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Abstract. This paper gives an efficient algorithm to compute addition
in Jacobian of C34 curves. The paper modifies the addition algorithm of
[1], by classifying the forms of Groebner bases of all ideals involved in the
addition in Jacobian, and by computing Groebner bases of ideals without
using Buchberger algorithm. The algorithm computes the addition in
Jacobian of C34 curves in about 3 times amount of computation of the
one in elliptic curves, when the sizes of groups are set to be the same.

1 Introduction

Although now elliptic curve cryptosystems are widely used, discrete logarithm
based cryptosystem with Jacobian group of more general algebraic curves, such
as hyperelliptic, superelliptic[4] and Cab curve[1], are not used. One of the main
reasons for that is the heavy computational amount of addition in Jacobian of
such non-elliptic curves.

Surprisingly, Harley[6], by carefully optimizing Cantor’s algorithm[2], gives
an algorithm for addition in Jacobian of hyperelliptic curves of genus two, which
computes the addition on the hyperelliptic curve almost in the same time as
the addition on elliptic curves, when the sizes of groups are set to be the same.
Harley’s algorithm is being modified by Matsuo and Chao[10] and by Lange[8].

This paper treats C34 curves which are special cases of Cab curves[11, 9]. C34

curves are non-hyperelliptic and of genus three. We classify all of the forms
of Groebner bases of ideals involved in the addition in Jacobian of C34 curve.
With the classification, we can modify the addition algorithm of [1] to obtain
Groebner bases of ideals without using Buchberger algorithm. We show our
algorithm computes the addition in Jacobian of C34 curves in about 3 times
amount of computation of the one in elliptic curves, when the sizes of groups are
set to be the same.

We note that Harasawa and Suzuki[5] also gives an addition algorithm on
Jacobian of Cab curves, by extending the addition algorithm on superelliptic
curves of Galbraith, Paulus, and Smart[4]. Their algorithms use LLL-arlgorithm
to reduce ideals. Although [5] gives an asymptotic evaluation of the amount of
computation of their algorithm, the evaluation of O-constants is not given.

2 C34 Curve and Its Jacobian Group

C34 curve, which is a special case of Cab curve found by Miura[11, 9], is a non-
singular plan curve defined by the following form of polynomial F (X,Y ):



F (X, Y ) = Y 3+a0X
4+a1XY 2+a2X

2Y +a3X
3+a4Y

2+a5XY +a6X
2+a7Y +a8X+a9,

(1)
where ai’s are elements of the definition field k and a0 6= 0.

C34 curve C has a unique point ∞ at the infinity. The function Y and X has
the unique pole at ∞ of order four and three, respectively. We can see the gap
sequence at ∞ is IN0− < 3, 4 >= {1, 2, 5}, and the genus of C34 is found to be
three.

Let D0
C(k) denote the group of divisors of degree 0 on C defined over k, and

PC(k) be the group of principal divisors on C defined over k. As well known,
Jacobian group JC(k) on C is defined to be the factor:

JC(k) = D0
C(k)/PC(k).

On the other hand, let R = k[X, Y ]/F be the coordinate ring of C. Since
C34 curve C is nonsingular by the definition, R is integrally closed domain, so R
is a Dedekind domain. Hence, all of the nonzero fractional ideals of R compose
a group IR(k). Putting the group of principal ideals of R PR(k), the ideal class
group HR(k) of R is defined to be the factor:

HR(k) = IR(k)/PR(k).

In general, for a nonsingular curve, we can identify divisors on the curve
and ideals of the coordinate ring, and its Jacobian group JC(k) is naturally
isomorphic to the ideal class group HR(k) (Example 6.3.2 of [7]):

JC(k) ∼= HR(k)

[E − n∞] 7→ [
∞⋃

n=0

L(m∞− E)],

where E is a positive divisor prime to ∞.
Ideals are more useful than divisors to implement algorithms. In the below,

we treat Jacobian group JC(k) as the ideal class group HR(k) of the coordinate
ring R.

3 Preparations for Groebner Bases

Here, we make preparations for Groebner bases of ideals. For details, see [3].
Let ‘<’ be an well-order among monomials in a polynomial ring S = k[X1, · · · , Xn].

When the order ‘<’ is compatible with the product in the sense that we have
M1M3 < M2M3 whenever M1 < M2, the order ‘<’ is called a monomial order.
In the rest of this section, we suppose that any monomial order ‘<’ is given and
fixed for a polynomial ring S.



For a polynomial f in S, the largest monomial, with respect to the monomial
order ‘<’, appearing in f is called a leading monomial of f and denoted by
LM(f). For an ideal I of S, the ideal generated by all of the leading monomials
of polynomials in I is denoted by LM(I). Suppose an ideal I = (f1, · · · , fs) of S
generated by f1, · · · , fs is given. The set {f1, · · · , fs} is called Groebner base of
I when it satisfies

LM(I) = (LM(f1), · · · ,LM(fs)).

Let I be an ideal of S. The set of monomials (or their multi-degrees) not
belonging to LM(I) is called a ∆-set of I and denoted by ∆(I). ∆(I) gives a
basis of the vector space S/I over k. When we plot monomials Xm1

1 Xm2
2 · · ·,

or their multi-degrees (m1,m2, · · ·) in ∆(I) on the (m1, m2, · · ·)-space, there
appears a convex set, of which surrounding lattice points correspond to leading
monomials of polynomials in Groebner base of I.

Let R = S/F be a coordinate ring of a C34 curve defined by F . By identifying
ideals of R with ideals of S including F , we can consider Groebner bases for ideals
of R. For a 0-dimensional ideal I (i.e. the zero set of I is finite), we define its
order δ(I) as

δ(I) = dimkR/I.

By the definition, we see δ(I) = ]∆(I). Since C34 curve is nonsingular, δ(IJ) =
δ(I)δ(J). If I = (f) is a principal ideal in R, we have δ(I) = −v∞(f).

4 An Addition Algorithm in Jacobian of C34 curve —
abstract level

Let R = k[X,Y ]/F be a coordinate ring of a C34 curve C defined by the poly-
nomial F (1). We can define a monomial order ‘>’, called C34 order, by the pole
number of monomials at ∞. That is,

Xm1Y n1 > Xm2Y n2 def⇐⇒ 3m1 + 4n1 > 3m2 + 4n2

or 3m1 + 4n1 = 3m2 + 4n2, m1 < m2

Hereafter, we always use C34 order to compare monomials in R.
For an ideal I in R, let fI be the nonzero ‘monic’ polynomial with the smallest

leading monomial in I. We define I∗ as

I∗ = (fI) : I (= {g ∈ R | gI ⊂ (fI)}).

Then, we have

Proposition 1 Let I, J be any ideals in the coordinate ring R. We have

(1) I is equivalent to I∗∗.
(2) I∗∗ is an ideal equivalent to I with the smallest order.
(3) If I and J are equivalent, then we have I∗ = J∗. In particular, I∗∗ = (I∗∗)∗∗.



Proof (1) I∗ is equivalent to the inverse ideal of I from definition.
(2) Let J be an (integral) ideal equivalent to I−1. There is a f ∈ R satisfying

JI = (f). From the definition of I∗, I∗I = (fI). So, we have

δ(J)δ(I)− δ(I∗)δ(I) = −v∞(f) + v∞(fI) ≥ 0,

by the definition of fI . Therefore, I∗ is an (integral) ideal equivalent to I−1 with
the smallest order. So, I∗∗ is an (integral) ideal equivalent to I with the smallest
order.

(3) If I and J are equivalent, there are j, h ∈ R satisfying J = j
hI. Then, we

have fJ = j
hfI . So, for g ∈ R,

gJ ⊂ (fJ) ⇔ g
j

h
I ⊂ (

j

h
fI) ⇔ gI ⊂ (fI)

2

An ideal I in the coordinate ring R is called reduced when we have I∗∗ = I.
By Proposition1(1),(3), any ideal in R is equivalent to the unique reduced ideal.
That is, reduced ideals compose a complete representative system of ideal classes.
Moreover, by Proposition1(2), we see that a reduced ideal has the smallest or-
der among ideals in the same ideal class. This property should be a merit to
implement algorithms.

Using reduced ideals as a representative system of ideal classes, we get the
following addition algorithm in Jacobian of C34 curve.

Algorithm 1 (Addition in Jacobian of C34 curve – abstract version)
Inputs: reduced ideals I1, I2 in the coordinate ring R
Output: reduced ideal I3 equivalent to the ideal product I1 · I2

1◦ J ← I1 · I2

2◦ J∗ ← (fJ) : J
3◦ I3 ← (fJ∗) : J∗

5 Ideal Classification

In this section, we classify ideals appearing in performing Algorithm1, in order
to implement Algorithm1 efficiently. Since the genus of C34 curve is three, the
orders of those ideals are not greater than six. So, it is sufficient to classify ideals
of R with order not greater than six.

Hereafter, even if the defining polynomial F (Equation (1)) of C34 curve C
appears in Groebner base of an ideal, we do not explicitly show it, and ai, bj , ck

denote coefficients of polynomials in Groebner bases.

5.1 Ideals of order 6

Let I be an ideal in R of order 6. By the definition of order, V = R/I is a sixth
dimensional vector space over the definition field k.



Type 61 An ideal I of order six has six zero points including multiplici-
ties. When those six points are in ‘general’ positions, the first six monomials
1, X, Y, X2, XY, Y 2 with respect to the C34 order are linearly independent on
those six points. So, the set of monomials M = {1, X, Y, X2, XY, Y 2} is a basis
of the vector space V = R/I. In this case, we call I an ideal of type 61.

It is easily seen that the fact that the set of monomials M is linearly de-
pendent in V = R/I is equivalent to the fact that there is a monomial in M
belonging to LM(I). So, If I is an ideal of type 61, then the set of monomi-
als M is nothing but ∆(I). Using notation of multi-degrees, we have ∆(I) =
{(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)}. It is easily seen that lattice points sur-
rounding ∆(I) are {(0, 3), (1, 2), (2, 1), (3, 0)}. So, Groebner base of an ideal I
of type 61 has the form in Table 1. Those three polynomials correspond to the
lattice points (3,0),(2,1),(1,2) (Note the lattice point (0,3) corresponds to the
defining polynomial F ).

Type 62 and 63 In general, six monomials 1, X, Y,X2, XY, Y 2 are not linearly
independent in V = R/I. First, we consider the case that the first five monomials
1, X, Y, X2, XY with respect to the C34 order are linearly independent, but the
sixth monomial Y 2 is equal to a linear sum of them in V .

In that case, ∆(I) is a convex set of order 6, which includes
{(0, 0), (1, 0), (0, 1), (2, 0), (1, 1)}, but does not include (0, 2). From this, we can
easily see that ∆(I) = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (2, 1)}, or
∆(I) = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (3, 0)}. In the former case we call I an
ideal of type 62, and in the latter case , we call I an ideal of type 63.

Lattice points surrounding ∆(I) are {(0,2),(3,0)} for I of type 62, and {(0,2),(2,1),(4,0)}
for I of type 63. So, forms of their Grobner bases are as in Table 1. Note
there should be a polynomial corresponding to the lattice point (4,0) in Groeb-
ner base for I of type 63. However, the polynomial can be immediately ob-
tained as F − Y f with the defining polynomial F and the polynomial f =
Y 2 + a5XY + a4X

2 + a3Y + a2X + a1. So, we omit it.

Type 64 Next, suppose the first four monomials 1, X, Y,X2 are linearly inde-
pendent, but the fifth monomial XY is a linear sum of them in V = R/I. That
is, ∆(I) includes {(0, 0), (1, 0), (0, 1), (2, 0)}, but does not include (1,1).

Then, if ∆(I) does not include (0,2), we must have
∆(I) = {(0, 0), (1, 0), (0, 1), (2, 0), (3, 0), (4, 0)}. However, by the assumption, I
includes a polynomial f = Y 2 + · · · with the leading monomial Y 2, so I includes
Y f −F = −a0X

4 + · · ·. This means (4, 0) 6∈ ∆(I), a contradiction. Thus, we see
that ∆(I) must include (0,2), and ∆(I) = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (3, 0)}.
In this case, we call I an ideal of type 64.

Lattice points surrounding ∆(I) are {(0,3),(1,1),(4,0)}. Hence, the form of
Groebner base of I of type 64 is as in Table 1.

Type 65 Next suppose the first three monomials 1, X, Y are linearly indepen-
dent, but the fourth monomial X2 is a linear sum of them in V = R/I. Then,



the ideal I include a polynomial f with the leading term X2. And we have
∆(I) = {(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2)}. In this case, we call I an ideal
of type 65. Since lattice points surrounding ∆(I) are {(0,3),(2,0)}, we know I
is a principal ideal generated by f as in Table 1 (note the lattice point (0,3)
corresponds to the defining polynomial F ).

A polynomial f with the leading term Y does not vanish on the six points
corresponding to I, because deg(f)0 = −vP∞(f) = 4 < 6. Hence, the first three
monomials 1, X, Y are always linearly independent in V = R/I.

Now classification of ideals of order 6 is completed.

5.2 All ideal types of order not greater than 6

Ideals of order less than 6 are also similarly classified. We only show the result
of classification in Table 1. Ideals of type 65,44 and 33 are principal ideals, units
in Jacobian. Among all of the ideal types, only ideals of type 31,21,22 and 11
are reduced. For example, we can see that ideals of type 32 are not reduced as
follows.

Let I be an ideal of type 32. Then fI = Y + a2X + a1. So,

δ(I∗) = −v∞(fI)− δ(I) = 4− 3 = 1.

We know I∗ is of type 11 and fI∗ = X + a′1. So,

δ(I∗∗) = −v∞(fI∗)− δ(I∗) = 3− 1 = 2.

Since orders are distinct, I 6= I∗∗.

6 An Addition Algorithm in Jacobian of C34 curve —
concrete level

Let R = k[X,Y ]/F be the coordinate ring of a C34 curve C defined by a poly-
nomial F (Equation (1)) over a finite field k. In this section, we put Algorithm
1 into more concrete shape and estimate its efficiency. In the below, bearing an
application for cryptography in mind, we assume the order of the definition field
k is large enough.

6.1 Composition1

First, we deal with the first step of Algorithm 1 for distinct ideals I1, I2. That
is, we compute fJ for the ideal product J = I1 · I2. For that sake, it is sufficient
to find Groebner base of J with respect to C34 order (fJ is the first element of
it).

Since the genus of C34 curves is three, types of input ideals for Algorithm 1
are either 11,21,22,31 or 32. Here, we only discuss the case in which ideals I1, I2

are both of type 31. Another cases are dealt with similarly.



Table 1. All ideal types of order not greater than 6

Order Type Form of Groebner base

6 61 {X3+a6Y
2+a5XY +a4X

2+a3Y +a2X+a1, X
2Y +

b6Y
2+b5XY +b4X

2+b3Y +b2X+b1, XY 2+c6Y
2+

c5XY + c4X
2 + c3Y + c2X + c1}

6 62 {Y 2+a5XY +a4X
2+a3Y +a2X+a1, X

3+b5XY +
b4X

2 + b3Y + b2X + b1}
6 63 {Y 2 + a5XY + a4X

2 + a3Y + a2X + a1, X
2Y +

b6X
3 + b5XY + b4X

2 + b3Y + b2X + b1}
6 64 {XY +a4X

2 +a3Y +a2X +a1, X
4 +b6X

3 +b5Y
2 +

b4X
2 + b3Y + b2X + b1}

6 65 {X2 + a3Y + a2X + a1}
5 51 {Y 2+a5XY +a4X

2+a3Y +a2X+a1, X
3+b5XY +

b4X
2+b3Y +b2X+b1, X

2Y +c5XY +c4X
2+c3Y +

c2X + c1}
5 52 {XY +a4X

2 +a3Y +a2X +a1, Y
2 + b4X

2 + b3Y +
b2X + b1}

5 53 {XY +a4X
2 +a3Y +a2X +a1, X

3 +b5Y
2 +b4X

2 +
b3Y + b2X + b1}

5 54 {X2+a3Y +a2X +a1, XY 2+b5Y
2+b4XY +b3Y +

b2X + b1}
4 41 {XY +a4X

2 +a3Y +a2X +a1, Y
2 + b4X

2 + b3Y +
b2X + b1, X

3 + c4X
2 + c3Y + c2X + c1}

4 42 {X2 + a3Y + a2X + a1, XY + b3Y + b2X + b1}
4 43 {X2+a3Y +a2X+a1, Y

2+b4XY +b3Y +b2X+b1}
4 44 {Y + a2X + a1}
3 31 {X2 +a3Y +a2X +a1, XY + b3Y + b2X + b1, Y

2 +
c3Y + c2X + c1}

3 32 {Y + a2X + a1, X
3 + b3X

2 + b2X + b1}
3 33 {X + a1}
2 21 {Y + a2X + a1, X

2 + b2X + b1}
2 22 {X + a1, Y

2 + b2Y + b1}
1 11 {X + a1, Y + b1}

Suppose we choose distinct ideals I1, I2 of type 31 at random from Jacobian
group. Then since we assume the order q of k is large enough, almost always
(with the probability approximately (q − 1)/q) we have

V(I1) ∩V(I2) = ∅ (2)

where V(I) denotes the zero set of an ideal I. So, first we assume the condition
(2).

Let J = I1I2 be the ideal product of I1 and I2. Since the order of J is 6, the
type of J is either 61,62,63,64 or 65. To determine which it is, by Table 1, we
see it is sufficient to find linear relations among 10 monomials

1, X, Y, X2, XY, Y 2, X3, X2Y, XY 2, X4 (3)



in the vector space R/J over k.
Since Ii (i = 1, 2) is of type 31, we have

R/Ii ' k · 1⊕ k ·X ⊕ k · Y. (4)
m 7→ v(i)

m (5)

By condition (2), we have

R/J ' R/I1 ⊕R/I2 ' ⊕6
i=1k,

m 7→ (m mod (I1), m mod (I2)) 7→ v(1)
m : v(2)

m (6)

where v
(1)
m : v

(2)
m denotes the sixth dimensional vector over k obtained by con-

necting two vectors v
(i)
m (i = 1, 2).

Thus, to obtain linear relations in R/J among 10 monomials mi in equation
(3), it is sufficient to find linear relations among rows of the 10× 6 matrix MC

which is obtained by lining up vectors v
(1)
mi : v

(2)
mi (i = 1, 2, · · · 10)

Linear relations among rows of MC can be obtained by making MC triangu-
lar using the row reduce procedure as well known, and we get the type of ideal J
and its Groebner base. More details are shown through the following example.

When condition (2) does not hold for ideals I1, I2, the rank MC becomes less
than 6. After making MC triangular, if we know the rank of MC is less than 6,
then we generate Ri satisfying R1 + R2 = 0, and compute (I1 + R1) + (I2 + R2)
instead of I1 + I2. Here, ‘+’ denotes the addition in Jacobian.

Example For example, we deal with C34 curve Y 3 +X4 +7X = 0 on the prime
field of characteristics p = 1009. Take the following two ideals of type 31:

I1 = {X2 + 726Y + 836X + 355, XY + 36Y + 428X + 477, Y 2 + 746Y + 425X + 865}
I2 = {X2 + 838Y + 784X + 97, XY + 602Y + 450X + 291, Y 2 + 506Y + 524X + 497}

We would like to compute Groebner base of J = I1I2 to find fJ . By comput-
ing the remainder of each mi in equation (3) modulo I1 and I2 respectively, we
get the matrix MC for I1, I2:

MC =




1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

654 173 283 912 225 171
532 581 973 718 559 407
144 584 263 512 485 503
349 269 429 53 821 109
609 418 243 888 856 916
199 720 418 310 331 91
554 498 143 643 522 107




.



To obtain linear relations among rows of MC , we connect MC and 10-th unit
matrix I10 to get M ′

C = MC : I10. Against M ′
C , we apply the row reduce

procedure up to the sixth row:

m =




1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 258 52 897 355 836 726 1 0 0 0 0 0 0
0 0 0 0 621 688 268 365 592 187 1 0 0 0 0 0
0 0 0 0 0 31 514 469 637 669 155 1 0 0 0 0
0 0 0 0 0 0 28 132 31 271 469 166 1 0 0 0
0 0 0 0 0 0 856 618 747 909 132 636 0 1 0 0
0 0 0 0 0 0 652 322 240 978 826 846 0 0 1 0
0 0 0 0 0 0 333 346 980 935 824 614 0 0 0 1




.

The result shows the first six rows of MC are linearly independent. This means
monomials 1, X, Y, X2, XY, Y 2 are linearly independent in R/J and the product
J is of type 61.

Moreover, the right 10 elements of the seventh, eighth and ninth rows of
m represents liner expressions of the seventh, eighth and ninth rows of MC by
the first six rows of MC , respectively. From this, we know linear expressions
of X3, X2Y, XY 2 by 1, X, Y, X2, XY, Y 2 in R/J , respectively, and we get the
following Groebner base of J :

J = {28 + 132X + 31Y + 271X2 + 469XY + 166Y 2 + X3,

856 + 618X + 747Y + 909X2 + 132XY + 636Y 2 + X2Y,

652 + 322X + 240Y + 978X2 + 826XY + 846Y 2 + XY 2}

Hence, we have fJ = 28 + 132X + 31Y + 271X2 + 469XY + 166Y 2 + X3.

6.2 Composition2

We consider the first step of Algorithm 1 for the same two ideals I1 = I, I2 = I
in R. That is, we compute Groebner base of the ideal product J = I2 to get
fJ . As in section 6.1, we only deal with an ideal I of type 31. Other cases are
handled similarly.

Since we assume the order q of k is large enough, almost always (with the
probability approximately (q − 1)/q) it holds that

V(I) has no multiple point. (7)

So, first we assume the condition (7).
Since the order of J = I2 is also 6, it is sufficient to find linear relations

in R/J among monomials in equation (3). By condition (7), the necessary and
sufficient condition to f(∈ R) belongs to J = I2 is

f ∈ I, fXFY − fY FX ∈ I.



So, we have

R/J ' R/I ⊕R/I ' ⊕6
i=1k,

m 7→ (m mod (I),mXFY −mY FX mod (I)) 7→ vm : v(mXFY −mY FX) (8)

where vm : v(mXFY −mY FX) is a sixth dimensional vector over k obtained by
connecting two vectors vm, v(mXFY −mY FX).

Thus, to obtain linear relations in R/J among mi in equation (3), it is suffi-
cient to find linear relations among rows of 10× 6 matrix MD which is obtained
by lining up vectors vmi

: v(miXFY −miY FX) (i = 1, 2, · · · , 10).
Just as in section 6.1, we make MD triangular by the row reduce procedure

to obtain the type of J and its Groebner base.

If condition (7) does not hold for I, the rank of MD is less than 6. After
making MD triangular, if we know the rank of MD is less than 6, then we
generate Ri satisfying R1 + R2 = 0, and compute (I + R1) + (I + R2) instead of
I + I. Here, ‘+’ denotes the addition in Jacobian.

6.3 Reduction

We consider the second (and the third) step of Algorithm 1. That is, we compute
Grobner base of J∗ = fJ : J for an ideal J of order not greater than 6. Here we
only deal with J of type 61. Other types of J are dealt with similarly.

Since J is of type 61, J can be written as

{fJ = X3 + a6Y
2 + · · · , g = X2Y + b6Y

2 + · · · , h = XY 2 + c6Y
2 + · · ·}.

Since J∗ = fJ : J from definition, we have δ(J∗) = −v∞(fJ) − δ(J) = 3.
Moreover J∗ is reduced by Proposition 1, so the type of J∗ must be 31 (see
Remark in section 5).

Hence, to find Groebner base of J∗, it is sufficient to find linear relations∑
i dimi for mi in

1, X, Y, X2, XY, Y 2 (9)

such that both
∑

i dimig and
∑

i dimih are equal to 0 in R/fJ .
Since LM(F ) = Y 3, LM(fJ) = X3, we have

R/fJR ' k · 1⊕ k ·X ⊕ k · Y ⊕ k ·X2 ⊕ k ·XY ⊕ k · Y 2 ⊕ k ·X2Y ⊕ k ·XY 2 ⊕ k ·X2Y 2.

f 7→ wf

So, to find those linear relations among mi in equation (9), it is sufficient to find
linear relations among rows of 6× 18 matrix MR which is obtained by lining up
vectors wmig : wmih (i = 1, 2, · · · 6).

Just as in section 6.1, we make MR triangular by the row reduce procedure
to obtain the type of J∗ and its Groebner base.

However, in the almost all cases, it is sufficient to make 6× 3 sub-matrix Mr

of MR triangular, instead of the whole matrix MR. Details are shown in the next
section.



7 Formal description of the algorithm and estimates of
its efficiency

By the discussion of the last section, we get Algorithm 2 in section A for addition
in Jacobian of C34 curve. However, there, only parts of Algorithm 2 involving
ideals of type 61 and 31 are shown to save the space.

Now we estimate the amount of computation of Algorithm 2 with an expla-
nation of using the sub-matrix Mr instead of MR. Let q be the order of the
definition field k. A random element in Jacobian is represented by an ideal of
type 31 with the probability about (q − 1)/q. Also, outputs of Compose 1,2 for
ideals of type 31 are ideals of type 61 with the probability about (q − 1)/q. So,
to estimate the efficiency of Algorithm 2, it is sufficient to estimate the amount
of computation of Compose1, 2 for ideals of type 31 and the amount of com-
putation of Reduce for ideals of type 61 and 31. In the below, we describe the
amount of computation by the number of times of multiplication and inverse of
elements in k.

First, we see the amount of computation of Compose1. Let I1, I2 be ideals of
type 31:

I1 = {X2 + a3Y + a2X + a1, XY + b3Y + b2X + b1, Y
2 + c3Y + c2X + c1}

I2 = {X2 + s3Y + s2X + s1, XY + t3Y + t2X + t1, Y
2 + u3Y + u2X + u1}

For ideals I1, I2, the matrix MC is represented as

MC =




1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
−a1 −a2 −a3 −s1 −s2 −s3
−b1 −b2 −b3 −t1 −t2 −t3
−c1 −c2 −c3 −u1 −u2 −u3

a1a2 + a3b1 −a1 + a2
2 + a3b2 a2a3 + a3b3 s1s2 + s3t1 −s1 + s22 + s3t2 s2s3 + s3t3

a2b1 + a3c1 a2b2 + a3c2 −a1 + a2b3 + a3c3 s2t1 + s3u1 s2t2 + s3u2 −s1 + s2t3 + s3u3
b1b2 + b3c1 b22 + b3c2 −b1 + b2b3 + b3c3 t1t2 + t3u1 t22 + t3u2 −t1 + t2t3 + t3u3

e10,1 e10,2 e10,3 e10,4 e10,5 e10,6




e10,1 = a
2
1 − a1a

2
2 − 2a2a3b1 − a

2
3c1, e10,2 = 2a1a2 − a

3
2 − 2a2a3b2 − a

2
3c2

e10,3 = 2a1a3 − a
2
2a3 − 2a2a3b3 − a

2
3c3, e10,4 = s

2
1 − s1s

2
2 − 2s2s3t1 − s

2
3u1

e10,5 = 2s1s2 − s
3
2 − 2s2s3t2 − s

2
3u2, e10,6 = 2s1s3 − s

2
2s3 − 2s2s3t3 − s

2
3u3

From this representation, we see the matrix MC can be constructed in at most 44
multiplications, removing duplication adequately. Knowing the first three rows of
M ′

C are already row-reduced, and elements of them are 0 or 1, and assuming the
output ideal would be of type 61, we see RowReduce for M ′

C can be performed
in 3 inverses and at most 6 · 6 + 6 · 5 + 6 · 4 = 90 times multiplications. Thus,
Compose1 are performed in at most 3 inverses and 134 multiplications.

Similarly, we can see Compose2 are performed in at most 3 inverses and 214
multiplications. As MD is more complicated than MC , times of multiplication is
increased.

Next we estimate the amount of computation of Reduce for an ideal of type
61. Let J be an ideal of type 61:

J = {X3 + a6Y
2 + a5XY + a4X

2 + a3Y + a2X + a1,



X2Y + b6Y
2 + b5XY + b4X

2 + b3Y + b2X + b1,

XY 2 + c6Y
2 + c5XY + c4X

2 + c3Y + c2X + c1}
The 6 × 3 sub-matrix Mr, obtained by extracting the seventh, eighth and

ninth columns of MR for J , is represented as

Mr =




1 0 0
−a4 − a5a6 + b5 −a5 − a2

6 + b6 0
b4 + a5b6 b5 + a6b6 1

e4,1 e4,2 −a5 − a2
6 + b6

e5,1 e5,2 e5,3
e6,1 e6,2 e6,3


 (10)

e4,1 = −a2 + a
2
4 − a3a6 + 3a4a5a6 + a

2
5a

2
6 + b3 − a5b4 − a4b5 − a5a6b5

e4,2 = −a3 + a4a5 + a
2
5a6 + 2a4a

2
6 + a5a

3
6 − a6b4 − a5b5 − a

2
6b5

e5,1 = −2a3a5 + 2a4a
2
5 − a2a6 + a

2
4a6 + a

3
5a6 − a3a

2
6 + 3a4a5a

2
6 + a

2
5a

3
6 + b2 − a4b4 − a5a6b4 + a3b6 − 2a4a5b6 − a

2
5a6b6

e5,2 = −a2 + a
3
5 − 2a3a6 + 2a4a5a6 + 2a

2
5a

2
6 + 2a4a

3
6 + a5a

4
6 + b3 − a5b4 − a

2
6b4 − a

2
5b6 − a4a6b6 − a5a

2
6b6

e5,3 = −a4 − 2a5a6 − a
3
6 + b5 + a6b6

e6,1 = −2a3a4 − 2a2a5 + 3a
2
4a5 − 4a3a5a6 + 6a4a

2
5a6 − a2a

2
6 + a

2
4a

2
6 + 2a

3
5a

2
6 − a3a

3
6 + 3a4a5a

3
6 + a

2
5a

4
6 + a5b3 + a3b5 − 2a4a5b5

− a
2
5a6b5 + a2b6 − a

2
4b6 + a3a6b6 − 3a4a5a6b6 − a

2
5a

2
6b6

e6,2 = −2a3a5 + 2a4a
2
5 − 2a2a6 + a

2
4a6 + 2a

3
5a6 − 3a3a

2
6 + 5a4a5a

2
6 + 3a

2
5a

3
6 + 2a4a

4
6 + a5a

5
6 + b2 + a6b3 − a

2
5b5 − a4a6b5 − a5a

2
6b5

+ a3b6 − a4a5b6 − a
2
5a6b6 − 2a4a

2
6b6 − a5a

3
6b6

e6,3 = −a
2
5 − 2a4a6 − 3a5a

2
6 − a

4
6 + b4 + a6b5 + a5b6 + a

2
6b6

Using this representation we know that if the (2, 2)-element d = −a5 − a2
6 + b6

of Mr is not equal to zero, the rank of Mr must be 3. So, if d 6= 0, we can use
6 × 3 matrix Mr instead of 6 × 18 matrix MR. As the probability of d = 0 is
about 1/q, we can assume d 6= 0 to estimate the efficiency of Algorithm 2.

By equation (10), we see that the matrix Mr can be constructed in at most 40
multiplications, removing duplication adequately. Knowing the first three rows
of Mr has the triangular form and its (1, 1) and (3, 3) elements are 1, we see
RowReduce for M ′

r can be performed in 1 inverse and at most 2 · 4 + 2 · 3 = 14
times multiplications. Thus, Reduce for an ideal of type 61 can be performed in
at most 1 inverses and 54 multiplications. Similarly, we can see that Reduce for
an ideal of type 31 can be performed in at most 1 inverses and 16 multiplications.

Summarizing the above discussion, the amount of computation of Algorithm
2 is given in the following Table 2. In the table, I and M denotes the operation
of inverse and multiplication of elements in k, respectively.

Table 2. Amount of computation of Algorithm 2

Addition Doubling

Compose 134M+3I 214M+3I

Reduce for the type 61 54M+I 54M+I

Reduce for the type 31 16M+I 16M+I

Total 204M+5I 284M+5I

We can add two points on an elliptic curve with one inverse and three mul-
tiplications of elements in the definition field, and can double a point with one



inverse and four multiplications. Note to obtain the same size of Jacobian, el-
liptic curves require the definition field of 3 times of bits length of the one for
C34 curve. Assuming the amount of computation of one inverse is equal to the
amount of 10 times multiplication, and assuming the amount of computation of
inverse or multiplication grows in the order of square of bit lengths, the amount
of computation of the addition on C34 curve is 254/(13× 9) ≈ 2.17 times of the
one for an elliptic curve, and the one of the double is 334/(14× 9) ≈ 2.65 times
of the one for an elliptic curve.
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A Formal description of the addition algorithm in
Jacobian of C34 curves

Algorithm 2

algorithm JSum
inputs I1 : ideal, I2 : ideal,
an output J∗∗ : ideal
IF type(I1) == 65 or 44 or 33 THEN
RETURN I2

IF type(I2) == 65 or 44 or 33 THEN
RETURN I1

IF I1 6= I2 THEN J ← Compose1(I1, I2)
ELSE J ← Compose2(I1)

IF J == ‘error′ THEN
R1 ← a random element in Jacobian,
R2 ← Reduce(R1)
RETURN JSum(JSum(I1, R1),
JSum(I2, R2))

IF type(J) == 65 or 44 or 33 THEN
RETURN J

J∗ ← Reduce(J)
J∗∗ ← Reduce(J∗)
RETURN J∗∗



algorithm Compose1
inputs I1 : ideal, I2 : ideal
an output J : ideal)
IF type(I1) == 31 AND type(I2) == 31 THEN

MC ←




v
(1)
1

: v
(2)
1

v
(1)
X

: v
(2)
X

v
(1)
Y

: v
(2)
Y

v
(1)
X2

: v
(2)
X2

v
(1)
XY

: v
(2)
XY

v
(1)
Y 2

: v
(2)
Y 2

v
(1)
X3

: v
(2)
X3

v
(1)
X2Y

: v
(2)
X2Y

v
(1)
XY 2

: v
(2)
XY 2

v
(1)
X4

: v
(2)
X4




J ← GetGB(6, MC)
ELSE IF
/* omitted */

RETURN J

algorithm Compose2
inputs I : ideal, output J : ideal
IF type(I) == 31 THEN

MD ←




v1 : 0
vX : v(FY )

vY : v(−FX )
v

X2 : v(2FY X)
vXY : v(−FX X+FY Y )

v
Y 2 : v(−2FX Y )

v
X3 : v(3FY X2)

v
X2Y

: v(−FX X2+2FY XY )
v

XY 2 : v(−2FX XY +FY Y 2)
v

X4 : v(4FY X3)




J ← GetGB(6, MD)
ELSE IF
/* omitted */

RETURN J

algorithm GetGB
inputs d : integer, M : matrix
an output J : ideal
IF d == 6 THEN
M ′ ← M : I6

m ← RowReduce(M ′, 6)
# mi denotes the i-th row of the matrix m.
IF m1, m2, m3, m4, m5, m6 are l. indep.,
THEN type(J) ← 61
J ← {m7,7 + m7,8X + m7,9Y + m7,10X

2

+m7,11XY + m7,12Y
2 + X3,

m8,7 + m8,8X + m8,9Y + m8,10X
2

+m8,11XY + m8,12Y
2 + X2Y,

m9,7 + m9,8X + m9,9Y + m9,10X
2

+m9,11XY + m9,12Y
2 + XY 2}

ELIF m1, m2, m3, m4, m5, m8 are l. indep.,
THEN type(J) ← 62
J ← {m6,7 + m6,8X + m6,9Y + m6,10X

2

+m6,11XY + Y 2,
m7,7 + m7,8X + m7,9Y + m7,10X

2

+m7,11XY + X3}
ELIF m1, m2, m3, m4, m5, m7 are l. indep.,
THEN type(J) ← 63
J ← {m6,7 + m6,8X + m6,9Y + m6,10X

2

+m6,11XY + Y 2,
m8,7 + m8,8X + m8,9Y + m8,10X

2

+m8,11XY + m8,13X
3 + X2Y }

ELIF m1, m2, m3, m4, m6, m7 are l. indep.,
THEN type(J) ← 64
J ← {m5,7 + m5,8X + m5,9Y + m5,10X

2

+XY,
m10,7 + m10,8X + m10,9Y + m10,10X

2

+m10,12Y
2 + m10,13X

3 + X4}
ELIF m1, m2, m3, m5, m6, m9 are l. indep.,
THEN type(J) ← 65
J ← {m4,7 + m4,8X + m4,9Y + X2}

ELSE J ← ‘error′

ELSE IF
/* omitted */

RETURN J

algorithm Reduce
an input J : ideal
an output J∗ : ideal
IF type(J) == 61 THEN
f = X3 + a6Y

2 + a5XY + a4X
2

+a3Y + a2X + a1

← the first element of J
g = X2Y + b6Y

2 + b5XY + b4X
2

+b3Y + b2X + b1

← the second element of J
h = XY 2 + c6Y

2 + c5XY + c4X
2

+c3Y + c2X + c1

← the third element of J
IF (−a5− a62 + b6) 6= 0 THEN

Mr ←




1 0 0
−a4 − a5a6 + b5 −a5 − a2

6 + b6 0
b4 + a5b6 b5 + a6b6 1

e4,1 e4,2 −a5 − a2
6 + b6

e5,1 e5,2 e5,3
e6,1 e6,2 e6,3




# For definitions of ei,j , see Equation (10).
M ′

r ← Mr : I3

m ← RowReduce(M ′
r, 3)

type(J∗) ← 31
J∗ ← {m4,4 + m4,5X + m4,6Y + X2,

m5,4 + m5,5X + m5,6Y + XY,



m6,4 + m6,5X + m6,6Y + Y 2}
ELSE

MR ←




wg : wh

wXg : wXh

wY g : wY h

wX2g : wX2h

wXY g : wXY h

wY 2g : wY 2h




M ′
R ← MR : I6

m ← RowReduce(M ′
R, 3)

type(J∗) ← 31
J∗ ← {m4,19 + m4,20X + m4,21Y + X2,

m5,19 + m5,20X + m5,21Y + XY,
m6,19 + m6,20X + m6,21Y + Y 2}

ELSE IF
/* omitted */

ELSE IF type(J) == 31 THEN
f = X2 + a3Y + a2X + a1

← the first element of J
g = XY + b3Y + b2X + b1

← the second element of J
h = Y 2 + c3Y + c2X + c1

← the third element of J
IF a3 6= 0 THEN
Mr ←( 1 0 0
−a2 + b3 −a3 0

b2 b3 1
f4,1 f4,2 −a2 + b3
f5,1 f5,2 −a2

3 + b2

)

f4,1 = 2a2a
2
3 + b1 − a2b2

f4,2 = −a1 + a3
3 − a3b2

f5,1 = −2a1a3 + 3a2
2a3 − 2a2a3b3

f5,2 = 2a2a
2
3 + b1 − a2

3b3

M ′
r ← Mr : I3

m ← RowReduce(M ′
r, 3)

type(J∗) ← 31
J∗ ← {a1 + a2X + a3Y + X2,

m4,4 + m4,5X + m4,6Y + XY,
m5,4 + m5,5X + m5,6Y + Y 2}

ELSE

MR ←




wg : wh

wXg : wXh

wY g : wY h

wXY g : wXY h

wY 2g : wY 2h




M ′
R ← MR : I5

m ← RowReduce(M ′
R, 3)

type(J∗) ← 31
J∗ ← {the first element of J

m4,13 + m4,14X + m4,15Y + XY,
m5,13 + m5,14X + m5,15Y + Y 2}

ELSE IF
/* omitted */

RETURN J∗

algorithm RowReduce
an input M : matrix
an output d : integer
#Until independent d rows are obtained,
#repeat row reduce procedure.
n ← the row number of M, b ← the column number of M
dim ← 0, i ← 1
WHILE dim < d AND i ≤ n DO
IF Mi,dim+1 == 0 THEN
k ← dim + 2
WHILE Mi,k == 0 AND k ≤ b− n DO k ← k + 1
IF k ≤ b− n THEN Exchange dim + 1-th and k-th
columns of M .

c ← Mi,dim+1

IF c == 0 THEN i ← i + 1 NEXT
dim ← dim + 1
c ← c−1

FOR j ← i + 1, . . . , n DO
# In the below, Mi denotes the i-th row of the matrix M .
Mj ← Mj − c ·Mj,dim ·Mi

i ← i + 1
RETURN M


