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Quantitative Evaluation of State-Preserving Leakage Reduction 
Algorithm for L1 Data Caches 

Reiko Komiya †‡, Non Member, Koji Inoue†, Vasily G. Moshnyaga†, 
and Kazuaki Murakami‡§, Regular Members

Summary 
As the transistor feature sizes and threshold voltages reduce, 

leakage energy consumption has become an inevitable issue for 
high-performance microprocessor designs. Since on-chip caches 
are major contributors of the leakage, a number of researchers 
have proposed efficient leakage reduction techniques. However, 
it is still not clear that 1) what kind of algorithm can be 
considered and 2) how much they have impact on energy and 
performance. To answer these questions, we explore run-time 
cache management algorithm, and evaluate the energy-
performance efficiency for several alternatives. 
Key words: 
Low power, cache, leakage. 

1. Introduction 

Due to the popularization of battery operated devices 
such as laptop and hand-held computers, energy 
consumption has become a key constraint in 
microprocessor designs. Generally, the energy dissipation 
of CMOS circuits can be classified into two parts: 
dynamic and static. The dynamic energy is consumed by 
charging and discharging load capacitances in circuits, 
while the static energy is wasted by leakage current in 
non-ideal transistor operations, i.e., incomplete turning off. 
In the previous generation of CMOS technology, dynamic 
energy had large impact on total chip energy. However, 
with the increasing number of transistors employed in a 
chip and the continued reduction in threshold voltages of 
these transistors, leakage energy has become a major 
concern. For example, in Pentium4 microprocessor, 20% 
of total power originates in leakage [5]. 
A cache memory is a fast, small storage area placed on 

between CPU and the main memory. By concentrating the 
memory accesses into the on-chip cache, we can reduce 
the number of off-chip memory accesses, so that the 
processor performance is improved. The cache containing 
only instructions (or data) is called instruction cache (or 
data cache). In addition, recent high-end microprocessor 
tends to employ multi-level cache organization, in which 
the closest cache to the microprocessor is called the level 1 
cache. 
In state-of-the-art microprocessors, there is a tendency to 

increase the size of on-chip caches in order to compensate 
for low-speed off-chip memory accesses. Since the caches 

constitute a significant portion of the transistor budget of 
current microprocessors, leakage reduction of cache 
memories is especially important. For instance, in the case 
of a 0.07μm process technology, it has been estimated that 
leakage energy accounts for 70% of total cache energy [5].  
To reduce the cache leakage, it is required to support at 

least two operation modes, sleep and awake, by circuit-
level optimization [1][7]. In the awake mode the cache 
works with conventional SRAM leaky operations, while 
the sleep mode provides much less leakage but accessing 
to a sleep data forces some performance overhead. In 
order to exploit effectively the two operation modes, we 
need to make at least the following three decisions. 
• How is a target moved into the sleep mode?: There are 

at least two options, non-state-preserving and state-
preserving. The former gates the supply voltage to 
SRAM cells [7], thus large amount of leakage is reduced, 
but performance is negatively affected due to losing the 
data in the cells. While the latter can be implemented by 
optimizing the supply voltage as DVS [1] or the 
transistor threshold voltage as VT-CMOS. It can 
alleviate the performance impact, but leakage reduction 
is not as high as the non-state-preserving scheme.  

•  When does a target change its operation mode?: 
Although aggressive mode transition into the sleep mode 
makes significant leakage reduction, it affects negatively 
the performance due to an access penalty to sleeping 
data. Consequently, efficient algorithm to determine 
when the target data should be moved into the sleep or 
awake mode is required for improving energy-
performance efficiency. 

• What is an appropriate granularity to apply the 
mode control?: We need to consider the granularity to 
apply the low leakage mode. A coarse grain strategy 
transits the whole cache into sleep or awake mode at the 
same time. On the other hand, fine grain approaches may 
control word by word or line by line. 

 
So far, many researchers have proposed efficient leakage 
reduction techniques [1][2][3][5][6][8][9] and they 
employ different alternatives for the above three 
parameters. Recent research has reported that state-
preserving approach is better for L1 caches if L2 cache 
access has relatively large latency. Moreover, many 
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approaches proposed before choose line by line fine-grain 
optimization. On the other hand, we can consider a 
number of strategies to manage the cache operation mode. 
Since the leakage reduction algorithm gives great impact 
on both energy and performance, analyzing and comparing 
the potential of mode control strategy are very worthwhile. 
In this paper, we focus on the cache management 
algorithm and classify them to explore the design 
alternatives of low leakage caches. Moreover, based on the 
classification, we evaluate the reduction approaches by 
performing trace-driven superscalar simulations. For fair 
evaluations, an assumption is used throughout the paper, 
line by line fine-grain optimization with state-preserving 
approach. Our goal is to guide processor designers to 
determine cache management strategy for making a good 
balance between leakage reduction and performance 
degradation. 
This paper is organized as follows: Section 2 explains 

already proposed leakage reduction techniques briefly. In 
Section 3, we classify the cache management algorithm. 
Section 4 evaluates the classified design alternatives and 
discusses their energy-performance efficiency. Finally, in 
Section 5, we conclude this paper. 

2. Cache Leakage Reduction Techniques 

In this section, we briefly introduce leakage reduction 
techniques proposed before. 
 
Ⅰ. DRI cache [8][9] 
In the DRI cache, leakage energy consumption is reduced 

by means of cache resizing based on cache-performance 
requirements monitored at run-time. The number of cache 
misses is counted during a fixed time interval. If the miss 
count is less than a given threshold, we decide to reduce 
the cache size because the cache has quite enough capacity 
to maintain the performance. Otherwise, the cache size is 
increased to avoid performance degradation, i.e. 
improving cache-hit rates. The supply voltage to the 
SRAM cells unused is gated, i.e. non-state-preserving, 
thus reducing cache size contributes leakage elimination. 
Ⅱ. Cache Decay [3] 
When a cache miss takes place, the missed data is loaded 

from the next-level memory to the cache at line (or block) 
granularity. Generally, since programs have temporal and 
spatial locality of memory references, there is a tendency 
that the accesses to the missed line concentrate just after it 
is loaded into the cache and afterwards the line resides in 
the cache without any accesses until its eviction. In other 
words, each cache line survives in the cache regardless of 
its early last access, wasting unnecessarily a large amount 
of leakage energy. In the Cache Decay strategy, accesses 
to each cache line are monitored. If there are no accesses 

to a line during a given period, called decay interval, the 
cache predicts that the contents of the line are not expected 
to be reused. The supply voltage to the decayed lines is 
gated, i.e. non-state-preserving.  
Ⅲ. Drowsy cache [1][5] 
In the Drowsy cache, leakage is reduced by lowering 

periodically the supply voltage applied to SRAM cells. 
When a cache line in the sleep mode is accessed, its 
supply voltage is recovered to make the sleeping cache 
line wake up. Unlike the DRI cache or the Cache Decay, 
the drowsy approach employs the state-preserving 
optimization. Therefore, although we can not reduce the 
leakage energy per SRAM cell as well as the non-state-
preserving schemes, cache-hit rates of conventional 
organization which does not employ any reduction 
approach can be maintained. In the drowsy cache, each 
line is transited into the sleep mode when a given time is 
elapsed and the sleeping line wakes up when it is accessed. 
Ⅳ. Cache Hierarchy [6] 
The Cache Hierarchy scheme reduces leakage energy 

consumption by exploiting the feature of memory 
hierarchical structure. In the case of a processor with L1 
and L2 caches, if a miss occurs in the L1 cache, a copy of 
the target data which exists in the L2 cache is loaded into 
the L1 cache (we assume an L2 cache hit). After that, 
accesses to the loaded data hit to the L1 cache. Therefore, 
we can force the original data residing in the L2 cache to 
transit into the sleep mode, because it may be unnecessary 
any more. This kind of situation can be seen at other level 
memory hierarchies. This has originally been proposed for 
L2 cache leakage reduction. 

3. Classifying Leakage Reduction Algorithm 

In order to achieve cache leakage reduction without 
hurting microprocessor performance, it is very important 
to employ an efficient mode control algorithm. If the 
cache attempts to transit aggressively into the sleep mode, 
large amount of leakage is reduced in turn for significant 
performance degradation. On the other hand, where a 
large portion of the cache operates in the awake mode, we 
can not expect higher leakage reduction. In this section, 
we consider the possibility of mode control strategy and 
explore the design space of low leakage caches. 

3.1 Switching to the Sleep Mode 

Ideally, a cache line which is loaded from the next level 
memory should be turned off just after its last access. In 
order to approach to the ideal management, low leakage 
caches predict whether or not each cache line is to be 
reused. Table 1 summarizes the algorithm to change the 
cache-line state to the sleep mode. The table also presents 
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the relation of previously proposed techniques explained 
in Section 2. We need to consider at least the following 
three decisions.  
 
• What is a suitable condition?: To improve the 

accuracy of the prediction, an appropriate condition to 
enter the sleep mode is required. If the condition is 
satisfied, the cache decides to turn-off the corresponding 
line. As shown in Table 1, there are two types of 
condition: counter type and event type. In the case of 
the counter type, the total number of events is counted. 
The condition is satisfied if the value of counter gets 
equal to or smaller (or larger) than a given threshold. 
Counting the number of cache-hits (or misses) can be 
used for exchanging the cache performance into the 
leakage reduction, while counting the number of 
accesses (or non-access cycles) attempts to capture the 
cache-access behavior. The simplest approach is to count 
just only the execution cycles, i.e. execution time 
elapsed. On the other hand, the event type does not 
consider previous history of events, thus the condition is 
satisfied just when the event occurs.  

 
• How long should the condition be monitored?: The 

period to monitor the mode control condition effects 
leakage reduction efficiency. A short-period monitoring 
can correspond to quick transition of memory access 
patterns, but there is a possibility to make hasty 
decisions. We can consider two options for the 
monitoring period: time-window (TW) and no-time-
window (NTW). The TW scheme monitors the 
condition during a fixed time interval, while the NTW 
does not have any time period. The event type condition 
can not employ the TW scheme because it does not 
consider any history. For the counter type condition, the 
main difference between the TW and the NTW schemes 
is the timing for resetting the counter to zero. In the TW 
scheme, the counter is initialized at the end of each time 
window even if the condition is satisfied earlier. On the 

other hand, in the NTW, resetting the counter is 
performed just when the condition is satisfied. As 
presented in Table 1, the NTW scheme can not be 
applied to the condition which counts execution cycles 
elapsed, because it has a time window implicitly. 
Moreover, for the condition which is satisfied if the 
value of counter is equal to or less than the threshold, we 
need to select the TW scheme. Because this approach 
examines whether or not the condition is still satisfied 
after a certain time elapsed. 

 
• When is the conditional decision validated?: For the 

NTW scheme, the cache transits its operation mode just 
when the condition is satisfied. However, for the TW 
type, we can consider two options: synchronous and 
asynchronous. The former transits the operation mode 
at the end of the time window, i.e. it waits for validating 
the conditional decision until the end of the current time 
window. The latter changes the operation mode soon 
when the condition is satisfied. The advantage of the 
asynchronous strategy is that it may reduce leakage 
energy effectively due to quick response, but it requires 
checking the value of counter at every counter up-date. 
On the other hand, although the synchronous approach 
causes some delay to enter the sleep mode, the frequency 
of conditional checking is lowered. 

 

Table 1: Mode transition Algorithm to the Sleep Mode 

Condition Period Validation 

counter ≦ threshold   (cache misses[1], accesses) TW[1] synchronous[1] 

counter ≧ threshold   (execution cycles[3]) TW[3] synchronous[3] 

synchronous  TW asynchronous 

counter type 
(target) 

 counter ≧ threshold 
(cache hits, no-access cycles[2]) NTW[2] --- 

event type Load issue[4] NTW[4] --- 

[1]DRI cache   [2]Cache Decay   [3]Drowsy cache   [4]Cache Hierarchy 

 

Figure 1: Mode Transition Examples
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Figure 1 gives examples for the combination of the 
above three parameters. In this figure, we assume that a 
counter type condition is employed. In this scenario, the 
cache has up-dated the counter two times (as marked by 
the white rectangles) until the value of the counter satisfies 
the condition (marked by the black rectangle). In the 
asynchronous TW type, the operation mode is changed 
when condition is satisfied and the counter is reset to zero 
at the end of time window. On the other hand, the 
synchronous TW type delays entering to the sleep mode 
until the end of time window. The NTW approach transits 
the operation mode and reset the counter to zero when the 
condition is satisfied. 

3.2 Switching to the Awake Mode 

The classification of the mode transition algorithm from 
the sleep mode to the awake mode is shown in Table 2. 
Fundamentally, the awake algorithm has complementary 
relation with the sleep mode transition algorithm except 
that the counter type condition with the execution cycle 
monitoring. Moreover, in order to take the locality of 
memory references into account, we added “Load or Store 
issue” as a candidate of events. Unlike Table 1, many 
leakage reduction techniques proposed before concentrate 
on the event type. This fact comes from the consideration 
of the temporal locality of memory reference. Furthermore, 
if accessing to a sleep data is not allowed, i.e. the accesses 
can be performed exactly after the target data is woken up, 
the event type should be selected. This is because the 
counter-type approaches need to keep counting the 
number of events during a monitoring period. 

4. Evaluation 

Based on the discussion in Section 3, we evaluate the 
energy-performance efficiency of leakage reduction 
algorithm. In order to perform fair comparison, we 
introduce the following assumptions. 

 
• The mode control is applied at cache-line granularity. A 

number of techniques proposed before used this 
assumption [1][3][6].  

• The state-preserving scheme is employed for sleep mode 
implementation, because it can maintain cache-hit rates.  

• It is allowed to access to sleeping cache lines without 
wake-up transition. However, in this case, some penalty 
for cache-access time is caused. We call the overhead 
Sleep-Hit-Penalty (SHP). 

• Regardless of the algorithm, any cache misses wake up 
the target line. The line loaded from the next level 
memory to the L1 cache is initially set to the awake 
mode. 

• Tag data are always in the awake mode, because it does 
not give large impact on the total leakage but affects 
significantly the cache-access time [1]. 

4.1 Leakage Energy Model 

In this evaluation, total leakage energy consumed in a L1 
data cache LEtotal is approximated as follows:  

LEtotal=CC*LEline*Nline  (1) 
CC=CCconv+CCextra,  (2) 
LEline=SR*LEsline+(1-SR)*LEaline, (3) 

where CC is the total execution time in terms of clock 
cycles, LEline is the average leakage energy of a cache 
line consumed in one clock cycle, and Nline is the number 
of lines in the L1 data cache. CC can be presented by the 
total execution time without any cache-leakage 
optimization CCconv and the penalty caused by accessing 
to sleep-mode lines CCextra. On the other hand, LEline is 
given by introducing the sleep rate SR which is a rate of 
lines working in the sleep mode. LEsline and LEaline are 
the cache-line leakage energy dissipated in one cycle when 
it works on the sleep and awake mode, respectively. In a 
non-optimized conventional cache, both CCextra and SR 
are zero. 

Comdition Period Validation 

counter ≦ threshold   (cache hits, no-access cycles) TW synchronous 
counter ≧ threshold   (execution cycles) TW synchronous 

synchronous TW[1] asynchronous[1] 

counter type 
(target) counter ≧ threshold 

(cache misss[1], accesses) NTW --- 
Store issue[4] event type 

Load/Store issue[2][3] 
NTW[2][3][4] --- 

[1]DRI cache   [2]Cache Decay   [3]Drowsy cache   [4]Cache Hierarchy 

 

Table 2: Mode Transition Algorithm to the Awake Mode 
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4.2 Experimental Environment 

In this evaluation, we developed a cache simulator to 
estimate the cache leakage energy. To obtain address trace 
information, we used the ZonC trace-driven SPARC64 
simulator which models the detail of SPARC64 out-of-
order execution and its error is only equal to or less than 
5% compared to a real chip design [4]. If another 
instruction-set architecture such as X86 is assumed, we 
may have different results. This is because it will produce 
difference memory-access behavior. However, in this 
paper, each cache is evaluated with not absolute values but 
relative ones. Namely, the execution time and the amount 
of leakage reduced are normalized to those produced by 
the non-optimized cache organization, respectively. 
Therefore, we believe that our evaluation results can be 
useful even if we employ a difference processor 
architecture. Based on a SPARC64 design, 128 KB two-
way set-associative data L1 cache with a 64B line size is 
assumed, thus Nline in equation (1) is 2K.  

To measure CC and SR, we executed 12 of integer 
programs and 14 of floating-point programs from the 
SPEC2000 benchmark. In this simulation, the first 50 
million instructions are skipped to capture stable execution 
behavior and the following 10 million instructions are 
used for measurements. On the other hand, for the leakage 
energy, we refer the reported value in [1] that the ratio of 
LEaline and LEsline is 100 to 8. This result was obtained 
by performing circuit-level simulation with a 0.07μm 
Berkeley Spice model. Moreover, the dynamic energy 
consumption accompanying cache accesses and mode 
transitions is not taking into consideration.  
The cache models to be evaluated are shown in Table 3. 

Here, we choose two counter-type conditions for the sleep 
algorithm, one counts execution cycles (EC) and the other 
counts no-access cycles (NAC), because they are 
representative conditions in line-base leakage optimization 
techniques[1][3]. On the other hand, for the algorithm to 

wake lines up, two of event-type conditions, store (S) and 
load/store (LS), and two of counter-type conditions, EC 
and NAC, are considered. For the model notation, the left 
and right characters indicate the condition to enter the 
sleep and awake modes, respectively. We assumed that the 
threshold to satisfy the conditions is set to 4K cycles based 
on the reference [1].  
In this evaluation, we focus only on L1 data caches. The 

energy efficiency of low-leakage caches depends on the 
memory access behavior. Therefore, we believe that the 
similar trends will be observed on next-level data caches, 
e.g. L2 data caches. On the other hand, for instruction 
caches, access behavior depends on the program control 
flow. Therefore, our evaluation results may be 
inapplicable to instruction caches. 

4.3 Results 

Figure 2 reports the normalized results to the same 
configuration conventional cache for the leakage reduction 
and performance overhead. The results are average of all 
benchmarks and the effects of SHP (Sleep Hit Penalty) are 
also evaluated.  
As shown in Figure2, the cache models employing the 

event-type awake algorithm, EC-S, EC-LS, NAC-S, and 
NAC-LS, produce much better results than the caches with 
the counter-type awake strategy, EC-EC, EC-NAC, NAC-
EC, and NAC-NAC. In order to clarify the advantage of 
the event-type awake algorithm, Figure 3 and Figure 4 
present the energy reduction rates for all benchmark 
programs on EC-LS and EC-NAC, respectively. From the 
figures, we see that EC-LS is superior to EC-NAC for all 
benchmark programs. This is because the counter type 
approach wakes up all of the cache lines at every fixed 
interval without any consideration for access behavior. As 
a result, a number of lines whose last access has already 
been completed are woken up, degrading the efficiency of 
leakage reduction. On the other hand, a mode transition 
takes place only when a load or store instruction is issued 

To Sleep Mode To Awake Mode Model Condition Period Validation Condition Period Validation 
EC-EC Counter (EC) TW Sync. Counter (EC) TW Sync. 
EC-NAC Counter (EC) TW Sync. Counter (NAC) TW Sync. 
EC-S Counter (EC) TW Sync. Event (S) NTW --- 
EC-LS Counter (EC) TW Sync. Event (LS) NTW --- 
NAC-EC Counter (NAC) NTW --- Counter (EC) TW Sync. 
NAC-NAC Counter (NAC) NTW --- Counter (NAC) TW Sync. 
NAC-S Counter (NAC) NTW --- Event (S) NTW --- 
NAC-LS Counter (NAC) NTW --- Event (LS) NTW --- 

EC: Execution Cycles     NAC: No-Access-Cycles    S: Store   LS: Load/Store 

 

Table 3: Evaluated Models 
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in the event type approaches, so that the majority of cache 
lines keep to residing in the sleep mode.  
 Next, we compare the caches with the event-type awake 

algorithm, EC-S, EC-LS, NAC-S, and NAC-LS, from the 
performance point of view. From Figure 2, we see that the 
performance overhead caused by the Load/Store awake 
strategy, EC-LS and NAC-LS, is smaller than that caused 
by the only-Store awake strategy, EC-S and NAC-S. For 
the detail consideration, in Figure 5, we show the 
performance overhead caused by EC-LS and EC-S for all 
benchmark programs. The result comes from the fact that 
memory references have temporal and spatial locality 
regardless of the access operations, load or store. This 
negative effect becomes clear with increase in the SHP. If 
the SHP is three clock cycles, the performance is degraded 
by about 20% on EC-S. So, it turns out that LS is the best 
awake algorithm from the viewpoint leakage and 
performance. 
From the results discussed above, we conclude that EC-

LS and NAC-LS approaches are the most promising 

algorithm to achieve low-leakage and low-performance-
overhead L1 data caches. For all benchmarks, EC-LS 
achieves more than 70% of leakage reduction. 
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Figure 4: Leakage Reduction in EC-NAC 
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4.4 Complexity 

In this section, we discuss the complexity of each cache 
model. For the sleep algorithm, we have two options; EC 
(Execution-Cycles) and NAC (Non-Access-Cycles) as 
showed in Table 3. As explained in Section 3.1, NAC 
counts the number of clock cycles elapsed without any 
accesses. In other words, this algorithm requires to 
monitoring whether or not each cache line is accessed. 
Therefore, a counter and a special circuit for the 
monitoring are needed per cache line. On the other hand, 
EC does not consider the cache-access behavior, i.e. only a 
counter per cache line is implemented, thus it is more 
complexity effective than the NAC approach. The awake 
algorithm has two counter-type options, EC and NAC, and 
two event-type options, L (Load) and LS (Load/Store). 
For the counter-type alternatives, EC is more complexity 
effective than NAC as explained above. In the event-type 
alternatives, the cache needs to know the type of current 
cache access, load or store. However, this information is 
originally provided from the microprocessor to the cache 
in order to perform the read or write operation. Therefore, 
hardware complexity caused by the event-type approach is 
trivial.  
In Section 3.3, we have found that the Load/Store event-

type awake algorithm, EC-LS and NAC-LS, is appropriate 
to low-leakage caches. In addition, as discussed above, EC 
awake algorithm is more complexity effective than NAC 
strategy. Therefore, we conclude that EC-LS approach, 
which is employed by the drowsy cache, is the best 
algorithm. 

5. Conclusions 

In this paper, run-time cache management algorithm to 
reduce leakage energy consumption has been classified. In 
addition, we have evaluated energy-performance 
efficiency of several models which employ line by line 
optimization. As a result, we have found that EC-LS 
model achieves the best performance-energy efficiency 
with relatively low complexity. This model makes each 
cache line enter to the sleep mode at every fixed interval 
and sleeping lines are transited to the awake mode when 
they are accessed. In this evaluation, the dynamic energy 
overhead caused by mode control units is not contained, 
and quantitative evaluation of complexity is omitted. Our 
future work is to evaluate with more accurate energy 
model including not only static energy but also dynamic 
energy consumed for the run-time cache management.  
Another future work is to discuss the complexity to 
manage cache operation based on real circuit designs. 
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