IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516
Regular Section
Highly Accurate Geometric Correction for NOAA AVHRR Data Considering Elevation Effect and Coastline Features
An Ngoc VANMitsuru NAKAZAWAYoshimitsu AOKI
Author information
JOURNAL RESTRICTED ACCESS

2008 Volume E91.B Issue 9 Pages 2956-2963

Details
Abstract

In recent years, the images captured by AVHRR (Advanced Very High Resolution Radiometer) on the NOAA (National Oceanic and Atmospheric Administration) series of satellites have been used very widely for environment and land cover monitoring. In order to use NOAA images, they need to be accurately transformed from the image coordinate system into map coordinate system. This paper proposes a geometric correction method that corrects the errors caused by this transformation. In this method, the errors in NOAA image are corrected in the image coordinate system before transforming into the map coordinate system. First, the elevation values, which are read from GTOPO30 database, are verified to divide data into flat and rough blocks. Next, in order to increase the number of GCPs (Ground Control Points), besides the GCPs in the database, more GCPs are generated based on the feature of the coastline. After using reference images to correct the missing lines and noise pixels in the top and bottom parts of the image, the elevation errors of the GCP templates are corrected and GCP template matching is applied to find the residual errors for the blocks that match GCP templates. Based on these blocks, the residual errors of other flat and rough blocks are calculated by affine and Radial Basis Function transform respectively. According to the residual errors, all pixels in the image are moved to their correct positions. Finally, data is transformed from image into map by bilinear interpolation. With the proposed method, the average values of the error after correction are smaller than 0.2 pixels on both latitude and longitude directions. This result proved that the proposed method is a highly accurate geometric correction method.

Content from these authors
© 2008 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top