A multi-log2 N network consists of multiple verti-
cally stacked planes as shown in Fig. 1, where each plane
is just a banyan class (log2 N) network [1]–[8] illustrated
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Fig. 1 A multi-log2N network with m-planes. Each request will be
routed through one of m planes, p0, p1, . . ., pm−1.

Fig. 2 A 16×16 banyan network (even number of stages) with a crosstalk
scenario.

in Fig. 2. The multi-log2N networks have several attractive
properties, such as good fault-tolerance capability, a small
network depth and the absolute loss uniformity, which make
them attractive for building the directional coupler (DC)-
based optical switches to provide nano-second order switch
speed [1], [4], [6], [14].

Although the DC technology can support much higher
switching speed than others (e.g. MEMS) and can switch
multiple wavelengths simultaneously, it may suffer from the
crosstalk problem when two optical signals pass through a
common DC at the same time. A simple and cost effec-
tive approach to guaranteeing a low crosstalk in DC-based
optical multi-log2N networks is to apply the node-disjoint
(or DC-disjoint) constraint to all the connections in this net-
work [3], [4], [8]. Thus, this paper focuses on the optical
multi-log2N networks with the node-disjoint constraint. It
is notable that the above node-disjoint constraint will cause
the node-blocking problem, which happens when two op-
tical signals go through a common node (DC) at the same
time and one of them will be blocked. Since link-blocking
between two signals will definitely cause node-blocking be-
tween them, but the reverse may not be true. Thus, we only
need to consider the node-blocking issue in the routing pro-
cess of optical multi-log2N networks.

When input ports have heavy traffic, the plane selec-
tion based on load-balancing is effective in reducing the
peak power demand, which directly affects the cost of power
equipment. The number of requests on a plane is critical for
the switch device built by usage-sensitive technology [9],
since it may lead to a large number of disconnections when
a heavy loaded plane is broken. We refer to such the number
of requests allocated to a plane as the plane load hereafter.

2.2 Notations

For the convenience of explanations, we here define some
notations. We use the notation Log2(N, m) to denote a multi-
log2N network with N input (output) ports and m planes,
and we number its planes from the top to the bottom as
p0, p1 . . . , pm−1 as shown in Fig. 1. We define a request as
an one-to-one (unicast) connection request for a Log2(N, m)
and denote a request between input x and output y as 〈x, y〉.
We further define a request frame as the set of all requests
to the network and denote it as(

x0 x1 · · · xk−1

y0 y1 · · · yk−1

)
, (1)

where 0 < k ≤ N (k is number of requests). An example of
request frame is given as follows.(

0 1 5 7 12 15
1 13 10 2 8 0

)
(2)

For the requests of the request frame in Eq. (2), the node-
blocking (blocking for short) scenario among them is illus-
trated in Fig. 2, where the blocking happens between 〈0, 1〉
and 〈1, 13〉, between 〈0, 1〉 and 〈7, 2〉 and between 〈0, 1〉
and 〈15, 0〉. In this scenario, 〈0, 1〉 will be blocked by the
other three requests.

Notice that a plane of the multi-log2N networks offers
only one unique path to each connection, so the blocking
will happen between two connections in the plane if their
paths share a common node and the blocked one must be set
up through another plane. It is also notable that although
packing routing paths can save empty planes for other re-
quests (e.g. 〈7, 2〉 and 〈15, 0〉 can be set up into a plane),
it lead to heavy loading on a plane. For a set of requests
to be setup, how to choose a plane for each request under
the node-disjoint constraint requires a routing algorithm, as
explained in the next section.

In this paper, we consider both of uni f orm and non-
uni f orm traffic models. Let A denote the set of output
ports. In the uniform traffic model, yk is randomly selected
fromA. In the non-uniform traffic model, we consider well-
known hotpot traffic, which implies for a number of simul-
taneous requests for an specific output port. In the hotspot
traffic model, we assume yk will be xk with probability 0.5,
otherwise yk is randomly selected fromA\xk.

3. Routing Algorithms

In this section, we first introduce the seven available routing
algorithms for a multi-log2N network and then propose a
new one with a better load-balancing capability. For a given
request frame and its set of requests, a routing algorithm will
try to route these requests one by one sequentially based on
both the node-blocking constraint and a specified strategy.
We also include one possible routing result on Log2(16,3)
with Eq. (2) for each algorithm, and use a notation R(pi) to
denote the set of requests established in pi. The eight routing
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algorithms and their main strategies are summarized in the
Table 1.

3.1 Traditional Routing Algorithms

(i) Random (R). For a request, the R algorithm [2], [3] se-
lects a plane randomly among all the available planes
for this request, if any. One possible routing result is as
follows:
R(p0) = {〈1, 13〉, 〈15, 0〉}
R(p1) = {〈0, 1〉}
R(p2) = {〈5, 10〉, 〈7, 2〉, 〈12, 8〉}

(ii) Packing (P). Based on the P algorithm [4], [10]–[12],
we always try to route a request through the busiest
plane first, the second busiest plane second, and so on
until the first available one emerges. The P algorithm
has been well-known as an effective algorithm to re-
duce the request blocking probability, but it may intro-
duce a very heavy traffic load (in terms of number of
requests) to a plane. One possible routing result is as
follows:
R(p0) = {〈0, 1〉, 〈5, 10〉, 〈12, 8〉 }
R(p1) = {〈1, 13〉, 〈7, 2〉, 〈15, 0〉}
R(p2) = {}

(iii) Minimum index (MI). The MI algorithm [2] always
try to route a connection through the first plane p0 first,
second plane p1 second and so on until the the first
available plane appears. One possible routing result is
as follows:
R(p0) = {〈0, 1〉, 〈5, 10〉, 〈12, 8〉}
R(p1) = {〈1, 13〉, 〈7, 2〉, 〈15, 0〉}
R(p2) = {}

(iv) Save the unused (S TU). To route a request based on the
S TU algorithm [2], we do not select the empty plane(s)
unless we can not find an occupied plane that can route
the request. In this paper, S TU algorithm randomly
selects a plane from occupied planes, otherwise S TU
selects empty plane. One possible routing result is as
follows:
R(p0) = {〈0, 1〉, 〈12, 8〉}
R(p1) = {〈1, 13〉, 〈5, 10〉, 〈7, 2〉, 〈15, 0〉}
R(p2) = {}

(v) Cyclic static (CS ). The CS algorithm [2] always keep
a pointer to last used plane [2]. To route a new request,
it checks the pointed plane first, then follows the same
manner as that of the MI algorithm. The difference
between the MI and CS is that starting point of latter
is not fixed and it depends on the last used plane. One
possible routing result is as follows:
R(p0) = {〈0, 1〉}
R(p1) = {〈1, 13〉, 〈5, 10〉, 〈7, 2〉, 〈12, 8〉, 〈15, 0〉}
R(p2) = {}

(vi) Cyclic dynamic (CD). The CD algorithm [2] is almost
the same as CS algorithm, and the only difference is
that the CD algorithm always check the next plane of
the pointed one first. One possible routing result is as
follows:
R(p0) = {〈0, 1〉}
R(p1) = {〈1, 13〉, 〈7, 2〉, 〈15, 0〉}

Table 1 Routing algorithms for Log2(N, m)

Available routing algorithms
Algorithm Description

Random (R) Choose a plane randomly from available planes

Packing (P) Choose a busiest, yet available, planes

Minimum For each request, route in the order p0, p1, . . . ,

index (MI) until the first available one emerges

Save the Do not route through an empty planes unless
unused (S TU) there is no choice

Cyclic static If ps was used last, try copy ps, ps+1, . . . ,

(CS ) until the first available one emerges

Cyclic If ps was used last, try ps+1, ps+2, . . . ,

dynamic (CD) until the first available one emerges

Danilewicz’s Choose plane that new connection will block the
algorithm (D) fewest number of future requests of all planes

Proposed routing algorithm
Algorithm Description

Load sharing Choose a least occupied, yet available, planes
(LS )

R(p2) = {〈5, 10〉, 〈12, 8〉}
It is interesting to notice that although the above six

routing algorithms apparently different, a recent study in [2]
revealed that they actually require a same number of planes
to guarantee the nonblocking property of a multi-log2N net-
work. The results in [2] also imply that the nonblocking
design of multi-log2N networks is not very practical since it
requires a very high hardware cost (in terms of number of
required planes).

(vii) Danilewicz (D) algorithm. Danilewicz et al. [6] re-
cently proposed an novel routing algorithm for multi-
log2N networks to guarantee the nonblocking property
with a reduced number of planes. The main idea of
this algorithm is to select the plane that new connec-
tion will block the fewest number of future requests of
all planes. It is notable, however, the time complexity
of this algorithm is significantly higher than the above
six routing algorithms (please refer to section 4.5). One
possible routing result is as follows:
R(p0) = {〈0, 1〉}
R(p1) = {〈1, 13〉, 〈5, 10〉, 〈7, 2〉, 〈12, 8〉, 〈15, 0〉}
R(p2) = {}

Notice that the blocking design of multi-log2N net-
works is a promising approach to dramatically reducing
their hardware cost [4] without introducing a significant
blocking probability. However, the available study on the
above seven algorithms mainly focus on their correspond-
ing nonblocking conditions analysis and little literature is
available on the performance of these routing algorithms
when they are adopted in the blocking network design [3],
[4] (e.g., a multi-log2N network with a less number of planes
required by its nonblocking condition). It is an interest-
ing question that although the nonblocking conditions of
the available seven routing algorithms are the same, whether
their performance is still the same when that they are applied
to a blocking multi-log2N network. To answer this question,
in the next section we will conduct a detailed performance
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comparison among the available routing algorithms in terms
of blocking probability, hardware cost, complexity and load-
balancing capability.

3.2 A New Load-Balancing Algorithm

It is notable that the load-balancing capability of a routing
algorithm is also important for the multi-log2N network,
since it directly affects the peak power requirement and
power dissipation requirement (mainly determined by the
maximum number of connections simultaneously supported
by a plane).

We will see in the next section that although the most
available algorithms for multi-log2N networks can achieve
a low blocking probability, they usually result in a very un-
even load distribution among all planes. To provide a better
load balance among all planes of a multi-log2N network, we
propose new routing algorithm, namely the load sharing al-
gorithm as follows.

(viii) Load sharing (LS ). The main idea of the LS algorithm,
as contrasted to the P algorithm, is to route request in
the least occupied plane first, the second least occupied
plane and so on until the first available one emerges.
One possible routing result is as follows:
R(p0) = {〈0, 1〉, 〈12, 8〉}
R(p1) = {〈1, 13〉, 〈7, 2〉}
R(p2) = {〈5, 10〉, 〈15, 0〉}

4. Experimental Results for Packet Switching

Optical packet switching (OPS for short) enables the switch-
ing of optical data at the granularities of packets in the op-
tical domain. In such a switch, all the arriving packets in a
time slot are synchronized and routed simultaneously by a
rapid reconfiguration on a packet-by-packet basis to accom-
modate dynamic traffic.

To support the OPS in a multi-log2N switch, the switch
requires the faster routing algorithm to achieve the rapid re-
configuration for dynamic traffic. The load balancing for
each plane is also important and very effective in reducing
the cost of power equipment on a plane because synchro-
nizing switched packets on one plane can increase the peak
power demand, and each power supply on a plane have to
support the maximum power consumption.

In this section, we conduct an extensive simulation
study for OPS switch to compare the performance of the
above eight routing algorithms in terms of blocking prob-
ability, time complexity, hardware cost and load balancing
capability.

4.1 Simulation Setting and Parameters

Our simulation program consists of two main modules: the
request frame generator and the request router. The request
frame generator generates request frames based on the prob-
ability that an input/output port is busy, say r. The order of

all requests in a frame is determined randomly. For a request
frame, the request router module will apply a specified rout-
ing algorithm to route the requests in the frame one by one
sequentially according their order. We summarize the simu-
lation procedures and parameters as follows:

Simulation procedure for packet switching
1: Request frame generator generates a request frame F with r and the

specified traffic model
2: Determine the order of requests randomly and set the last request as

tagged path
3: for each routing algorithm do
4: Initialize the request router
5: Each request in F is set up based on the specified routing strategy

by the request router
6: if Tagged path is blocked at least once then
7: Count blocking
8: end if
9: Record Cmax and Cmin

10: end for
11: return simulation results

Simulation parameters
Network size(N) 8, 16, 32, 64, 128, 256
#planes (m) 1,2, . . ., until blocking probability ≤ 10−6

Work Load (r) 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
Iteration time 107

Cmax (Cmin) Maximum (minimum) plane load

Our simulation program is implemented in C on a clus-
ter workstation — Opteron 2.0 GHz cluster.

4.2 Blocking Probability

The blocking probability of OPS, BP for short, is usually
measured as the ratio of overall dropped packets to the total
number of packets. This definition actually measures the av-
erage blocking probability among all packets. It is notable,
however, that in a real OPS switch, the blocking probabil-
ity for all the packets in a frame is related to their orders
of set up and thus not the same, where the last packet to
be set up has the highest probability to be blocked (refer to
as the worst BP hereafter). This worst BP is very useful
for understanding the overall blocking behavior of a rout-
ing algorithm. The tagged-request based analysis proposed
in [3], [4], [7] provides us a good way to measure this worst
BP, so we adopt the tagged-request based simulation here.
For each request frame, we define the tagged-request as the
last request in the frame (e.g., for the frame in the example
(2), the tagged request is 〈15, 0〉). For reference, we also
included in our simulation the upper bound and the lower
bound† on the blocking probability established in [4]. The
blocking probability, BP for short, is calculated as follows.

BP =
blocked times of the tagged request

iteration times
(3)

†The upper/lower bound are the theoretical limits calculated by
a given request frame.
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Fig. 3 Blocking probability on Log2(256,m) under the uniform traffic.

Fig. 4 Blocking probability versus the work loads on Log2(128,7) under
the uniform traffic.

4.2.1 Uniform Traffic

In the uniform traffic model, the result shown in Fig. 3 in-
dicates that all routing algorithms could be roughly divided
into three groups based on BP. The group of algorithms with
high BP, say gH , includes R, LS , CS and CD algorithms.
The group of algorithms with middle BP, say gM , includes
S TU algorithm. The group of algorithm with low BP, say
gL, includes MI, P and D algorithms. It is interesting to see
from the above figure that although the nonblocking condi-
tions of the traditional seven routing algorithms in Table 1
is the same, their blocking probability are very different.

The main reason of the above BP variation is the dif-
ference of the blocking path distribution. Since a connection
path is blocked by at least one blocking path on a plane, dis-
tribution of blocking paths affects BP. For gL, it is clear that
routing strategy is to pack blocking paths as much as possi-
ble. In contrast, since the routing strategies of gH don’t care
if a request is a blocking path or not, blocking paths can
be randomly set up into planes regardless of their different
routing strategies. For gM , the routing strategy of S TU is
the same as R algorithm for (m − ε) planes, where ε is the
number of empty planes. It is notable that gL is very close
to the lower bound of BP while gH has much lower BP than

Fig. 5 Blocking probability versus the work loads on Log2(256,8) under
the uniform traffic.

Fig. 6 Blocking probability versus the work loads on Log2(128,8) under
the uniform traffic.

the upper bound.
It is also interesting to notice from Fig. 4 and Fig. 5 that

although the BP of all three groups algorithms grows as the
work load increases, the BP of gM is actually very similar to
that of the gL when the work load is low (e.g., when r < 0.6),
while the BP of gM is similar to the BP of gL when the work
load is high (e.g., when r > 0.9).

To understand the behavior of gM more clearly, we also
include the another configuration Log2(128,8) in Fig. 6. The
BP of S TU follows gL as compared to Log2(128,7) shown
in Fig. 4. It can be seen that the number of planes signifi-
cantly affects the saving plane capability of S TU algorithm.
Therefore, if we want to use S TU algorithm to reduce BP,
we have to implement enough number of planes.

4.2.2 Non-uniform Traffic

For the non-uniform traffic model, the Fig. 7 illustrates the
BP for r = 0.8 under different number of planes, and Fig. 8
shows the BP for m = 14 under various work loads. The
non-uniform traffic significantly increases BPs of all algo-
rithms here. We can also divide routing algorithm into three
groups, gH , gM and gL, as Sect. 4.2.1.

It is interesting to notice that the BP of S TU algorithm
in gM follows gL as contrasted with uniform traffic case. To
explain the non-uniform traffic, we focus on the frequently
generated requests 〈i, i〉 and 〈i+1, i+1〉, where i is even num-
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Fig. 7 Blocking probability on Log2(256,m) under the non-uniform
traffic.

Fig. 8 Blocking probability versus the work loads on Log2(256,14)
under the non-uniform traffic.

ber. In such two requests, since both of requests can be
blocked by at least one blocking path simultaneously, there-
fore it could be more difficult to pack such requests into the
same plane. It can be observed that the BP of gL follows the
lower bound. In other words, such requests need to be set up
on different planes, and it significantly increases BP by dis-
tributing blocking paths. For gH , BP is further increased due
to their distribution capability of blocking paths. In contrast,
it is notable that BP of gM is similar to gL since packing
requests became more difficult for the non-uniform traffic
pattern.

4.3 Hardware Cost (Number of Switch Elements)

In this section, we compare the required number of switch
elements by different algorithms. For reference, we also in-
clude the required cost for non-blocking condition. When
the upper limit on BP is set as 10−6, the minimum number of
directional couplers (DCs) required by different algorithms
under both uniform and non-uniform traffic are shown in
Fig. 9 and Fig. 10, respectively.

From Fig. 9 and Fig. 10, we can easily notice that the
required hardware cost of all routing algorithms is much less
than their counterpart in nonblocking condition even when a
high requirement on BP is applied under the uniform traffic.
We can also observe the hardware cost of routing algorithms
in gM and gL are all similar and close to the lower bound.

Fig. 9 Minimum number of planes with blocking probability < 1.0−6,
r = 0.8, under the uniform traffic.

Fig. 10 Minimum number of planes with blocking probability < 1.0−6,
r = 0.8, under the non-uniform traffic.

4.4 Load Balance and Peak Power Requirement

Let Cmax (Cmin) denotes the maximum (minimum) number
of connections in one plane. We refer to the difference be-
tween Cmax and Cmin as the load distribution index, which is
denoted by H. The smaller H indicates the better load bal-
ancing. To guarantee a reliable evaluation result, we simu-
lated the plane load of OPS with as many as 109 randomly
generated request frames, and all the events were fully con-
sidered in the final evaluation. To distinguish the difference
among algorithms more clearly, we also use the notation
[a,b] to denote an interval of occurred events, where a and b
are the maximum and the minimum value of all events.

4.4.1 Uniform Traffic

Figure 11(a) and (b) illustrate the distribution of H and Cmax

for each routing algorithm on a Log2(128,10) network with
r = 1.0, respectively.

It can be seen that although the routing algorithms in
gH are very similar in other comparisons, their load balanc-
ing capabilities are very different. Especially, load balancing
can be further improved by LS algorithm, while the algo-
rithms in gL (e.g, P and D algorithm) may suffer from very
heavy plane load.

It is notable that the distribution of Cmax affects the
peak power/power dissipation requirement. The result in the



FUKUSHIMA et al.: ROUTING ALGORITHMS FOR PACKET/CIRCUIT SWITCHING IN OPTICAL MULTI-LOG2N NETWORKS
3919

(a) Distribution of the plane load balance index H.

(b) Distribution of the maximum plane load.

(c) Minimum required capacity of power equipment.

Fig. 11 Plane load and peak power requirement on Log2(128,10) under
the uniform traffic, r = 1.0.

Fig. 11(b) indicates that the LS algorithm can efficiently re-
duce the peak power requirement, because the Cmax of LS is
the closest the average value of 128/10 = 12.8. In contrast,
the algorithms in gL (e.g, P and D algorithm) have a much
higher power requirement. It is also interesting to see that
the required number of planes in gM (S TU) and in gL is the
same as the lower bound shown in Fig. 9. However, load
balance of S TU algorithm is better than gL.

We also discuss here how much capacity is needed for
each power equipment. Let P denote the peak power re-
quirement. When a power equipment supports t planes (the
total number of power equipments is �m

t �), the P is obtained
by the following equation.

P ≥ min(tC, rN) · Elog2N, (4)

where C and E denote the maximum Cmax and the power
consumption of a DC, respectively. Figure 11(c) shows the
comparison of the minimum required P with all Cmax eval-
uated 109 randomly generated request frames and E = 1. It
illustrates that LS algorithm achieves the lowest P.

(a) Distribution of the plane load balance index H.

(b) Distribution of the maximum plane load.

(c) Minimum required capacity of power equipment.

Fig. 12 Plane load and peak power requirement on Log2(128,14) under
the non-uniform traffic, r = 1.0.

4.4.2 Non-uniform Traffic

Figure 12(a) and (b) illustrate the distribution of H and
Cmax of Log2(128,14) under the non-uniform traffic model,
respectively. The minimum required P is described in
Fig. 12(c). The load balancing capability under the non-
uniform traffic is very similar to the uniform traffic case.
It indicates that the load balancing capability of each algo-
rithm is independent of traffic pattern. It is notable that since
all the algorithms in gH are very similar in terms of BP and
hardware cost, the LS algorithm is the best routing algo-
rithm in gH under both of traffic models.

4.5 Algorithm Complexity

The complexities of all routing algorithms are summarized
in Table 2. Since the worst case scenario of plane select-
ing in Log2(N, m) is to try all m planes for a request, thus,
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Table 2 Complexity of routing algorithm for Log2(N,m).

Algorithm Complexity of Algorithm

Danilewicz’s algorithm (D) O(m · N2log2N)
Otherwise O(m · log2N)

the complexity of plane selecting is O(m). We need also
O(log2N) time to check the path availability for each re-
quest, the overall time complexity of all algorithms, except
D algorithm [6], is just O(m·log2N). For the D algorithm,
its complexity is as high as O(m · N2log2N) since it needs
to calculate several complex matrices to achieve its low BP
feature.

5. Experimental Results for Circuit Switching

Optical circuit switching (OCS for short) enables the switch-
ing of long-lived bulk optical data. For any data trans-
mission in the OCS networks, connection paths between a
source and a destination node have to be established before
the data is transmitted. Therefore, the OCS guarantees the
amount of bandwidth which is reserved to each connection
and available to the connection all the time. On the reser-
vation process in each switch, desired path is allocated for
a connection when the switch can satisfy the demand of the
connection, otherwise the request will be refused. The data
transmission does not commence until the request succeed
to reserve all of the switch nodes on the connection path.

In the OCS, no connection bandwidth can be shared
by other connections. To construct the OCS based multi-
log2N switches, the lower hardware cost is more important
rather than the faster routing. As mentioned in the previous
OPS simulation, the load balance is also important to reduce
the peak power demand. In this section, routing algorithms
are compared for several switching performances: blocking
probability, hardware cost and load distribution (for com-
plexity, see Table 2), through the circuit switch simulation
according to [15].

5.1 Simulation Setting and Parameters

In this simulation, we assume that a connection request has
an exponential holding time and arrives at each input port
according to Poisson process independently, and an arriving
request is destined to any output port based on the specified
traffic model. Our OPS simulation program consists of the
request frame generator and eight request routers for eight
routing algorithms: The request frame generator generates
a request frame when a connection request arrives at each
input port with arrival rate, say λ. Each request router ap-
plies the corresponding routing algorithm to route each re-
quest in the frame step by step sequentially into the router.
If a request is blocked at all the planes, the request is re-
fused in the OCS. Each request has the exponential holding
time with mean 1/μ. When the holding time of the request
is finished, each request router also disconnects the expired
requests from the routers. In this paper, we define ρ(= λ/μ)

as the work load for input ports. The simulation procedure
and parameters are shown as follows:

Simulation procedure of the circuit switch
1: {Each algorithm has own request router, and it is initialized only once

through the simulation}
2: repeat
3: Request frame generator generates a request frame F according to

λ on the specified traffic model
4: Set holding time for each request in F according to μ
5: Determine order of requests randomly
6: for each routing algorithm do
7: for Each request in F do
8: A request is set up by the request router based on the specified

routing algorithm
9: if a request is blocked then

10: Count blocking
11: end if
12: end for
13: Record Cmax and Cmin

14: Disconnect expired requests by the request router
15: end for
16: until Given #Requests are generated
17: return simulation results

Simulation parameters
Network size(N) 8, 16, 32, 64, 128, 256
#planes (m) 1,2,. . ., until blocking probability ≤ 10−6

Work Load (ρ) 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
#Requests 107

Cmax (Cmin) Maximum (minimum) plane load

Simulation program was implemented by C on a cluster
workstation — Opteron 2.0 GHz cluster.

5.2 Blocking Probability

In the OCS simulation, we don’t adopt the tagged request
based simulation as the previous OPS simulation, because
the request frame is dynamically generated. Therefore, we
calculate the connection blocking probability (BP) as fol-
lows.

BP =
#blocked acceptable requests
#all the acceptable requests

, (5)

where the acceptable request denotes the request which is
not blocked by other requests at an input port/output port.

5.2.1 Uniform Traffic

Figure 13 and Fig. 14 illustrate results of BP versus number
of planes for Log2(128,m) and Log2(256,m) with ρ = 1.0,
respectively. We can also roughly divide routing algorithms
into three groups, such as gH , gM and gL

†, same as previous
OPS simulation. The BPs of above figures are smaller than
the OPS simulation, since some requests could be blocked
at input and output ports.

Figure 15 and Fig. 16 illustrate BPs versus work load
(0.5 ≤ ρ ≤ 1.0) for Log2(128,6) and Log2(256,6), respec-
tively. The BP of each algorithm in the same group is very
close to each other. As noted in the OPS simulation, the

†gH={LS ,R,CD,CS }, gM={S TU}, gL={MI, P,D}
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Fig. 13 Blocking probability on Log2(128,m) under the uniform traffic.

Fig. 14 Blocking probability on Log2(256,m) under the uniform traffic.

Fig. 15 Blocking probability versus the work loads on Log2(128,6)
under the uniform traffic.

S TU algorithm is sensitive to the number of planes, and
some requests remain on several planes due to their holding
time in the OCS simulation. Therefore, the BP of S TU al-
gorithm becomes close to gH even as the number of planes
are increased.

5.2.2 Non-uniform Traffic

Figure 17 and Fig. 18 describe the BPs under the non-
uniform traffic case. We can see that BPs of all routing al-
gorithms close to each other. The main reason of the similar
BPs is that the blocking paths are further increased by not

Fig. 16 Blocking probability versus the work loads on Log2(256,6)
under the uniform traffic.

Fig. 17 Blocking probability on Log2(256, m) under the non-uniform
traffic.

Fig. 18 Blocking probability vs. work load ρ on Log2(256, 9) under the
non-uniform traffic.

only the traffic pattern as discussed in the OPS simulation
but also remained connections in the request router.

5.3 Hardware Cost (Number of Switch Elements)

For the blocking design multi-log2N switches, the required
planes can be reduced when the negligible BP is allowed.
We assume blocking probability less than 10−6 as negligible
here as the previous OPS simulation and compare the min-
imum required number of DCs under this assumption. The
comparison under the uniform and the non-uniform traf-
fic case are shown in Fig. 19 and Fig. 20, respectively. In
the OCS simulation, the hardware cost among routing algo-
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Fig. 19 Minimum number of planes with blocking probability < 1.0−6

on ρ = 1.0, under uniform traffic model.

Fig. 20 Minimum number of planes with blocking probability < 1.0−6

on ρ = 1.0, under non-uniform traffic model.

rithms is very similar to each other. For reference, we also
include the required number of DCs for the non-blocking
condition.

We can observe that the gL achieve the lowest hardware
cost. Although the hardware cost of gH is always higher than
others, there is no big difference among them.

In the OCS simulation under the uniform traffic case,
the gM follows gL when the network size is less than 128, but
follows gH when N = 256. Since the difference of minimum
required hardware cost is very close to each other when the
network size is less than 128, we calculated the minimum
hardware cost according to non-negligible BP. It can be seen
that when N ≥ 256, the S TU algorithm lose its saving plane
capability due to the increase of remained requests in the
request router.

5.4 Load Balance and Peak Power Requirement

As mentioned earlier, a heavy plane load on the multi-log2N
switch is critical, since it lead to high-capacity power equip-
ment for the maximum peak power and a large number of
disconnection on a plane due to a failure. Therefore, re-
quests need to be distributed as uniform as possible to net-
work planes.

To compare the load balancing capability, although we
use the same notations as previous OPS simulation, such
as H, Cmax, Cmin, and [a,b], Cmax and Cmin of all algorithms
are evaluated for randomly generated 107 request frames be-

(a) Distribution of the plane load balance index H.

(b) Distribution of the maximum plane load Cmax.

(c) Minimum required capacity of power equipment.

Fig. 21 Load balancing on Log2(128,10) under the uniform traffic, ρ =
1.0.

cause frequent switch control is usually not required. The
peak power requirement P is also calculated by Eq. (4).

5.4.1 Uniform Traffic

Figure 21(a) and (b) describe the normalized distribution of
H and of all the Cmax through this simulation for each rout-
ing algorithm on Log2(128,8) with ρ = 1.0, respectively.
Although the OCS simulation is different from the OPS due
to holding times of packets, the proposed LS algorithm still
keep the better load balancing than others.

In addition, it is interesting to see that the Cmax distribu-
tion of the R algorithm is better than the CD algorithm in the
OCS as contrasted to the OPS simulation. In the OPS, it can
be seen that the CD algorithm provides the better load bal-
ancing due to selecting plane based on the fixed order rota-
tion. This selecting manner equally provides setup chances
to all planes. In contrast, R algorithm provides setup chances
based on random selecting. In the OCS, several connections
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may be remained in the request router due to their holding
time. Since no factor can change the selecting order of CD
algorithm, the connections remained strongly increase the
plane load. In contrast, random selecting strategy of R algo-
rithm is not affected so much by such connections.

We also show the minimum capacity of the minimum
required P calculated by Eq. (4) shown in Fig. 21(c). It can
be seen that LS algorithm can significantly reduce P.

(a) Distribution of the plane load balance index H.

(b) Distribution of the maximum plane load Cmax.

(c) Minimum required capacity of power equipment.

Fig. 22 Load balancing on Log2(128,12) under the non-uniform traffic,
ρ = 1.0.

Table 3 Summarized performance comparison of routing algorithms.

Blocking Probability Hardware Cost Complexity Load Balancing capability
Packet uniform traffic gL < gM < gH gL < gM , gH

others 	 D
gL < gM < CS < R < CD < LS

switch non-uniform traffic gL < gM , gH

Circuit uniform traffic gL < gM ≤ gH gL < gM ≤ gH gL < gM < CS < CD < R < LS
switch non-uniform traffic gL ≤ gM ≤ gH gL < gM < gH

gH = {LS ,R,CD,CS }, gM = {S TU}, gH = {MI,P,D}

5.4.2 Non-uniform Traffic

Figure 22(a) and (b) plot normalized distributions of all H
and Cmax under the non-uniform traffic simulation. This re-
sults are very similar to results of the uniform traffic case.

Figure 22(c) illustrates the comparison of the minimum
required capacity of a power equipment calculated from re-
sults shown in Fig. 22(b). Since the peak power is very sim-
ilar to that under the uniform traffic case, the distribution of
Cmax and H are also similar. From the above observations,
we can understand that LS algorithm significantly affects
the peak power and the load balancing capability in OCS is
independent of both traffic models.

6. Conclusion and Remarks

The blocking design of multi-log2N networks is attractive to
reduce their hardware cost. In this paper, we fully compared
the performances of the seven available routing algorithms
and also one newly proposed algorithm for multi-log2N net-
works by using packet switching and circuit switching tech-
niques under both the uniform and the non-uniform traffic
models. All the comparisons are summarized in Table 3. As
measures of switching performance, we considered block-
ing probability, complexity and load balancing capability.
As results, we found that the routing algorithms which try to
pack requests into few number of planes usually achieve a
lower blocking probability, but such algorithms require high
peak power supply and also advanced power dissipation. In
contrast, our newly proposed routing algorithm provide a
good load-balancing capability but may result in a higher
blocking probability. We also found that the load balancing
capability is independent of both traffic models. Thus, how
to design a routing algorithm to achieve a nice trade-off be-
tween a low blocking probability and a good load-balancing
capability is an interesting future work.
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