
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Quantitative Evaluation of State-Preserving
Leakage Reduction Algorithm for L1 Data Caches

Komiya, Reiko
Institute of Systems & Information Technologies/KYUSHU | Department of Electronics Engineering
and Computer Science, Fukuoka University

Inoue, Koji
Department of Electronics Engineering and Computer Science, Fukuoka University

Moshnyaga, Vasily G.
Department of Electronics Engineering and Computer Science, Fukuoka University

Murakami, Kazuaki
Department of Computer Science and Communication Engineering, Kyushu University | Institute of
Systems & Information Technologies/KYUSHU

https://hdl.handle.net/2324/11882

出版情報：IEICE transactions on fundamentals of electronics, communications and computer
sciences. E88-A (4), pp.862-868, 2005-04-01. The Institute of Electronics, Information and
Communication Engineers
バージョン：
権利関係：

1

 † The author is with Department of electronics engineering and computer Science at Fukuoka University , Fukuoka-shi, 814-0180,
‡ The author is with Institute of Systems & Information Technologies/KYUSHU, Fukuoka-shi, 814-0001
§ The author is with Department of Informatics at Kyushu University, Fukuoka-shi, 816-8580

Quantitative Evaluation of State-Preserving Leakage Reduction
Algorithm for L1 Data Caches

Reiko Komiya †‡, Non Member, Koji Inoue†, Vasily G. Moshnyaga†,
and Kazuaki Murakami‡§, Regular Members

Summary
As the transistor feature sizes and threshold voltages reduce,

leakage energy consumption has become an inevitable issue for
high-performance microprocessor designs. Since on-chip caches
are major contributors of the leakage, a number of researchers
have proposed efficient leakage reduction techniques. However,
it is still not clear that 1) what kind of algorithm can be
considered and 2) how much they have impact on energy and
performance. To answer these questions, we explore run-time
cache management algorithm, and evaluate the energy-
performance efficiency for several alternatives.
Key words:
Low power, cache, leakage.

1. Introduction

Due to the popularization of battery operated devices
such as laptop and hand-held computers, energy
consumption has become a key constraint in
microprocessor designs. Generally, the energy dissipation
of CMOS circuits can be classified into two parts:
dynamic and static. The dynamic energy is consumed by
charging and discharging load capacitances in circuits,
while the static energy is wasted by leakage current in
non-ideal transistor operations, i.e., incomplete turning off.
In the previous generation of CMOS technology, dynamic
energy had large impact on total chip energy. However,
with the increasing number of transistors employed in a
chip and the continued reduction in threshold voltages of
these transistors, leakage energy has become a major
concern. For example, in Pentium4 microprocessor, 20%
of total power originates in leakage [5].
A cache memory is a fast, small storage area placed on

between CPU and the main memory. By concentrating the
memory accesses into the on-chip cache, we can reduce
the number of off-chip memory accesses, so that the
processor performance is improved. The cache containing
only instructions (or data) is called instruction cache (or
data cache). In addition, recent high-end microprocessor
tends to employ multi-level cache organization, in which
the closest cache to the microprocessor is called the level 1
cache.
In state-of-the-art microprocessors, there is a tendency to

increase the size of on-chip caches in order to compensate
for low-speed off-chip memory accesses. Since the caches

constitute a significant portion of the transistor budget of
current microprocessors, leakage reduction of cache
memories is especially important. For instance, in the case
of a 0.07μm process technology, it has been estimated that
leakage energy accounts for 70% of total cache energy [5].
To reduce the cache leakage, it is required to support at

least two operation modes, sleep and awake, by circuit-
level optimization [1][7]. In the awake mode the cache
works with conventional SRAM leaky operations, while
the sleep mode provides much less leakage but accessing
to a sleep data forces some performance overhead. In
order to exploit effectively the two operation modes, we
need to make at least the following three decisions.
• How is a target moved into the sleep mode?: There are

at least two options, non-state-preserving and state-
preserving. The former gates the supply voltage to
SRAM cells [7], thus large amount of leakage is reduced,
but performance is negatively affected due to losing the
data in the cells. While the latter can be implemented by
optimizing the supply voltage as DVS [1] or the
transistor threshold voltage as VT-CMOS. It can
alleviate the performance impact, but leakage reduction
is not as high as the non-state-preserving scheme.

• When does a target change its operation mode?:
Although aggressive mode transition into the sleep mode
makes significant leakage reduction, it affects negatively
the performance due to an access penalty to sleeping
data. Consequently, efficient algorithm to determine
when the target data should be moved into the sleep or
awake mode is required for improving energy-
performance efficiency.

• What is an appropriate granularity to apply the
mode control?: We need to consider the granularity to
apply the low leakage mode. A coarse grain strategy
transits the whole cache into sleep or awake mode at the
same time. On the other hand, fine grain approaches may
control word by word or line by line.

So far, many researchers have proposed efficient leakage
reduction techniques [1][2][3][5][6][8][9] and they
employ different alternatives for the above three
parameters. Recent research has reported that state-
preserving approach is better for L1 caches if L2 cache
access has relatively large latency. Moreover, many

2

approaches proposed before choose line by line fine-grain
optimization. On the other hand, we can consider a
number of strategies to manage the cache operation mode.
Since the leakage reduction algorithm gives great impact
on both energy and performance, analyzing and comparing
the potential of mode control strategy are very worthwhile.
In this paper, we focus on the cache management
algorithm and classify them to explore the design
alternatives of low leakage caches. Moreover, based on the
classification, we evaluate the reduction approaches by
performing trace-driven superscalar simulations. For fair
evaluations, an assumption is used throughout the paper,
line by line fine-grain optimization with state-preserving
approach. Our goal is to guide processor designers to
determine cache management strategy for making a good
balance between leakage reduction and performance
degradation.
This paper is organized as follows: Section 2 explains

already proposed leakage reduction techniques briefly. In
Section 3, we classify the cache management algorithm.
Section 4 evaluates the classified design alternatives and
discusses their energy-performance efficiency. Finally, in
Section 5, we conclude this paper.

2. Cache Leakage Reduction Techniques

In this section, we briefly introduce leakage reduction
techniques proposed before.

Ⅰ. DRI cache [8][9]
In the DRI cache, leakage energy consumption is reduced

by means of cache resizing based on cache-performance
requirements monitored at run-time. The number of cache
misses is counted during a fixed time interval. If the miss
count is less than a given threshold, we decide to reduce
the cache size because the cache has quite enough capacity
to maintain the performance. Otherwise, the cache size is
increased to avoid performance degradation, i.e.
improving cache-hit rates. The supply voltage to the
SRAM cells unused is gated, i.e. non-state-preserving,
thus reducing cache size contributes leakage elimination.
Ⅱ. Cache Decay [3]
When a cache miss takes place, the missed data is loaded

from the next-level memory to the cache at line (or block)
granularity. Generally, since programs have temporal and
spatial locality of memory references, there is a tendency
that the accesses to the missed line concentrate just after it
is loaded into the cache and afterwards the line resides in
the cache without any accesses until its eviction. In other
words, each cache line survives in the cache regardless of
its early last access, wasting unnecessarily a large amount
of leakage energy. In the Cache Decay strategy, accesses
to each cache line are monitored. If there are no accesses

to a line during a given period, called decay interval, the
cache predicts that the contents of the line are not expected
to be reused. The supply voltage to the decayed lines is
gated, i.e. non-state-preserving.
Ⅲ. Drowsy cache [1][5]
In the Drowsy cache, leakage is reduced by lowering

periodically the supply voltage applied to SRAM cells.
When a cache line in the sleep mode is accessed, its
supply voltage is recovered to make the sleeping cache
line wake up. Unlike the DRI cache or the Cache Decay,
the drowsy approach employs the state-preserving
optimization. Therefore, although we can not reduce the
leakage energy per SRAM cell as well as the non-state-
preserving schemes, cache-hit rates of conventional
organization which does not employ any reduction
approach can be maintained. In the drowsy cache, each
line is transited into the sleep mode when a given time is
elapsed and the sleeping line wakes up when it is accessed.
Ⅳ. Cache Hierarchy [6]
The Cache Hierarchy scheme reduces leakage energy

consumption by exploiting the feature of memory
hierarchical structure. In the case of a processor with L1
and L2 caches, if a miss occurs in the L1 cache, a copy of
the target data which exists in the L2 cache is loaded into
the L1 cache (we assume an L2 cache hit). After that,
accesses to the loaded data hit to the L1 cache. Therefore,
we can force the original data residing in the L2 cache to
transit into the sleep mode, because it may be unnecessary
any more. This kind of situation can be seen at other level
memory hierarchies. This has originally been proposed for
L2 cache leakage reduction.

3. Classifying Leakage Reduction Algorithm

In order to achieve cache leakage reduction without
hurting microprocessor performance, it is very important
to employ an efficient mode control algorithm. If the
cache attempts to transit aggressively into the sleep mode,
large amount of leakage is reduced in turn for significant
performance degradation. On the other hand, where a
large portion of the cache operates in the awake mode, we
can not expect higher leakage reduction. In this section,
we consider the possibility of mode control strategy and
explore the design space of low leakage caches.

3.1 Switching to the Sleep Mode

Ideally, a cache line which is loaded from the next level
memory should be turned off just after its last access. In
order to approach to the ideal management, low leakage
caches predict whether or not each cache line is to be
reused. Table 1 summarizes the algorithm to change the
cache-line state to the sleep mode. The table also presents

3

the relation of previously proposed techniques explained
in Section 2. We need to consider at least the following
three decisions.

• What is a suitable condition?: To improve the

accuracy of the prediction, an appropriate condition to
enter the sleep mode is required. If the condition is
satisfied, the cache decides to turn-off the corresponding
line. As shown in Table 1, there are two types of
condition: counter type and event type. In the case of
the counter type, the total number of events is counted.
The condition is satisfied if the value of counter gets
equal to or smaller (or larger) than a given threshold.
Counting the number of cache-hits (or misses) can be
used for exchanging the cache performance into the
leakage reduction, while counting the number of
accesses (or non-access cycles) attempts to capture the
cache-access behavior. The simplest approach is to count
just only the execution cycles, i.e. execution time
elapsed. On the other hand, the event type does not
consider previous history of events, thus the condition is
satisfied just when the event occurs.

• How long should the condition be monitored?: The

period to monitor the mode control condition effects
leakage reduction efficiency. A short-period monitoring
can correspond to quick transition of memory access
patterns, but there is a possibility to make hasty
decisions. We can consider two options for the
monitoring period: time-window (TW) and no-time-
window (NTW). The TW scheme monitors the
condition during a fixed time interval, while the NTW
does not have any time period. The event type condition
can not employ the TW scheme because it does not
consider any history. For the counter type condition, the
main difference between the TW and the NTW schemes
is the timing for resetting the counter to zero. In the TW
scheme, the counter is initialized at the end of each time
window even if the condition is satisfied earlier. On the

other hand, in the NTW, resetting the counter is
performed just when the condition is satisfied. As
presented in Table 1, the NTW scheme can not be
applied to the condition which counts execution cycles
elapsed, because it has a time window implicitly.
Moreover, for the condition which is satisfied if the
value of counter is equal to or less than the threshold, we
need to select the TW scheme. Because this approach
examines whether or not the condition is still satisfied
after a certain time elapsed.

• When is the conditional decision validated?: For the

NTW scheme, the cache transits its operation mode just
when the condition is satisfied. However, for the TW
type, we can consider two options: synchronous and
asynchronous. The former transits the operation mode
at the end of the time window, i.e. it waits for validating
the conditional decision until the end of the current time
window. The latter changes the operation mode soon
when the condition is satisfied. The advantage of the
asynchronous strategy is that it may reduce leakage
energy effectively due to quick response, but it requires
checking the value of counter at every counter up-date.
On the other hand, although the synchronous approach
causes some delay to enter the sleep mode, the frequency
of conditional checking is lowered.

Table 1: Mode transition Algorithm to the Sleep Mode

Condition Period Validation

counter ≦ threshold (cache misses[1], accesses) TW[1] synchronous[1]

counter ≧ threshold (execution cycles[3]) TW[3] synchronous[3]

synchronous TW asynchronous

counter type
(target)

 counter ≧ threshold
(cache hits, no-access cycles[2]) NTW[2] ---

event type Load issue[4] NTW[4] ---

[1]DRI cache [2]Cache Decay [3]Drowsy cache [4]Cache Hierarchy

Figure 1: Mode Transition Examples

4

Figure 1 gives examples for the combination of the
above three parameters. In this figure, we assume that a
counter type condition is employed. In this scenario, the
cache has up-dated the counter two times (as marked by
the white rectangles) until the value of the counter satisfies
the condition (marked by the black rectangle). In the
asynchronous TW type, the operation mode is changed
when condition is satisfied and the counter is reset to zero
at the end of time window. On the other hand, the
synchronous TW type delays entering to the sleep mode
until the end of time window. The NTW approach transits
the operation mode and reset the counter to zero when the
condition is satisfied.

3.2 Switching to the Awake Mode

The classification of the mode transition algorithm from
the sleep mode to the awake mode is shown in Table 2.
Fundamentally, the awake algorithm has complementary
relation with the sleep mode transition algorithm except
that the counter type condition with the execution cycle
monitoring. Moreover, in order to take the locality of
memory references into account, we added “Load or Store
issue” as a candidate of events. Unlike Table 1, many
leakage reduction techniques proposed before concentrate
on the event type. This fact comes from the consideration
of the temporal locality of memory reference. Furthermore,
if accessing to a sleep data is not allowed, i.e. the accesses
can be performed exactly after the target data is woken up,
the event type should be selected. This is because the
counter-type approaches need to keep counting the
number of events during a monitoring period.

4. Evaluation

Based on the discussion in Section 3, we evaluate the
energy-performance efficiency of leakage reduction
algorithm. In order to perform fair comparison, we
introduce the following assumptions.

• The mode control is applied at cache-line granularity. A

number of techniques proposed before used this
assumption [1][3][6].

• The state-preserving scheme is employed for sleep mode
implementation, because it can maintain cache-hit rates.

• It is allowed to access to sleeping cache lines without
wake-up transition. However, in this case, some penalty
for cache-access time is caused. We call the overhead
Sleep-Hit-Penalty (SHP).

• Regardless of the algorithm, any cache misses wake up
the target line. The line loaded from the next level
memory to the L1 cache is initially set to the awake
mode.

• Tag data are always in the awake mode, because it does
not give large impact on the total leakage but affects
significantly the cache-access time [1].

4.1 Leakage Energy Model

In this evaluation, total leakage energy consumed in a L1
data cache LEtotal is approximated as follows:

LEtotal=CC*LEline*Nline (1)
CC=CCconv+CCextra, (2)
LEline=SR*LEsline+(1-SR)*LEaline, (3)

where CC is the total execution time in terms of clock
cycles, LEline is the average leakage energy of a cache
line consumed in one clock cycle, and Nline is the number
of lines in the L1 data cache. CC can be presented by the
total execution time without any cache-leakage
optimization CCconv and the penalty caused by accessing
to sleep-mode lines CCextra. On the other hand, LEline is
given by introducing the sleep rate SR which is a rate of
lines working in the sleep mode. LEsline and LEaline are
the cache-line leakage energy dissipated in one cycle when
it works on the sleep and awake mode, respectively. In a
non-optimized conventional cache, both CCextra and SR
are zero.

Comdition Period Validation

counter ≦ threshold (cache hits, no-access cycles) TW synchronous
counter ≧ threshold (execution cycles) TW synchronous

synchronous TW[1] asynchronous[1]

counter type
(target) counter ≧ threshold

(cache misss[1], accesses) NTW ---
Store issue[4] event type

Load/Store issue[2][3]
NTW[2][3][4] ---

[1]DRI cache [2]Cache Decay [3]Drowsy cache [4]Cache Hierarchy

Table 2: Mode Transition Algorithm to the Awake Mode

5

4.2 Experimental Environment

In this evaluation, we developed a cache simulator to
estimate the cache leakage energy. To obtain address trace
information, we used the ZonC trace-driven SPARC64
simulator which models the detail of SPARC64 out-of-
order execution and its error is only equal to or less than
5% compared to a real chip design [4]. If another
instruction-set architecture such as X86 is assumed, we
may have different results. This is because it will produce
difference memory-access behavior. However, in this
paper, each cache is evaluated with not absolute values but
relative ones. Namely, the execution time and the amount
of leakage reduced are normalized to those produced by
the non-optimized cache organization, respectively.
Therefore, we believe that our evaluation results can be
useful even if we employ a difference processor
architecture. Based on a SPARC64 design, 128 KB two-
way set-associative data L1 cache with a 64B line size is
assumed, thus Nline in equation (1) is 2K.

To measure CC and SR, we executed 12 of integer
programs and 14 of floating-point programs from the
SPEC2000 benchmark. In this simulation, the first 50
million instructions are skipped to capture stable execution
behavior and the following 10 million instructions are
used for measurements. On the other hand, for the leakage
energy, we refer the reported value in [1] that the ratio of
LEaline and LEsline is 100 to 8. This result was obtained
by performing circuit-level simulation with a 0.07μm
Berkeley Spice model. Moreover, the dynamic energy
consumption accompanying cache accesses and mode
transitions is not taking into consideration.
The cache models to be evaluated are shown in Table 3.

Here, we choose two counter-type conditions for the sleep
algorithm, one counts execution cycles (EC) and the other
counts no-access cycles (NAC), because they are
representative conditions in line-base leakage optimization
techniques[1][3]. On the other hand, for the algorithm to

wake lines up, two of event-type conditions, store (S) and
load/store (LS), and two of counter-type conditions, EC
and NAC, are considered. For the model notation, the left
and right characters indicate the condition to enter the
sleep and awake modes, respectively. We assumed that the
threshold to satisfy the conditions is set to 4K cycles based
on the reference [1].
In this evaluation, we focus only on L1 data caches. The

energy efficiency of low-leakage caches depends on the
memory access behavior. Therefore, we believe that the
similar trends will be observed on next-level data caches,
e.g. L2 data caches. On the other hand, for instruction
caches, access behavior depends on the program control
flow. Therefore, our evaluation results may be
inapplicable to instruction caches.

4.3 Results

Figure 2 reports the normalized results to the same
configuration conventional cache for the leakage reduction
and performance overhead. The results are average of all
benchmarks and the effects of SHP (Sleep Hit Penalty) are
also evaluated.
As shown in Figure2, the cache models employing the

event-type awake algorithm, EC-S, EC-LS, NAC-S, and
NAC-LS, produce much better results than the caches with
the counter-type awake strategy, EC-EC, EC-NAC, NAC-
EC, and NAC-NAC. In order to clarify the advantage of
the event-type awake algorithm, Figure 3 and Figure 4
present the energy reduction rates for all benchmark
programs on EC-LS and EC-NAC, respectively. From the
figures, we see that EC-LS is superior to EC-NAC for all
benchmark programs. This is because the counter type
approach wakes up all of the cache lines at every fixed
interval without any consideration for access behavior. As
a result, a number of lines whose last access has already
been completed are woken up, degrading the efficiency of
leakage reduction. On the other hand, a mode transition
takes place only when a load or store instruction is issued

To Sleep Mode To Awake Mode Model Condition Period Validation Condition Period Validation
EC-EC Counter (EC) TW Sync. Counter (EC) TW Sync.
EC-NAC Counter (EC) TW Sync. Counter (NAC) TW Sync.
EC-S Counter (EC) TW Sync. Event (S) NTW ---
EC-LS Counter (EC) TW Sync. Event (LS) NTW ---
NAC-EC Counter (NAC) NTW --- Counter (EC) TW Sync.
NAC-NAC Counter (NAC) NTW --- Counter (NAC) TW Sync.
NAC-S Counter (NAC) NTW --- Event (S) NTW ---
NAC-LS Counter (NAC) NTW --- Event (LS) NTW ---

EC: Execution Cycles NAC: No-Access-Cycles S: Store LS: Load/Store

Table 3: Evaluated Models

6

in the event type approaches, so that the majority of cache
lines keep to residing in the sleep mode.
 Next, we compare the caches with the event-type awake

algorithm, EC-S, EC-LS, NAC-S, and NAC-LS, from the
performance point of view. From Figure 2, we see that the
performance overhead caused by the Load/Store awake
strategy, EC-LS and NAC-LS, is smaller than that caused
by the only-Store awake strategy, EC-S and NAC-S. For
the detail consideration, in Figure 5, we show the
performance overhead caused by EC-LS and EC-S for all
benchmark programs. The result comes from the fact that
memory references have temporal and spatial locality
regardless of the access operations, load or store. This
negative effect becomes clear with increase in the SHP. If
the SHP is three clock cycles, the performance is degraded
by about 20% on EC-S. So, it turns out that LS is the best
awake algorithm from the viewpoint leakage and
performance.
From the results discussed above, we conclude that EC-

LS and NAC-LS approaches are the most promising

algorithm to achieve low-leakage and low-performance-
overhead L1 data caches. For all benchmarks, EC-LS
achieves more than 70% of leakage reduction.

0

10

20

30

40

50

60

70

80

90

100

EC-EC EC-NAC EC-S EC-LS NAC-EC NAC-NAC NAC-S NAC-LS

Le
ak

ag
e

R
ed

uc
tio

n(
%

)

0

10

20

30

40

50

60

70

80

90

100

 P
erform

ance O
verhead(%

)

LEtotal(SHP=3) LEtotal(SHP=2) LEtotal(SHP=1)
Exe.Time(SHP=3) Exe.Time(SHP=2) Exe.Time(SHP=1)

Figure 2: Leakage Energy and Performance (Average of all benchmarks)

0

10

20

30

40

50

60

70

80

90

100

i1
64

.g
zi

p

i1
75

.v
pr

i1
76

.g
cc

i1
81

.m
cf

i1
86

.c
ra

fty

i1
97

.p
ar

se
r

i2
52

.e
on

i2
53

.p
er

lb
m

k

i2
54

.g
ap

i2
55

.v
or

te
x

i2
56

.b
zi

p2

i3
00

.tw
ol

f

f1
68

.w
up

w
is

e

f1
71

.s
w

im

f1
72

.m
gr

id

f1
73

.a
pp

lu

f1
77

.m
es

a

f1
78

.g
al

ge
l

f1
79

.a
rt

f1
83

.e
qu

ak
e

f1
87

.fa
ce

re
c

f1
88

.a
m

m
p

f1
89

.lu
ca

s

f1
91

.fm
a3

d

f2
00

.s
ix

tra
ck

f3
01

.a
ps

i

A
ve

ra
ge

Le
ak

ag
e

R
ed

uc
tio

n
(%

)

LEtotal(SHP=3) LEtotal(SHP=2) LEtotal(SHP=1)

Figure 3: Leakage Reduction in EC-LS

-10

0

10

20

30

40

50

60

70

80

90

100

i1
64

.g
zi

p

i1
75

.v
pr

i1
76

.g
cc

i1
81

.m
cf

i1
86

.c
ra

fty

i1
97

.p
ar

se
r

i2
52

.e
on

i2
53

.p
er

lb
m

k

i2
54

.g
ap

i2
55

.v
or

te
x

i2
56

.b
zi

p2

i3
00

.tw
ol

f

f1
68

.w
up

w
is

e

f1
71

.s
w

im

f1
72

.m
gr

id

f1
73

.a
pp

lu

f1
77

.m
es

a

f1
78

.g
al

ge
l

f1
79

.a
rt

f1
83

.e
qu

ak
e

f1
87

.fa
ce

re
c

f1
88

.a
m

m
p

f1
89

.lu
ca

s

f1
91

.fm
a3

d

f2
00

.s
ix

tr
ac

k

f3
01

.a
ps

i

Av
er

ag
e

Le
ak

ag
e

R
ed

uc
tio

n
(%

)

LEtotal(SHP=3) LEtotal(SHP=2) LEtotal(SHP=1)

Figure 4: Leakage Reduction in EC-NAC

0

10

20

30

40

50

60

70

i1
64

.g
zi

p

i1
75

.v
pr

i1
76

.g
cc

i1
81

.m
cf

i1
86

.c
ra

fty

i1
97

.p
ar

se
r

i2
52

.e
on

i2
53

.p
er

lb
m

k

i2
54

.g
ap

i2
55

.v
or

te
x

i2
56

.b
zi

p2

i3
00

.tw
ol

f

f1
68

.w
up

w
is

e

f1
71

.s
w

im

f1
72

.m
gr

id

f1
73

.a
pp

lu

f1
77

.m
es

a

f1
78

.g
al

ge
l

f1
79

.a
rt

f1
83

.e
qu

ak
e

f1
87

.fa
ce

re
c

f1
88

.a
m

m
p

f1
89

.lu
ca

s

f1
91

.fm
a3

d

f2
00

.s
ix

tr
ac

k

f3
01

.a
ps

i

A
ve

ra
ge

P
er

fo
rm

an
ce

 O
ve

rh
ea

d
(%

)

EC-S Exe.Time(SHP=1) EC-LS Exe.Time(SHP=1)

Figure 5: Performance Overhead in EC-S, EC-LS

7

4.4 Complexity

In this section, we discuss the complexity of each cache
model. For the sleep algorithm, we have two options; EC
(Execution-Cycles) and NAC (Non-Access-Cycles) as
showed in Table 3. As explained in Section 3.1, NAC
counts the number of clock cycles elapsed without any
accesses. In other words, this algorithm requires to
monitoring whether or not each cache line is accessed.
Therefore, a counter and a special circuit for the
monitoring are needed per cache line. On the other hand,
EC does not consider the cache-access behavior, i.e. only a
counter per cache line is implemented, thus it is more
complexity effective than the NAC approach. The awake
algorithm has two counter-type options, EC and NAC, and
two event-type options, L (Load) and LS (Load/Store).
For the counter-type alternatives, EC is more complexity
effective than NAC as explained above. In the event-type
alternatives, the cache needs to know the type of current
cache access, load or store. However, this information is
originally provided from the microprocessor to the cache
in order to perform the read or write operation. Therefore,
hardware complexity caused by the event-type approach is
trivial.
In Section 3.3, we have found that the Load/Store event-

type awake algorithm, EC-LS and NAC-LS, is appropriate
to low-leakage caches. In addition, as discussed above, EC
awake algorithm is more complexity effective than NAC
strategy. Therefore, we conclude that EC-LS approach,
which is employed by the drowsy cache, is the best
algorithm.

5. Conclusions

In this paper, run-time cache management algorithm to
reduce leakage energy consumption has been classified. In
addition, we have evaluated energy-performance
efficiency of several models which employ line by line
optimization. As a result, we have found that EC-LS
model achieves the best performance-energy efficiency
with relatively low complexity. This model makes each
cache line enter to the sleep mode at every fixed interval
and sleeping lines are transited to the awake mode when
they are accessed. In this evaluation, the dynamic energy
overhead caused by mode control units is not contained,
and quantitative evaluation of complexity is omitted. Our
future work is to evaluate with more accurate energy
model including not only static energy but also dynamic
energy consumed for the run-time cache management.
Another future work is to discuss the complexity to
manage cache operation based on real circuit designs.

Acknowledgments

We thank Masayuki Ikeda, Takumi Maruyama, Akira
Katsuno and Mariko Sakamoto who gave us many advices.
This research was supported in part by the Grant-in-Aid
for Creative Basic Research, 14GS0218, 14702064,
14102027.

References
[1] K.Flautner, N.S.Kim, S.Martin, D.Blaauw, and T.Mudge,

“Drowsy Caches: Simple Techniques for Reducing Leakage
Power,” Proc. of the 29th Int. Symp. on Computer
Architecture, pp.148-157, May 2002.

[2] S.Heo, K.Barr, M.Hampton, and K.Asanovic “Dynamic
Fine-Grain Leakage Reduction Using Leakage-Biased
Bitlines,” Proc. of the 29th Int. Symp. on Computer
Architecture, pp.137-147, May 2002.

[3] S.Kaxiras, Z.Hu, and M.Martonosi, “Cache Decay:
Exploiting Generational Behavior to Reduce Cache Leakage
Power,” Proc. of the 28th Int. Symp. on Computer
Architecture, pp.240-251, June 2001.

[4] M.Sakamoto, A.Katsuno, A.Inoue, T.Asakawa, H.Ueno,
K.Morita, Y.Kimura, “Microarchitecture and Performance
Analysis of a SPARC-V9 Microprocessor for Enterprise
Server Systems,” Proc. of the 9th Int. Symp. on High-
Performance Computer Architecture, pp.141-152, Feb.2003

[5] N.S.Kim, K.Flautner, D.Blaauw, and T.Mudge, “Drowsy
Instruction Caches; Leakage Power Reduction using
Dynamic Voltage Scaling and Cache Sub-bank Prediction,”
Proc. of the Int. Symp. on Microarchitecture, pp.219-230,
Nov. 2002.

[6] L.Li, I.Kadayif, Y-F.Tsai, N.Vijaykrishnan, M.J.Irwin, and
A.Sivasubramaniam, “Leakage Energy Management in
Cache Hierarchies,” Proc. of the 11th Int. Conf. on Parallel
Architectures and Compilation Techniques, pp.131-140,
Sep.2002.

[7] M. Powell, S. Yang, B. Falsafi, K. Roy, and T. N.
Vijaykumar, “Gated-Vdd: A Circuit Technique to Reduce
Leakage in Deep-Submicron Cache Memories, ” Int. Symp.
on Low Power Electronic and Design, pp.90-95, July 2000.

[8] S.H.Yang, M.D.Powell, B.Falsafi, K.Roy, and
T.N.Vijaykumar, “An Integrated Circuit / Architecture
Approach to Reducing Leakage in Deep-Submicron High-
Performance I-Caches,” Proc. of the 7th Int. Symp. on High-
Performance Computer Architecture, pp.147-157, Feb.2001

[9] S.H.Yang, M.D.Powell, B.Falsafi, and T.N.Vijaykumar,
“Exploiting Choice in Resizable Cache Design to Optimize

algorithm implementation circuits
EC counter

NAC counter
 access-behavior monitor

S access-behavior monitor
LS access-behavior monitor

Table 4: Complexity

8

Deep-Submicron Processor Energy-Delay,” Proc. of the 8th
Int. Symp. on High-Performance Computer Architecture,
pp.151-161, Feb.2002.

