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A Simple Mechanism for Collapsing Instructions under

Timing Speculation

SUMMARY The deep submicron semiconductor technolo-
gies will make the worst-case design impossible, since they can
not provide design margins that it requires. We are investigating
a typical-case design methodology, which we call the Constructive
Timing Violation (CTV). This paper extends the CTV concept
to collapse dependent instructions, resulting in performance im-
provement. Based on detailed simulations, we find the proposed
mechanism effectively collapses dependent instructions.

key words: Typical-case design, constructive timing violation,
instruction collapsing

1. Introduction

As the complexity of the semiconductor manufactur-
ing process increases, it is likely that process variations
will be more difficult to control[2]. The demand for
low power leads supply voltage reduction and hence
makes voltage variations a serious problem. Higher
and higher clock frequency increases temperature varia-
tions in a chip. Under these situations, the deep submi-
cron (DSM) semiconductor technologies will make the
“worst-case design” impossible, since they can not pro-
vide design margins that it requires. In order to realize
robust designs, designers have to be aware of design for
manufacturing (DFM).

One of the promising solutions is typical-case de-
sign methodology, where LSIs should be designed with
typical case considerations rather than with worst case
considerations. The Constructive Timing Violation
(CTV) paradigm[18] is such a design methodology. The
CTYV exploits an observation that the longest path for
an individual operation of every logic circuit is gener-
ally much shorter than its critical path[9]. The CTV
also utilizes the fact that input signals activating the
critical path are limited to a few variations. In other
words, timing violations rarely occur even if the timing
constraints on the critical path are not satisfied. For
example, it has been reported that nearly 80% of paths
have delays of half the critical time[25]. The CTV re-
lies on timing speculation, and thus sometimes timing
violations occur, resulting in logic errors. Some fault
tolerance mechanisms are provided for timing viola-
tions[14],[18],[23],[28]. When a violation is detected,
a recovery mechanism used in modern microprocessors
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for speculative execution is utilized in order to reverse
the processor state to a safe point. The philosophy
behind the CTV can be applied for improving energy
efficiency as well as for boosting clock frequency[18],
and we have evaluated it on carry select adders][8], [23].

It is expected that variations in dynamic circuit
delay is larger in data path than in control logic in mi-
croprocessors. It is also expected that the difference
between critical path delay and a typical delay in every
circuit is larger in data path than in control logic. From
the observations, we believe that the CTV is more ben-
eficial for data path than control logic and therefore
propose an aggressive combination of the CTV with
collapsing ALUs[26]. This makes it possible to execute
multiple dependent operations in a single cycle. Its po-
tential in performance gain is significant[20]. In this
paper, we propose a practical mechanism to detect a
chain of instructions and to collapse them.

This paper is organized as follows. Section 2 re-
views related work. Section 3 introduce the CTV.
Section 4 describes the mechanism which dynamically
detects a chain of instructions and collapses them
into a macro-instruction. Section 5 details evaluation
methodology. Section 6 presents simulation results. Fi-
nally, Section 7 concludes.

2. Related Work
2.1 Typical-case design techniques

Kondo et al.[7] proposed Variable Latency Pipeline
(VLP) structure for integer ALUs. Using properly two
kinds of circuits according to the longest path of the cir-
cuits for each operation, the effective execution latency
can be almost one cycle while its critical path is longer
than one cycle. Our proposal is strongly influenced by
the VLP. However, Kondo et al. does not mention the
power issue, while we exploit the CTV to improve en-
ergy efficiency. In addition, our proposal is applicable
not only to ALUs but also to any combinational logics.

Matsuo et al.[13] adopted the CTV for every
pipeline stages in a microprocessor, which they call De-
pendable Pipelining. In Dependable Pipelining, clock
frequency is adjusted for the CTV to be effective for
performance improvement. When timing violations fre-
quently occur, clock frequency is decreased. Otherwise,
it is increased. They evaluated how frequently tim-
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ing violations occur on a carry look-ahead adder using
Verilog-HDL and logic synthesis. We evaluated it on
carry select adders[8], [23].

The characteristics of the critical path can be ex-
ploited for robust design. Critical path isolation[5] is
a design paradigm, which achieves robustness with re-
spect to parametric delay failures. Critical paths of
synthesized design are isolated as a known logic block.
This makes it possible to predict the occurrence of any
delay violations and thus allows us to aggressively re-
duce the supply voltage. In input-based elastic clock-
ing[15], the number of clock cycles required for compu-
tation is changed depending upon input data patterns.
When delay failures are predicted in advance, the clock
cycles are increased.

Razor[1],[4] permits to violate timing constraints
to improve energy efficiency. Similarly with the CTV,
Razor works at higher clock frequency that determines
critical path. In order to detect timing violation, a
Razor flip-flop (FF) is proposed. Each timing-critical
FF (main FF) has its shadow FF, where a delayed clock
is delivered to meet timing constrains. If the values
latched in the main and shadow FFs do not match, a
timing violation is detected. After that, the pipeline
is recovered using a mechanism based on counterflow
pipelining. One of the difficulties on Razor is how it
is guaranteed that the shadow FF could always latch
correct values. The delayed clock has to be carefully
designed under the worst case constraints.

The CTV also shares the concept of the typical-
case design with approximation circuits[11],[12], algo-
rithmic noise tolerance (ANT)[22], and TEAtime[24].
In the approximation circuits[11],[12], instead of im-
plementing the complete circuit necessary to realize a
desired functionality, a simplified circuit is implemented
to approximate it. The approximation circuit works at
higher frequency than the complete circuit does, and
usually produces correct results. If it fails, the system
utilizing the approximation circuit has to recover to
a safe point. In ANT[22], information theoretic tech-
nique is employed to determine the lower bounds on
energy and performance. In order to approach these
bounds, circuit- and algorithmic-level techniques are
evolved. TEAtime[24] uses a tracking circuit to mimic
the worst-case delay. As long as the tracking circuit
works correctly, clock frequency can be increased and
supply voltage can be decreased. Usually, a 1-bit-wise
critical path is used for the tracking circuit.

2.2 Instruction collapsing techniques

Vassiliadis el al.[26] investigated to collapse dependent
instructions dynamically. Consecutive two instructions
are collapsed and executed in a single cycle using the
interlock collapsing ALU (ICALU). Sazeidas et al.[21]
have extended the idea of the ICALU. Non-consecutive
and up-to-three instructions can be collapsed. Unfor-
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tunately, the assumed mechanism to detect collapsible
instructions requires complex logic, and thus it might
have serious impact on the cycle time of the instruction
window.

Sassone et al.[17] proposed to dynamically detect
instruction strands and execute them speculatively. A
strand is a chain of dependent integer instructions with-
out intermediate fan-out. Non-consecutive instructions
can form a strand. We borrow the definition of the
strand to realize our proposal. Values with only one
consumer are called transient operands, and will be
connected to form a strand. The operand table is uti-
lized to detect transient operands. Unfortunately, how-
ever, any mechanisms for connecting transient operands
to form a strand are not described in detail. In or-
der to check if every transient operand connects to an
existing strand, a content-addressable memory (CAM)
might be utilized. The strand cache is also a CAM and
stores strands. Every strand is handled as a macro-
instruction. For example, it occupies only one instruc-
tion issue queue entry while it consists of multiple in-
structions. The closed-loop ALU is an integer ALU
with a self-forwarding path, and can compute two op-
erations in a single cycle since it does not require any
long forwarding wires.

Dynamic Instruction Cascading (DIC)[16] is an-
other technique to execute two dependent instructions
in a single cycle. During register renaming, every in-
struction is checked if it has a producer in the instruc-
tion issue queue. If it does, two instructions are cas-
caded and then simultaneously issued and executed in
a single cycle. Non-consecutive instructions can be cas-
caded and the producer can have multiple consumers.
In other words, there are not any restrictions in fan-
out. There are not any descriptions on the mechanism
to detect collapsible instructions, and thus we guess it
resembles the one proposed for the ICALU.

3. Constructive Timing Violation Technique

The DSM technologies increase variations, and hence
design margins that the conventional worst-case design
methodology requires, are reduced. The conservative
approach will not work. Considering the situation, we
have to change design methodology. Typical-case de-
sign methodology is a promising one. It exploits an
observation that worst cases are rare. We should focus
on typical cases rather than worst cases. Since we do
not have to consider worst cases, design constraints are
relaxed, resulting in easy designs.

In the typical-case design methodology, we adopt
two methods to a design at a time. One is performance-
oriented design, where only typical cases are considered.
Since worst cases are not considered, design constraints
are relaxed, resulting in easy designs. The other is
function-guaranteed design. While it requires worst
case considerations, designers do not have to consider
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Fig.1 Constructive timing violation

performance but have to guarantee functions. Hence
designs must be simple, resulting in easy verifications.

The CTV paradigm[18] is such a design methodol-
ogy, where designers are focusing on typical cases rather
than are worrying about very rare worst cases. The
CTYV exploits an observation that the longest path for
an individual operation of every logic circuit is gener-
ally much shorter than its critical path[9]. The CTV
also utilizes the fact that input signals activating the
critical path are limited to a few variations. In other
words, timing violations rarely occur even if the timing
constraints on the critical path are not satisfied. For
example, it has been reported that nearly 80% of paths
have delays of half the critical time[25]. The CTV relies
on timing speculation, and thus sometimes timing vi-
olations occur, resulting in possible logic errors. Some
fault tolerance mechanisms are provided to recover cir-
cuits from logical errors.

The concept of the CTV is as follows. We design
every timing critical function in a chip by two meth-
ods. The design consists of two components as shown in
Fig. 1. One is called main part, and the other is called
checker part. While two parts share the single function,
their roles and implementations are mutually different.
The main part is designed with performance consider-
ations, but might cause timing violations. That is, it is
implemented by the performance-oriented design. The
checker part is a safety net for the main part. It detects
timing violations that occur in the main part, and thus
it has to satisfy all timing constrains in the chip. How-
ever, designers do not have to optimize performance nor
power but only have to guarantee the function. That is,
it is implemented by the function-guaranteed design. If
a timing violation is detected by the checker part, the
circuit state has to be recovered to a safe point by any
means.

4. Instruction Collapsing Boosted by CTV
4.1 Transient operands detection

A transient operand is a value that has only one con-
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Fig.2 Strands detection, formation, and dispatch
Insn#0 PC; Rip < R1 + R»>
Insn#1 PC;y1 Ri1 < Rio+ R3
Insn#2 PCi;i2 Ri2 < Rio + Ri1
Insn#3 PCi;43 Rio <+ Ra+ Rs
Insn#4 PCit4 R11 < Rg + Ry
Fig.3 Instruction sequence example
Ri1o0 Rio| PCi | PCi+2
Ri1 Ri1| PCi+1 | PCiv2 | 1
Ri12 R12| PCi+2
Rio] PCi Rio| PCi+s
Ri1 Ri1| PCi+1 | PCiv2 | 1
Ri12 Ri2| PCi+2
Rwo| PCi | PCis1 | 1 R1o| PCi+s
R11]| PCi+1 Ri1| PCi+a
R12 R1z2| PCi+2
Fig.4 Strands detection example

sumer instruction, and a strand is a chain of depen-
dent integer instructions that are joined by transient
operands[17]. Each strand is speculatively executed in
a single cycle, and hence dependent instructions are
collapsed.

In order to detect transient operands, we utilize the
operand table[17] shown in the middle of Fig. 2. The
operand table has one entry for every architectural reg-
ister, and each entry keeps the program counter (PC)
of its producer instruction, the PC of last consumer in-
struction, and the number of consumers. The informa-
tion is registered in the producer field (Prod in Fig. 2),
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the consumer field (Cons in Fig. 2), and the consumer
counter (Cnt in Fig. 2), respectively. When an instruc-
tion is committed, its PC is registered in its correspond-
ing entry indexed by its destination register identifier.
After that, when an instruction consumes the register
value, its PC is registered in its corresponding entry in-
dexed by its source register identifier and the consumer
counter in the entry is incremented. When the producer
field is overwritten, the consumer counter is checked. If
the value is one, a transient operand is detected.

Using an example of an instruction sequence shown
in Fig. 3, we explain how the operand table works. Fig-
ure 4 shows how a transirnt operand, R1, is detected.
The operand table entries for registers Rjg, Ri1, and
Ry are focused. First, all entries are invalidated and
their fields are vacant. When Insn#0 is committed, its
PC, PC,, is registered in the Prod field of Rjg. Next,
when Insn#1 is committed, its PC, PC; 1, is registered
in the Prod field of Ry; and in the Cons field of Rig.
The Cnt field of Ry is set to 1. Similarly, when Insn#2
is committed, PC; 5, is registered in the Prod field of
R15 and in the Cons fields of R1g and R1;. The Cnt field
of Ryg is incremented to 2 and that of Ry is set to 1.
When Insn#3 is committed, the entry of Ry already
has valid values. Its Prod field should be replaced by
PC;y3 and its Cons and Cnt fields should be cleared.
Before doing that, the Cnt field is checked. Because
its value is 2, the last R;( is not a transient operand.
Similarly, when Insn#4 is committed, R;;’s Prod field
should be replaced by PC, 4 and its Cons and Cnt fields
should be cleared. The Cnt field is checked and its value
is 1. Hence, a transient operand R;; is detected.

4.2 Strands formation

When a transient operand is detected, it is checked if it
connects to an existing strand. A straightforward im-
plementation of this strand formation requires CAMs.
Each entry of a CAM consumes large power by dis-
charging when it does not find a match. In the strand
formation, at most one entry finds a match, and hence
large power is always consumed. To solve the prob-
lem, we propose a direct-mapped structure to connect
a transient operand to an existing strand. The mecha-
nism is shown in the bottom of Fig. 2.

It consists of two tables. Each table has one en-
try for every architectural register. The former one is
called the strand buffer, and the latter one is called the
tail pointer. The strand buffer stores strands, which
are under formation. In Fig. 2, instructions in a strand
are denoted as Insn’s. The tail pointer is indexed by a
register identifier of a transient operand and its content
(Buf#in Fig. 2) shows which strand in the strand buffer
is connected with the transient operands via the regis-
ter identifier. If a new transient operand is connected
to an existing strand, the content in the tail pointer in-
dexed by the register identifier of the transient operand
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Fig.5 Instruction collapsing

is updated and it points the entry where the transient
operand is stored. Therefore, it does not require any
CAMs but requires direct-mapped tables and a simple
switch box.

4.3 Strands dispatch

After a strand is formed, it is registered in the strand
cache shown in the top of Fig. 2. The strand cache
also has a direct-mapped memory structure. The cor-
responding entry of the coming strand is determined by
indexing it using the PC of its top instruction (Insni
in Fig. 2). In order to identify the strand as a macro-
instruction, it has a strand identifier (MACI in Fig. 2).

At instruction fetch, the strand cache is referred in
parallel with the instruction cache (or a trace cache).
If an existing entry is found for the PC, the strand in
the entry is provided to the following stages rather than
the instruction from the instruction cache.

When all source operands except transient
operands produced by the strand are ready, it is is-
sued into a collapsing ALU. As shown in Fig. 5, the
collapsing ALU consists of multiple conventional ALUs
by cascaded each other. While it looks similar to the
ALU pipeline used in Dataflow Mini-graph[3], it has
the restrictions in operand distribution. One of the
inputs for each ALU except the top one has to come
from the preceding ALU. Only one operand from regis-
ter files can be provided to each ALU in the collapsing
ALU. The other operand has to be provided to the top
one. Bypassing paths are provided only from the bot-
tom ALUs to the top ones. Intermediate values are
not bypassed. This does not affect performance, since
intermediate values are transient operands.

4.4 Adoption of CTV

If a strand is executed in less than the sum of the worst
delay in ALUs, a timing violation might occur in the
collapsing ALU. To handle this, we adopt the CTV for
the collapsing ALUs. We will not adopt the CTV for
any other blocks in the processor. Since the typical
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delay is much smaller than the critical path delay in
the ALU, it is expected that, in most cases, multiple
instructions are executed in the collapsing ALU without
a timing violation. The more instructions are packed
into a strand, the less variance there should be from
a typical circuit timing path. It is very unlikely that
more than a few of the instructions in a strand will
exercise their long paths in the same dynamic instance
of the strand. As a result, where a single instruction
exercising its longest path may cause a timing violation,
with a strand that includes such an instruction the total
path length may still fit within the allocated time.

Figure 6 explains why such a combination is good.
In the middle of the figure, a specific execution delay
in each ALU is shown, when a strand is issued in the
collapsing ALU. The delays differ with each other, since
the ALUs execute with different operands. If the sum
of the delays is smaller than the allocated time, the
strand can be executed without timing violation. In
this paper, we assume that the allocated time is one
clock cycle.

4.5 Misspeculations detection and recovery

There are two types of misspeculations. One is due
to timing violation. We assume every timing violation
can be detected by comparing speculative value with
its correct one. This is possible by using Razor FF's or
the previously studied redundant techniques[14], [18].
Timing violation of strand execution is easily handled
by presenting recovery mechanism for speculative exe-
cution. There are two solutions. Processors revert to a
safe point using rollback mechanism. Or, misspeculated
strands are reissued after decomposed into instructions.
Deadlock situation does not occur, since processor state
is recovered using correct values provided by the error
detection mechanism.

The other type of misspeculation is due to misiden-
tification of transient values. It could occur due to
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Table 1  Processer configuration

Fetch width

L1 instruction cache
Branch predictor
Gshare predictor

4 instructions

32KB, 2 way, 1 cycle
gshare + bimodal

4K entries, 12 histories

Bimodal predictor 4K entries
Branch target buffer 1K sets, 4 way
Branch penalty 7 cycles

Dispatch width
Instruction issue queue
Reorder buffer

Load store queue

Issue width

Integer ALUs

4 instructions

128 entries

128 entries

64 entries

4 instructions/strands

4 units x collapsing depth

Integer multiplier 1 unit

Floating adders 4 units

Floating multiplier 1 unit

L1 data cache 32KB, 2 way, 1 cycle
L1 data cache ports 2 ports

Unified L2 cache
Memory
Commit width

1MB, 4 way, 10 cycles
Infinite, 230 cycles
4 instructions

changes in control flow, and is detected by the de-
coder. If any one of transient values in a strand must
be consumed by a following instruction, some recovery
action is required since the transient value is lost. Any
check-pointing mechanisms might not work for han-
dling this misspeculation. This is the same issue with
early physical register release, and thus some shadow
storage might be inevitable. Currently, we write tran-
sient values into the register file as well.

5. Methodology

We will evaluate the potential of the proposed tech-
nique based on some assumptions explained below.
We use an execution-driven Alpha ISA simulator that
models aggressive superscalar, out-of-order execution
processor. Table 1 summarizes the configuration.
The strand cache is direct-mapped and has 1024 en-
tries. Currently, our simulator has the following re-
striction. The oracle scheduler is assumed and only
correctly-speculated strands are dispatched and exe-
cuted. Hence, evaluations do not suffer from any mis-
speculation penalties and the results will be slightly
optimistic.

We use the following assumption to estimate tim-
ing violation. Since we do not perform detailed cir-
cuit simulations, some assumption on timing violation
is necessary. In this evaluation, we assume that any
timing violations does not occur when all operands re-
quested by instructions in a strand is smaller than 16-
bit. The operand includes transient operands as well
as those provided by register files. This is a possible
assumption as follows. Modern processors spend half
of the execution cycle on ALU execution and half on
full bypass[17] and Intel Pentium 4 perform two 16-bit
ALU operations in a single cycle[6]. Some specialized
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Table 2 Benchmark programs

adpcm-decode
adpcm-encode
epic-decode
epic-encode
g721-decode
g721-encode
ghostscript
gsm-decode
gsm-encode

clinton.adpcm
clinton.pcm
test.image.pgm.E
test.image.pgm
clinton.g721
clinton.pcm

tiger.ps
clinton.pcm.run.gsm
clinton.pcm

O3 m405016

o U I I I 1 1 1 1 1 L1
pcm—-de pcm-en epic-de epic-en g721-de g721-en ghost gsm—de gsm-—en

Fig.7 The number of instruction per strand

or hybrid circuits could be used for reducing execution
latency. It is well known that carry save adder used
in the collapsing ALU[26] operates multiple inputs in a
small delay. We have already found that the increase
of 25% in circuit delay made it possible to cascade two
adders[27]. Considering obove, tightly-connected ALUs
might compute three 16-bit operations in a single cy-
cle. This is the worst case scenario, and it is expected
that more instructions are executed in a single cycle if
every operand requested by a strand is much smaller
than 16-bit.

MediaBench[10] is used for this study. It is de-
veloped for use in the context of embedded, multime-
dia, and communications applications, and contains im-
age processing, communications, and DSP applications.
Table 2 lists the programs and their input sets. Each
program is executed to completion.

6. Results

In this evaluation, the maximum number of instructions
forming a strand is selected from 3, 4, 5, and 16. We call
the maximum number “collapsing depth”. Proportion-
ally with the collapsing depth, the number of integer
ALUs is increased, while the sum of instructions and
strands, which are simultaneously issued, is up to four.

The average number of instructions included in
each strand is shown in Fig. 7. The horizontal line
indicates benchmark program names, and the vertical
line indicates the average number of instructions in a
strand. For each group of four bars, the bars from left
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Fig.9 Percentage of instructions with less-than 16b operands

to right are for the cases where the collapsing depth is
3, 4, 5, and 16, respectively. Even when a strand can
include 16 instructions, the average number of instruc-
tions in a strand is less than three in most programs.
It is also found that the collapsing depth of 3 captures
almost same number of instructions that the collapsing
depth of 16 does. It is 2.5 instructions per strand. The
increase in the collapsing depth requires a large strand
cache and results in inefficient utilization of instruction
slots. Hence, the collapsing depth of 3 is a good tradeoff
point.

The average number of operands requested by ev-
ery strand is shown in Fig. 8. If the number is high, the
pressure on the register ports is increased. As can be
seen, strands need less than three operands on average
in all programs. If we limit the number of instructions
per strand as 3, only two read ports are enough for most
programs. This means 2.5 times more instructions are
executed without the increase in register port require-
ment. This is very good news, since register files with
large number of ports increase their access latency, re-
sulting in slow clock frequency. Also from the results,
we see that the collapsing depth of 3 instructions per
strand is a good tradeoff point.

If a strand can not be executed in a single cycle,
it causes a rollback to the top instruction in the strand
and the instructions in the strand must be individually
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Fig.11 Percentage of instructions dispatched as strands

executed. This misspeculation penalty diminishes pro-
cessor performance. Next, we evaluate how frequently
strands are executed in a single cycle. Figure 9 shows
the percentage of instructions whose operands are less
than 16-bit. Only instructions included in strands are
considered. Since executing 16 instructions in a sin-
gle cycle is unrealistic, we only consider the collaps-
ing depth of 3, 4, and 5. As you can see, in most
programs, more than 70% of instructions require val-
ues that are smaller than 16-bit. The collapsing depth
does not significantly affect the percentage. The per-
centage of strand that can be executed in a single cy-
cle will be larger than those shown in the figure. For
example, a strand can be easily executed in a single
cycle when an operand is larger than 16-bit while the
remaining all operands are zero. This will happen fre-
quently, since programs generally have a characteristic
of frequent value locality[19], [29] and the most frequent
value is zero.

Figure 10 shows the hit ratio of the direct-mapped
strand cache. In this evaluation, its number of entries
is varied between 1K and 8K, and each entry stores
up to three instructions. In other words, every strand
consists of less than three instructions. For each group
of four bars, the bars from left to right are for the cases
where the strand cache has 1K, 2K, 4K, and 8K entries,
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respectively. It is easily observed that a large cache
is not required. The 1K-entry strand cache captures
almost all the chances that the 8K-entry cache does.
Since it is direct-mapped, it is expected that it works at
higher clock frequency and consumes less power than
the originally proposed one[l17] does while the former
has larger cache size than the latter does.

Considering the all observations above, Figure 11
shows the percentage of dynamic instructions that are
replaced by strands. The strand cache size is varied be-
tween 1K and 8K. For most programs, more than 40%
of instructions are replaced by strands even when the
strand cache has only 1K entries. This is that interest-
ing since the percentage is much larger than the strand
cache hit rate.

Figure 12 shows the IPC (Instructions committed
Per Cycle) speedup. In this evaluation, only 1K-entry
strand cache is considered and successfully speculated
strands only require operands less than 16-bit. For each
program, the left group of three bars is for the cases
where the number of operands provided for each strand
is not limited, and the right one is for the cases where
the number is limited to two. In other words, in the
right group, the number of register read ports is not
changed from that of the baseline processor. For each
group of three bars, the bars from left to right are for
the cases where the collapsing depth is 3, 4, and 5,
respectively.

When the increase in register file ports is possi-
ble, the IPC speedup is approximately 7.7% on aver-
age, regardless of the collapsing depth. In the case of
gsm-encode, the IPC speedup is nearly 15% when the
collapsing depth is five instructions. The restriction in
register file ports seriously affects performance. The
average IPC speedup falls down to 5%. Especially, in
the case of gsm-decode, the benefit from instruction
collapsing is reduced by half.

While the aggregated performance gain is not en-
couraging, there are some potential to boost perfor-
mance. First, the dynamic instruction scheduler will
be improved. If each strand were handled as if it were
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a quasi instruction, the efficiency in the instruction
scheduler entries would be improved. Since the instruc-
tion scheduler is a critical structure in modern super-
scalar processors, here is a potential for performance
gain. Second, the pressure on registers will be miti-
gated. If mechanisms for precise interruption or further
novel concepts on computation were invented, transient
operands should not be written into registers. Since the
number of register file entries is also critical in modern
processors, here is another potential for performance
gain.

7. Conclusions

The DSM semiconductor technologies will make the
worst-case design impossible, since they can not pro-
vide design margins that it requires. We have been
investigating a typical-case design methodology, which
we call the Constructive Timing Violation (CTV). Uti-
lizing the CTV, processors work at higher clock fre-
quency than that the critical path delay determines.
In this paper, we proposed to combine the CTV with
the instruction collapsing technique. By aggressively
and speculatively collapsing instructions, multiple in-
teger ALU operations are executed in a single cycle,
resulting in possible improvement in performance. We
proposed simple mechanism to connect an instruction
into a strand. It does not rely on any CAMs, and thus
both access latency and power consumption are small.
From cycle-by-cycle simulations, we found the mecha-
nism effectively captures strands.
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