
論文 / 著書情報
Article / Book Information

Title Memory Allocation and Code Optimization Methods for DSPs with
Indexed Auto-Modification

Authors Yuhei Kaneko, NOBUHIKO SUGINO, Akinori Nishihara

Citation Transaction on Fundamentals of Electronics, Communications and
Computer Sciences, Vol. E88-A, No. 4, pp. 846-854

Pub. date 2005, 4

URL http://search.ieice.org/

Copyright (c) 2005 Institute of Electronics, Information and Communication
Engineers

Powered by T2R2 (Tokyo Institute Research Repository)

http://search.ieice.org/
http://t2r2.star.titech.ac.jp/

846
IEICE TRANS. FUNDAMENTALS, VOL.E88–A, NO.4 APRIL 2005

PAPER Special Section on Selected Papers from the 17th Workshop on Circuits and Systems in Karuizawa

Memory Allocation and Code Optimization Methods for DSPs with
Indexed Auto-Modification

Yuhei KANEKO†a), Nonmember, Nobuhiko SUGINO†b), Member, and Akinori NISHIHARA†c), Fellow

SUMMARY A memory address allocation method for digital signal
processors of indirect addressing with indexed auto-modification is pro-
posed. At first, address auto-modification amounts for a given program are
analyzed. And then, address allocation of program variables are moved and
shifted so that both indexed and simple auto-modifications are effectively
exploited. For further reduction in overhead codes, a memory address al-
location method coupled with computational reordering is proposed. The
proposed methods are applied to the existing compiler, and generated codes
prove their effectiveness.
key words: indirect addressing, memory addressing, memory allocation,
scheduling method

1. Introduction

Digital Signal Processors (DSPs) are often used to realize
real-time applications for their high performance. By us-
ing DSPs, various real-time algorithms can be realized flex-
ibly. When a real-time signal processing is implemented
on DSPs, efficient program codes or program codes short
in execution time are required. In order to generate such
efficient program codes, it is preferable to exploit hardware
resources in DSPs as much as possible. For the reason, com-
pilers, which can be generated efficient codes from high-
level languages, are required. For example, in Refs. [6], [7]
DIMPL (Digital network IMPlementation Language) and its
compiler have been proposed. In these compilers, efficient
program codes are derived by effective use of registers and
arithmetic resources in a DSP.

A typical DSP architecture is shown in Fig. 1. In many
DSPs, program variables in memory are usually accessed in-
directly through an address register (AR) in address genera-
tion unit (AGU). Moreover, simple AR auto-modifications
or update operations are often provided for array access.
Since these auto-modifications are executed at the AGU in
parallel with other arithmetic operations, memory allocation
is very important issue to reduce overhead codes by memory
access.

Some of the DSPs provide AR auto-modification by an
index (IX) register. By use the IX register, further reduction
in overhead codes is expected. References [1], [3] etc were

Manuscript received July 2, 2004.
Manuscript revised October 8, 2004.
Final manuscript received December 9, 2004.
†The authors are with Tokyo Institute of Technology,

Yokohama-shi, 226-8502 Japan.
a) E-mail: kaneko@ae.titech.ac.jp
b) E-mail: sugino@ae.titech.ac.jp
c) E-mail: aki@ec.ss.titech.ac.jp

DOI: 10.1093/ietfec/e88–a.4.846

Fig. 1 DSP architecture.

proposed. However, heuristic memory allocation methods
for such memory addressing are hardly known. In this pa-
per, indirect addressing DSP with the index register modifi-
cation is assumed, and a new memory allocation method is
presented.

Although the proposed memory allocation method is
applied to memory accesses after computational ordering,
more efficient memory access can be achieved for other
computational orders. For further reduction in overhead
codes over memory accesses, a memory access sequence is
rearranged by computational ordering, while memory ad-
dresses are allocated for program variables.

2. Memory Addressing

In many DSPs, program variables stored in memory space
are accessed by indirect addresing mode. In this paper, the
processor of the following indirect addressing mode with
indexed and simple auto-modifications is assumed.

Memory Addressing Mode

1. Memory addresses are pointed by AR.
2. AR can be post-modified for the next access by the fol-
lowing modifications.

Auto modification by 1 (AR← AR ± 1)

AR can be increased or decreased by one (AR) at every
memory access.

Indexed auto-modification (AR← AR ± IX)

The assumed DSPs provide AR modification by an index
register. AR can be increased or decreased by IX (AR ←
AR ± IX) at every memory access.
3. IX can be increased or decreased by one (IX ← IX±1) at
every memory access, where IX value is a positive integer.

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers

KANEKO et al.: MEMORY ALLOCATION AND CODE OPTIMIZATION METHODS FOR DSPS WITH INDEXED AUTO-MODIFICATION
847

Fig. 2 Assumed indirect addressing mode.

Fig. 3 Memory addressing.

4. When a required AR update cannot be achieved by use
of operations in 2, an “AR load” operation, which directly
substitutes a memory address into the AR, is required. This
AR load operation costs one instruction cycle only by itself,
so that it becomes an overhead over memory accesses.

The assumed memory addressing mode is depicted in
Fig. 2.

For such an indirect addressing processor, the features
of AR ± IX operation can be illustrated with an example
memory access subsequence: b-d-e-f-a, where “b,” “d,” “e,”
“f,” and “a” are program variables and they are accessed in
this order (Fig. 3(a)). Assume a memory allocation for a
program variable set V={a, b, c, d, e, f} as is given in Fig. 3
(b). If we do not use any AR ← AR ± IX operations, we
have the memory access sequence shown in Fig. 3(c). Since
“address distance” at b-d and f-a are ad(b, d) = 2 > 1 and
ad(f , a) = 5 > 1, respectively, we need AR load operations
at b-d and f-a.

In this paper, AR ± IX operation is used to update AR
by ±2 or more. Furthermore, IX is updated by ±1 in par-
allel with the AR update operation. For the given example,
when AR± IX operations at b-d and f-a are assumed, no AR
load is required as shown in Fig. 3(d). Note that IX is up-
dated by +3 during this access sequence. When the update
amount exceeds the IX value, however, we need an AR load
operation, which becomes an overhead code in the program
code.

3. Conditions Requiring AR Load Operation

3.1 Address Distance and Distance Sequence

Consider a memory access subsequence sk, sk+1 in a memory

Fig. 4 AR updates example.

access sequence, i.e.

acc seq = - sk -sk+1- (1)

where sk, sk+1 denote program variables. When these pro-
gram variables are allocated to memory addresses ak, ak+1,
respectively, “address distance” or AR modification amount
ad (sk, sk+1) is written as

ad(sk, sk+1) = |ak+1(=address of sk+1) − ak

(= address of sk)| (2)

The “distance sequence” for overall access sequence is
written as

dis seq (acc seq) = ad1- ad2 - ad3 . . . (3)

where adn denotes the address distance at n-th update.
For example, assume a set of program variables V={A,

B, C, D, E, F, G, H, I} and a memory access sequence

acc seq1 = . . . -A-B-C-D-E-C-G-H-I-G-H-C-B-E- . . . (4)

as shown in Fig. 4. An initial memory allocation for these
variables is given by some methods. If program variables
are allocated to a memory,

alloc1(A,B,C,D,E,F,G,H,I) = {1, 2, 3, 4, 5, 6, 7, 8, 9} (5)

then, two AR load operations (mark x in Fig. 4) are required.
The sequence can be rewritten

acc seq1 = . . . -1-2-3-4-5-3-7-8-9-7-8-3-2-5- . . . (6)

as shown in Fig. 4. The distance sequence becomes.

dis seq(acc seq1) = . . . -1-1-1-1-2-4-1-1-2-1-5-1-3- . . . (7)

3.2 AR Update by AR← AR ± IX Operations

When the AR ← AR ± IX operation is used for three con-
secutive memory accesses, the following condition holds.

Condition 1

Consider a memory access subsequence s1-s2-s3, or a1-a2-
a3, after memory allocation, where a1, a2, a3 are memory ad-
dresses for s1, s2, s3, respectively. Its distance subsequence
or subsequence of AR modification amounts is d1-d2, where
dk denotes address distance or AR modification amount and
is written as dk = | ak+1 (=address of sk+1) − ak (=address

848
IEICE TRANS. FUNDAMENTALS, VOL.E88–A, NO.4 APRIL 2005

of sk)|. If

|d1 − d2| > 1, (8)

at least one AR load is required at this subsequence.
As an example, consider memory access underlined

subsequence in Eq. (4).

acc subseq1 = E-C-G (9)

When AR← AR± IX is used for an AR update at E-C,
IX at C-G takes the value of 1,2,3, respectively, since IX can
be updated by ±1 at every instruction cycle with memory
access. For ad(C, G) = 4, an AR load is required. Similar
can be said if we use AR ← AR ± IX at C-G. Therefore, at
least one AR load is required at the subsequence E-C-G.

3.3 AR Update by AR ← AR ± IX and AR ← AR ± 1
Operations

From the assumed AR update model, IX can be updated by
±1 at every memory access, whether AR is updated or not.
Therefore, when a subsequence between two AR ← AR ±
IX operations is realized only by AR ← AR ± 1, IX can
be updated by number of memory access included in the
subsequence. In such a case, the following condition holds.

Condition 2

Consider the subsequence s1-. . . -sk+3, or a1-. . . -ak+3 after
memory allocation, where a1-. . . -ak+3 are memory addresses
for s1-. . . -sk+3, respectively.Its distance subsequence is d1-
d2-. . . -dk+1-dk+2, where dk = |ak+1(sk+1) − ak(sk)|. Assume
that d1, dk+2 ≥ 2, and d2, . . . , dk+1 ≤ 1. If

||d1 − dk+2| − k| > 1 (10)

at least one AR load is required at this subsequence.
As an example, consider the following memory access

subsequence from Eq. (4).

acc subseq2 = I-G-H-C (11)

For this subsequence, we have distance subsequence
dis seq(I-G-H-C)=2-1-5.

Since ||d1 −d2| − k| = ||2−5| −1| > 1 (k=1), at least one
AR load is required at this subsequence.

When the AR ← AR ± IX operation is used for AR
update at I-G, IX takes the value of 2,3,4 at H-C, since IX
can be updated by ±1 at every memory access. For ad (H,
C)=5, an AR load is required. Similar can be said if we use
AR ← AR ± IX at H-C. Therefore, at least one AR load is
required at the subsequence I-G-H-C.

3.4 Cost-Intensive Variables

According to the result in Condition 1, underlined subse-
quences in Eq. (4) require AR load operations. In this pa-
per, such a subsequence is called as a “cost-intensive subse-
quence,” and variables in a cost-intensive subsequence are
called as “cost-intensive variables,” where cost means the
number of AR loads.

4. Proposed Memory Allocation Method

4.1 Lower Variance in the AR Modification

In this section, a memory allocation method, which utilizes
AR← AR ± IX operations, is proposed.

4.1.1 Access Graph

A given memory access sequence is modeled with an access
graph (AG), where each vertex and edge denote the variable
to be accessed and the required update, respectively [4]–[6].
Program variables are allocated to the memory as their ap-
pearance. For example, the AG of the memory access se-
quence in Fig. 5(a) is shown in Fig. 5(b).

4.1.2 Variance of the AR Modification

Since IX can be increased or decreased by one at every
memory access, large modification in IX, and hence higher
variance in AR update amount, as illustrated in Fig. 6(b), is
not preferable. In this subsection, the method, which vari-
ance in AR update amount becomes lower, is introduced.
The purpose of this variable allocation method is to decide
IX value of each update approximately.

The detail procedures are:

1. Decide an initial memory allocation for program variables
V. Program variables are allocated to the memory in the ac-
cessed turn.
2. Find the AR update(s) u-v of the longest address distance
(ex. a-g in Fig. 6(b)). If multiple updates of the same dis-
tance exist, choose one whose variable, which is allocated
at the lowest address.
3. Choose the variable w of the lower memory address (ex.
“a” in Fig. 6(b)) in the AR update u-v. Exchange w with
variable next to w, so that the AR modification amount at
the AR update u-v decreases. If no additional AR modifi-
cation longer than u-v newly appears, take the new memory
allocation and restart from step 2. Otherwise, try the same
exchange for the other variable of u-v (ex. “g” in Fig. 6(b)).
4. If no exchange occurs at step 3, try the same exchange for
the next longest address distance (or rest updates in step 2).
5. If no exchange occurs at step 4, find u-v, Try the same

Fig. 5 An AG example.

KANEKO et al.: MEMORY ALLOCATION AND CODE OPTIMIZATION METHODS FOR DSPS WITH INDEXED AUTO-MODIFICATION
849

exchange with the next nearest variable from w.
6. Repeat 5, until no further exchanges occur.

For an example, consider a part of memory access se-
quence

acc seq = . . . -f-h-e-f-b-d-e-d-b-g-a-b-c-a-g-f- (12)

An initial memory allocation for program variables
V={a, b, c, d, e, f, g, h} is determined as their appearance
in the sequence, i.e.,

addr alloc (V) = {1, 2, 3, 4, 5, 6, 7, 8} (13)

The access sequence can be rewritten as

acc seq = -6-8-5-6-2-4-5-4-2-7-1-2-3-1-7-6- (14)

A part of the distance sequence becomes

dis seq(acc seq)

= ...-2-3-1-4-2-1-1-2-5-6-1-1-2-6-1- (15)

Figure 6(a) shows the dis seq along with the order of
AR updates except the case of address distance ad =1.

For AG in Fig. 6(b), a-g is one of the updates of the

Fig. 6 Variance in AR modification amount.

largest address distance in Fig. 6(b), and program variables
a and g are exchanged with their neighbor variables b, f, and
h. The similar procedures are repeated, and, as the result,
address allocation

addr alloc(V) = {2, 4, 1, 3, 6, 7, 5, 8} (16)

is derived. The distance sequence becomes

dis seq(acc seq)

= 1-2-1-3-1-3-3-1-1-3-2-3-1-3-2. (17)

Figures 6(c) and (d) show the AG and dis seq after
the address exchange. Since variance in AR modification
in Fig. 6(d) is lower than that in Fig. 6(a), the address allo-
cation in Fig. 6(c) gives a memory allocation to decide IX
value of each update approximately.

4.2 Move-and-Shift Operations

In order to reduce AR loads, it is also very important to pre-
vent the conditions in Condition 1 and Condition 2. In this
paper, cost-intensive variables are moved to obtain memory
allocations with less AR loads.

As an example, consider the underlined subsequence in
Eq. (4). According to Condition 1 in Sect. 3.2, acc subseq1=

E-C-G (Eq. (9)) is a cost-intensive subsequence, and vari-
ables E, C and G are cost-intensive variables. These cost-
intensive variables are changed their addresses by using a
variable movement.

This variable movement scheme is called “move-and-
shift operations.” Cost-intensive variables are moved by
applying move-and-shift operations so that cost-intensive
subsequences are reduced. There are some move-and-shift
operations for reducetion in a certain cost-intensive subse-
quence, as shown in Fig. 7(a). For example, the memory
allocation shown in Fig. 7(b) is obtained as a result of one
of a move-and-shift.

Figure 8 shows the AR updates after move-and-shift
operation (memory allocation is shown in Fig. 7(b)). The
AR load operation required in Fig. 4 is reduced as a result of
a move-and-shift operation.

4.3 Move-and-Shift Operation within Depth n

Although AR loads can be reduced by the move-and-shift

Fig. 7 Memory allocation.

850
IEICE TRANS. FUNDAMENTALS, VOL.E88–A, NO.4 APRIL 2005

Fig. 8 AR updates after move-and-shift.

Fig. 9 Updates for each memory allocation.

operations in Sect. 4.2, total number of AR loads for a given
access sequence may not be reduced. The memory alloca-
tion method for reduction in AR loads is shown in subsec-
tion.
The procedures are:
1.An initial memory allocation for program variables V
is decided by the method in Sect. 4.1. Best allocation
(best alloc) is an initial allocation at this step, where best
allocation means the allocation with lowest AR loads.
2.Choose a cost-intensive subsequence in an access se-
quence, and move-and-shift operations are applied. Some
variable allocations are generated in this step.
3.Choose the memory allocation with the lowest AR loads
as the selected alloc.
4.
Case 1.
If ARload (selected alloc) < ARload (best alloc), se-
lected alloc newly becomes best alloc, and go back to step
2, where ARload () means the number of AR loads required
for each memory allocation.
Case 2.
If ARload(selected alloc) = ARload(best alloc)), a cost-
intensive subsequence is reduced. However, an AR load is
newly required at another AR update as shown in Fig. 9(c).
In this case, depth n is incremented (shown in Fig. 10), and
go back to step 2 to reduce a newly required AR load.
Case 3.
If ARload (selected alloc) > ARload (best alloc), the num-
bers of AR load operations are increased by a move-and-
shift operation. Try the next cost-intensive subsequence
from the step 2.

For an example access sequence in Fig. 9(a), suppose
that we apply a move-and-shift in order to reduce a cost-
instensive subsequence, and an AR load is newly required

Fig. 10 Move-and-shift operation within depth n.

Fig. 11 The maximum depth n and the number of AR loads (Wave digital
filter (11th order)).

at another AR update (Fig. 9(c)). In such a case, we may
reduce an AR load, after the move-and-shift is iteratively
applied (Fig. 9(e)). In this paper, when an AR load is re-
duced after n repetitions of moving program variables, it is
refered as a “move of depth n” (depth 2 in this example).

An allocation with less AR loads is obtained by repeat-
ing move-and-shift operations. However, since a long com-
piling time will be required when depth n becomes large,
compiler users can specify “the maximum value of n” in
this method. Move-and-shifts are applied within Depth n.

4.4 Variance in AR Update and Maximum Depth

In this section, the effectiveness of the method to suppress
variance in AR modification amount is shown. Also, the
appropriate value of maximum depth n is evaluated.

As an example, 11th order wave digital filter is used.
For its memory access sequence, the different memory allo-
cation methods in the maximum depth are applied. As a pre-
process of the memory allocation, variance in AR modifica-
tion amount is suppressed by using the method mentioned
in Sect. 4.1.

The numbers of resultant AR loads are plotted as the
solid line in Fig. 11. For the comparison, the memory allo-
cation results without the above preprocess are also plotted
as the dashed line in the same figure. In this paper, a method
to suppress variance in AR modification amount is applied
as a preprocess before the memory allocation.

Also, the maximum depth is chosen as 5 in this pa-
per. This value may not be enough. However, the maximum
depth is taken fewer so that the memory allocation method
can be applied to a large program.

KANEKO et al.: MEMORY ALLOCATION AND CODE OPTIMIZATION METHODS FOR DSPS WITH INDEXED AUTO-MODIFICATION
851

Table 1 The number of the AR loads.

proposed existing existing
method method[1] method[3]

WDF(5) 0 0 2
WDF(7) 0 1 2
WDF(9) 0 1 6
WDF(11) 0 2 8
WDF(13) 3 4
WDF(15) 2 8
WDF(17) 4 12

FFT 8 0 2
FFT 16 0 2

WDF(n): Wave Digital Filter (n-th order)

4.5 Memory Allocation Results

The proposed methods are applied to the DIMPL compiler
for the assuming DSP model, and codes for several exam-
ples are generated. Table 1 shows a comparison of the pro-
posed methods to the existing methods [1], [3] in terms of
the number of AR loads in the generated codes. The ex-
isting method [3] decides such a memory allocation that
AR ← AR ± 1 ops. are used as much as possible, and
then AR ← AR ± IX ops. are taken into account. In [1],
the “move-and-shift operation” is not repeated to obtain a
memory allocation. Thus, compiler time is expected to be
reduced, but extra AR load operations are sometimes re-
quired.

Note that the maximum depth in the proposed method
is set to 5. Memory allocation results of the proposed
method need less AR loads than those of the existing al-
location methods [1], [3].

5. Memory Allocation Methods Coupled with Compu-
tational Ordering

5.1 Computational Ordering and Memory Access Se-
quence

The proposed method in the last chapter allocates memory
addresses of the program variables for the memory access
sequence given for the code, which is generated for a source
program. The order of load instructions and store instruc-
tions depend on computational order. Therefore, if other
computational order are obtained, different memory allo-
cation results for the alternative memory access sequence
is given, and hence further reduction in overhead codes is
expected. In this chapter, computational rearrangement in
memory access sequence is taken into account, an improved
memory allocation method is shown.

5.1.1 Precedence Relation

A computational ordering must satisfy precedence relations.
For the program in Fig. 12(a), its “precedence relations” are
shown in Fig. 12(b). These relations, for example, indicates
that F must be calculated before J is calculated.

Fig. 12 Computational order and memory access order.

5.1.2 Memory Access Order

For a given program, we may take alternative computa-
tional orders to achieve the same calculation. According
to the computational order, memory access sequence is de-
rived. For the above example program, Fig. 12(c) shows
a computational order, where the underlined variables are
program variables kept in memory space. According to
this computational order, the memory access sequence be-
comes acc seq1=A-B-D-E-A-J-C. For the simplicity of ex-
planation, we now assume the indirect addressing only of
AR ← AR ± 1 operation. For the memory access sequence
acc seq1, memory allocation alloc1 (A, B, C, D, E, J)={3, 4,
1, 5, 6, 2} minimizes the required AR load, which is shown
by mark x in Fig. 12(d).

When we take an alternative computational order in
Fig. 13(a), memory allocation alloc2 (A, B, C, D, E, J)={2,
1, 6, 4, 5, 3} requires no AR load as shown in Fig. 13(b).

As shown by above example, computational order is
very important in reduction of overhead codes over memory
accesses. Therefore, memory allocation and computational
order are simultaneously considered in the following sec-
tions.

5.2 Program Variables in Memory Space

5.2.1 Load Instructions

In Fig. 12(a), F=A+B and F=B+A give the same calcu-

852
IEICE TRANS. FUNDAMENTALS, VOL.E88–A, NO.4 APRIL 2005

Fig. 13 AR Ops. for acc seq2.

Fig. 14 Load instructions.

lation. Fuhermore, there exist no precedence relations in
F=A+B and G=D+E. Thus, lines 1-7 in Fig. 12 (a) can be
rewritten as shown in Fig. 14(a). Therefore, there are no re-
strictions in access orders of program variables “A,” “B,”
“C,” “D” (Fig. 14(b)).

5.2.2 Store Instructions

In general, a program variable is written into memory space
immediately after its value is computed. For example, pro-
gram variable J in Fig. 12(b) needs to be stored into memory
space. According to the computational order in Fig. 13(a),
the variable J is stored into memory space just after the com-
putation F+A (line 5 in Fig. 13(a)). However, we can keep
such a program variable on an arithmetic register and post-
pone the execution of store instruction. For the above exam-
ple, we can compute G=D+E before the store of J, so that
lines 1-7 in Fig. 13(a) is rewritten as shown in Fig. 15(a).
The choices in store timing of program variable J are illus-
trated in Fig. 15(b).

5.3 Computational Re-ordering Method

For a given program, there exist alternative computational
orders, that satisfy precedence relations, and hence the alter-
native memory access sequences. In this section, the com-
putational ordering method coupled with computational re-
ordering is proposed. An overall diagram of the proposed
method is shown in Fig. 16.

Fig. 15 Store instructions.

Fig. 16 Memory allocation and code optimization.

Fig. 17 Memory access ordering.

5.3.1 Initial Computational Order

At the procedure 1 in Fig. 16, an initial computational or-
der is determined by use of the conventional computational
ordering method. Although this method exploits computa-
tional resources or arithmetic units (e.g., arithmetic registers
and ALU) as much as possible, overhead codes over mem-
ory accesses are not taken into account.

5.3.2 Computational Re-ordering

Memory access sequence is changed by the computational
re-ordering at procedure 4 in Fig. 16. The detailed procedure
of the re-ordering is shown in Fig. 17.

Suppose a memory access sequence

KANEKO et al.: MEMORY ALLOCATION AND CODE OPTIMIZATION METHODS FOR DSPS WITH INDEXED AUTO-MODIFICATION
853

acc seq = s1 -s2− -sp-sp+1- -sq−1-sq (18)

is given, where there required an AR load between p-th and
(p+1)-th memory accesses (Fig. 16 left-handside). In the re-
ordering procedure, computational orders commutative with
sp and/or sp+1 is considered, so that the memory access order
around sp-sp+1 changes. By use of flexibility in computa-
tional orders mentioned in Sect. 5.2, m computational order
candidates orderk (1 ≤ k ≤ m) are listed as shown in Fig. 17.
For each candidate orderk, the number of instruction cycles
is counted as cycle (orderk).

5.3.3 Memory Allocation

According to computational orders orderk (1 ≤ k ≤ m),
memory access sequences acc seqk (1 ≤ k ≤ m) are de-
rived, and memory allocations are determined. For each
memory allocation alloc (acc seqk), the number of required
AR loads, ARload (alloc (acc seqk)) is counted.

Computational orders are evaluated by the cost func-
tion

cost (orderk) = cycle (orderk)

+ARload (alloc (acc seqk)) (1 ≤ k ≤ m) (19)

The orderk with the lowest cost (orderk) is chosen for
the re-ordering in the next iteration.

5.3.4 Outline of the Re-ordering Method

An outline of the re-ordering method applied in this paper is
shown below.
1. An initial computational order is given by the conven-
tional method. Although it gives efficient program codes in
terms of arithmetic instruction cycles, overhead in memory
accesses are not considered.
2. Memory allocations are determined for m different mem-
ory access sequences (given at procedure 1 or procedure 4).
The number of required AR loads is counted for each mem-
ory access sequence or computational order.
3. Chose the computational order with the lowest cost k.
4. Re-ordering procedure determines m kinds of computa-
tional order. Repeat 2-4 no further re-ordering occurs.

5.4 Results

The proposed memory address allocation method coupled
with computational reordering is applied to the DIMPL
compiler for the above-mentioned DSP model, where the
maximum depth is set to 5. Codes for several examples are
generated and the numbers of their AR loads are shown in
Table 2. The numbers at the “initial computation” column is
the same results shown in Table 1. The number of AR loads
is reduced by the proposed re-ordering method.

In the table, “(+ number)” denotes the number of ad-
ditional arithmetic instructions associated by the computa-
tional re-ordering method. From the table, no additional in-
struction cycle is required for these examples. The numbers

Table 2 The number of the AR loads.

initial re-ordering iteration memory
computaion method allocation

WDF(5) 0 0 0 1
WDF(7) 0 0 0 1
WDF(9) 0 0 0 1
WDF(11) 0 0 0 1
WDF(13) 3 1(+0) 2 17
WDF(15) 2 0(+0) 2 19
WDF(17) 4 0(+0) 4 48

FFT 8 0 0 0 1
FFT 16 0 0 0 1

WDF(n): Wave Digital Filter (n-th order)

in the “iteration” column are the loop count in Fig. 16. The
“memory allocation” column denotes the number of times
the proposed memory allocation methods was applied.

6. Conclusions

In this paper, a new memory allocation method for indi-
rect addressing processor with an indexed auto-modification
is proposed. A memory allocation method in cooperated
with computational re-scheduling method is also proposed.
These methods are applied to the existing compiler and their
effectiveness is shown by the generated codes for several ex-
amples. A further reduction in AR loads, efficient memory
addressing for multiple ARs, and memory allocation meth-
ods with less computational complexity must be studied.

References

[1] Y. Kaneko, N. Sugino, and A. Nishihara, “Memory allocation method
for indirect addressing with an index register,” 2002 IEEE Asia Pacific
Conference on Circuit and Systems, pp.199–202, Singapore, Dec.
2002.

[2] K. Miyahara, Y. Kaneko, and N. Sugino, “DSP code optimization
technique with consideration in both computational ordering and
memory access,” IEICE, Digital Signal Processing Symposium in
Japan, 21, May 2002.

[3] R. Seno, N. Sugino, and A. Nishihara, “Memory allocation method
for indirect addressing with index register,” 14th Digital Signal Pro-
cessing Symposium in Japan, pp.617–622, Nov. 1999.

[4] B. Wess and S. Frohlich, “DSP data memory layouts optimized for
intermidiate address pointer updates,” Proc. IEEE APCCAS 1998,
pp.451–454, Nov. 1998.

[5] N. Sugino, S. Yoshida, and A. Nishihara, “Code optimization method
for DSPs with multiple memory addressing registers and its applica-
tion to compiler,” IEEE TENCON 1996, pp.619–624, 1996.

[6] N. Sugino, A. Toshikiyo, E. Watanabe, and A. Nishihara, “Computa-
tional ordering of digital signal processing networks and its applica-
tion to compilers for signal processors,” IEICE Tarns. Fundamentals
(Japanese Edition), vol.J71-A, no.2, pp.327–335, Feb. 1988.

[7] N. Sugino, S. Ohbi, and A. Nishihara, “Computational ordering of
digital network under the pipeline constraints audits application to
compiler for DSPs,” Proc. ECCTD’89, pp.395–399, Sept. 1989.

854
IEICE TRANS. FUNDAMENTALS, VOL.E88–A, NO.4 APRIL 2005

Yuhei Kaneko was born in Isesaki, Gunma,
Japan January 23, 1978. He received B.E. de-
gree in electronics from Chiba University in
2000 respectively. Since 2003, he has been
with Tokyo Institute of Technology, where he
is now master cource student of Department
of Advanced Applied Electronics, Interdisci-
plinary Graduate School of Science and Tech-
nology. His main research interests are com-
piler techniques for VLIW processors, and sin-
gle chip multi-core processors.

Nobuhiko Sugino was born in Yokkaichi,
Mie, Japan on November 19, 1964. He re-
ceived B.E., M.E. and Dr. Eng. degrees in phys-
ical electronics from Tokyo Institute of Technol-
ogy in 1986, 1989 and 1992, respectively. Since
1992, he has been with Tokyo Institute of Tech-
nology, where he is now Associate Professor
of Department of Advanced Applied Electron-
ics, Interdisciplinary Graduate School of Sci-
ence and Technology. His main research inter-
ests are compiler techniques for VLIW proces-

sors, and single chip multi-core processors. He is also interested in hard-
ware and software for digital signal processing. Dr. Sugino is a member of
IEEE.

Akinori Nishihara received the B.E., M.E.
and Dr. Eng. degrees in electronics from Tokyo
Institute of Technology in 1973, 1975 and 1978,
respectively. Since 1978 he has been with Tokyo
Institute of Technology, where he is now Profes-
sor of the Center for Research and Development
of Educational Technology. His main research
interests are in one- and multi-dimensional sig-
nal processing, and its application to educational
technology. He served as an Associate Editor
of the IEICE Transactions on Fundamentals of

Electronics, Communications and Computer Sciences from 1990 to 1994,
and then an Associate Editor of the Transactions of IEICE Part A (in
Japanese) from 1994 to 1998. He was an Associate Editor of the IEEE
Transactions on Circuits and Systems II from 1996 to 1997 and Editor-in-
Chief of Transactions of IEICE Part A (in Japanese) from 1998 to 2000.
He received Best Paper Awards of the IEEE Asia Pacific Conference on
Circuits and Systems in 1994 and 2000, a Best Paper Award of the IEICE
in 1999, and IEEE Third Millennium Medal in 2000. He also received a
4th LSI IP Design Award in 2002. Prof. Nishihara is a Fellow of IEEE, and
a member of EURASIP, European Circuits Society, and Japan Society for
Educational Technology.

