An Addition Algorithm in Jacobian of C_{34} Curve

Seigo Arita
Internet Systems Research Laboratories, NEC, Kawasaki Kanagawa, Japan,
s-arita@ab.jp.nec.com

Abstract

This paper gives an efficient algorithm to compute addition in Jacobian of C_{34} curves. The paper modifies the addition algorithm of [1], by classifying the forms of Groebner bases of all ideals involved in the addition in Jacobian, and by computing Groebner bases of ideals without using Buchberger algorithm. The algorithm computes the addition in Jacobian of C_{34} curves in about 3 times amount of computation of the one in elliptic curves, when the sizes of groups are set to be the same.

1 Introduction

Although now elliptic curve cryptosystems are widely used, discrete logarithm based cryptosystem with Jacobian group of more general algebraic curves, such as hyperelliptic, superelliptic[4] and $C_{a b}$ curve[1], are not used. One of the main reasons for that is the heavy computational amount of addition in Jacobian of such non-elliptic curves.

Surprisingly, Harley[6], by carefully optimizing Cantor's algorithm[2], gives an algorithm for addition in Jacobian of hyperelliptic curves of genus two, which computes the addition on the hyperelliptic curve almost in the same time as the addition on elliptic curves, when the sizes of groups are set to be the same. Harley's algorithm is being modified by Matsuo and Chao[10] and by Lange[8].

This paper treats C_{34} curves which are special cases of $C_{a b}$ curves [11, 9]. C_{34} curves are non-hyperelliptic and of genus three. We classify all of the forms of Groebner bases of ideals involved in the addition in Jacobian of C_{34} curve. With the classification, we can modify the addition algorithm of [1] to obtain Groebner bases of ideals without using Buchberger algorithm. We show our algorithm computes the addition in Jacobian of C_{34} curves in about 3 times amount of computation of the one in elliptic curves, when the sizes of groups are set to be the same.

We note that Harasawa and Suzuki[5] also gives an addition algorithm on Jacobian of $C_{a b}$ curves, by extending the addition algorithm on superelliptic curves of Galbraith, Paulus, and Smart[4]. Their algorithms use LLL-arlgorithm to reduce ideals. Although [5] gives an asymptotic evaluation of the amount of computation of their algorithm, the evaluation of O-constants is not given.

$2 \quad C_{34}$ Curve and Its Jacobian Group

C_{34} curve, which is a special case of $C_{a b}$ curve found by Miura[11, 9], is a nonsingular plan curve defined by the following form of polynomial $F(X, Y)$:

$$
\begin{equation*}
F(X, Y)=Y^{3}+a_{0} X^{4}+a_{1} X Y^{2}+a_{2} X^{2} Y+a_{3} X^{3}+a_{4} Y^{2}+a_{5} X Y+a_{6} X^{2}+a_{7} Y+a_{8} X+a_{9} \tag{1}
\end{equation*}
$$

where a_{i} 's are elements of the definition field k and $a_{0} \neq 0$.
C_{34} curve C has a unique point ∞ at the infinity. The function Y and X has the unique pole at ∞ of order four and three, respectively. We can see the gap sequence at ∞ is $\mathbb{N}_{0}-<3,4>=\{1,2,5\}$, and the genus of C_{34} is found to be three.

Let $D_{C}^{0}(k)$ denote the group of divisors of degree 0 on C defined over k, and $P_{C}(k)$ be the group of principal divisors on C defined over k. As well known, Jacobian group $J_{C}(k)$ on C is defined to be the factor:

$$
J_{C}(k)=D_{C}^{0}(k) / P_{C}(k)
$$

On the other hand, let $R=k[X, Y] / F$ be the coordinate ring of C. Since C_{34} curve C is nonsingular by the definition, R is integrally closed domain, so R is a Dedekind domain. Hence, all of the nonzero fractional ideals of R compose a group $I_{R}(k)$. Putting the group of principal ideals of $R P_{R}(k)$, the ideal class group $H_{R}(k)$ of R is defined to be the factor:

$$
H_{R}(k)=I_{R}(k) / P_{R}(k) .
$$

In general, for a nonsingular curve, we can identify divisors on the curve and ideals of the coordinate ring, and its Jacobian group $J_{C}(k)$ is naturally isomorphic to the ideal class group $H_{R}(k)$ (Example 6.3.2 of [7]):

$$
\begin{aligned}
J_{C}(k) & \cong H_{R}(k) \\
{[E-n \infty] } & \mapsto\left[\bigcup_{n=0}^{\infty} L(m \infty-E)\right],
\end{aligned}
$$

where E is a positive divisor prime to ∞.
Ideals are more useful than divisors to implement algorithms. In the below, we treat Jacobian group $J_{C}(k)$ as the ideal class group $H_{R}(k)$ of the coordinate ring R.

3 Preparations for Groebner Bases

Here, we make preparations for Groebner bases of ideals. For details, see [3].
Let ' $<$ ' be an well-order among monomials in a polynomial ring $S=k\left[X_{1}, \cdots, X_{n}\right]$.
When the order ' $<$ ' is compatible with the product in the sense that we have $M_{1} M_{3}<M_{2} M_{3}$ whenever $M_{1}<M_{2}$, the order ' $<$ ' is called a monomial order. In the rest of this section, we suppose that any monomial order ' $<$ ' is given and fixed for a polynomial ring S.

For a polynomial f in S, the largest monomial, with respect to the monomial order ' $<$ ', appearing in f is called a leading monomial of f and denoted by $\mathrm{LM}(f)$. For an ideal I of S, the ideal generated by all of the leading monomials of polynomials in I is denoted by $\operatorname{LM}(I)$. Suppose an ideal $I=\left(f_{1}, \cdots, f_{s}\right)$ of S generated by f_{1}, \cdots, f_{s} is given. The set $\left\{f_{1}, \cdots, f_{s}\right\}$ is called Groebner base of I when it satisfies

$$
\operatorname{LM}(I)=\left(\operatorname{LM}\left(f_{1}\right), \cdots, \operatorname{LM}\left(f_{s}\right)\right)
$$

Let I be an ideal of S. The set of monomials (or their multi-degrees) not belonging to $\mathrm{LM}(I)$ is called a Δ-set of I and denoted by $\Delta(I) . \Delta(I)$ gives a basis of the vector space S / I over k. When we plot monomials $X_{1}^{m_{1}} X_{2}^{m_{2}} \cdots$, or their multi-degrees $\left(m_{1}, m_{2}, \cdots\right)$ in $\Delta(I)$ on the (m_{1}, m_{2}, \cdots)-space, there appears a convex set, of which surrounding lattice points correspond to leading monomials of polynomials in Groebner base of I.

Let $R=S / F$ be a coordinate ring of a C_{34} curve defined by F. By identifying ideals of R with ideals of S including F, we can consider Groebner bases for ideals of R. For a 0 -dimensional ideal I (i.e. the zero set of I is finite), we define its order $\delta(I)$ as

$$
\delta(I)=\operatorname{dim}_{k} R / I
$$

By the definition, we see $\delta(I)=\sharp \Delta(I)$. Since C_{34} curve is nonsingular, $\delta(I J)=$ $\delta(I) \delta(J)$. If $I=(f)$ is a principal ideal in R, we have $\delta(I)=-v_{\infty}(f)$.

4 An Addition Algorithm in Jacobian of C_{34} curve abstract level

Let $R=k[X, Y] / F$ be a coordinate ring of a C_{34} curve C defined by the polynomial F (1). We can define a monomial order ' $>^{\prime}$, called C_{34} order, by the pole number of monomials at ∞. That is,

$$
\begin{aligned}
X^{m_{1}} Y^{n_{1}}>X^{m_{2}} Y^{n_{2}} & \stackrel{\text { def }}{\Longleftrightarrow} 3 m_{1}+4 n_{1}>3 m_{2}+4 n_{2} \\
& \text { or } 3 m_{1}+4 n_{1}=3 m_{2}+4 n_{2}, m_{1}<m_{2}
\end{aligned}
$$

Hereafter, we always use C_{34} order to compare monomials in R.
For an ideal I in R, let f_{I} be the nonzero 'monic' polynomial with the smallest leading monomial in I. We define I^{*} as

$$
I^{*}=\left(f_{I}\right): I \quad\left(=\left\{g \in R \mid g I \subset\left(f_{I}\right)\right\}\right)
$$

Then, we have
Proposition 1 Let I, J be any ideals in the coordinate ring R. We have
(1) I is equivalent to $I^{* *}$.
(2) $I^{* *}$ is an ideal equivalent to I with the smallest order.
(3) If I and J are equivalent, then we have $I^{*}=J^{*}$. In particular, $I^{* *}=\left(I^{* *}\right)^{* *}$.

Proof (1) I^{*} is equivalent to the inverse ideal of I from definition.
(2) Let J be an (integral) ideal equivalent to I^{-1}. There is a $f \in R$ satisfying $J I=(f)$. From the definition of $I^{*}, I^{*} I=\left(f_{I}\right)$. So, we have

$$
\delta(J) \delta(I)-\delta\left(I^{*}\right) \delta(I)=-v_{\infty}(f)+v_{\infty}\left(f_{I}\right) \geq 0
$$

by the definition of f_{I}. Therefore, I^{*} is an (integral) ideal equivalent to I^{-1} with the smallest order. So, $I^{* *}$ is an (integral) ideal equivalent to I with the smallest order.
(3) If I and J are equivalent, there are $j, h \in R$ satisfying $J=\frac{j}{h} I$. Then, we have $f_{J}=\frac{j}{h} f_{I}$. So, for $g \in R$,

$$
g J \subset\left(f_{J}\right) \Leftrightarrow g \frac{j}{h} I \subset\left(\frac{j}{h} f_{I}\right) \Leftrightarrow g I \subset\left(f_{I}\right)
$$

An ideal I in the coordinate ring R is called reduced when we have $I^{* *}=I$. By Proposition1(1),(3), any ideal in R is equivalent to the unique reduced ideal. That is, reduced ideals compose a complete representative system of ideal classes. Moreover, by Proposition1(2), we see that a reduced ideal has the smallest order among ideals in the same ideal class. This property should be a merit to implement algorithms.

Using reduced ideals as a representative system of ideal classes, we get the following addition algorithm in Jacobian of C_{34} curve.

Algorithm 1 (Addition in Jacobian of C_{34} curve - abstract version)
Inputs: reduced ideals I_{1}, I_{2} in the coordinate ring R
Output: reduced ideal I_{3} equivalent to the ideal product $I_{1} \cdot I_{2}$
$1^{\circ} J \leftarrow I_{1} \cdot I_{2}$
$2^{\circ} J^{*} \leftarrow\left(f_{J}\right): J$
$3^{\circ} I_{3} \leftarrow\left(f_{J^{*}}\right): J^{*}$

5 Ideal Classification

In this section, we classify ideals appearing in performing Algorithm1, in order to implement Algorithm1 efficiently. Since the genus of C_{34} curve is three, the orders of those ideals are not greater than six. So, it is sufficient to classify ideals of R with order not greater than six.

Hereafter, even if the defining polynomial F (Equation (1)) of C_{34} curve C appears in Groebner base of an ideal, we do not explicitly show it, and a_{i}, b_{j}, c_{k} denote coefficients of polynomials in Groebner bases.

5.1 Ideals of order 6

Let I be an ideal in R of order 6 . By the definition of order, $V=R / I$ is a sixth dimensional vector space over the definition field k.

Type 61 An ideal I of order six has six zero points including multiplicities. When those six points are in 'general' positions, the first six monomials $1, X, Y, X^{2}, X Y, Y^{2}$ with respect to the C_{34} order are linearly independent on those six points. So, the set of monomials $M=\left\{1, X, Y, X^{2}, X Y, Y^{2}\right\}$ is a basis of the vector space $V=R / I$. In this case, we call I an ideal of type 61 .

It is easily seen that the fact that the set of monomials M is linearly dependent in $V=R / I$ is equivalent to the fact that there is a monomial in M belonging to $\mathrm{LM}(I)$. So, If I is an ideal of type 61 , then the set of monomials M is nothing but $\Delta(I)$. Using notation of multi-degrees, we have $\Delta(I)=$ $\{(0,0),(1,0),(0,1),(2,0),(1,1),(0,2)\}$. It is easily seen that lattice points surrounding $\Delta(I)$ are $\{(0,3),(1,2),(2,1),(3,0)\}$. So, Groebner base of an ideal I of type 61 has the form in Table 1. Those three polynomials correspond to the lattice points $(3,0),(2,1),(1,2)$ (Note the lattice point $(0,3)$ corresponds to the defining polynomial F).

Type 62 and 63 In general, six monomials $1, X, Y, X^{2}, X Y, Y^{2}$ are not linearly independent in $V=R / I$. First, we consider the case that the first five monomials 1, $X, Y, X^{2}, X Y$ with respect to the C_{34} order are linearly independent, but the sixth monomial Y^{2} is equal to a linear sum of them in V.

In that case, $\Delta(I)$ is a convex set of order 6 , which includes $\{(0,0),(1,0),(0,1),(2,0),(1,1)\}$, but does not include $(0,2)$. From this, we can easily see that $\Delta(I)=\{(0,0),(1,0),(0,1),(2,0),(1,1),(2,1)\}$, or $\Delta(I)=\{(0,0),(1,0),(0,1),(2,0),(1,1),(3,0)\}$. In the former case we call I an ideal of type 62, and in the latter case, we call I an ideal of type 63 .

Lattice points surrounding $\Delta(I)$ are $\{(0,2),(3,0)\}$ for I of type 62 , and $\{(0,2),(2,1),(4,0)\}$ for I of type 63. So, forms of their Grobner bases are as in Table 1. Note there should be a polynomial corresponding to the lattice point $(4,0)$ in Groebner base for I of type 63 . However, the polynomial can be immediately obtained as $F-Y f$ with the defining polynomial F and the polynomial $f=$ $Y^{2}+a_{5} X Y+a_{4} X^{2}+a_{3} Y+a_{2} X+a_{1}$. So, we omit it.

Type 64 Next, suppose the first four monomials $1, X, Y, X^{2}$ are linearly independent, but the fifth monomial $X Y$ is a linear sum of them in $V=R / I$. That is, $\Delta(I)$ includes $\{(0,0),(1,0),(0,1),(2,0)\}$, but does not include $(1,1)$.

Then, if $\Delta(I)$ does not include $(0,2)$, we must have
$\Delta(I)=\{(0,0),(1,0),(0,1),(2,0),(3,0),(4,0)\}$. However, by the assumption, I includes a polynomial $f=Y^{2}+\cdots$ with the leading monomial Y^{2}, so I includes $Y f-F=-a_{0} X^{4}+\cdots$. This means $(4,0) \notin \Delta(I)$, a contradiction. Thus, we see that $\Delta(I)$ must include $(0,2)$, and $\Delta(I)=\{(0,0),(1,0),(0,1),(2,0),(0,2),(3,0)\}$. In this case, we call I an ideal of type 64 .

Lattice points surrounding $\Delta(I)$ are $\{(0,3),(1,1),(4,0)\}$. Hence, the form of Groebner base of I of type 64 is as in Table 1.

Type 65 Next suppose the first three monomials $1, X, Y$ are linearly independent, but the fourth monomial X^{2} is a linear sum of them in $V=R / I$. Then,
the ideal I include a polynomial f with the leading term X^{2}. And we have $\Delta(I)=\{(0,0),(1,0),(0,1),(1,1),(0,2),(1,2)\}$. In this case, we call I an ideal of type 65. Since lattice points surrounding $\Delta(I)$ are $\{(0,3),(2,0)\}$, we know I is a principal ideal generated by f as in Table 1 (note the lattice point $(0,3)$ corresponds to the defining polynomial F).

A polynomial f with the leading term Y does not vanish on the six points corresponding to I, because $\operatorname{deg}(f)_{0}=-v_{P_{\infty}}(f)=4<6$. Hence, the first three monomials $1, X, Y$ are always linearly independent in $V=R / I$.

Now classification of ideals of order 6 is completed.

5.2 All ideal types of order not greater than 6

Ideals of order less than 6 are also similarly classified. We only show the result of classification in Table 1. Ideals of type 65,44 and 33 are principal ideals, units in Jacobian. Among all of the ideal types, only ideals of type $31,21,22$ and 11 are reduced. For example, we can see that ideals of type 32 are not reduced as follows.

Let I be an ideal of type 32 . Then $f_{I}=Y+a_{2} X+a_{1}$. So,

$$
\delta\left(I^{*}\right)=-v_{\infty}\left(f_{I}\right)-\delta(I)=4-3=1
$$

We know I^{*} is of type 11 and $f_{I^{*}}=X+a_{1}^{\prime}$. So,

$$
\delta\left(I^{* *}\right)=-v_{\infty}\left(f_{I^{*}}\right)-\delta\left(I^{*}\right)=3-1=2 .
$$

Since orders are distinct, $I \neq I^{* *}$.

6 An Addition Algorithm in Jacobian of C_{34} curve concrete level

Let $R=k[X, Y] / F$ be the coordinate ring of a C_{34} curve C defined by a polynomial F (Equation (1)) over a finite field k. In this section, we put Algorithm 1 into more concrete shape and estimate its efficiency. In the below, bearing an application for cryptography in mind, we assume the order of the definition field k is large enough.

6.1 Composition1

First, we deal with the first step of Algorithm 1 for distinct ideals I_{1}, I_{2}. That is, we compute f_{J} for the ideal product $J=I_{1} \cdot I_{2}$. For that sake, it is sufficient to find Groebner base of J with respect to C_{34} order (f_{J} is the first element of it).

Since the genus of C_{34} curves is three, types of input ideals for Algorithm 1 are either $11,21,22,31$ or 32 . Here, we only discuss the case in which ideals I_{1}, I_{2} are both of type 31. Another cases are dealt with similarly.

Table 1. All ideal types of order not greater than 6
$\left.\begin{array}{|c|c|l|}\hline \text { Order } & \text { Type } & \text { Form of Groebner base } \\ \hline \hline 6 & 61 & \begin{array}{l}\left\{X^{3}+a_{6} Y^{2}+a_{5} X Y+a_{4} X^{2}+a_{3} Y+a_{2} X+a_{1}, X^{2} Y+\right. \\ b_{6} Y^{2}+b_{5} X Y+b_{4} X^{2}+b_{3} Y+b_{2} X+b_{1}, X Y^{2}+c_{6} Y^{2}+ \\ \left.c_{5} X Y+c_{4} X^{2}+c_{3} Y+c_{2} X+c_{1}\right\}\end{array} \\ \hline 6 & 62 & \begin{array}{l}\left\{Y^{2}+a_{5} X Y+a_{4} X^{2}+a_{3} Y+a_{2} X+a_{1}, X^{3}+b_{5} X Y+\right. \\ \left.b_{4} X^{2}+b_{3} Y+b_{2} X+b_{1}\right\}\end{array} \\ \hline 6 & 63 & \begin{array}{l}\left\{Y^{2}+a_{5} X Y+a_{4} X^{2}+a_{3} Y+a_{2} X+a_{1}, X^{2} Y+\right. \\ \left.b_{6} X^{3}+b_{5} X Y+b_{4} X^{2}+b_{3} Y+b_{2} X+b_{1}\right\}\end{array} \\ \hline 6 & 64 & \begin{array}{l}\left\{X Y+a_{4} X^{2}+a_{3} Y+a_{2} X+a_{1}, X^{4}+b_{6} X^{3}+b_{5} Y^{2}+\right. \\ \left.b_{4} X^{2}+b_{3} Y+b_{2} X+b_{1}\right\}\end{array} \\ \hline 6 & 65 & \left\{X^{2}+a_{3} Y+a_{2} X+a_{1}\right\} \\ \hline 5 & 51 & \begin{array}{l}\left\{Y^{2}+a_{5} X Y+a_{4} X^{2}+a_{3} Y+a_{2} X+a_{1}, X^{3}+b_{5} X Y+\right. \\ b_{4} X^{2}+b_{3} Y+b_{2} X+b_{1}, X^{2} Y+c_{5} X Y+c_{4} X^{2}+c_{3} Y+ \\ \left.c_{2} X+c_{1}\right\}\end{array} \\ \hline 5 & 52 & \left\{X Y+a_{4} X^{2}+a_{3} Y+a_{2} X+a_{1}, Y^{2}+b_{4} X^{2}+b_{3} Y+\right. \\ \left.b_{2} X+b_{1}\right\}\end{array}\right\}$

Suppose we choose distinct ideals I_{1}, I_{2} of type 31 at random from Jacobian group. Then since we assume the order q of k is large enough, almost always (with the probability approximately $(q-1) / q$) we have

$$
\begin{equation*}
\mathrm{V}\left(I_{1}\right) \cap \mathrm{V}\left(I_{2}\right)=\emptyset \tag{2}
\end{equation*}
$$

where $\mathrm{V}(I)$ denotes the zero set of an ideal I. So, first we assume the condition (2).

Let $J=I_{1} I_{2}$ be the ideal product of I_{1} and I_{2}. Since the order of J is 6 , the type of J is either $61,62,63,64$ or 65 . To determine which it is, by Table 1, we see it is sufficient to find linear relations among 10 monomials

$$
\begin{equation*}
1, X, Y, X^{2}, X Y, Y^{2}, X^{3}, X^{2} Y, X Y^{2}, X^{4} \tag{3}
\end{equation*}
$$

in the vector space R / J over k.
Since $I_{i}(i=1,2)$ is of type 31, we have

$$
\begin{align*}
R / I_{i} & \simeq k \cdot 1 \oplus k \cdot X \oplus k \cdot Y \tag{4}\\
m & \mapsto v_{m}^{(i)} \tag{5}
\end{align*}
$$

By condition (2), we have

$$
\left.\left.\begin{array}{rl}
R / J & \simeq \quad R / I_{1} \oplus R / I_{2} \\
m & \simeq \oplus_{i=1}^{6} k, \tag{6}\\
& \mapsto\left(m \bmod \left(I_{1}\right), m \bmod \left(I_{2}\right)\right)
\end{array}\right) v_{m}^{(1)}: v_{m}^{(2)}\right)
$$

where $v_{m}^{(1)}: v_{m}^{(2)}$ denotes the sixth dimensional vector over k obtained by connecting two vectors $v_{m}^{(i)}(i=1,2)$.

Thus, to obtain linear relations in R / J among 10 monomials m_{i} in equation (3), it is sufficient to find linear relations among rows of the 10×6 matrix M_{C} which is obtained by lining up vectors $v_{m_{i}}^{(1)}: v_{m_{i}}^{(2)}(i=1,2, \cdots 10)$

Linear relations among rows of M_{C} can be obtained by making M_{C} triangular using the row reduce procedure as well known, and we get the type of ideal J and its Groebner base. More details are shown through the following example.

When condition (2) does not hold for ideals I_{1}, I_{2}, the rank M_{C} becomes less than 6. After making M_{C} triangular, if we know the rank of M_{C} is less than 6, then we generate R_{i} satisfying $R_{1}+R_{2}=0$, and compute $\left(I_{1}+R_{1}\right)+\left(I_{2}+R_{2}\right)$ instead of $I_{1}+I_{2}$. Here, ' + ' denotes the addition in Jacobian.

Example For example, we deal with C_{34} curve $Y^{3}+X^{4}+7 X=0$ on the prime field of characteristics $p=1009$. Take the following two ideals of type 31:
$I_{1}=\left\{X^{2}+726 Y+836 X+355, X Y+36 Y+428 X+477, Y^{2}+746 Y+425 X+865\right\}$
$I_{2}=\left\{X^{2}+838 Y+784 X+97, X Y+602 Y+450 X+291, Y^{2}+506 Y+524 X+497\right\}$

We would like to compute Groebner base of $J=I_{1} I_{2}$ to find f_{J}. By computing the remainder of each m_{i} in equation (3) modulo I_{1} and I_{2} respectively, we get the matrix M_{C} for I_{1}, I_{2} :

$$
M_{C}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
654 & 173 & 283 & 912 & 225 & 171 \\
532 & 581 & 973 & 718 & 559 & 407 \\
144 & 584 & 263 & 512 & 485 & 503 \\
349 & 269 & 429 & 53 & 821 & 109 \\
609 & 418 & 243 & 888 & 856 & 916 \\
199 & 720 & 418 & 310 & 331 & 91 \\
554 & 498 & 143 & 643 & 522 & 107
\end{array}\right)
$$

To obtain linear relations among rows of M_{C}, we connect M_{C} and 10-th unit matrix I_{10} to get $M_{C}^{\prime}=M_{C}: I_{10}$. Against M_{C}^{\prime}, we apply the row reduce procedure up to the sixth row:

$$
m=\left(\begin{array}{cccccccccccccccc}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 258 & 52 & 897 & 355 & 836 & 726 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 621 & 688 & 268 & 365 & 592 & 187 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 31 & 514 & 469 & 637 & 669 & 155 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 28 & 132 & 31 & 271 & 469 & 166 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 856 & 618 & 747 & 909 & 132 & 636 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 652 & 322 & 240 & 978 & 826 & 846 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 333 & 346 & 980 & 935 & 824 & 614 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

The result shows the first six rows of M_{C} are linearly independent. This means monomials $1, X, Y, X^{2}, X Y, Y^{2}$ are linearly independent in R / J and the product J is of type 61 .

Moreover, the right 10 elements of the seventh, eighth and ninth rows of m represents liner expressions of the seventh, eighth and ninth rows of M_{C} by the first six rows of M_{C}, respectively. From this, we know linear expressions of $X^{3}, X^{2} Y, X Y^{2}$ by $1, X, Y, X^{2}, X Y, Y^{2}$ in R / J, respectively, and we get the following Groebner base of J :

$$
\begin{aligned}
J= & \left\{28+132 X+31 Y+271 X^{2}+469 X Y+166 Y^{2}+X^{3},\right. \\
& 856+618 X+747 Y+909 X^{2}+132 X Y+636 Y^{2}+X^{2} Y, \\
& \left.652+322 X+240 Y+978 X^{2}+826 X Y+846 Y^{2}+X Y^{2}\right\}
\end{aligned}
$$

Hence, we have $f_{J}=28+132 X+31 Y+271 X^{2}+469 X Y+166 Y^{2}+X^{3}$.

6.2 Composition2

We consider the first step of Algorithm 1 for the same two ideals $I_{1}=I, I_{2}=I$ in R. That is, we compute Groebner base of the ideal product $J=I^{2}$ to get f_{J}. As in section 6.1, we only deal with an ideal I of type 31 . Other cases are handled similarly.

Since we assume the order q of k is large enough, almost always (with the probability approximately $(q-1) / q)$ it holds that

$$
\begin{equation*}
\mathrm{V}(I) \text { has no multiple point. } \tag{7}
\end{equation*}
$$

So, first we assume the condition (7).
Since the order of $J=I^{2}$ is also 6 , it is sufficient to find linear relations in R / J among monomials in equation (3). By condition (7), the necessary and sufficient condition to $f(\in R)$ belongs to $J=I^{2}$ is

$$
f \in I, f_{X} F_{Y}-f_{Y} F_{X} \in I
$$

So, we have

$$
\begin{array}{rlrl}
R / J & \simeq \quad R / I \oplus R / I & & \simeq \oplus_{i=1}^{6} k, \\
m & \mapsto\left(m \bmod (I), m_{X} F_{Y}-m_{Y} F_{X} \bmod (I)\right) & \mapsto v_{m}: v_{\left(m_{X} F_{Y}-m_{Y} F_{X}\right)} \tag{8}
\end{array}
$$

where $v_{m}: v_{\left(m_{X} F_{Y}-m_{Y} F_{X}\right)}$ is a sixth dimensional vector over k obtained by connecting two vectors $v_{m}, v_{\left(m_{X} F_{Y}-m_{Y} F_{X}\right)}$.

Thus, to obtain linear relations in R / J among m_{i} in equation (3), it is sufficient to find linear relations among rows of 10×6 matrix M_{D} which is obtained by lining up vectors $v_{m_{i}}: v_{\left(m_{i X} F_{Y}-m_{i Y} F_{X}\right)}(i=1,2, \cdots, 10)$.

Just as in section 6.1, we make M_{D} triangular by the row reduce procedure to obtain the type of J and its Groebner base.

If condition (7) does not hold for I, the rank of M_{D} is less than 6. After making M_{D} triangular, if we know the rank of M_{D} is less than 6 , then we generate R_{i} satisfying $R_{1}+R_{2}=0$, and compute $\left(I+R_{1}\right)+\left(I+R_{2}\right)$ instead of $I+I$. Here, ' + ' denotes the addition in Jacobian.

6.3 Reduction

We consider the second (and the third) step of Algorithm 1. That is, we compute Grobner base of $J^{*}=f_{J}: J$ for an ideal J of order not greater than 6. Here we only deal with J of type 61 . Other types of J are dealt with similarly.

Since J is of type $61, J$ can be written as

$$
\left\{f_{J}=X^{3}+a_{6} Y^{2}+\cdots, g=X^{2} Y+b_{6} Y^{2}+\cdots, h=X Y^{2}+c_{6} Y^{2}+\cdots\right\}
$$

Since $J^{*}=f_{J}: J$ from definition, we have $\delta\left(J^{*}\right)=-v_{\infty}\left(f_{J}\right)-\delta(J)=3$. Moreover J^{*} is reduced by Proposition 1, so the type of J^{*} must be 31 (see Remark in section 5).

Hence, to find Groebner base of J^{*}, it is sufficient to find linear relations $\sum_{i} d_{i} m_{i}$ for m_{i} in

$$
\begin{equation*}
1, X, Y, X^{2}, X Y, Y^{2} \tag{9}
\end{equation*}
$$

such that both $\sum_{i} d_{i} m_{i} g$ and $\sum_{i} d_{i} m_{i} h$ are equal to 0 in R / f_{J}.
Since $L M(F)=Y^{3}, L M\left(f_{J}\right)=X^{3}$, we have

$$
\begin{aligned}
R / f_{J} R & \simeq k \cdot 1 \oplus k \cdot X \oplus k \cdot Y \oplus k \cdot X^{2} \oplus k \cdot X Y \oplus k \cdot Y^{2} \oplus k \cdot X^{2} Y \oplus k \cdot X Y^{2} \oplus k \cdot X^{2} Y^{2} \\
\quad f & \mapsto w_{f}
\end{aligned}
$$

So, to find those linear relations among m_{i} in equation (9), it is sufficient to find linear relations among rows of 6×18 matrix M_{R} which is obtained by lining up vectors $w_{m_{i} g}: w_{m_{i} h}(i=1,2, \cdots 6)$.

Just as in section 6.1, we make M_{R} triangular by the row reduce procedure to obtain the type of J^{*} and its Groebner base.

However, in the almost all cases, it is sufficient to make 6×3 sub-matrix M_{r} of M_{R} triangular, instead of the whole matrix M_{R}. Details are shown in the next section.

7 Formal description of the algorithm and estimates of its efficiency

By the discussion of the last section, we get Algorithm 2 in section A for addition in Jacobian of C_{34} curve. However, there, only parts of Algorithm 2 involving ideals of type 61 and 31 are shown to save the space.

Now we estimate the amount of computation of Algorithm 2 with an explanation of using the sub-matrix M_{r} instead of M_{R}. Let q be the order of the definition field k. A random element in Jacobian is represented by an ideal of type 31 with the probability about $(q-1) / q$. Also, outputs of Compose 1,2 for ideals of type 31 are ideals of type 61 with the probability about $(q-1) / q$. So, to estimate the efficiency of Algorithm 2, it is sufficient to estimate the amount of computation of Compose1, 2 for ideals of type 31 and the amount of computation of Reduce for ideals of type 61 and 31 . In the below, we describe the amount of computation by the number of times of multiplication and inverse of elements in k.

First, we see the amount of computation of Compose1. Let I_{1}, I_{2} be ideals of type 31 :

$$
\begin{aligned}
I_{1} & =\left\{X^{2}+a_{3} Y+a_{2} X+a_{1}, X Y+b_{3} Y+b_{2} X+b_{1}, Y^{2}+c_{3} Y+c_{2} X+c_{1}\right\} \\
I_{2} & =\left\{X^{2}+s_{3} Y+s_{2} X+s_{1}, X Y+t_{3} Y+t_{2} X+t_{1}, Y^{2}+u_{3} Y+u_{2} X+u_{1}\right\}
\end{aligned}
$$

For ideals I_{1}, I_{2}, the matrix M_{C} is represented as

$$
\left.\begin{array}{rl}
1 & 0 \\
0 & 1
\end{array}\right)
$$

From this representation, we see the matrix M_{C} can be constructed in at most 44 multiplications, removing duplication adequately. Knowing the first three rows of M_{C}^{\prime} are already row-reduced, and elements of them are 0 or 1 , and assuming the output ideal would be of type 61 , we see RowReduce for M_{C}^{\prime} can be performed in 3 inverses and at most $6 \cdot 6+6 \cdot 5+6 \cdot 4=90$ times multiplications. Thus, Compose 1 are performed in at most 3 inverses and 134 multiplications.

Similarly, we can see Compose 2 are performed in at most 3 inverses and 214 multiplications. As M_{D} is more complicated than M_{C}, times of multiplication is increased.

Next we estimate the amount of computation of Reduce for an ideal of type 61 . Let J be an ideal of type 61 :

$$
J=\left\{X^{3}+a_{6} Y^{2}+a_{5} X Y+a_{4} X^{2}+a_{3} Y+a_{2} X+a_{1},\right.
$$

$$
\begin{aligned}
& X^{2} Y+b_{6} Y^{2}+b_{5} X Y+b_{4} X^{2}+b_{3} Y+b_{2} X+b_{1} \\
& \left.X Y^{2}+c_{6} Y^{2}+c_{5} X Y+c_{4} X^{2}+c_{3} Y+c_{2} X+c_{1}\right\}
\end{aligned}
$$

The 6×3 sub-matrix M_{r}, obtained by extracting the seventh, eighth and ninth columns of M_{R} for J, is represented as

$$
\left.\begin{array}{rl}
M_{r}= & \left(\begin{array}{ccc}
1 & a_{4}-a_{5} a_{6}+b_{5} & -a_{5}-a_{6}^{2}+b_{6} \\
b_{4}+a_{5} b_{6} & b_{5}+a_{6} b_{6} & 0 \\
e_{4,1} & e_{4,2} & -a_{5}-a_{6}^{2}+b_{6} \\
e_{5}, 1 & e_{5,2} & e_{5,3}
\end{array}\right) \\
e_{6,1} & e_{6,2}
\end{array}\right]
$$

Using this representation we know that if the (2,2)-element $d=-a_{5}-a_{6}^{2}+b_{6}$ of M_{r} is not equal to zero, the rank of M_{r} must be 3 . So, if $d \neq 0$, we can use 6×3 matrix M_{r} instead of 6×18 matrix M_{R}. As the probability of $d=0$ is about $1 / q$, we can assume $d \neq 0$ to estimate the efficiency of Algorithm 2.

By equation (10), we see that the matrix M_{r} can be constructed in at most 40 multiplications, removing duplication adequately. Knowing the first three rows of M_{r} has the triangular form and its $(1,1)$ and $(3,3)$ elements are 1 , we see RowReduce for M_{r}^{\prime} can be performed in 1 inverse and at most $2 \cdot 4+2 \cdot 3=14$ times multiplications. Thus, Reduce for an ideal of type 61 can be performed in at most 1 inverses and 54 multiplications. Similarly, we can see that Reduce for an ideal of type 31 can be performed in at most 1 inverses and 16 multiplications.

Summarizing the above discussion, the amount of computation of Algorithm 2 is given in the following Table 2. In the table, I and M denotes the operation of inverse and multiplication of elements in k, respectively.

Table 2. Amount of computation of Algorithm 2

	Addition	Doubling
Compose	$134 \mathrm{M}+3 \mathrm{I}$	$214 \mathrm{M}+3 \mathrm{I}$
Reduce for the type 61	$54 \mathrm{M}+\mathrm{I}$	$54 \mathrm{M}+\mathrm{I}$
Reduce for the type 31	$16 \mathrm{M}+\mathrm{I}$	$16 \mathrm{M}+\mathrm{I}$
Total	$204 \mathrm{M}+5 \mathrm{I}$	$284 \mathrm{M}+5 \mathrm{I}$

We can add two points on an elliptic curve with one inverse and three multiplications of elements in the definition field, and can double a point with one
inverse and four multiplications. Note to obtain the same size of Jacobian, elliptic curves require the definition field of 3 times of bits length of the one for C_{34} curve. Assuming the amount of computation of one inverse is equal to the amount of 10 times multiplication, and assuming the amount of computation of inverse or multiplication grows in the order of square of bit lengths, the amount of computation of the addition on C_{34} curve is $254 /(13 \times 9) \approx 2.17$ times of the one for an elliptic curve, and the one of the double is $334 /(14 \times 9) \approx 2.65$ times of the one for an elliptic curve.

References

1. S. Arita, "Algorithms for computations in Jacobian group of $C_{a b}$ curve and their application to discrete-log-based public key cryptosystems," IEICE TRANS. FOUND., VOL.J82-A, NO.8, pp.1291-1299, 1999.
2. D.G.Cantor, "Computing in the Jacobian of a hyperelliptic curve", Mathematics of Computation, 48(177), pp.95-101,1987.
3. D.Cox, J.Little, D.O'Shea, "Ideals, Varieties, and Algorithms", Springer-Verlag, 1992.
4. S.D.Galbraith, S.Paulus, and N.P.Smart "Arithmetic on Superelliptic Curves", J. Cryptology (1999) 12, 193-196.
5. R.Harasawa, J.Suzuki, "A Fast Jacobian Group Arithmetic Scheme for Algebraic Curve Cryptography", IEICE TRANS. FOUND., Vol.E84-A No.1, pp.130-139, 2001
6. R. Harley, http://cristal.inria.fr/ harley/hyper/adding.text
7. R.Hartshorne, "Algebraic Geometry", Springer-Verlag, 1977.
8. T. Lange, "Weighted Coordinates on Genus 2 Hyperelliptic Curves", preprint.
9. R. Matsumoto, "The Cab Curve - a generalization of the Weierstrass form to arbitrary plane curves", http://www.rmatsumoto.org/cab.html
10. K. Matsuo, J. Chao, "Fast Cryptosystems Using Genus 2 Hyperelliptic curves", preprint.
11. S. Miura, "Linear Codes on Affine Algebraic Curves", Trans. of IEICE, vol. J81-A, No. 10, 1398-1421, Oct. 1998.

A Formal description of the addition algorithm in Jacobian of C_{34} curves

Algorithm 2

algorithm JSum
inputs I_{1} : ideal, I_{2} : ideal,
an output $J^{* *}$: ideal
IF type $\left(I_{1}\right)==65$ or 44 or 33 THEN
RETURN I_{2}
IF type $\left(I_{2}\right)==65$ or 44 or 33 THEN
RETURN I_{1}
IF $I_{1} \neq I_{2}$ THEN $J \leftarrow \operatorname{Compose} 1\left(I_{1}, I_{2}\right)$
ELSE $J \leftarrow$ Compose2 $\left(I_{1}\right)$

IF $J==$ 'error' THEN
$R_{1} \leftarrow$ a random element in Jacobian, $R_{2} \leftarrow \operatorname{Reduce}\left(R_{1}\right)$
RETURN JSum(JSum $\left(I_{1}, R_{1}\right)$, $\left.\operatorname{JSum}\left(I_{2}, R_{2}\right)\right)$
IF type $(J)==65$ or 44 or 33 THEN
RETURN J
$J^{*} \leftarrow \operatorname{Reduce}(J)$
$J^{* *} \leftarrow \operatorname{Reduce}\left(J^{*}\right)$
RETURN $J^{* *}$
algorithm Compose1
inputs I_{1} : ideal, I_{2} : ideal an output J : ideal)

$$
\begin{aligned}
& J \leftarrow \operatorname{GetGB}\left(6, M_{C}\right)
\end{aligned}
$$

ELSE IF

/* omitted */

RETURN J
algorithm Compose2
inputs I : ideal, output J : ideal
IF $\operatorname{type}(I)==31$ THEN

$$
M_{D} \leftarrow\left(\begin{array}{c}
v_{1}: 0 \\
v_{X}: v_{\left(F_{Y}\right)} \\
v_{Y}: v_{\left(-F_{X}\right)} \\
v_{X^{2}}: v_{\left(2 F_{Y} X\right)} \\
v_{X Y}: v_{\left(-F_{X} X+F_{Y} Y\right)} \\
v_{Y^{2}}: v_{\left(-2 F_{X} Y\right)} \\
v_{X}{ }^{3}: v_{\left(3 F_{Y} X^{2}\right)} \\
v_{X^{2} Y_{Y}}: v_{\left(-F_{X} X^{2}+2 F_{Y} X Y\right)} \\
v_{X Y}{ }^{2}: v_{\left(-2 F_{X} X Y+F_{Y} Y^{2}\right)} \\
v_{X^{4}}: v_{\left(4 F_{Y} X^{3}\right)}
\end{array}\right)
$$

$J \leftarrow \operatorname{GetGB}\left(6, M_{D}\right)$

ELSE IF

/* omitted */
RETURN J
algorithm GetGB
inputs d : integer, M : matrix an output J : ideal

$$
\begin{gathered}
\text { IF } d==6 \text { THEN } \\
M^{\prime} \leftarrow M: I_{6}
\end{gathered}
$$

$m \leftarrow \operatorname{RowReduce}\left(M^{\prime}, 6\right)$
$\# m_{i}$ denotes the i-th row of the matrix m IF $m_{1}, m_{2}, m_{3}, m_{4}, m_{5}, m_{6}$ are l. indep.,

THEN type $(J) \leftarrow 61$
$J \leftarrow\left\{m_{7,7}+m_{7,8} X+m_{7,9} Y+m_{7,10} X^{2}\right.$

$$
+m_{7,11} X Y+m_{7,12} Y^{2}+X^{3}
$$

$m_{8,7}+m_{8,8} X+m_{8,9} Y+m_{8,10} X^{2}$

$$
+m_{8,11} X Y+m_{8,12} Y^{2}+X^{2} Y
$$

$m_{9,7}+m_{9,8} X+m_{9,9} Y+m_{9,10} X^{2}$ $\left.+m_{9,11} X Y+m_{9,12} Y^{2}+X Y^{2}\right\}$

ELIF $m_{1}, m_{2}, m_{3}, m_{4}, m_{5}, m_{8}$ are 1. indep., THEN type $(J) \leftarrow 62$
$J \leftarrow\left\{m_{6,7}+m_{6,8} X+m_{6,9} Y+m_{6,10} X^{2}\right.$
$\mathbf{E N}+m_{6,11} X Y+Y^{2}$,

$$
\begin{aligned}
& m_{7,7}+m_{7,8} X+m_{7,9} Y+m_{7,10} X^{2} \\
& \left.\quad+m_{7,11} X Y+X^{3}\right\}
\end{aligned}
$$

ELIF $m_{1}, m_{2}, m_{3}, m_{4}, m_{5}, m_{7}$ are 1. indep., THEN type $(J) \leftarrow 63$
$J \leftarrow\left\{m_{6,7}+m_{6,8} X+m_{6,9} Y+m_{6,10} X^{2}\right.$

$$
+m_{6,11} X Y+Y^{2}
$$

$m_{8,7}+m_{8,8} X+m_{8,9} Y+m_{8,10} X^{2}$
$\left.+m_{8,11} X Y+m_{8,13} X^{3}+X^{2} Y\right\}$
ELIF $m_{1}, m_{2}, m_{3}, m_{4}, m_{6}, m_{7}$ are l. indep., THEN $\operatorname{type}(J) \leftarrow 64$
$J \leftarrow\left\{m_{5,7}+m_{5,8} X+m_{5,9} Y+m_{5,10} X^{2}\right.$ $+X Y$,
$m_{10,7}+m_{10,8} X+m_{10,9} Y+m_{10,10} X^{2}$ $\left.+m_{10,12} Y^{2}+m_{10,13} X^{3}+X^{4}\right\}$
ELIF $m_{1}, m_{2}, m_{3}, m_{5}, m_{6}, m_{9}$ are 1. indep., THEN $\operatorname{type}(J) \leftarrow 65$
$J \leftarrow\left\{m_{4,7}+m_{4,8} X+m_{4,9} Y+X^{2}\right\}$
ELSE $J \leftarrow$ 'error'

ELSE IF

/* omitted */
RETURN J
algorithm Reduce
an input J : ideal
an output J^{*} : ideal
IF $\operatorname{type}(J)==61$ THEN

$$
f=X^{3}+a_{6} Y^{2}+a_{5} X Y+a_{4} X^{2}
$$

$$
+a_{3} Y+a_{2} X+a_{1}
$$

$$
\leftarrow \text { the first element of } J
$$

$$
g=X^{2} Y+b_{6} Y^{2}+b_{5} X Y+b_{4} X^{2}
$$

$$
+b_{3} Y+b_{2} X+b_{1}
$$

\leftarrow the second element of J
$h=X Y^{2}+c_{6} Y^{2}+c_{5} X Y+c_{4} X^{2}$
$+c_{3} Y+c_{2} X+c_{1}$
\leftarrow the third element of J
IF $\left(-a 5-a 6^{2}+b 6\right) \neq 0$ THEN
$M_{r} \leftarrow\left(\begin{array}{ccc}-a_{4}-a_{5} a_{6}+b_{5} & -a_{5}-a_{6}^{2}+b_{6} & 0 \\ b_{4}+a_{5} b_{6} & b_{5}+a_{6} b_{6} & 1 \\ e_{4,1} & e_{4,2} & -a_{5}-a_{6}^{2}+b_{6} \\ e_{5,1} & e_{5,2} & e_{5,3} \\ e_{6,1} & e_{6,2} & e_{6,3}\end{array}\right)$
\# For definitions of $e_{i, j}$, see Equation (10).
$M_{r}^{\prime} \leftarrow M_{r}: I_{3}$
$m \leftarrow \operatorname{RowReduce}\left(M_{r}^{\prime}, 3\right)$
$\operatorname{type}\left(J^{*}\right) \leftarrow 31$
$J^{*} \leftarrow\left\{m_{4,4}+m_{4,5} X+m_{4,6} Y+X^{2}\right.$,
$m_{5,4}+m_{5,5} X+m_{5,6} Y+X Y$,

$$
\begin{aligned}
& \left.m_{6,4}+m_{6,5} X+m_{6,6} Y+Y^{2}\right\} \\
& \text { ELSE } \\
& M_{R} \leftarrow\left(\begin{array}{c}
w_{g}: w_{h} \\
w_{X g}: w_{X h} \\
w_{Y g}: w_{Y h} \\
w_{X^{2} g}: w_{X^{2} h} \\
w_{X Y g}: w_{X Y h} \\
w_{Y^{2} g}: w_{Y^{2} h}
\end{array}\right) \\
& M_{R}^{\prime} \leftarrow M_{R}: I_{6} \\
& m \leftarrow \operatorname{RowReduce}\left(M_{R}^{\prime}, 3\right) \\
& \operatorname{type}\left(J^{*}\right) \leftarrow 31 \\
& J^{*} \leftarrow\left\{m_{4,19}+m_{4,20} X+m_{4,21} Y+X^{2},\right. \\
& m_{5,19}+m_{5,20} X+m_{5,21} Y+X Y, \\
& \left.m_{6,19}+m_{6,20} X+m_{6,21} Y+Y^{2}\right\} \\
& \text { /* omitted */ } \\
& \text { ELSE IF type }(J)==31 \text { THEN } \\
& f=X^{2}+a_{3} Y+a_{2} X+a_{1} \\
& \leftarrow \text { the first element of } J \\
& g=X Y+b_{3} Y+b_{2} X+b_{1} \\
& \leftarrow \text { the second element of } J \\
& h=Y^{2}+c_{3} Y+c_{2} X+c_{1} \\
& \leftarrow \text { the third element of } J \\
& \text { IF } a_{3} \neq 0 \text { THEN } \\
& M_{r} \leftarrow \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
-a_{2}+b_{3} & -a_{3} & 0 \\
b_{2} & b_{3} & 1 \\
f_{4,1} & f_{4,2} & -a_{2}+b_{3} \\
f_{5,1} & f_{5,2} & -a_{3}^{2}+b_{2}
\end{array}\right) \\
& f_{4,1}=2 a_{2} a_{3}^{2}+b_{1}-a_{2} b_{2} \\
& f_{4,2}=-a_{1}+a_{3}^{3}-a_{3} b_{2} \\
& f_{5,1}=-2 a_{1} a_{3}+3 a_{2}^{2} a_{3}-2 a_{2} a_{3} b_{3} \\
& f_{5,2}=2 a_{2} a_{3}^{2}+b_{1}-a_{3}^{2} b_{3} \\
& M_{r}^{\prime} \leftarrow M_{r}: I_{3} \\
& m \leftarrow \operatorname{RowReduce}\left(M_{r}^{\prime}, 3\right) \\
& \operatorname{type}\left(J^{*}\right) \leftarrow 31 \\
& J^{*} \leftarrow\left\{a_{1}+a_{2} X+a_{3} Y+X^{2},\right. \\
& m_{4,4}+m_{4,5} X+m_{4,6} Y+X Y, \\
& \left.m_{5,4}+m_{5,5} X+m_{5,6} Y+Y^{2}\right\}
\end{aligned}
$$

ELSE

$$
\begin{gathered}
w_{g}: w_{h} \\
M_{R} \leftarrow\left(\begin{array}{c}
w_{X g}: w_{X h} \\
w_{Y g}: w_{Y h} \\
w_{X Y g}: w_{X Y h} \\
w_{Y^{2} g}: w_{Y^{2} h}
\end{array}\right) \\
M_{R}^{\prime} \leftarrow M_{R}: I_{5} \\
m \leftarrow \operatorname{RowReduce}\left(M_{R}^{\prime}, 3\right) \\
\text { type }\left(J^{*}\right) \leftarrow 31 \\
J^{*} \leftarrow\{\text { the first element of } J \\
m_{4,13}+m_{4,14} X+m_{4,15} Y+X Y, \\
\left.m_{5,13}+m_{5,14} X+m_{5,15} Y+Y^{2}\right\} \\
\text { ELSE IF } \\
/^{*} \text { omitted }{ }^{* /} \\
\text { RETURN } J^{*}
\end{gathered}
$$

algorithm RowReduce

an input M : matrix
an output d : integer
\#Until independent d rows are obtained,
\#repeat row reduce procedure.
$n \leftarrow$ the row number of $M, \quad b \leftarrow$ the column number of M
$\operatorname{dim} \leftarrow 0, \quad i \leftarrow 1$
WHILE $\operatorname{dim}<d$ AND $i \leq n$ DO

$$
\text { IF } M_{i, d i m+1}==0 \text { THEN }
$$

$k \leftarrow \operatorname{dim}+2$
WHILE $M_{i, k}==0$ AND $k \leq b-n$ DO $k \leftarrow k+1$
IF $k \leq b-n$ THEN Exchange dim +1 -th and k-th columns of M.
$c \leftarrow M_{i, \operatorname{dim}+1}$
IF $c==0$ THEN $i \leftarrow i+1$ NEXT
$\operatorname{dim} \leftarrow \operatorname{dim}+1$
$c \leftarrow c^{-1}$
FOR $j \leftarrow i+1, \ldots, n \mathbf{D O}$
\# In the below, M_{i} denotes the i-th row of the matrix M.
$M_{j} \leftarrow M_{j}-c \cdot M_{j, \text { dim }} \cdot M_{i}$
$i \leftarrow i+1$
RETURN M

